Package ‘regioneR’

January 20, 2026
Type Package

Title Association analysis of genomic regions based on permutation
tests

Version 1.42.0

Date 2025-06-20

Author Anna Diez-Villanueva <adiez@iconcologia.net>, Roberto Malinverni
<roberto.malinverni@gmail.com> and Bernat Gel <bgel@igtp.cat>

Maintainer Bernat Gel <bgel@imppc.org>

Description regioneR offers a statistical framework based on
customizable permutation tests to assess the association
between genomic region sets and other genomic features.

License Artistic-2.0
Depends GenomicRanges

Imports memoise, GenomicRanges, IRanges, BSgenome, Biostrings,
rtracklayer, parallel, graphics, stats, utils, methods,
Seqinfo, GenomelnfoDb, S4Vectors, tools

Suggests BiocStyle, knitr, rmarkdown,
BSgenome.Hsapiens.UCSC.hg19.masked, testthat

VignetteBuilder knitr

Encoding UTF-8

biocViews Genetics, ChIPSeq, DNASeq, MethylSeq, CopyNumber Variation
NeedsCompilation no

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/regioneR
git_branch RELEASE_3_22

git_last_commit eb018al

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

2

Contents

Index

Contents

characterToBSGenome 3
circularRandomizeRegions oL oo 3
commonRegions L 5
createFunctionsList oL 6
createRandomRegionso o 7
emptyCacheRegioneR 8
extendRegions L. 8
filterChromosomes e 9
getChromosomesByOrganism 10
getGeNOmMe e 11
getGenomeAndMask 12
getMask L 13
joinRegions 13
ListChrTypes o o e e 14
localZScore 15
maskFromBSGenome L 16
meanDistance L. e 17
meanlnRegions 17
mergeRegions L 18
numOverlaps L 19
overlapGraphicalSummary L 20
overlapPermTest e 21
overlapRegions 22
permTest e 23
plot.localZScoreResults 25
plotlocalZScoreResultsList 26
plot.permTestResults 27
plot.permTestResultsList 28
PIOtREZIONS e e e e e e 29
print.permTestResults oL 30
randomizeRegions L L 31
recomputePermTest 32
resampleGenomeo e e 33
resampleRegions L 34
splitRegions 34
subtractRegions e e e 35
summary.permTestResults oL oL o 36
summary.permTestResultsList o Lo 36
toDataframe 37
toGRanges e 37
uniqueRegions L. 40
42

characterToBSGenome 3

characterToBSGenome characterToBSGenome

Description

Given a character string with the "name" of a genome, it returns a BSgenome object if available.

Usage

characterToBSGenome (genome . name)

Arguments
genome . name a character string uniquely identifying a BSgenome (e.g. "hgl19", "mm10" are
ok, but "hg" is not)
Value

A BSgenome object

Note

This function is memoised (cached) using the memoise package. To empty the cache, use forget (charecterToBSGenome

See Also

getGenomeAndMask, maskFromBSGenome

Examples

g <- characterToBSGenome("hg19")

circularRandomizeRegions
Circular Randomize Regions

Description

Given a set of regions A and a genome, this function returns a new set of regions created by applying
a random spin to each chromosome.

Usage

circularRandomizeRegions(A, genome="hg19", mask=NULL, max.mask.overlap=NULL, max.retries=10, verb

4 circularRandomizeRegions

Arguments

A The set of regions to randomize. A region set in any of the accepted formats by
toGRanges (GenomicRanges, data. frame, etc...)

genome The reference genome to use. A valid genome object. Either a GenomicRanges
or data.frame containing one region per whole chromosome or a character
uniquely identifying a genome in BSgenome (e.g. "hg19", "'mm10" but not "hg").
Internally it uses getGenomeAndMask.

mask The set of regions specifying where a random region can not be (centromeres,

repetitive regions, unmappable regions...). A region set in any of the accepted
formats by toGRanges (GenomicRanges,data.frame, ...). If NULL it will try
to derive a mask from the genome (currently only works is the genome is a
character string) and if NA it will explicitly give an empty mask.

max.mask.overlap
numeric value

max.retries numeric value
verbose a boolean.

further arguments to be passed to or from methods.

Details

This randomization strategy is useful when the spatial relation between the regions in the RS is
important and has to be conserved.

Value

It returns a GenomicRanges object with the regions resulting from the randomization process.

See Also

randomizeRegions, toDataframe, toGRanges, getGenome, getMask, getGenomeAndMask, characterToBSGenome,
maskFromBSGenome, resampleRegions, createRandomRegions

Examples
A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))
mask <- data.frame("chr1”, c(20000000, 100000000), c(22000000, 130000000))
genome <- data.frame(c(”"chr1”, "chr2"), c(1, 1), c(180000000, 20000000))
circularRandomizeRegions(A)

circularRandomizeRegions (A, genome=genome, mask=mask, per.chromosome=TRUE, non.overlapping=TRUE)

commonRegions 5

commonRegions Common Regions

Description

Returns the regions that are common in two region sets, its intersection.

Usage

commonRegions(A, B)

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
Value

It returns a GenomicRanges object with the regions present in both region sets.

Note

All metadata (additional columns in the region set in addition to chromosome, start and end) will
be ignored and not present in the returned region set.

See Also
plotRegions, toDataframe, toGRanges, subtractRegions, splitRegions, extendRegions, joinRegions,

mergeRegions, overlapRegions

Examples
A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))
B <- data.frame("chr1”, 25, 35)

commons <- commonRegions(A, B)

plotRegions(list(A, B, commons), chromosome="chr1"”, regions.labels=c("A", "B", "common"), regions.colors=3:

6 createFunctionsList

createFunctionsList Create Functions List

Description

Partially applies (the standard Curry function in functional programming) a list of arguments to a
function and returns a list of preapplied functions. The result of this function is a list of functions
suitable for the multiple evaluation functions in permTest.

Usage

createFunctionsList(FUN, param.name, values, func.names)

Arguments
FUN Function. the function to be partially applied
param.name Character. The name of the parameter to pre-set.
values A list or vector of values to preassign. A function will be created for each of
the values in values. If present, the names of the list will be the names of the
functions.
func.names Character. The names of the functions created. Useful to identify the functions
created. Defaults to the names of the values list or to Functionl, Function2... if
the values list has no names.
Value

It returns a list of functions with parameter param.value pre-set to values.

Note

It uses the code posted by "hadley" at http://stackoverflow.com/questions/6547219/how-to-bind-
function-arguments

See Also

permTest, overlapPermTest

Examples

f <- function(a, b) {
return(a+b)

3

funcs <- createFunctionsList (FUN=f, param.name="b", values=c(1,2,3), func.names=c("plusone”, "plustwo”, "plus

funcs$plusone(2)
funcs$plusone(10)
funcs$plusthree(2)

A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=0, mask=NA)
B <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=0, mask=NA)

createRandomRegions 7

overlapsWith <- createFunctionsList(FUN=numOverlaps, param.name="B", values=list(a=A, b=B))
overlapsWith$a(A=A)
overlapsWith$b(A=A)

createRandomRegions Create Random Regions

Description

Creates a set of random regions with a given mean size and standard deviation.

Usage

createRandomRegions(nregions=100, length.mean=250, length.sd=20, genome="hg19", mask=NULL, non.ove

Arguments

nregions The number of regions to be created.

length.mean The mean size of the regions created. This is not guaranteed to be the mean of
the final region set. See note.

length.sd The standard deviation of the region size. This is not guaranteed to be the stan-
dard deviation of the final region set. See note.

genome The reference genome to use. A valid genome object. Either a GenomicRanges
or data.frame containing one region per whole chromosome or a character
uniquely identifying a genome in BSgenome (e.g. "hg19", "mm10" but not "hg").
Internally it uses getGenomeAndMask.

mask The set of regions specifying where a random region can not be (centromeres,

repetitive regions, unmappable regions...). A region set in any of the accepted
formats (GenomicRanges, data. frame, ...). NULL will try to derive a mask from
the genome (currently only works is the genome is a character string) and NA
explicitly gives an empty mask.

non.overlapping
A boolean stating whether the random regions can overlap (FALSE) or not
(TRUE).

Details

A set of nregions will be created and randomly placed over the genome. The lengths of the re-
gion set will follow a normal distribution with a mean size length.mean and a standard deviation
length. sd. The new regions can be made explicitly non overlapping by setting non.overlapping
to TRUE. A mask can be provided so no regions fall in a forbidden part of the genome.

Value

It returns a GenomicRanges object with the regions resulting from the randomization process.

Note

If the standard deviation of the length is large with respect to the mean, negative lengths might be
created. These region lengths will be transfromed to into a 1 and so the, for large standard deviations
the mean and sd of the lengths are not guaranteed to be the ones in the parameters.

8 extendRegions

See Also

getGenome, getMask, getGenomeAndMask, characterToBSGenome, maskFromBSGenome, randomizeRegions,
resampleRegions

Examples

genome <- data.frame(c("chr1”, "chr2"), c(1, 1), c(180000000, 20000000))
mask <- data.frame("chr1”, c(20000000, 100000000), c(22000000, 130000000))

createRandomRegions(nregions=10, length.mean=1000, length.sd=500)

createRandomRegions(nregions=10, genome=genome, mask=mask, non.overlapping=TRUE)

emptyCacheRegioneR Empty Cache regioneR

Description

Empties the caches used by the memoised functions in the regioneR package.

Usage

emptyCacheRegioneR ()

Value

The cache is emptied

Examples

emptyCacheRegioneR()

extendRegions Extend Regions

Description
Extends the regions a number of bases at each end. Negative numbers will reduce the region instead
of enlarging it.

Usage

extendRegions(A, extend.start=0, extend.end=0)

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
extend.start an integer. The number of bases to be subtracted from the start of the region.
extend.end an integer. The number of bases to be added at the end of the region.

filterChromosomes 9

Value

a GenomicRanges object with the extended regions.

Note

If negative values are provided and the new extremes are "flipped”, the function will fail. It does
not check if the extended regions fit into the genome.

See Also

plotRegions, toDataframe, toGRanges, subtractRegions, splitRegions, overlapRegions,
commonRegions, mergeRegions, joinRegions

Examples
A <- data.frame("chr1”, c(10, 20, 30), c(13, 28, 40))
extendl <- extendRegions(A, extend.start=5, extend.end=2)
extend2 <- extendRegions(A, extend.start=15)

extend3 <- extendRegions(A, extend.start=-1)

plotRegions(list(A, extendl, extend2, extend3), chromosome="chr1”, regions.labels=c("A", "extend1"”, "extend2"
filterChromosomes filterChromosomes
Description

Filters the chromosomes in a region set. It can either filter using a predefined chromosome set
(e.g. "autosomal chromosomes in Homo sapiens") or using a custom chromosome set (e.g. only
chromosomes "chr22" and "chrX")

Usage

filterChromosomes (A, organism="hg", chr.type="canonical”, keep.chr=NULL)

Arguments

A a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)

organism a character indicating the organism from which to get the predefined chromo-
some sets. It can be the organism code as used in BSgenome (e.g. hg for human,
mm for mouse...) or the full genome assembly identifier, since any digit will be
removed to get the organism code.

chr.type a character indicating the specific chromosome set to be used. Usually "au-

tosomal" or "canonical", althought other values could be available for certain
organisms.

10 getChromosomesByOrganism

keep.chr is a character vector stating the names of the chromosomes to keep. Any chro-
mosome not in the vector will be filtered out. If keep.chr is supplied, organism
and chr.type are ignored.

Value

A GRanges object containing only the regions in the original region set belonging to the selected
chromosomes. All regions in non selected chromosomes are removed.

See Also

getGenomeAndMask, 1istChrTypes getChromosomesByOrganism

Examples

g <- getGenomeAndMask("hg19")$genome

listChrTypes()

g <- filterChromosomes(g, chr.type="autosomal”, organism="hg19")
g <- filterChromosomes(g, keep.chr=c("chr1”, "chr2", "chr3"))

getChromosomesByOrganism
getChromosomesByOrganism

Description

Function to obtain a list of organisms with their canonical and (when applicable) the autosomal
chromosome names. This function is not usually used by the end user directly but through the
filterChromosomes function.

Usage

getChromosomesByOrganism()

Value

a list with the organism as keys and the list of available chromosome sets as values

See Also

getGenome, filterChromosomes

Examples

chrsByOrg <- getChromosomesByOrganism()
chrsByOrg[["hg"]1]
chrsByOrg[["hg"1]1[["autosomal”]]

getGenome 11

getGenome getGenome

Description

Function to obtain a genome

Usage

getGenome (genome)
Arguments

genome The genome object or genome identifier.
Details

If genome is a BSgenome (from the package BioStrings), it will transform it into a GRanges with
chromosomes and chromosome lengths.

If genome is a data. frame with 3 columns, it will transform it into a GRanges.

If genome is a data. frame with 2 columns, it will assume the first is the chromosome, the second
is the length of the chromosomes and will add 1 as start.

If genome is a character string uniquely identifying a BSgenome installed in the system (e.g.
"hgl19", "mm10",... but not "hg"), it will create a genome based on the BSgenome object identified
by the character string.

If genome is a GRanges object, it will return it as is.

If genome is non of the above, it will give a warning and try to transform it into a GRanges using
toGRanges. This can be helpful if genome is a connection to a file.
Value

A GRanges object with the "genome" data c(Chromosome, Start (by default, 1), Chromosome
Length) given a BSgenome, a genome name, a data. frame or a GRanges.

A GRanges representing the genome with one region per chromosome.

Note

This function is memoised (cached) using the memoise package. To empty the cache, use forget (getGenome)

Please note that passing this function the path to a file will not work, since it will assume the charac-
ter is the identifier of a genome. To read the genome from a file, please use getGenome (toGRanges("path/to/file"))

See Also

getMask, getGenomeAndMask, characterToBSGenome, maskFromBSGenome, emptyCacheRegioneR

Examples

getGenome ("hg19")

getGenome(data. frame(c("chrA”, "chrB"), c(15000000, 10000000)))

12 getGenomeAndMask

getGenomeAndMask getGenomeAndMask

Description

Function to obtain a valid genome and mask pair given a valid genome identifier and optionally a
mask.

If the genome is not a BSgenome object or a character string uniquely identifying a BSgenome pack-
age installed, it will return the genome "as is". If a mask is provided, it will simply return it.
Otherwise it will return the mask returned by getMask (genome) or an empty mask if genome is not
a valid BSgenome or BSgenome identifier.

Usage

getGenomeAndMask (genome, mask=NULL)

Arguments
genome the genome object or genome identifier.
mask the mask of the genome in a valid RS format (data.frame, GRanges, BED-like
file...). If mask is NULL, it will try to get a mask from the genome. If mask is NA
it will return an empty mask. (Default=NULL)
Value

A list with two elements: genome and mask. Genome and mask are GRanges objects.

Note

This function is memoised (cached) using the memoise package. To empty the cache, use forget (getGenomeAndMask)

See Also

getMask, getGenome, characterToBSGenome, maskFromBSGenome, emptyCacheRegioneR

Examples
getGenomeAndMask ("hg19", mask=NA)

getGenomeAndMask (genome=data.frame(c("chrA”, "chrB"), c(15000000, 10000000)), mask=NA)

getMask 13

getMask getMask

Description

Function to obtain a mask given a genome available as a BSgenome. The mask returned is the merge
of all the active masks in the BSgenome.

Since it uses characterToBSGenome, the genome can be either a BSgenome object or a character
string uniquely identifying the a BSgenome object installed.

Usage
getMask (genome)
Arguments
genome the genome from where the mask will be extracted. It can be either a BSgenome
object or a character string uniquely identifying a BSgenome object installed (e.g.
"hg19", "mm10", ...)
Value

A GRanges object with the genomic regions to be masked out

Note

This function is memoised (cached) using the memoise package. To empty the cache, use forget (getMask)

See Also

getGenome, getGenomeAndMask, characterToBSGenome, maskFromBSGenome, emptyCacheRegioneR

Examples

hg19.mask <- getMask("hgl9")

hg19.mask

joinRegions Join Regions

Description

Joins the regions from a region set A that are less than min.dist bases apart.

Usage

joinRegions(A, min.dist=1)

14 listChrTypes

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
min.dist an integer indicating the minimum distance required between two regions in
order to not fuse them. Any pair of regions closer than min.dist bases will be
fused in a larger region. Defaults to 1, so it will only join overlapping regions.
Value

It returns a GenomicRanges object with the regions resulting from the joining process.

Note

All metadata (additional columns in the region set in addition to chromosome, start and end) will
be ignored and not present in the returned region set.

The implementation relies completely in the reduce function from IRanges package.

See Also

plotRegions, toDataframe, toGRanges, subtractRegions, splitRegions, extendRegions, commonRegions,
mergeRegions, overlapRegions

Examples

A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))
joinl <- joinRegions(A)
join2 <- joinRegions(A, min.dist=3)

join3 <- joinRegions(A, min.dist=10)

plotRegions(list(A, joinl, join2, join3), chromosome="chr1”, regions.labels=c("A", "joinl1", "join2", "join3")
listChrTypes filterChromosomes listChrTypes
Description

Prints a list of the available organisms and chromosomes sets in the predefined chromosomes sets
information.

Usage
listChrTypes()

Value

the list of available chrs and organisms is printed

localZScore 15

See Also

filterChromosomes, getChromosomesByOrganism
Examples

g <- getGenomeAndMask("hg19")$genome

listChrTypes()

g <- filterChromosomes(g, chr.type="autosomal”, organism="hgl19")

localZScore Local z-score

Description

Evaluates tthe variation of the z-score in the vicinty of the original region set

Usage
localZScore(A, pt, window, step, ...)
Arguments
A a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)
pt a permTestResult object
window a window in wich the local Z-score will be calculated (bp)
step the number of bp that divide each Z-score evaluation
further arguments to be passed to other methods.
Value

It returns a local z-score object

See Also

overlapPermTest, permTest

Examples

genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000, length.sd=20000, genome=genome, non.overlapping=FAL!
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping

pt <- overlapPermTest(A=A, B=B, ntimes=10, genome=genome, non.overlapping=FALSE)
plot(pt)

1z <- localZScore(A=A, B=B, pt=pt)
plot(1lz)

16 maskFromBSGenome

pt2 <- permTest (A=A, B=B, ntimes=10, randomize.function=randomizeRegions, evaluate.function=list(overlap=num
plot(pt2)

1z2 <- localZScore(A=A, B=B, pt2)
plot(1z2)

maskFromBSGenome maskFromBSGenome

Description

Extracts the merge of all the active masks from a BSgenome

Usage

maskFromBSGenome (bsgenome)

Arguments

bsgenome a BSgenome object

Value

A GRanges object with the active mask in the BSgenome

Note

This function is memoised (cached) using the memoise package. To empty the cache, use forget (maskFromBSGenome)

See Also

getGenomeAndMask, characterToBSGenome, emptyCacheRegioneR

Examples

g <- characterToBSGenome("hg19")

maskFromBSGenome (g)

meanDistance 17

meanDistance Mean Distance

Description

Computes the mean distance of regions in A to the nearest element in B

Usage
meanDistance(A, B, ...)
Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
any additional parameter needed
Value

The mean of the distances of each region in A to the nearest region in B.

Note

If a region in A is in a chromosome where no B region is, it will be ignored and removed from the
mean computation.

Examples
A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))
B <- data.frame("chr1”, 25, 35)

meanDistance(A, B)

meanInRegions Mean In Regions

Description

Returns the mean of a value defined by a region set over another set of regions.

Usage

meanInRegions(A, x, col.name=NULL, ...)

18 mergeRegions

Arguments

A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)

X a region set in any of the accepted formats with an additional column with a
value associated to every region. Regions in x can be points (single base re-
gions).

col.name character indicating the name of the column. If NULL and if a column with the
name "value" exist, it will be used. The 4th column will be used otherwise (or
the 5th if 4th is the strand).
any additional parameter needed

Value

It returns a numeric value that is the weighted mean of "value" defined in x over the regions in A.
That is, the mean of the value of all regions in x overlapping each region in A weighted according
to the number of bases overlapping.

See Also

permTest

Examples

A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))

positions <- sample(1:40,30)

x <- data.frame("chr1”, positions, positions, rnorm(30,4,1))
meanInRegions(A, x)

x <- GRanges(segnames=x[,1],ranges=IRanges(x[,2],end=x[,2]),mcols=x[,3])

meanInRegions(A, x)

mergeRegions Merge Regions

Description

Merges the overlapping regions from two region sets. The two region sets are first merged into one
and then overlapping regions are fused.

Usage

mergeRegions(A, B)

numOverlaps 19

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
Value

It returns a GenomicRanges object with the regions resulting from the merging process. Any two
overlapping regions from any of the two sets will be fused into one.

Note

All metadata (additional columns in the region set in addition to chromosome, start and end) will
be ignored and not present in the returned region set.

The implementation relies completely in the reduce function from IRanges package.

See Also

plotRegions, toDataframe, toGRanges, subtractRegions, splitRegions, extendRegions, joinRegions,
commonRegions, overlapRegions

Examples
A <- data.frame("chr1”, c(1, 5, 20, 30), c(8, 13, 28, 40), x=c(1,2,3,4), y=c("a", "b", "c", "d"))
B <- data.frame("chr1”, 25, 35)
merges <- mergeRegions(A, B)

plotRegions(list(A, B, merges), chromosome="chr1"”, regions.labels=c("A", "B", "merges"”), regions.colors=3:1)

numOverlaps Number Of Overlaps

Description

Returns the number of regions in A overlapping any region in B

Usage
numOverlaps(A, B, count.once=FALSE, ...)
Arguments
A a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)
count.once boolean indicating whether the overlap of multiple B regions with a single A

region should be counted once or multiple times
any additional parameters needed

20 overlapGraphicalSummary

Value

It returns a numeric value that is the number of regions in A overlapping at least one region in B.

See Also

overlapPermTest, permTest

Examples

genome <- filterChromosomes(getGenome("hg19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=l
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping

numOverlaps(A, B)
numOverlaps(A, B, count.once=TRUE)

overlapGraphicalSummary
Overlap Graphical Summary

Description

Graphical summary of the overlap between two set of regions.

Usage

overlapGraphicalSummary (A, B, regions.labels=c("A","B"), regions.colors=c("black”,"forestgreen”,”

’

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,

data.frame, etc...)
regions.labels vector indicating the labels for the y axes.
regions.colors character vector indicating the colors for the regions.

Arguments to be passed to methods, such as graphical parameters (see par).
@return A plot is created on the current graphics device.

See Also

overlapPermTest, overlapRegions

Examples
A <- data.frame(chr=1, start=c(1,15,24,40,50), end=c(10,20,30,45,55))
B <- data.frame(chr=1, start=c(2,12,28,35), end=c(5,25,33,43))

overlapGraphicalSummary(A, B, regions.labels=c("A","B"), regions.colors=c(4,5,6))

overlapPermTest 21

overlapPermTest Permutation Test for Overlap

Description

Performs a permutation test to see if the overlap between two sets of regions A and B is higher (or
lower) than expected by chance. It will internally call permTest with the appropiate parameters to
perform the permutation test. If B is a list or a GRangesList, it will perform one permutation test
per element of the list, testing the overlap between A and each element of B independently.

Usage
overlapPermTest (A, B, alternative="auto"”, ...)
Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
alternative the alternative hypothesis must be one of "greater”, "less” or "auto”. If
"auto”, the alternative will be decided depending on the data.
further arguments to be passed to or from methods.
Value

A list of class permTestResults containing the following components:

* pval the p-value of the test.

* ntimes the number of permutations.

* alternative a character string describing the alternative hypotesis.
* observed the value of the statistic for the original data set.

* permuted the values of the statistic for each permuted data set.

* zscore the value of the standard score. (observed-mean(permuted))/sd(permuted)

Note

IMPORTANT: Since it uses 1ink{permTest} internally, it is possible to use most of the param-
eters of that function in overlapPermTest, including: ntimes, force.parallel, min.parallel
and verbose. In addition, this function accepts most parameters of the randomizeRegions function
including genome, mask, allow.overlaps and per.chromosome and the parameters of numOverlaps
such as count.once.

See Also

overlapGraphicalSummary, overlapRegions, toDataframe, toGRanges, permTest

22 overlapRegions
Examples
genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping
pt <- overlapPermTest (A=A, B=B, ntimes=10, genome=genome, non.overlapping=FALSE, verbose=TRUE)
summary(pt)
plot(pt)
plot(pt, plotType="Tailed")
C <- c(B, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping
pt <- overlapPermTest (A=A, B=1list(B=B, C=C), ntimes=10, genome=genome, non.overlapping=FALSE, verbose=TRUE)
summary (pt)
plot(pt)
overlapRegions Overlap Regions
Description
return overlap between 2 regios set A and B
Usage
overlapRegions(A, B, colA=NULL, colB=NULL, type="any", min.bases=1, min.pctA=NULL, min.pctB=NULL,
Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
colA numeric vector indicating which columns of A the results will contain (default
NULL)
colB numeric vector indicating which columns of B the results will contain (default
NULL)
type * AinB: the region in A is contained in a region in B
e BinA: the region in B is contained in A
* within: the region in A or B is contained in a region in the other region set
* equal: the region in A has the same chromosome, start and end as a region
in B
* AleftB: the end of the region from A overlaps the beginning of a region in
B
* ArightB: the start of a region from A overlaps the end of a region in B
* any: any kind of overlap is returned
min.bases numeric minimun number of bp accepted to define a overlap (default 1)

permTest 23

min.pctA numeric minimun percentage of bases of A accepted to define a overlap (default
NULL)

min.pctB numeric minimun percentage of bases of B accepted to define a overlap (default
NULL)

get.pctA boolean if TRUE add a column in the results indicating the number percentage
of A are involved in the overlap (default FALSE)

get.pctB boolean if TRUE add a column in the results indicating the number percentage
of B are involved in the overlap (default FALSE)

get.bases boolean if TRUE add in the results the number of overlapped bases (default
FALSE)

only.boolean boolean if TRUE devolve as result a boolean vector containing the overlap state
of each regions of A (default FALSE)

only.count boolean if TRUE devolve as result the number of regions of A overlapping with
B

any additional parameter (are there any left?)

Value

the default results is a data. frame with at least 5 columns "chr" indicating the chromosome of the
appartenence of each overlap, "startA", "endA", "startB", "endB", indicating the coordinates of the
region A and B for each overlap "type" that describe the nature of the overlap (see arguments "type")
eventually other columns can be added (see see arguments "colA", "colB", "get.pctA", "get.pctB",
"get.bases")

Note

The implementation uses when possible the countOverlaps function from IRanges package.

See Also

plotRegions, toDataframe, toGRanges, subtractRegions, splitRegions, extendRegions, commonRegions,
mergeRegions, joinRegions

Examples
A <- data.frame(”chr1”, c(1, 5, 20, 30), c(8, 13, 28, 40), x=c(1,2,3,4), y=c("a”", "b", "c", "d"))
B <- data.frame("chr1”, 25, 35)

overlapRegions(A, B)

permTest Permutation Test

Description

Performs a permutation test to see if there is an association between a region set and some other
feature using an evaluation function.

24 permTest

Usage

permTest(A, ntimes=100, randomize.function, evaluate.function, alternative="auto"”, min.parallel=1¢

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
ntimes number of permutations

randomize. function

function to create random regions. It must return a set of regions.
evaluate.function

function to search for association. It must return a numeric value.

alternative the alternative hypothesis must be one of "greater”, "less"” or "auto”. If
"auto”, the alternative will be decided depending on the data.

min.parallel if force.parallel is not specified, this will be used to determine the threshold for
parallel computation. If length(A) * ntimes > min.parallel, it will activate
the parallel computation. Single threaded otherwise.

force.parallel logical indicating if the computation must be paralelized.

randomize. function.name
character. If specified, the permTestResults object will have this name instead
of the name of the randomization function used. Useful specially when using
unnamed anonymous functions.

evaluate.function.name
character. If specified, the permTestResults object will have this name instead of
the name of the evaluation function used. Useful specially when using unnamed
anonymous functions.

verbose a boolean. If verbose=TRUE it creates a progress bar to show the computation
progress. When combined with parallel computation, it might have an impact in
the total computation time.

further arguments to be passed to other methods.

Details

permTest performs a permutation test of the regions in RS to test the association with the fea-
ture evaluated with the evaluation function. The regions are randomized using the randomiza-
tion.function and the evaluation.function is used to evaluate them. More information can be found
in the vignette.

Value

A list of class permTestResults containing the following components:

* pval the p-value of the test.

* ntimes the number of permutations.

* alternative a character string describing the alternative hypotesis.
* observed the value of the statistic for the original data set.

* permuted the values of the statistic for each permuted data set.

e zscore the value of the standard score. (observed-mean(permuted))/sd(permuted)

plot.localZScoreResults 25

e randomize. function the randomization function used.
e randomize.function.name the name of the randomization used.
e evaluate. function the evaluation function used.

e evaluate.function.name the name of the evaluation function used.

References

Davison, A. C. and Hinkley, D. V. (1997) Bootstrap methods and their application, Cambridge
University Press, United Kingdom, 156-160

See Also

overlapPermTest

Examples

genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping

pt2 <- permTest (A=A, B=B, ntimes=10, alternative="auto"”, verbose=TRUE, genome=genome, evaluate.function=meanD
summary (pt2)

plot(pt2)

plot(pt2, plotType="Tailed")

plot.localZScoreResults
Plot localZscore results

Description

Function for plotting the a localZScoreResults object.

Usage

S3 method for class 'localZScoreResults'

plot(x, main = "", num.x.labels =5, ...)
Arguments
X an object of class localZScoreResults.
main a character specifying the main title of the plot. Defaults to no title.

num.x.labels a numeric specifying the number of ticks to label the x axis. The total number
will be 2*num.x.labels + 1. Defaults to 5.

further arguments to be passed to or from methods.

Value

A plot is created on the current graphics device.

26 plot.localZScoreResultsList

See Also

localZScore

Examples
genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=
B <- c(A, createRandomRegions(nregions=10, length.mean=100000, length.sd=20000, genome=genome, non.overlappir

pt <- overlapPermTest(A=A, B=B, ntimes=10, genome=genome, non.overlapping=FALSE)

1z <- localZScore(A=A, B=B, pt=pt)
plot(1lz)

plot.localZScoreResultsList
Plot a list of localZscore results

Description

Function for plotting the a localZScoreResultsList object.

Usage
S3 method for class 'localZScoreResultsList'
plot(x, ncol = NA, main = "" num.x.labels =5, ...)
Arguments
X an object of class localZScoreResultsList.
main a character specifying the main title of the plot. Defaults to no title.

num.x.labels a numeric specifying the number of ticks to label the x axis. The total number
will be 2*num.x.labels + 1. Defaults to 5.

further arguments to be passed to or from methods.

Value

A plot is created on the current graphics device.

See Also

localZScore

plot.permTestResults 27

Examples

genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=
B <- c(A, createRandomRegions(nregions=10, length.mean=100000, length.sd=20000, genome=genome, non.overlappir

pt <- overlapPermTest(A=A, B=B, ntimes=10, genome=genome, non.overlapping=FALSE)

1z <- localZScore(A=A, B=B, pt=pt)
plot(lz)

pt2 <- permTest (A=A, B=B, ntimes=10, randomize.function=randomizeRegions, evaluate.function=1list(overlap=num
plot(pt2)

plot.permTestResults Function for plotting the results from a permTestResults object.

Description

Function for plotting the results from a permTestResults object.

Usage

S3 method for class 'permTestResults'
plot(

X,

pvalthres = 0.05,

plotType = "Tailed”,

nn

main = R
xlab = NULL,
ylab = nn ,
ylim = NULL,
xlim = NULL,
)
Arguments
X an object of class permTestResults.
pvalthres p-value threshold for significance. Default is 0.05.
plotType the type of plot to display. This must be one of "Area” or "Tailed"”. Default is
"Area”.
main a character specifying the title of the plot. Defaults to "".
xlab a character specifying the label of the x axis. Defaults to NULL, which produces
a plot with the evaluation function name as the x axis label.
ylab a character specifying the label of the y axis. Defaults to "".
ylim defines the y limits of the plot. Passed to the underlying plot call.
x1lim defines the x limits of the plot. Passed to the underlying plot call.

further arguments to be passed to or from methods.

28 plot.permTestResultsList

Value

A plot is created on the current graphics device.

See Also

permTest

Examples

genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=|
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping

pt <- overlapPermTest(A=A, B=B, ntimes=10, genome=genome, non.overlapping=FALSE)
summary (pt)

plot(pt)

plot(pt, plotType="Tailed")

pt2 <- permTest (A=A, B=B, ntimes=10, alternative="auto"”, genome=genome, evaluate.function=meanDistance, rando
summary (pt2)

plot(pt2)

plot(pt2, plotType="Tailed")

plot.permTestResultsList
Function for plotting the results from a permTestResultsList object
when more than one evaluation function was used.

Description

Function for plotting the results from a permTestResultsList object when more than one evalua-
tion function was used.

Usage
S3 method for class 'permTestResultsList'
plot(
X,
ncol = NA,

pvalthres = 0.05,
plotType = "Tailed”,
main = "",

xlab = NULL,

ylab - HH,

plotRegions 29

Arguments
X an object of class permTestResultsList.
ncol number of plots per row. ncol=NA means ncol=floor(sqrt(length(x)))so the plot
is more or less square (default=NA)
pvalthres p-value threshold for significance. Default is 0.05.
plotType the type of plot to display. This must be one of "Area” or "Tailed"”. Default is
"Area”.
main a character specifying the title of the plot. Defaults to "".
xlab a character specifying the label of the x axis. Defaults to NULL, which produces
a plot with the evaluation function name as the x axis label.
ylab a character specifying the label of the y axis. Defaults to "".
further arguments to be passed to or from methods.
Value

A plot is created on the current graphics device.

See Also

permTest

Examples

genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=l
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping

pt <- overlapPermTest(A=A, B=B, ntimes=10, genome=genome, non.overlapping=FALSE)
summary (pt)

plot(pt)

plot(pt, plotType="Tailed")

pt2 <- permTest (A=A, B=B, ntimes=10@, alternative="auto"”, genome=genome, evaluate.function=list(distance=meanl
summary (pt2)

plot(pt2)

plot(pt2, plotType="Tailed")

plotRegions Plot Regions

Description

Plots sets of regions

Usage

plotRegions(x, chromosome, start=NULL, end=NULL, regions.labels=NULL, regions.colors=NULL, ...)

30 print.permTestResults

Arguments
X list of objects to be ploted.
chromosome character or numeric value indicating which chromosome you want to plot.
start numeric value indicating from which position you want to plot.
end numeric value indicating to which position you want to plot.

regions.labels vector indicating the labels for the y axes. It must have the same length as x.

regions.colors character vector indicating the colors for the plotted regions. It must have the
same length as x.

Arguments to be passed to methods, such as graphical parameters (see par).

Value

A plot is created on the current graphics device.

Examples
A <- data.frame(chr=1, start=c(1,15,24,40,50), end=c(10,20,30,45,55))
B <- data.frame(chr=1, start=c(2,12,28,35), end=c(5,25,33,43))

plotRegions(list(A,B), chromosome=1, regions.labels=c("A","B"), regions.colors=3:2)

print.permTestResults Print permTestResults objects

Description

Print permTestResults objects

Usage
S3 method for class 'permTestResults'
print(x, ...)

Value

the object is printed

Examples

genome <- filterChromosomes(getGenome("hgl19"), keep.chr="chri")
A <- createRandomRegions(nregions=20, length.mean=10000000, length.sd=20000, genome=genome, non.overlapping=l
B <- c(A, createRandomRegions(nregions=10, length.mean=10000, length.sd=20000, genome=genome, non.overlapping

pt <- permTest (A=A, B=B, ntimes=10, alternative="auto"”, verbose=TRUE, genome=genome, evaluate.function=meanDi
print(pt)

randomizeRegions 31

randomizeRegions Randomize Regions

Description

Given a set of regions A and a genome, this function returns a new set of regions randomly dis-
tributted in the genome.

Usage

randomizeRegions (A, genome="hg19", mask=NULL, allow.overlaps=TRUE, per.chromosome=FALSE, ..

Arguments

A The set of regions to randomize. A region set in any of the accepted formats by
toGRanges (GenomicRanges, data. frame, etc...)

genome The reference genome to use. A valid genome object. Either a GenomicRanges
or data.frame containing one region per whole chromosome or a character
uniquely identifying a genome in BSgenome (e.g. "hg19", "mm10",... but not
"hg"). Internally it uses getGenomeAndMask.

mask The set of regions specifying where a random region can not be (centromeres,

repetitive regions, unmappable regions...). A region set in any of the accepted
formats by toGRanges (GenomicRanges,data.frame, ...). If NULL it will try
to derive a mask from the genome (currently only works if the genome is a
character string). If NA it gives, explicitly, an empty mask.

allow.overlaps A boolean stating whether the random regions can overlap (FALSE) or not
(TRUE).

per.chromosome Boolean. If TRUE, the regions will be created in a per chromosome maner -
every region in A will be moved into a random position at the same chromosome
where it was originally-.

further arguments to be passed to or from methods.

Details

The new set of regions will be created with the same sizes of the original ones, and optionally placed
in the same chromosomes.

In addition, they can be made explicitly non overlapping and a mask can be provided so no regions
fall in an undesirable part of the genome.
Value

It returns a GenomicRanges object with the regions resulting from the randomization process.

Note

randomizeRegions assumes that chromosomes start at base 1. If a chromosome starts at another
base number, for example at base 1000, random regions might appear in the [1:1000] interval. This
should not affect most uses of randomizeRegions, but might be important in some advanced analysis
involving artificially contructed genomes.

>

32 recomputePermTest

See Also

toDataframe, toGRanges, getGenome, getMask, getGenomeAndMask, characterToBSGenome, maskFromBSGenome,
resampleRegions, createRandomRegions, circularRandomizeRegions

Examples
A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))
mask <- data.frame(”"chr1”, c(20000000, 100000000), c(22000000, 130000000))
genome <- data.frame(c("chr1”, "chr2"), c(1, 1), c(180000000, 20000000))
randomizeRegions(A)

randomizeRegions(A, genome=genome, mask=mask, per.chromosome=TRUE, allow.overlaps=FALSE)

recomputePermTest Recompute Permutation Test

Description

Recomputes the permutation test changing the alternative hypotesis

Usage

recomputePermTest (ptr)

Arguments

ptr an object of class permTestResults

Value

A list of class permTestResults containing the same components as permTest results.

See Also

permTest

Examples
A <- createRandomRegions(nregions=10, length.mean=1000000)
B <- createRandomRegions(nregions=10, length.mean=1000000)

resPerm <- permTest (A=A, B=B, ntimes=5, alternative="less", genome="hg19", evaluate.function=meanDistance, ra

plot(resPerm)

resampleGenome 33

resampleGenome resampleGenome

Description

Fast alternative to randomizeRegions. It creates a tiling (binning) of the whole genome with tiles
the mean size of the regions in A and then places the regions by sampling a length(A) number of
tiles and placing the resampled regions there.

Usage

resampleGenome (A, simple = FALSE, per.chromosome = FALSE, genome="hg19", min.tile.width=1000, ...

Arguments
A an object of class GenomigRanges
simple logical, if TRUE the randomization process will not take into account the spe-

cific width of each region in A. (defalut = FALSE)

per.chromosome logical, if TRUE the randomization will be perform by chromosome. (default =
TRUE)

genome character or GenomicRanges, genome using for the randomization

min.tile.width integer, the minimum size of the genome tiles. If they are too small, the functions
gets very slow and may even fail to work. (default = 1000, 1kb tiles)

further arguments to be passed to other methods.

Value

a GenomicRanges object. A sample from the universe with the same length as A.

See Also

toDataframe, toGRanges, randomizeRegions, createRandomRegions

Examples

A <- data.frame(chr=1, start=c(2,12,28,35), end=c(5,25,33,43))

B <- resampleGenome (A)
B
width(B)

B2 <- resampleGenome(A, simple=TRUE)
B2
width(B2)

resampleGenome (A, per.chromosome=TRUE)

34 splitRegions

resampleRegions Resample Regions

Description

Function for sampling a region set from a universe of region sets.

Usage
resampleRegions(A, universe, per.chromosome=FALSE, ...)
Arguments
A a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)
universe a region set in any of the formats accepted by toGRanges (GenomicRanges,

data.frame, etc...)
per.chromosome boolean indicating if sample must be by chromosome.

further arguments to be passed to or from methods.

Value

a GenomicRanges object. A sample from the univers with the same length as A.

See Also

toDataframe, toGRanges, randomizeRegions, createRandomRegions

Examples

universe <- data.frame(chr=1, start=c(1,15,24,40,50), end=c(10,20,30,45,55))
A <- data.frame(chr=1, start=c(2,12,28,35), end=c(5,25,33,43))

resampleRegions(A, universe, per.chromosome=TRUE)

splitRegions Split Regions

Description

Splits a region set A by both ends of the regions in a second region set B.

Usage

splitRegions(A, B, min.size=1, track.original=TRUE)

subtractRegions 35

Arguments
A a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the formats accepted by toGRanges (GenomicRanges,
data.frame, etc...)
min.size numeric value, minimal size of the new regions

track.original logical indicating if you want to keep the original regions and additional infor-
mation in the output

Value

A GRanges with the splitted regions.

See Also

toDataframe, toGRanges, subtractRegions, commonRegions, extendRegions, joinRegions,
mergeRegions, overlapRegions

Examples
A <- data.frame(chr=1, start=c(1, 15, 24, 40, 50), end=c(10, 20, 30, 45, 55))
B <- data.frame(chr=1, start=c(2, 12, 28, 35), end=c(5, 25, 33, 43))
splits <- splitRegions(A, B)

plotRegions(list(A, B, splits), chromosome=1, regions.labels=c("A", "B", "splits"), regions.colors=3:1)

subtractRegions Subtract Regions

Description

Function for subtracting a region set from another region set.

Usage

subtractRegions(A, B)

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
Details

This function returns the regions in A minus the parts of them overlapping the regions in B. Over-
lapping regions in the result will be fused.

The implementation relies completely in the setdiff function from IRanges package.

36 summary.permTestResultsList

Value

A GenomicRanges object

Examples
A <- data.frame(chr=1, start=c(1, 15, 24, 31), end=c(10, 20, 30, 35))
B <- data.frame(chr=1, start=c(2, 12, 24, 35), end=c(5, 25, 29, 40))
subtract <- subtractRegions(A, B)

plotRegions(list(A, B, subtract), chromosome=1, regions.labels=c("A", "B", "subtract"), regions.colors=3:1)

summary.permTestResults
Summary of permTestResults objects

Description

Summary of permTestResults objects

Usage
S3 method for class 'permTestResults'
summary (object, ...)

Value

the summary is printed

summary.permTestResultsList
Summary of permTestResultsList objects

Description

Summary of permTestResultsList objects

Usage
S3 method for class 'permTestResultslList'
summary (object, ...)

Value

the summary is printed

toDataframe 37

toDataframe toDataframe

Description

Transforms a GRanges object or a data. framecontaining a region set into a data. frame.

Usage

toDataframe(A, stranded=FALSE)

Arguments
A a GRanges object.
stranded (only used when A is a GRanges object) a logical indicating whether a column
with the strand information have to be added to the result (Defaults to FALSE)
Details

If the oject is of class data. frame, it will be returned untouched.

Value

A data.frame with the regions in A. If A was a GRanges object, the output will include any
metadata present in A.

See Also

toGRanges

Examples
A <- data.frame(chr=1, start=c(1, 15, 24), end=c(10, 20, 30), x=c(1,2,3), y=c("a", "b", "c"))
A2 <- toGRanges(A)

toDataframe(A2)

toGRanges toGRanges

Description

Transforms a file or an object containing a region set into a GRanges object.

Usage

toGRanges(A, ..., genome=NULL, sep=NULL, comment.char="#")

38 toGRanges

Arguments

A a data.frame containing a region set, a GRanges object, a BED file, any type
of file supported by rtracklayer::import ora "SimpleRlelList" returned by
GenomicRanges: : coverage. If there are more than 1 argument, it will build a
dataframe out ouf them and process it as usual. If there’s only a single argument
and it’s a character, if it’s not an existing file name it will be treated as the
definition of a genomic region in the UCSC/IGV format (i.e. "chr9:34229289-
34982376") and parsed.

further arguments to be passed to other methods.

genome (character or BSgenome) The genome info to be attached to the created GRanges.
If NULL no genome info will be attached. (defaults to NULL)

sep (character) The field separator in the text file. If NULL it will be automatically
guessed. Only used when reading some file formats. (Defaults to NULL)

comment.char (character) The character marking comment lines. Only used when reading
some file formats. (Defaults to "#")

Details

If A is already a GRanges object, it will be returned untouched.

If A is a data frame, the function will assume the first three columns are chromosome, start and end
and create a GRanges object. Any additional column will be considered metadata and stored as such
in the GRanges object. There are 2 special cases: 1) if A is a data.frame with only 2 columns, it will
assume the first one is the chromosome and the second one the position and it will create a GRanges
with single base regions and 2) if the data.frame has the first 3 columns named "SNP", "CHR" and
"BP" it will shuffle the columns and repeat "BP" to build a GRanges of single base regions (this is
the standard ouput format of plink).

If A is not a data.frame and there are more parameters, it will try to build a data.frame with all
parameters and use that data.frame to build the GRanges. This allows the user to call it like
toGRanges("chr1”, 10, 20).

If A is a character or a character vector and it’s not a file or a URL, it assumes it’s a genomic position
description in the form used by UCSC or IGV, "chr2:1000-2000". It will try to parse the character
strings into chromosome, start and end and create a GRanges. The parser can deal with commas
separating thousands (e.g. "chr2:1,000-2,000") and with the comma used as a start/end separator
(e.g. "chr2:1000,2000"). These different variants can be mixed in the same character vector.

If A is a "SimpleRIeList" it will be interpreted as the result from GenomicRanges::coverage and the
function will return a GRanges with a single metadata column named "coverage".

If A is a file name (local or remote) or a connection to a file, it will try to load it in different ways:
* BED files (identified by a "bed" extension): will be loaded using rtracklayer: : import function.
Coordinates are 0 based as described in the BED specification (https://genome.ucsc.edu/FAQ/FAQformat.html#format1).
* PLINK assoc files (identified by ".assoc", ".assoc.fisher", ".assoc.dosage", ".assoc.linear", ".as-
soc.logistic"): will be loaded as single-base ranges with all original columns present and the SNPs
ids as the ranges names * Any other file: It assumes the file is a "generic" tabular file. To load
it it will ignore any header line starting with comment . char, autodetect the field separator (if not

provided by the user), autodetect if it has a header and read it accordingly.

The genome parameter can be used to set the genome information of the created GRanges. It can
be either a BSgenome object or a character string defining a genome (e.g. "hgl19", "mm10"...) as
accepted by the BSgenome: : getBSgenome function. If a valid genome is given and the correspond-
ing BSgenome package is installed, the genome information will be attached to the GRanges. If
the chromosome naming style from the GRanges and the genome object are different, it will try to
change the GRanges styles to match those of the genome using GenomeInfoDb: : seqlevelsStyle.

toGRanges 39

Value

A GRanges object with the regions in A

Note

IMPORTANT: Regarding the coordinates, BED files are 0 based while data.frames and
generic files are treated as 1 based. Therefore reading a line "chr9 100 200" from a BED file
will create a 99 bases wide interval starting at base 101 and ending at 200 but reading it from a txt
file or from a data. frame will create a 100 bases wide interval starting at 100 and ending at 200.
This is specially relevant in 1bp intervals. For example, the 10th base of chromosome 1 would be
"chrl 9 10" in a BED file and "chrl 10 10" in a txt file.

See Also

toDataframe

Examples

A <- data.frame(chr=1, start=c(1, 15, 24), end=c(10, 20, 30), x=c(1,2,3), y=c("a", "b", "c"))
gr1 <- toGRanges(A)

#No need to give the data.frame columns any specific name
A <- data.frame(1, c(1, 15, 24), c(10, 20, 30), x=c(1,2,3), y=c("a", "b", "c"))
gr2 <- toGRanges(A)

#We can pass the data without building the data.frame
gr3 <- toGRanges("chr9"”, 34229289, 34982376, x="X")

#And each argument can be a vector (they will be recycled as needed)
gr4 <- toGRanges("chr9"”, c(34229289, 40000000), c(34982376, 50000000), x="X", y=c("a", "b"))

#toGRanges will automatically convert the second and third argument into numerics
gr5 <- toGRanges("chr9"”, "34229289", "34982376")

#It can be a file from disk
bed.file <- system.file("extdata”, "my.special.genes.txt"”, package="regioneR")
gré6 <- toGRanges(bed.file)

#0r a URL to a valid file
#gr7 <- toGRanges("http://path.to/myfile.bed")

#It can also parse genomic location strings
gr8 <- toGRanges("chr9:34229289-34982376")

#more than one
gr9 <- toGRanges(c("chr9:34229289-34982376", "chr10:1000-2000"))

#even with strange and mixed syntaxes
gr10 <- toGRanges(c("chr4:3873-92928", "chr4:3873,92928", "chr5:33,444-45,555"))

#if the genome is given it is used to annotate the resulting GRanges

gr11 <- toGRanges(c("chr9:34229289-34982376", "chr10:1000-2000"), genome="hgl19")

#and the genome is added to the GRanges even if A is a GRanges
gr12 <- toGRanges(gr6, genome="hg19")

40 uniqueRegions

#And it will change the chromosome naming of the GRanges to match that of the
#tgenome if it is possible (using GenomeInfoDb::seqglevelsStyle)

gr2

gr13 <- toGRanges(gr2, genome="hgl19")

#in addition, it can convert other objects into GRanges such as the
#result of GenomicRanges::coverage

gr14 <- toGRanges(c("1:1-20", "1:5-25", "1:18-40"))
cover <- GenomicRanges::coverage(gri4)
gr15 <- toGRanges(cover)

uniqueRegions Unique Regions

Description
Returns the regions unique to only one of the two region sets, that is, all parts of the genome covered
by only one of the two region sets.

Usage

uniqueRegions(A, B)

Arguments
A a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
B a region set in any of the accepted formats by toGRanges (GenomicRanges,
data.frame, etc...)
Value

It returns a GenomicRanges object with the regions unique to one of the region sets.

Note

All metadata (additional columns in the region set in addition to chromosome, start and end) will
be ignored and not present in the returned region set.

See Also

toGRanges, subtractRegions, commonRegions, mergeRegions

uniqueRegions 41
Examples

A <- data.frame("chr1”, c(1, 10, 20, 30), c(12, 13, 28, 40))

B <- data.frame("chr1”, 25, 35)

uniques <- uniqueRegions(A, B)

plotRegions(list(A, B, uniques), chromosome="chr1"”, regions.labels=c("A", "B", "uniques"”), regions.colors=3:1

Index

* internal
plot.localZScoreResultslist, 26
print.permTestResults, 30
summary .permTestResults, 36
summary .permTestResultslList, 36

BSgenome, 3, 4,7, 9, 11-13, 16, 31, 38

characterToBSGenome, 3,4, 8, 11-13, 16, 32
circularRandomizeRegions, 3, 32
commonRegions, 5, 9, 14, 19, 23, 35, 40
countOverlaps, 23
createFunctionslList, 6
createRandomRegions, 4, 7, 32-34

data.frame, 4, 5,7-9, 11, 14, 15, 17-24, 31
34, 35, 37, 38,40

emptyCacheRegioneR, 8, 1/-13, 16
extendRegions, 5, 8, 14, 19, 23, 35

filterChromosomes, 9, 10, 15
forget, 11-13, 16

GenomicRanges, 4, 5, 7-9, 14, 15, 17-22, 24,
31, 33-35,40
getChromosomesByOrganism, 10, 10, 15
getGenome, 4, 8, 10, 11, 12, 13, 32
getGenomeAndMask, 3, 4,7, 8, 10, 11,12, 13,
16,31, 32
getMask, 4, 8, 11, 12,13, 32
GRanges, 10, 11,13, 16, 37-39

joinRegions, 5, 9, 13, 19, 23, 35

listChrTypes, 10, 14
localZScore, 15, 26

maskFromBSGenome, 3, 4, 8, 11-13, 16, 32
mean, 21, 24

meanDistance, 17

meanInRegions, 17

memoise, /1-13, 16
mergeRegions, 5, 9, 14, 18, 23, 35, 40

NA, 4,7,12,31

42

NULL, 4, 7, 12, 31
numOverlaps, 19, 21

overlapGraphicalSummary, 20, 21
overlapPermTest, 6, 15, 20, 21, 25
overlapRegions, 5, 9, 14, 19-21,22, 35

par, 20, 30

permTest, 6, 15, 18, 20, 21, 23, 28, 29, 32
plot.localZScoreResults, 25
plot.localZScoreResultslList, 26
plot.permTestResults, 27
plot.permTestResultsList, 28
plotRegions, 5, 9, 14, 19, 23, 29
print.permTestResults, 30

randomizeRegions, 4, 8, 21, 31, 33, 34
recomputePermTest, 32
reduce, 14, 19

resampleGenome, 33
resampleRegions, 4, 8, 32, 34

sd, 21,24

splitRegions, 5, 9, 14, 19, 23, 34
subtractRegions, 5, 9, 14, 19, 23, 35, 35, 40
summary .permTestResults, 36
summary.permTestResultslList, 36

toDataframe, 4, 5,9, 14, 19, 21, 23, 32-35,
37, 39

toGRanges, 4, 5,8, 9, 11, 14, 15, 17-24,
31-35, 37,37, 40

uniqueRegions, 40

	characterToBSGenome
	circularRandomizeRegions
	commonRegions
	createFunctionsList
	createRandomRegions
	emptyCacheRegioneR
	extendRegions
	filterChromosomes
	getChromosomesByOrganism
	getGenome
	getGenomeAndMask
	getMask
	joinRegions
	listChrTypes
	localZScore
	maskFromBSGenome
	meanDistance
	meanInRegions
	mergeRegions
	numOverlaps
	overlapGraphicalSummary
	overlapPermTest
	overlapRegions
	permTest
	plot.localZScoreResults
	plot.localZScoreResultsList
	plot.permTestResults
	plot.permTestResultsList
	plotRegions
	print.permTestResults
	randomizeRegions
	recomputePermTest
	resampleGenome
	resampleRegions
	splitRegions
	subtractRegions
	summary.permTestResults
	summary.permTestResultsList
	toDataframe
	toGRanges
	uniqueRegions
	Index

