Package ‘regutools’

January 20, 2026

Title regutools: an R package for data extraction from RegulonDB
Version 1.22.0
Date 2021-11-15

Description RegulonDB has collected, harmonized and centralized data
from hundreds of experiments for nearly two decades and is considered
a point of reference for transcriptional regulation in Escherichia coli K12.
Here, we present the regutools R package to facilitate programmatic
access to RegulonDB data in computational biology. regutools provides
researchers with the possibility of writing reproducible workflows
with automated queries to RegulonDB. The regutools package serves as
a bridge between RegulonDB data and the Bioconductor ecosystem by
reusing the data structures and statistical methods powered by other
Bioconductor packages. We demonstrate the integration of regutools
with Bioconductor by analyzing transcription factor DNA binding sites
and transcriptional regulatory networks from RegulonDB. We anticipate
that regutools will serve as a useful building block in our progress
to further our understanding of gene regulatory networks.

License Artistic-2.0
Encoding UTF-8
Depends R (>=4.0)

Imports AnnotationDbi, AnnotationHub, Biostrings, DBI, GenomicRanges,
Gviz, IRanges, RCy3, RSQLite, S4Vectors, methods, stats, utils,
BiocFileCache

LazyData true

RoxygenNote 7.1.1

Suggests BiocStyle, knitr, RefManageR, rmarkdown, sessioninfo,
testthat (>= 2.1.0), covr

URL https://github.com/ComunidadBioInfo/regutools

BugReports https://support.bioconductor.org/t/regutools

biocViews GeneRegulation, GeneExpression, SystemsBiology,
Network,NetworkInference, Visualization, Transcription

Roxygen list(markdown = TRUE)
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/regutools

1


https://github.com/ComunidadBioInfo/regutools
https://support.bioconductor.org/t/regutools

git_branch RELEASE_3_22
git_last_commit f94aecc

git_last commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-19

Author Joselyn Chavez [aut, cre] (ORCID:

<https://orcid.org/0000-0002-4974-4591>),

Carmina Barberena-Jonas [aut] (ORCID:
<https://orcid.org/0000-0001-7413-638X>),

Jesus E. Sotelo-Fonseca [aut] (ORCID:
<https://orcid.org/0000-0003-1600-2396>),

Jose Alquicira-Hernandez [ctb] (ORCID:
<https://orcid.org/0000-0002-9049-7780>),

Heladia Salgado [ctb] (ORCID: <https://orcid.org/0000-0002-3166-5801>),

Leonardo Collado-Torres [aut] (ORCID:
<https://orcid.org/0000-0003-2140-308X>),

Alejandro Reyes [aut] (ORCID: <https://orcid.org/0000-0001-8717-6612>)

Maintainer Joselyn Chavez <joselynchavezf@gmail.com>

Contents

regutools-package . . . . . . ...
build_condition . . . . . . .. ...
connect_database . . . . . . . . ... .. e e e
convert_to_biostrings . . . . . . . ... L.
convert_to_Granges . . . . . . . . . . .o h e e e e e e e e e
existing_intervals . . . . . . . ...
existing_partial_match . . . . ... ... oL oo
get_binding_sites . . . . . . .. ...
get_dataset . . ... ...
get_dna_objects . . . . . .. e e e e
get_gene_regulators . . . . . ... L. e e e e e e
GEL_GEeNE_SYNONYIMS . . . . v v v v vt e e e e e e e e e e e e e e
get_regulatory_network . . . . .. ... oL
get_regulatory_SUmmary . . . . . . . . ... i e e e e e e
guess_id . ..o
list_attributes . . . . . . . . e
list_datasets . . . . . . . .. e e e e
non_existing_intervals . . . . . ... ..o o
plot_dna_objects . . . . . . . ... e e
regulondb . . ...
regulondb-class . . . . . .. L.
regulondb_result-class . . . . . ...
Show . . . . ..

Index

Contents


https://orcid.org/0000-0002-4974-4591
https://orcid.org/0000-0001-7413-638X
https://orcid.org/0000-0003-1600-2396
https://orcid.org/0000-0002-9049-7780
https://orcid.org/0000-0002-3166-5801
https://orcid.org/0000-0003-2140-308X
https://orcid.org/0000-0001-8717-6612

regutools-package 3

regutools-package regutools: regutools: an R package for data extraction from Regu-
lonDB

Description

RegulonDB has collected, harmonized and centralized data from hundreds of experiments for nearly
two decades and is considered a point of reference for transcriptional regulation in Escherichia coli
K12. Here, we present the regutools R package to facilitate programmatic access to RegulonDB
data in computational biology. regutools provides researchers with the possibility of writing re-
producible workflows with automated queries to RegulonDB. The regutools package serves as a
bridge between RegulonDB data and the Bioconductor ecosystem by reusing the data structures
and statistical methods powered by other Bioconductor packages. We demonstrate the integration
of regutools with Bioconductor by analyzing transcription factor DNA binding sites and transcrip-
tional regulatory networks from RegulonDB. We anticipate that regutools will serve as a useful
building block in our progress to further our understanding of gene regulatory networks.

Author(s)

Maintainer: Joselyn Chavez <joselynchavezf@gmail.com> (ORCID)
Authors:

e Carmina Barberena-Jonas <car.barjon@gmail.com> (ORCID)
* Jesus E. Sotelo-Fonseca <jemilianosf@gmail.com> (ORCID)

¢ Leonardo Collado-Torres <lcolladotor@gmail.com> (ORCID)
* Alejandro Reyes <alejandro.reyes.ds@gmail.com> (ORCID)

Other contributors:

* Jose Alquicira-Hernandez <joseah@lcg.unam.mx> (ORCID) [contributor]
* Heladia Salgado <heladia@ccg.unam.mx> (ORCID) [contributor]

See Also
Useful links:

* https://github.com/ComunidadBioInfo/regutools
* Report bugs at https://support.bioconductor.org/t/regutools

build_condition Construct logical condition to query database

Description
Given a list of filters, this function builds a logical condition to query database. The output is used
in get_dataset().

Usage

build_condition(regulondb, dataset, filters, operator, interval, partialmatch)


https://orcid.org/0000-0002-4974-4591
https://orcid.org/0000-0001-7413-638X
https://orcid.org/0000-0003-1600-2396
https://orcid.org/0000-0003-2140-308X
https://orcid.org/0000-0001-8717-6612
https://orcid.org/0000-0002-9049-7780
https://orcid.org/0000-0002-3166-5801
https://github.com/ComunidadBioInfo/regutools
https://support.bioconductor.org/t/regutools

4 build_condition

Arguments
regulondb A regulondb() object.
dataset dataset of interest
filters List of filters to be used. The names should correspond to the attribute and the
values correspond to the condition for selection.
operator A string indicating if all the filters (AND) or some of them (OR) should be met
interval the filters with values considered as interval

partialmatch  name of the condition(s) with a string pattern for full or partial match in the
query

Value

A character (1) with the sql logical condition to query the dataset .

Author(s)

Carmina Barberena Jonds, Jesus Emiliano Sotelo Fonseca, José Alquicira Herndndez, Joselyn Chévez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Build the condition for ara
build_condition(
e_coli_regulondb,
dataset = "GENE",
filters = list(
name = c("ara"),
strand = c("forward"),
posright = c("2000", "40000")

),

operator = "AND",
interval = "posright”,
partialmatch = "name”



connect_database 5

connect_database Connect to the regulondb database

Description

This function downloads the RegulonDB SQLite database file prior to making a connection to it.
It will cache the database file such that subsequent calls will run faster. This function requires an
active internet connection.

Usage

connect_database(
ah = AnnotationHub: :AnnotationHub(),
bfc = BiocFileCache: :BiocFileCache()

)
Arguments
ah An AnnotationHub object AnnotationHub-class. Can be NULL if you want to
force to use the backup download mechanism.
bfc A BiocFileCache object BiocFileCache-class. Used when ah is not available.
Value

An SQLiteConnection-class connection to the RegulonDB database.

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn"”)) regulondb_conn <- connect_database()

## Connect to the database without using AnnotationHub
regulondb_conn_noAH <- connect_database(ah = NULL)

convert_to_biostrings Function to convert output of regulondb queries to Biostrings objects

Description

This function converts, when possible, a regulon_result object into a Biostrings object.

Usage

convert_to_biostrings(regulondb_result, seq_type = "DNA")

Arguments

regulondb_result
A regulon_result object.

seq_type A character string with either DNA or protein, specyfing what



6 convert_to_granges

Value

A XStringSet object.

Author(s)

Alejandro Reyes

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Obtain all the information from the "GENE" dataset
convert_to_biostrings(get_dataset(e_coli_regulondb, dataset = "GENE"))

convert_to_granges Function to convert output of regulondb queries to GenomicRanges
objects

Description

This function converts, when possible, a regulon_result object into a GRanges object.

Usage

convert_to_granges(regulondb_result)

Arguments

regulondb_result
A regulon_result object.

Value

A GRanges object.

Author(s)

Alejandro Reyes



existing_intervals 7

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn"”)) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Obtain all the information from the "GENE" dataset
convert_to_granges(get_dataset(e_coli_regulondb, dataset = "GENE"))

existing_intervals Constructs a particular logical condition to query database

Description

Given a list of filters, this function builds a logical condition to query database using intervals. The
output is used in build_condition().

Usage

existing_intervals(filters, interval, operator, partialmatch)

Arguments
filters List of filters to be used. The names should correspond to the attribute and the
values correspond to the condition for selection.
interval the filters with values considered as interval.
operator A string indicading if all the filters (AND) or some of them (OR) should be met.

partialmatch  name of the condition(s) with a string pattern for full or partial match in the
query.

Value

A character (1) with the sql logical condition to query the dataset.

Author(s)

Carmina Barberena Jonds, Jesis Emiliano Sotelo Fonseca, José Alquicira Herndndez, Joselyn Chavez



8 existing_partial match

Examples

## Build the SQL query for existing interval partial matches for ara
existing_intervals(
filters = list(
name = "ara",
strand = "for",
posright = c("2000", "40000")
),
interval = c("posright”),
operator = "AND",
partialmatch = c("name”, "strand")

existing_partial_match
Constructs a logical condition to query database

Description

Given a list of filters, this function builds a logical condition to query database using intervals. The
output is used in existing_intervals() and non_existing_intervals().

Usage

existing_partial_match(filters, partialmatch, operator)

Arguments

filters List of filters to be used. The names should correspond to the attribute and the
values correspond to the condition for selection.

partialmatch  name of the condition(s) with a string pattern for full or partial match in the
query.

operator A string indicating if all the filters (AND) or some of them (OR) should be met.

Value

A character (1) with the sql logical condition to query the dataset.

Author(s)

Carmina Barberena Jonds, Jestis Emiliano Sotelo Fonseca, José Alquicira Herndndez

Examples

## Build the SQL query for existing partial matches for ara
existing_partial_match(
filters = list(
name = c("ara"),
strand = c("forward"),
posright = c("2000", "40000")
),
partialmatch = "name”,
operator = "AND"



get_binding_sites 9

get_binding_sites Get the binding sites for a Transcription Factor (TF)

Description

Retrieve the binding sites and genome location for a given transcription factor.

Usage

get_binding_sites(regulondb, transcription_factor, output_format = "GRanges")
Arguments

regulondb A regulondb() object.

transcription_factor
name of the transcription factor.

output_format The output object. Can be either a GRanges (default) or Biostrings.

Value

Either a GRanges object or a Biostrings object summarizing information about the binding sites of
the transcription factors.

Author(s)

José Alquicira Herndndez, Jacques van Helden, Joselyn Chavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Get the binding sites for AraC
get_binding_sites(e_coli_regulondb, transcription_factor = "AraC")



10 get_dataset

get_dataset Extract data from RegulonDB

Description

This function retrieves data from RegulonDB. Attributes from datasets can be selected and filtered.

Usage

get_dataset(
regulondb,
dataset = NULL,
attributes = NULL,
filters = NULL,
and = TRUE,
interval = NULL,
partialmatch = NULL,

output_format = "regulondb_result”
)
Arguments

regulondb A regulondb() object.

dataset Dataset of interest. Use the function list_datasets for an overview of valid
datasets.

attributes Vector of attributes to be retrieved.

filters List of filters to be used. The names should correspond to the attribute and the
values correspond to the condition for selection.

and Logical argument. If FALSE, filters will be considered under the "OR" operator

interval the filters whose values will be considered as interval

partialmatch name of the condition(s) with a string pattern for full or partial match in the
query

output_format A string specifying the output format. Possible options are "regulondb_result",
"GRanges", "DNAStringSet" or "BStringSet".

Value

By default, a regulon_results object. If specified in the parameter output_format, it can also return
either a GRanges object or a Biostrings object.

Author(s)

Carmina Barberena Jonas, Jesis Emiliano Sotelo Fonseca, José Alquicira Herndndez, Joselyn Chavez



get_dna_objects 11

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Obtain all the information from the "GENE" dataset
get_dataset(e_coli_regulondb, dataset = "GENE")

## Get the attributes posright and name from the "GENE" dataset
get_dataset(e_coli_regulondb,

dataset = "GENE",

attributes = c("posright”, "name")

)

## From "GENE" dataset, get the gene name, strand, posright, product name
## and id of all genes regulated with name like "ara”, strand as "forward”
## with a position right between 2000 and 40000
get_dataset(
e_coli_regulondb,
dataset = "GENE",
attributes = c("name”, "strand”, "posright”, "product_name"”, "id"),
filters = list(
name = c("ara"),
strand = c("forward"),
posright = c("2000", "40000")

),
and = TRUE,
partialmatch = "name”,
interval = "posright”
)
get_dna_objects Retrieve genomic elements from regulonDB
Description

Retrieve genomic elements from regulonDB

Usage
get_dna_objects(
regulondb,
genome = "eschColi_K12",
grange = GRanges("chr"”, IRanges(1, 5000)),
elements = "gene”



12

Arguments
regulondb
genome
grange

elements

Value

get_dna_objects

A regulondb() object.
A valid UCSC genome name.
A GenomicRanges: : GRanges-class() object indicating position left and right.

A character vector specifying which annotation elements to plot. It can be
any from: "-10 promoter box", "-35 promoter box", "gene"”, "promoter”,

n on

"Regulatory Interaction”, "sRNA interaction”, or "terminator”.

GenomicRanges: :GRanges-class() object with the elements found.

Author(s)

Joselyn Chavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) {
regulondb_conn <- connect_database()

## Build the regulondb object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "chr",
database_version = "1",
genome_version = "1"

)

## Get all genes from E. coli
get_dna_objects(e_coli_regulondb)

## Get genes providing Genomic Ranges
grange <- GenomicRanges: :GRanges(

"chr" ,

IRanges: : IRanges (5000, 10000)

)

get_dna_objects(e_coli_regulondb, grange)

## Get aditional elements within genomic positions
get_dna_objects(e_coli_regulondb,

grange,

elements = c("gene"”, "promoter")



get_gene_regulators 13

get_gene_regulators Get TFs or genes that regulate the genes of interest

Description
Given a list of genes (name, bnumber or GI), get all transcription factors or genes that regulate
them. The effect of regulators over the gene of interest can be positive (+), negative (-) or dual (+/-)
Usage

get_gene_regulators(regulondb, genes, format = "multirow”, output.type = "TF")

Arguments
regulondb A regulondb class.
genes Vector of genes (name, bnumber or GI).
format Output format: multirow, onerow, table

output.type How regulators will be represented: "TF"/"GENE"

Value

A regulondb_result object.

Author(s)

Carmina Barberena Jonas, Jesis Emiliano Sotelo Fonseca, José Alquicira Herndndez, Joselyn Chavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Get Transcription factors that regulate araC in one row
get_gene_regulators(

e_coli_regulondb,

genes = c("araC"),

output.type = "TF",

format = "onerow”

)

## Get genes that regulate araC in table format
get_gene_regulators(

e_coli_regulondb,

genes = c("araC"),



14 get_gene_synonyms

output.type = "GENE",
format = "table”

get_gene_synonyms Retrieve gene synonyms

Description

Given a list of genes (id, name, bnumber or gi), get the gene synonyms (name, bnumber of gi).

Usage
get_gene_synonyms(
regulondb,
genes,
from = "name",
to = c("id”, "name"”, "bnumber”, "gi")
)
Arguments
regulondb A regulondb() object.
genes Character vector of gene identifiers (id, name, bnumber or gi).
from A character() specifying one of: id, name, bnumber of gi
to A character() specifying one or more of: id, name, bnumber of gi
Value

A regulondb_result object.

Author(s)

Jesds Emiliano Sotelo Fonseca

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Lists all available identifiers for "araC”
get_gene_synonyms(e_coli_regulondb, "araC"”, from = "name")



get_regulatory_network 15

## Retrieve only the ID
get_gene_synonyms(e_coli_regulondb, "araC"”, from = "name”, to = "id")

## Use an ID to retrieve the synonyms
get_gene_synonyms(e_coli_regulondb, "ECK120000998", from = "id")

get_regulatory_network
Return complete regulatory network.

Description

This function retrieves all the regulation networks in regulonDB between TF-TF, GENE-GENE or
TF-GENE depending on the parameter ’type’.

Usage

get_regulatory_network(
regulondb,
regulator = NULL,
type = "TF-GENE",
cytograph = FALSE

)
Arguments
regulondb A regulondb() object.
regulator Name of TF or gene that acts as regulator. If NULL, the function retrieves all
existent networks in the regulonDB.
type "TF-GENE", "TF-TF", "GENE-GENE"
cytograph If TRUE, displays network in Cytoscape. This option requires previous instala-
tion and launch of Cytoscape.
Value

A regulondb_result object.

Author(s)

Carmina Barberena Jonas, Jesus Emiliano Sotelo Fonseca, José Alquicira Hernandez, Joselyn Chéavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,

database_version = "1",



16 get_regulatory_summary

genome_version = "1"

)

## Retrieve regulation of 'araC'
get_regulatory_network(e_coli_regulondb,
regulator = "AraC",
type = "TF-GENE"

## Retrieve all GENE-GENE networks
get_regulatory_network(e_coli_regulondb, type = "GENE-GENE")

## Retrieve TF-GENE network of AraC and display in Cytoscape
## Note that Cytospace needs to be open for this to work
cytoscape_present <- try(RCy3::cytoscapePing(), silent = TRUE)
if (!is(cytoscape_present, "try-error”)) {
get_regulatory_network(

e_coli_regulondb,

regulator = "AraC",

type = "TF-GENE",

cytograph = TRUE

get_regulatory_summary
Return summary of gene regulation.

Description
This function takes the output of get_gene_regulators() with format multirow, onerow or table,
or a vector with genes and retrieves information about the TFs and their regulated genes

Usage

get_regulatory_summary(regulondb, gene_regulators)

Arguments

regulondb A regulondb() object.
gene_regulators
Result from get_gene_regulators() or vector of genes

Value

A data frame with the following columns:

* The name or gene of TF

* Regulated Genes per TF

* Percent of regulated genes per TF

* positive, negative or dual regulation

* Name(s) of regulated genes



guess_id 17

Author(s)

Carmina Barberena Jonas, Jesus Emiliano Sotelo Fonseca, José Alquicira Hernandez, Joselyn Chavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Get the araC regulators
araC_regulation <-
get_gene_regulators(
e_coli_regulondb,
genes = c("araC"),
format = "multirow”,
output.type = "TF"
)

## Summarize the araC regulation
get_regulatory_summary(e_coli_regulondb, araC_regulation)

## Retrieve summary of genes 'araC' and 'modB'
get_regulatory_summary(e_coli_regulondb,
gene_regulators = c("araC”, "modB")

)

## Obtain the summary for 'ECK120000050' and 'modB'

get_regulatory_summary(e_coli_regulondb,
gene_regulators = c("ECK120000050", "modB")

)

guess_id Guess gene id type

Description

Given a gene identifier, return the most likely gene_id type.

Usage

guess_id(gene, regulondb)

Arguments

gene Character vector of gene identifiers (id, name, bnumber or gi).
regulondb A regulondb() object.



18 list_attributes

Value

A character (1) vector with the name column guessed value.

Author(s)

Jesus Emiliano Sotelo Fonseca

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## Lists all available identifiers for "araC”
## Guess name
guess_id("araC", e_coli_regulondb)

## Guess id
guess_id("ECK120000050", e_coli_regulondb)

## Guess bnumber
guess_id("b0064", e_coli_regulondb)

list_attributes List attributes/fields from a dataset/table

Description

List all attributes and their description of a dataset from RegulonDB. The result of this function may
be used as parameter 'values’ in list_attributes() function.

Usage

list_attributes(regulondb, dataset)

Arguments

regulondb A regulondb() object.

dataset Dataset of interest. The name should correspond to a table of the database.
Value

A character vector with the field names.



list_datasets 19

Author(s)

Carmina Barberena Jonds, Jesis Emiliano Sotelo Fonseca, José Alquicira Herndndez, Joselyn Chavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"

)

## List the transcription factor attributes
list_attributes(e_coli_regulondb, "TF")

## List the operon attributes
list_attributes(e_coli_regulondb, "OPERON")

list_datasets List available datasets in RegulonDB database

Description

This function returns a vector of all available tables from a regulondb class.

Usage

list_datasets(regulondb)

Arguments

regulondb A regulondb class.

Value

A character () with the names of the available datasets.

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn"”)) regulondb_conn <- connect_database()

## Build the regulon db object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,

database_version = "1",



20 non_existing_intervals

genome_version = "1"

)

## List the available datasets
list_datasets(e_coli_regulondb)

non_existing_intervals
Constructs a logical condition to query database

Description

Given a list of filters, this function builds a logical condition to query database using intervals. The
output is used in build_condition().

Usage

non_existing_intervals(filters, interval, operator, partialmatch)

Arguments
filters List of filters to be used. The names should correspond to the attribute and the
values correspond to the condition for selection.
interval the filters whose values will be considered as interval
operator A string indicating if all the filters (AND) or some of them (OR) should be met.

partialmatch name of the condition(s) with a string pattern for full or partial match in the
query.

Value

A character (1) with the sql logical condition to query the dataset.

Author(s)

Carmina Barberena Jonds, Jestis Emiliano Sotelo Fonseca, José Alquicira Herndndez

Examples

## Build the SQL query for finidng non-existing intervals for the gene ara
non_existing_intervals(

filters = list(name = "ara”, strand = "for"),

interval = NULL,

operator = "AND",

partialmatch = c("name”, "strand")



plot_dna_objects 21

plot_dna_objects Plot annotation elements within genomic region

Description

Plot annotation elements within genomic region

Usage
plot_dna_objects(
regulondb,
genome = "eschColi_K12",
grange = GRanges("chr"”, IRanges(1, 5000)),
elements = "gene”
)
Arguments
regulondb A regulondb() object.
genome A valid UCSC genome name.
grange A GenomicRanges: : GRanges-class() object indicating position left and right.
elements A character vector specifying which annotation elements to plot. It can be
any from: "-10 promoter box", "-35 promoter box", "gene"”, "promoter”,
"Regulatory Interaction”, "sRNA interaction”, or "terminator".
Value

A plot with genomic elements found within a genome region, including genes and regulators.

Author(s)

Joselyn Chavez

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn”)) {
regulondb_conn <- connect_database()

}

## Build the regulondb object
e_coli_regulondb <-

regulondb(
database_conn = regulondb_conn,
organism = "chr”,
database_version = "1",
genome_version = "1"

)

## Plot some genes from E. coli using default parameters
plot_dna_objects(e_coli_regulondb)



22 regulondb

## Plot genes providing Genomic Ranges
grange <- GenomicRanges: :GRanges(
"chr",
IRanges: : IRanges (5000, 10000)
)
plot_dna_objects(e_coli_regulondb, grange)

## Plot aditional elements within genomic positions
plot_dna_objects(e_coli_regulondb,

grange,
elements = c("gene"”, "promoter")
)
regulondb Constructor function of a regulondb class
Description

The build_regulondb function is a constructor function of a regulondb class.

Usage

regulondb(database_conn, organism, genome_version, database_version)

Arguments

database_conn A SQLiteConnection-class connection to the RegulonDB database made with
connect_database().

organism A character vector with the name of the organism of the database.

genome_version A character vector with the version of the genome build.
database_version
A character vector with the version of regulondb build.

Value

A regulondb object.

Examples

## Connect to the RegulonDB database if necessary
if (lexists("regulondb_conn")) regulondb_conn <- connect_database()

## Build a regulondb object
e_coli_regulondb <-
regulondb(
database_conn = regulondb_conn,
organism = "E.coli”,
database_version = "1",
genome_version = "1"



regulondb-class 23

regulondb-class The regulondb class

Description

The regulondb class is an extension of the SQLiteConnection, which as the name suggests, consists
of an SQLite connection to a database with the table design of the RegulonDb database. In addition
to the slots defined in the SQLiteConnection object, the regulondb class also contains additional
slots to store information about database versions, organism information and genome build versions.

Slots

organism A character vector with the name of the organism of the database.
genome_version A character vector with the version of the genome build.

database_version A character vector with the version of regulondb build.

regulondb_result-class
The regulondb_results class

Description

The regulondb class is an extension of the DataFrame class, with additional slots that host informa-
tion of the database used to obtain these results.

Slots

organism A character string with the name of the organism of the database.
genome_version A character string with the version of the genome build.
database_version A character string with the version of regulondb build.

dataset A character string with the name of the table used for the query in get_dataset().

show Methods for regulondb objects

Description

Methods for regulondb objects

Usage
## S4 method for signature 'regulondb'
show(object)

Arguments

object A regulondb object



24 show

Value

A regulondb object.



Index

* TF,
get_regulatory_network, 15

x TFs,
get_gene_regulators, 13

x attributes
list_attributes, 18

+* bnumber,
get_gene_synonyms, 14
guess_id, 17

+ database
list_datasets, 19

* datasets
list_datasets, 19

x data
list_attributes, 18
list_datasets, 19

* geneid,
get_gene_synonyms, 14
guess_id, 17

* gi,
get_gene_synonyms, 14
guess_id, 17

+ internal
regutools-package, 3

* networks,
get_gene_regulators, 13
get_regulatory_network, 15
get_regulatory_summary, 16

* regulation
get_gene_regulators, 13
get_regulatory_network, 15
get_regulatory_summary, 16

* retrieval,
get_gene_regulators, 13
get_regulatory_network, 15
get_regulatory_summary, 16
list_attributes, 18

* retrieval
list_datasets, 19

* summary,
get_regulatory_summary, 16

* synonyms
get_gene_synonyms, 14

25

guess_id, 17
AnnotationHub-class, 5

BiocFileCache-class, 5
build_condition, 3
build_condition(), 7, 20
build_regulondb (regulondb), 22

connect_database, 5
connect_database(), 22
convert_to_biostrings, 5
convert_to_granges, 6

existing_intervals, 7
existing_intervals(), 8
existing_partial_match, 8

get_binding_sites, 9
get_dataset, 10
get_dataset(), 3
get_dna_objects, 11
get_gene_regulators, 13
get_gene_regulators(), 16
get_gene_synonyms, 14
get_regulatory_network, 15
get_regulatory_summary, 16
GRanges, 6

guess_id, 17

list_attributes, 18
list_attributes(), I8
list_datasets, 19

non_existing_intervals, 20
non_existing_intervals(), 8

plot_dna_objects, 21

regulondb, 22, 22, 24
regulondb(), 4, 9, 10, 12, 14-18, 21
regulondb-class, 23
regulondb_result, /13-15
regulondb_result-class, 23
regutools (regutools-package), 3



26

regutools-package, 3

show, 23
show, regulondb-method (show), 23
SQLiteConnection-class, 5, 22

XStringSet, 6

INDEX



	regutools-package
	build_condition
	connect_database
	convert_to_biostrings
	convert_to_granges
	existing_intervals
	existing_partial_match
	get_binding_sites
	get_dataset
	get_dna_objects
	get_gene_regulators
	get_gene_synonyms
	get_regulatory_network
	get_regulatory_summary
	guess_id
	list_attributes
	list_datasets
	non_existing_intervals
	plot_dna_objects
	regulondb
	regulondb-class
	regulondb_result-class
	show
	Index

