Package ‘openPrimeR’

January 20, 2026

Title Multiplex PCR Primer Design and Analysis
Version 1.32.0

Description An implementation of methods for designing, evaluating,
and comparing primer sets for multiplex PCR.
Primers are designed by solving a set cover problem such that
the number of covered template sequences is maximized with
the smallest possible set of primers.
To guarantee that high-quality primers are generated,
only primers fulfilling constraints on their physicochemical properties
are selected. A Shiny app providing a user interface for the functionalities
of this package is provided by the 'openPrimeRui' package.

Depends R (>=4.0.0)
License GPL-2
Encoding UTF-8
RoxygenNote 7.3.2

Imports Biostrings (>= 2.38.4), pwalign, XML (>= 3.98-1.4), scales (>=
0.4.0), reshape2 (>= 1.4.1), seqinr (>= 3.3-3), [Ranges (>=
2.4.8), GenomicRanges (>= 1.22.4), ggplot2 (>= 2.1.0), plyr (>=
1.8.4), dplyr (>= 0.5.0), stringdist (>= 0.9.4.1), stringr (>=
1.0.0), RColorBrewer (>= 1.1-2), DECIPHER (>= 1.16.1),
IpSolveAPI (>=5.5.2.0-17), digest (>= 0.6.9), Hmisc (>=
3.17-4), ape (>= 3.5), BiocGenerics (>= 0.16.1), S4Vectors (>=
0.8.11), foreach (>= 1.4.3), magrittr (>= 1.5), uniqtag (>=
1.0), openxlsx (>=4.0.17), grid (>= 3.1.0), grDevices (>=
3.1.0), stats (>= 3.1.0), utils (>= 3.1.0), methods (>= 3.1.0)

Suggests testthat (>= 1.0.2), knitr (>= 1.13), rmarkdown (>= 1.0),
devtools (>= 1.12.0), doParallel (>= 1.0.10), pander (>=
0.6.0), learnr (>= 0.9)

SystemRequirements MAFFT (>= 7.305), OligoArrayAux (>= 3.8), ViennaRNA
(>=2.4.1), MELTING (>=5.1.1), Pandoc (>= 1.12.3)

biocViews Software, Technology, Coverage, MultipleComparison
VignetteBuilder knitr

Collate 'AnalysisStats.R' 'Comparison.R' 'Data.R' 'templates.R’
'‘primers.R' TO.R' TO_view.R' 'Input.R' 'Ippolito.R’
'Output.R' 'Plots.R' PrimerDesign.R' 'PrimerEvaluation.R'
'RefCoverage.R' 'Scoring.R' 'SettingsDoc.R' "TemplatesDoc.R'

1



2 Contents

'Tiller.R' 'ambiguity.R' 'check_stop_codons.R'
'con_annealing_temperature.R' 'con_dimerization.R'
‘con_gc_clamp.R' 'con_gc_ratio.R' 'con_melting_temperature.R'
'con_primer_coverage.R' 'con_primer_efficiency.R’'
'con_primer_secondary_structures.R' 'con_repeats.R’
'con_runs.R' 'con_template_secondary_structures.R'
'constraints.R' 'constraints_eval.R' 'errors.R' 'filters.R'
'helper_functions.R' 'initialize_primers.R'
'initialize_primers_tree.R' 'openPrimeR.R' 'optimization_ILP.R'
'optimization_algo.R' 'optimization_global.R'
'optimization_greedy.R' 'plots_comparison.R' 'settings.R'
'plots_constraints.R' 'plots_coverage.R' 'plots_filtering.R’
'primer_significance.R' 'startApp.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/openPrimeR
git_branch RELEASE_3_22

git_last_commit 7d12b40

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Matthias Doring [aut, cre],
Nico Pfeifer [aut]

Maintainer Matthias Doring <matthias-doering@gmx.de>

Contents
openPrimeR-package . . . . . .. ... L oL 9
AbstractConstraintSettings-class . . . . . . . . . . ... Lo 10
add.coverage.constraints . . . . . . . . ... L i e e 11
add.dimerization.constraints . . . . . . . ... L. Lo e 11
add.uniform.leaders.to.seqs . . . . . . ..o 12
adjust.ORFE.start . . . . . . . . . . e 12
align.Seqs . . . . . e e e e e e e e 13
align.StruCtUIes . . . . . . o v vt e e e e e 13
AnalysisStats . . . ... L e e e e 14
ancestor_Of . . . . . . e 16
annealing.temp.rule.of.thumb . . . . . . ... ... ... 17
annotate.binding.events . . . . . . . ... L. e 17
apply.constraint . . . . . . .. L. e 18
apply.constraint.list . . . . . . . ... 18
assign_binding_regions.character . . . . . . . ... ... Lo oL 19
assign_binding_regions.numeric . . . . . . . . ... ..o e 20
AUEMENELPIIMEL.CVE .« . v v v v v v e e e e e e e e e e e e e e e e e 21
batchify . . . . . . . 21
batchify.simple . . . . . . . . . L 22
batchify.temp . . . . . . ... 22
build.gain.df . . . . . . . L 23
build ILPAf . . . . . . o e 23
build.tool.overview . . . . . . ... 24

build_leader df . . . . . . . . .. e 25



Contents

3
callmelt . . . . . . . 25
callmelt.single . . . . . . . ... 26
cascaded.filter . . . . . . . . . L. 27
cascaded.filter.quick . . . . . . . . . ... 28
chind.Primers . . . . . . . . ... e 29
chind. Templates . . . . . . . . . . . e 29
cbind2,Primers,ANY-method . . . . . . . . . . . . . ... o 30
cbind2, Templates, ANY-method . . . .. ... .. .. ... ... ... ... ... 31
check.3prime.hexamers . . . . . . . . .. 32
check.3prime.mismatches . . . . . . . . . ... 32
check.nit.primerlength . . . . . . . . . ... oL 33
check.init.primer.length.single . . . . . . . . ... ... L o oL 34
check.mutations . . . . . . . . ... e 34
check.template.constraints . . . . . . . . . ... L. 35
check.tool.function . . . . . . . .. .. 36
check.tool.installation . . . . . . . . ... .. 36
check_constraints_comparison . . . . . . . . . .. ... 37
check_constraint_settings_validity . . . . . . . ... ... ... 38
check_correspondence . . . . . . . . . ... 38
check_cvg_constraints . . . . . . . . . .. ... e 39
check interval . . . . . . . e 40
check _limits . . . . . . . . e e 40
check_limit_value . . . . . . . . . . . e 41
check_names . . . . . . . . . .. 41
check_report_deps . . . . . . . . 42
check_restriction_sites_single . . . . . . . . ... .. oL oo 42
check_setting . . . . . . . . . . . e 43
check_settings_validity . . . . . . . . . .. L 43
combine.binding.events . . . . . . . . ... e e e 44
COmMbINE.SITINGS . . . . . o v vt v e e e e e e e e e e e e 44
o0} 1Yo J 45
COMPAre.CONSIIAINES . . . . v v v v v v e e e e e e e e e e e e e e e e e 45
COMPATISON.CVE . . . o v e ittt e e e bt e e e e e e e 46
COMPATrISON.STALS.TAW . . . . . v v v v e bttt e e e e e e 46
Complement.SEqUENCE . . .« v v v v v e e e e e e e e e e e e e e e e e 47
compute.all.cross.dimers . . . . . . ... L 47
compute.all.cross.dimers.frontend . . . . . ... ... oL Lo 48
compute.all.cross.dimers.unfiltered . . . . . . . ... . ... oo, 49
compute.all.primer.subsets.ILP . . . . . . . . ... oL 50
compute.all.self.dimers . . . . . . . . .. ... 50
compute.all.self.dimers.frontend . . . . . . ... ... oL oL 51
compute.basic.details . . . . . ... 52
COMPULE.CONSIIAINES . . . . v v v v v v v e e e e e e e e e e e e e e e e e e 53
compute.covered.Ta . . . . . . . . ... oL 54
compute.dimermatriX . . . . . . . .. ..o e e e e 55
compute.efficiency . . . . . . .. 55
compute.empiric.melting.temp . . . . . . ... 56
COMPULE.ZC.TAtIO . . . . o v v v vt vt e e e e e e e e e 57
compute.melting.temps . . . . . . . ... e e e 57
compute.melting.temps.thermo . . . . . . . . ... ..o 58
compute.mismatch.table . . . . .. ... oo 59

compute.primer.efficiencies . . . . . . . ... oL Lo 59



Contents

compute.secondary.StruCtures . . . . . . . . ... L. e e e 60
compute.sodium.equivalent.conc . . . . . ... Lo Lo 61
COMPULE.SrUCtUIe. VIBNNA . . . . . . o o o v e ottt e e e e e e 62
compute.Ta . . . . . . e e e e 63
compute.template.secondary.structures . . . . ... ..ol 64
compute.Tm.baldino . . . . . . .. .. 64
compute. TMLSES . . . . . . o o e e e e e e e 65
compute.unique.covered.idx . . . . .. .o L L 67
compute_annealing_temp . . . . . . . ... Lo e e 67
condition . . . ... e e e 68
consecutive. GC.count . . . . . . ... Lol e e 69
constraints.to.df . . . .. ..o 69
constraints.xml.format . . . .. ... oL o 70
constraints_to_ Uit . . . . . . . ... . e 70
convertfrom.iupac . . . . . .. L. e 71
convert PCRunits . . . . . . . . . ... 71
CONVEIL.LEMPETatUIe . . . . . . . v v v e vt et e e e e e e e e e 72
CONVEIL.LOAUPAC . . . v v v v ot e e e e e e e e e e e e e e e e e 72
con_select . . . . .. e 73
copy.melt.config . . . . . . . .. 73
covered.primers.to.ID.string . . . . ... L. 73
covered.segs.toD.string . . . . . ... L 74
covered.seqs.to.idX . . . . . L. 74
create.constraint.table . . . . . .. ... oL o 75
create.constraint. XML . . . . ... 75
CIEAE.CVELEXE . . . . v vt o i ittt e e e e e e e e 76
create.G.matrix . . . . . . ... e 76
create.dnitial.primer.set . . . . . ... ... L. e 77
create. k.mers . . .. ... e 78
create.kmer . . . . .. e 78
create.options.table . . . . . ... L 79
create.othertable . . . . . . . ... 79
create.PCR.table . . . . . . . . . .. 80
CIeate.PriMer.ranges . . . . . . . v v v v e e bttt e e e e e e e 80
Create.primerS.NaiVe . . . . o .« v v v v v e e e e e e e e e e e e e e e 81
Create.primers.tree . . . . . . . o v v v v e it e et e e e e e e e e 82
create. Tm.brackets . . . . . . . . . . 83
create.uniform.leaders . . . . . .. ..o oL Lo 83
create_fulfilled_counts . . . . . . . . .. e 84
create_report,list,list-method . . . . . . . ... ... L L o 84
create_report,Primers,Templates-method . . . . . . . .. ... ... ... .. ...... 85
Data . . . . . . e 86
design_primers.single . . . . . . ... 87
detect.gap.columns . . . . . .. ... 89
dimerization.table . . . . . . . ... L 89
dircopy . . . . e e 90
disambiguate.primers . . . . . ... ..o e 90
ESHMAE.CVE « « . o v v v e e e e et e e e e e e e e 91
estimate.cvg.dir . . . . . . . L e e e 91
eval.compariSOn.primers . . . . . . . . . ... e e e e 92
eval.constraints . . . . . . ... L e 92

evaluate.basic.Cvg . . . . . . L L e 93



Contents

5
evaluate.constrained.cvg . . . . . ... 94
evaluate.Ccvg . . . . . . e e e e 94
evaluate.diff.primer.cvg . . . . . . . .. 95
evaluate.fw.rev.combinations . . . . . . . ... L. Lo 96
evaluate. GC.clamp . . . . . . . . L. 96
evaluate.primer.Cvg . . . . . . . . . . e e e e 97
evaluate.template.constraints . . . . . . . . . ... e 97
exclude.cols . . . . . . . L 98
filterby.constraints . . . . . . ... L 98
filter.comparison.primers . . . . . . . . . . . .o e e e 99
filter.primer.candidates . . . . . . . . .. L. 100
filter.primer.set.opti . . . . . . . . .. e 100
filterLimits . . . . . . . . e 101
filters . . . . . e 102
filter_primers.by.Tm.delta . . . . . . . ... ... ... 102
fix_constraint_boundaries . . . . . .. ..o oL 103
format.constraints . . . . . . ... L. e 103
format.seq.ali . . . . . . .. e 104
format.seqs.tex . . . . . .. 104
get.3prime.mismatch.pos . . . . . . ... 105
getanalysismode . . . . .. L L e e 105
GELCONSENSUS.SEU . .« « & v v v v v v e e e e e e e e e 106
get.constraint.value.idx . . . . . .. Lo 106
get.constraint.values . . . . . . . .. L. e e 107
Et.COVErage.MmatriX . . . . . . . v v v v et e et e e e e e e 107
get.covered.templates . . . . . ... Lo 108
get.crosS.dimers . . . . . . . . L e e e e e e 108
get.cvg.constraint.Settings . . . . . . . ... ... e 109
GELOVE.ZAIM . . . . v v i e e e e e e e e e e e e e e e e 110
getdelta G . . . . . . .. e 110
getdimerdata . . . . . ... 111
get.duplex.energies . . . . . . ... . e e e e e e e e e 111
geteval.cols . . . . L e 112
GELEXtENSION . . . . . . . e e e e 112
getILP.vars . . . . . . . L e e 113
getinit.filename . . . . . . . ... L. 113
getleader.eXon.regions . . . . ... ... 114
get.leader.exon.regions.single . . . . . . ... ... L L 115
getmatches . . . . . . ... L e 115
get.melting.temp.diff . . . . . . ... oL 116
getmergeddX . . . ... L. e e 116
getmissing.df . . . ... . 117
get.lORFs . . . . . e e 117
get.other.constraint.settings . . . . . . . ... ... oL 118
get.PCRusettings . . . . . . . . . L 118
get.plotheight . . . . . . . . . . . e 119
get.primer.binding.idx . . . . . . . L. 120
get.primer.identifier.string . . . . . . . ... o 120
getredundant.cols . . . . . . ... L e 121
getrelative.binding.pos . . . . . .. ... 122
GELIUMNAMES . . . . v v v e v i et e e e e e e e e e e e e e 122

get.selfdimers . . . . . . . . L e 123



Contents

get.sets.from.decisions . . . . ... L. 123
get.static.toolinfo . . . . .. oL L 124
GELATER.SEOS - « « v v v v e e e e e e e e e e e e e e e e e e e 124
getunlistidx . . . . ..o 125
get_constraint_deviation_data . . . . . ... ... 125
get_covered.vanilla . . . . . . ... 126
get_cvg_stats list-method . . . . . . ... 126
get_cvg_stats,Primers-method . . . . . . ... ... L L L 127
gEL_MAX_SEL_COVEIAZE . . « « v v v v v e e e et e e e e e e e e e e 128
get_plot_primer_data . . . . . . . ... e 129
get_primer_cvg_mm_plot_df . . . . . . ... oL 129
get_report_fhame . . . . . ... L. 130
get_template_cvg_data . . . . ... L. 130
helust.tree . . . . . . . L e 131
highlightmismatch . . . . .. ... ... . 131
htmlformat.structure . . . . . . . . . L. 132
Levg . o e e e 132
ILPConstrained . . . . . . . . . . . . . e 133
initialize.primer.set . . . . . . ... L. e 133
Input . . . . . e 134
INSEIT_SIT . . . o o o o o e e e e e e e e 139
interleave . . . . . L. 140
Jeevg e 140
joulecto.cal . . . . L L e e e 141
ListToXml . . . . . . . . e 141
merge.ambig.primers . . . . . . ... ..o e e e e e e 142
merge.binding.information . . . . ... ... oL 142
MEerge.primer.entries . . . . . . . . . o vttt e e e e e e 143
merge.primer.entries.single . . . . . .. ... L 144
merge.select . . . . ... e e e e 144
merge.template.decisions . . . . . ... 145
mismatch.nfo . . . . . ..o 145
mismatch.mutation.check . . . . . . .. ... L L o 146
mismatch.string.to.list . . . . . ... 146
modify.col.rep . . . . . .. e 147
my.disambiguate . . . . ... L. 147
MY.LITOT .« o v v v v v e e et e e e e e e e e e e e 148
my.read.fasta . .. .. L L L 148
MY.WaIMING . . . o o v v vt e et e e e e e e e e e e e e e e e 149
MY_ZESAVE  « v v v v e e e e e e e e e e e e e e e e e 149
my_rbind . . ... 150
nbrofirepeats . . . ... L 150
nbrofiruns . . . ..o 151
OPLL . . o e 151
optilimits . . . . . ... e e 152
optimize. ILP . . . . . . . . e 152
OPUMIZE.PIIMET.CVE . . . . o v v vttt e it e e e e e e e e e e e e 154
optimize.template.binding.regions.dir . . . . . .. ... 0oL 155
optimize.template.binding.regions.single . . . . . . . .. .. ... oL oL 155
Output . . . . . e e e e 156
PAIr_PriMers . . . . . . . o v vt e e e e e e e e 158

Parse.CONSLraintS . . . . . . . . v v it e e e e e e e e e 159



Contents

7
parseheader . . . . .. oL 159
parse. IMGT.gene.groups . . . . . . . . o . i e e e e e 160
parse.oligoresults . . . . ... L. 160
plotall.evginfo . . . . . . ... 161
plotallfiltering.stats . . . . . . . . . ... L. 162
plotDelta.DeltaG . . . . . . . . . . . e 162
plot.dimer.dist . . . . . . . ... e e e e 163
plotexcluded.hist . . . . . . . ..o 163
plotfiltering.runtime . . . . . . . . . ... 164
plotfiltering.stats . . . . . . . . .. e e e e e 164
plot.filtering.stats.cvg . . . . . . . L. e e e e e e 165
Plots . . . . o o e 165
plot_constraintlist-method . . . . . . . ... .. L L 170
plot_constraint,Primers-method . . . . . . .. .. ... .. 171
plot_constraint.histogram . . . . . . . . ... Lo 172
plot_constraint.histogram.nbr.mismatches . . . . . .. ... ... o000 173
plot_constraint.histogram.primer.efficiencies . . . . . . . ... .. ... ... 173
plot_constraint_deviation,list-method . . . . . . . . ... ... ... L. 174
plot_constraint_deviation,Primers-method . . . . . . . . ... ... oL oL 174
plot_constraint_fulfillment,list-method . . . . . . . ... ... ... .. 175
plot_constraint_fulfillment,Primers-method . . . . . . ... ... ... ......... 176
plot_cvg_constraints,list-method . . . . . . . ... oL oL Lo 176
plot_cvg_constraints,Primers-method . . . . . . ... ... o oL 177
plot_primer.comparison.boxX . . . . . . ... L. e 177
plot_primer.comparison.mismatches . . . . . . .. ... ... . L. 178
plot_primer_binding_regions,list,list-method . . . . . . ... ... oL 179
plot_primer_binding_regions,Primers,Templates-method . . . . . . . ... ... . ... 180
plot_primer_cvg,listlist-method . . . . . .. ... ... ... ... . 180
plot_primer_cvg,Primers,Templates-method . . . . . . . .. ... ... ......... 181
plot_primer_cvg_mismatches . . . . . . . . ... L 181
plot_primer_cvg_unstratified . . . . . . ... ..o 182
plot_template_cvg,listlist-method . . . . . . . ... ... ... ... ... ..., 183
plot_template_cvg,Primers, Templates-method . . . . . . .. ... .. ... ... ... 183
plot_template_cvg_comparison_mismatch . . . . . . . . ... oL 184
plot_template_cvg_comparison_unstratified . . . . . . ... ... oL 184
plot_template_cvg_mismatches . . . . . . . . ... ... L Lo 185
plot_template_cvg_unstratified . . . . . .. ... oL o 185
plot_template_structure . . . . . . . . . ... e e e 186
POSEOTANGE . . .« o o o i e e e e e e e e e e e e e e 186
PrediCt_COVerage . . . . . . . . v v it i e e e e 187
prefilter.primer.candidates . . . . . . . . ... ... Lo 187
prepare.constraint.plot . . . . . ... oL 188
prepare.dimer.Seqs . . . . . . . i e e e e e e e e e e e e e e e 188
prepare_mm_plot . . . . ... L e 189
prepare_template_cvg_mm_data . . . . ... ... 189
primer.binding.regions.data . . . . . . . ... L. 190
primer.coverage.for.groups . . . . . .. ... L. 190
primer.set.parameter.stats . . . . . . . .. ..t u e e e e e e e e e e 191
PrimerDesign . . . . . . . . ... 191
PrimerEval . . . . . . .. 195
rbind.primer.data . . . . .. L. L 198

rbind.Primers . . . . . . . .. e e 199



Contents

rbind. Templates . . . . . . . . . .. 199
readJeaders . . . . . ... 200
read.secondary.StruCture.raw . . . . . . . . . .. .ot u e e e e e e e e 200
1€ad.SEQUENCES . .« . v v o e e e e e e e e e e e e e e e e e e e e 201
read_primers.internal . . . . . .. .o 201
read_primers_CSV . . . . . . . . .. e e e e e 202
read_primers_multiple . . . . . . ... 202
read_templates_CSv . . . . ... L e e e e 203
read_templates_fasta . . . . . . ..o 203
read_templates_multiple . . . . . . ... 204
read_templates_single . . . . . . ... Lo 205
relaX.ConsStraings . . . . . . . .. .. e e e e e e 206
relax.opti.CONSraints . . . . . . . . . i e e e e e e e 207
remove.redundant.cols . . . . . . ... 208
remove.seqs.by.keyword . . . ... oL 208
rename.constraint.options . . . . . . . . . . . L. e e e e 209
render_Ireport . . . . . ..o e e e e e e e e e e e 209
reorder.primer.table . . . . . ... L L e 210
restriction_ali . . . . . . .. L e 210
restriction_hits . . . . . .. L e 211
restriction_match . . . . . . .. e 211
retrieve.leaderregion . . . . ... L. Lo 212
TEV.COMP.SEQUENCE . « .« v v e v v e e e e e e e e e e e e e e e e e e e e 212
TEV.SEQUENICE .« « v v o v v e e e e e e e e e e e e e e e e e e e e 213
runTutorial . . . . . . . L 213
sanitize_path . . . . . . .. 214
SCOrE.CONSEIVALION . . . . . . . . v o vttt it ettt e e e e e 214
SCOTING . . . . o o 215
select.allowed.binding.events . . . . . . . . . . ... e 217
select.best.ILP . . . . . . . . . . . e 217
select.best.optiresult . . . . . . ... 218
select.best.primer.idX . . . . . . . . L. e e e 218
select.best.primer.set . . . . . . . ... L. e 219
select.binding.events . . . . . . . ... 220
select.constraints . . . . . . .. oL L. e 220
select.min.cross.idX . . . . . . . . .. e e e 221
select.primer.region.by.conservation . . . . . . . ... ... oo 221
select.primers.by.cvg . . . . . L L. e e 222
select_best_binding . . . . . . . . ... L. 223
selenium.installed . . . . . . . ... L 224
setnew.constraint.value . . . . . . .. L. L Lo e 224
setnew.limits . . . . . . . L. e e e 225
SEtNGS . . . o o e e e e e e e e e e e 225
shannon.entropy . . . . . . . . . L e 234
solve ILP . . . . . . 234
split_str_by_index . . . . . . . . .. e e 235
stats_plot_data . . . . . ... e 236
store filtering.sets . . . . . . . .o 236
stringlist.format . . . . . ... oL L 237
string.list.format.total . . . . . . . ... L. 237
string.to.IQR . . . L 238

subset.ILP . . . . . . . e e 238



openPrimeR-package 9

TemplatesFunctions . . . . . . . . . .. 239
UNZAP_SEQUENCE « © .« v v v v v v e e e e e e e e e e e e e e e e e e e 241
unifyleaders . . . . . . ... 242
update.binding.ranges.by.conservation . . . . . . . ... Lo e 242
update.binding.regions . . . . . . ... Lo 243
update.constraint.values . . . . . . . . ...l 243
update.cvg.data . . ... L. e e e e e e 244
update.individual.binding.region . . . . . . . . .. ... 244
update.optiresults . . . . . ... 245
update_primer_binding_regions . . . . . . . ... ... 246
update_primer_CVg . . . . . . o i e e e e e e e e e e 246
validate_primers . . . . . . . . ... e e 247
validate_templates . . . . . . . ... e e e e e 247
VIBW.CVE.PIIMETS . . . . . o vttt e e ettt e e e e e e e e e 248
viewdimer.df . . . ..o 248
VIEWNPULPIIMErS . . . . . . o vttt s e e e e e e e 249
VIBW.PIIIMEIS « . . o v v v e et i e e e e e e e e e e e 249
VIBW.PIIMETS.IEPOTT . . . o v v v v o e e e e e e e e e e e e e e e e e e 250
visualize.all.results . . . . . . . ... 250
visualize filtering.results . . . . . . .. ..o oL 251
were.constraints.relaxed . . . . ... L. L 252
write.out.primerinfo . . . . .. L. Lo 253
xmlToChar . . . . . . . . e 253
Index 255

openPrimeR-package Multiplex PCR Primer Design and Analysis.

Description

With openPrimeR you can evaluate existing primers or design novel primers for multiplex poly-
merase chain reaction that are optimized with respect to the coverage of template sequences and the
physicochemical properties of the primers.

Details

For designing primers, you just need the function design_primers from openPrimeR. As a mini-
mal input, this function requires:

A set of template sequences You an load a Templates object with read_templates.

Settings for primer design You can load a DesignSettings object from a (supplied) XML file
with read_settings. The settings can be easily customized using the setters constraints,
constraintLimits, cvg_constraints, conOptions, and PCR.

For evaluating existing primers you can load a FASTA or CSV file containing the primers and tem-
plates of of interest using read_primers and read_templates, respectively. After evaluating the
properties of the primers using check_constraints, you can interpret the results with several func-
tions. For example, you can analyze the coverage of the template sequences using get_cvg_stats,
determine the deviation from the target constraints using plot_constraint_deviation, or create
a comprehensive report on the analyzed primers using create_report. In order to compare sev-
eral primer sets with each other, you can create a table of the properties of the primer sets using
get_comparison_table or create a full report, again using create_report.



10 AbstractConstraintSettings-class

Package options

openPrimeR uses the following options:
openPrimeR.constraint_order The identifiers of constraints in the order they are applied during
the filtering procedure. This order is maintained when loading a DesignSettings object.

openPrimeR.relax_order The identifiers of constraints in the order in which they shall be relaxed
during the relaxation procedure when designing primers.

openPrimeR.plot_abbrev The maximal number of allowed characters for tick labels in plots.
openPrimeR.plot_colors A named vector providing the identifiers of RColorBrewer palettes.
Each vector entry provides the plotting colors for a specific type of stratification (i.e. by run,
constraint, or primer). The palettes should provide at least eight colors.
Author(s)
Maintainer: Matthias Doring <matthias-doering@gmx.de>

Authors:

¢ Nico Pfeifer <pfeifer@informatik.uni-tuebingen.de>

AbstractConstraintSettings-class
AbstractClass for Constraint Settings.

Description
The ConstraintSettings class encapsulates the constraints on the physicochemical properties of
primers.

Value

An AbstractConstraintSettings object.

Slots

status Named boolean vector indicating which of the possible constraints are active (TRUE) and
which are not (FALSE).

settings Named list containing the settings of the active constraints



add.coverage.constraints

add.coverage.constraints
Addition of Coverage Constraints.

Description

Adds coverage constraints to ILP instance.

Usage

add.coverage.constraints(lprec, covered.templates, template.coverage)

Arguments

lprec An ILP instance.
covered. templates
Indices of covered template sequences.
template.coverage
List containing the indices of covering primers for each template.

Value

1prec with coverage constraints.

add.dimerization.constraints
Addition of Dimerization Constraints

Description

Updates ILP formulation with dimerization constraints.

Usage

add.dimerization.constraints(lprec, D.idx, indices)

Arguments
lprec An ILP instance.
D.idx Data frame giving the indices of dimerizing primer pairs.
indices Row indices for setting the dimerization constraints in 1prec.
Value

lprec with added dimerization constraints.



12 adjust.ORF start

add.uniform.leaders.to.seqgs
Add Uniform Binding Regions.

Description

Augments a template data frame with uniform binding regions.

Usage

add.uniform.leaders.to.seqs(lex.seq, leaders)

Arguments

lex.seq Template data frame

leaders Data frame with uniform binding regions.
Value

Template data frame with updated binding regions.

adjust.ORF.start Adjust ORF position

Description

Adjusts the reading frame according to the position at which we consider a subsequence.

Usage

adjust.ORF.start(ORFs, seq.start)

Arguments

ORFs the reading frames (0,1,2).

seq.start the position where a sequence is extracted .
Value

The adjusted reading frames for the given start positions.



align.seqs 13

align.seqgs Multiple Sequence Alignment

Description

Computes a multiple sequence alignment using MAFFT.

Usage

align.seqs(seqgs, names)

Arguments
seqs The sequences to be aligned.
names The identifiers of the sequences.
Value

An alignment object as created from seqinr’s read.alignment method.

References

Katoh, Misawa, Kuma, Miyata 2002 (Nucleic Acids Res. 30:3059-3066) MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier transform.

align.structures Formatting of Dimerization Structures.

Description

Formats the given dimerization structures nicely.

Usage

align.structures(structs)

Arguments
s1 strutcs A character vector, where a block of 4 elements contains: sequence 1
(with removed overlaps), part of sequence 1 overlappign with sequence 2, part
of sequence 2 overapping with sequence 1, and sequence 2 (with removed over-
laps).
Value

A list of two elements givin the conformation of the first and the second sequence, respectively.



14 AnalysisStats

AnalysisStats Primer Analysis Statistics.

Description

get_cvg_ratio Determines the ratio of template sequences that are covered by the evaluated input
primers. The ratio is in the interval [0,1] where 0 indicates 0% coverage (no templates covered)
and 1 indicates 100% coverage (all templates covered).

get_cvg_stats Retrieve statistics on covered templates, either for a single or multiple primer sets.
get_cvg_stats_primer Creates a table summarizing the coverage events of individual primers.

get_comparison_table Creates an overview of the properties of multiple primer sets by providing
the inter-quartile range of primer properties in bracket notation.

Usage

get_cvg_ratio(
primer.df,
template.df,
allowed.mismatches = NULL,
cvg.definition = c("constrained”, "basic”),
mode.directionality = NULL,
as.char = FALSE

get_comparison_table(templates, primers, sample.name = NULL)

get_cvg_stats_primer(
primer.df,
template.df,
cvg.definition = c("constrained”, "basic")

)

get_cvg_stats(
primers,
templates,
for.viewing = FALSE,
total.percentages = FALSE,
allowed.mismatches = Inf,

cvg.definition = c("constrained”, "basic")
)
Arguments
primer.df A Primers object containing the primers.
template.df A Templates object containing the template sequences corresponding to primer.df.

allowed.mismatches

The number of allowed mismatches for determining the coverage of the tem-
plates. By default, all annotated coverage events are considered.



AnalysisStats 15

cvg.definition If cvg.definition is setto "constrained", the statistics for the expected cover-
age (after applying the coverage constraints) are retrieved. If cvg.definition
is set to "basic", the coverage is determined solely by string matching (i.e. with-
out applying the coverage constraints). By default, cvg.definition is set to
"constrained".
mode.directionality
Ifmode.directionality is provided, the coverage of templates is computed for
a specific direction of primers. Either "fw" (forward coverage only), "rev" (re-
verse coverage only), or "both" for both directions. By default, mode.directionality
is NULL such that the directionality of the primers is determined automatically.

as.char Whether the coverage ratio should be outputted as a percentage-formatted char-
acter vector. By default, as. char is set to FALSE such that a numeric is returned.

templates If primers is an object of class Primers, please provide an object of class
Templates containing the template sequences targeted by primers. If primers
is a list, templates should be a list of Template objects.

primers To retrieve statistics for a single primer set, please provide an object of class
Primers containing a set of evaluated primers. To retrieve statistics for multiple
primer sets, pelase provide a list with evaluated Primers objects.

sample.name Either a single identifier or a character vector of identifiers for every Templates
object in templates. By default, sample.name is NULL such that the Run anno-
tations in the provided Templates objects are used.

for.viewing Whether the table should be formatted to be human-readable. By default, for.viewing
is FALSE.

total.percentages
Whether group coverage percentages should be computed in relation to the total
number of template sequences or in relation to the number of templates belong-
ing to a specific group. By default, total.percentages is FALSE suc that the
percentages are group-specific.

Details

The manner in which get_cvg_ratio determines the coverage ratio depends on the directionality
of the input primers. If either only forward or reverse primers are inputted, the individual coverage
of each primer is used to determine the overall coverage. If, however, forward and reverse primers
are inputted at the same time, the coverage is defined by the intersection of binding events from
both, forward and reverse primers.

For get_cvg_stats_primer, the cells corresponding to columns with numeric identifiers indicate
the percentage of coverage events occurring with a certain number of mismatches. For example
column 3 provides the number of coverage events where there are exactly three mismatches between
primers and templates. The column Group_Coverage provides a listing of the percentage of covered
templates per group.

Value

By default, get_cvg_ratio returns a numeric providing the expected primer coverage ratio. If
as.char is TRUE, the output is provided as a percentage-formatted character vector. The attributes
no_covered, no_templates, and covered_templates provide the number of covered templates,
the total number of templates, and the IDs of covered templates, respectively.

get_comparison_table returns a data frame summarizing the properties of the provided primer
data sets.



16 ancestor_of

get_cvg_stats_primer returns a list with the following entries. cvg_per_nbr_mismatches con-
tains a data frame listing the number of binding events broken down according to the number of
expected mismatches between primers and templates. cvg_per_group contains a data frame listing
the the coverage of individual primers per group of templates.

get_cvg_stats returns a data frame whose entries provide the coverage of templates per group of
templates.

Examples

data(Ippolito)

# Determine the overall coverage

cvg.ratio <- get_cvg_ratio(primer.df, template.df)

# Determine the identitity coverage ratio

cvg.ratio.@ <- get_cvg_ratio(primer.df, template.df, allowed.mismatches = @)

# Summarize the properties of multiple primer sets
data(Comparison)
tab <- get_comparison_table(template.datal[1:3], primer.data[1:3], "IGH")

data(Ippolito)
# Determine coverage stats per primer
primer.cvg.stats <- get_cvg_stats_primer(primer.df, template.df)

# Coverage statistics for a single primer set

data(Ippolito)

cvg.stats <- get_cvg_stats(primer.df, template.df)

# Coverage statistics for multiple primer sets

data(Comparison)

cvg.stats.comp <- get_cvg_stats(primer.data[1:2], template.data[1:2])

ancestor_of Tree Ancestry

Description

Checks whether ancestor.node is an ancestor to the nodes specified in test.node.

Usage

ancestor_of (tree, ancestor.node, test.node)

Arguments

tree The phylogenetic tree to be tested.
ancestor.node A node to be checked for being an ancestor to test.node.

test.node Possible descendants of ancestor.node.

Value

TRUE, if ancestor.node is an ancestor to any node in test.node.



annealing.temp.rule.of.thumb 17

annealing.temp.rule.of. thumb
Rule of thumb for annealing temperature

Description

Computes the annealing temperature using a rule of thumb

Usage

annealing.temp.rule.of.thumb(melting. temp)

Arguments

melting.temp  Melting temperatures of primers

Value

The annealing temperature corresponding to the input melting temperature.

annotate.binding.events
Annotation of Primer Binding Events.

Description

Annotates whether primer binding events are in the allowed binding region or not.

Usage

annotate.binding.events(
fw.binding,
allowed.range,
nbr.primers,

allowed.region.definition = c("within", "any")
)
Arguments
fw.binding IRanges with coverage information.

allowed.range IRanges of the allowed binding ranges in the templates.
nbr.primers Number of primers to consider.
allowed.region.definition

Definition of the allowed binding region

Value

IRanges with annotations of (preliminary) specificity and allowed binding. The field all_binding
contains all binding regions, on_target contains all events in the target region, and of f_target
contains all off-target binding events.



18 apply.constraint.list

apply.constraint Application of Constraints

Description

Checks whether the input values are within the specified limits.

Usage

apply.constraint(

gc.ratio.fw,

gc.ratio.rev,

min.GC,

max.GC,

fw.idx,

rev.idx,

mode.directionality = c("fw”, "rev", "both")

Arguments

gc.ratio.fw Forward values.

gc.ratio.rev Reverse values.

min.GC Minimal allowed value.
max . GC Maximal allowed value.
fw. idx Indices of forward values to consider.
rev.idx Indices of reverse values to consider.

mode.directionality
Direction of primers

Value

Data frame with TRUE for values fulfilling the constraints, FALSE otherwise. Also returns FALSE if a
data point is not available.

apply.constraint.list Apply Constraints to a List.

Description

Checks whether the input values are within the specified limits.



assign_binding_regions.character 19

Usage

apply.constraint.list(

gc.ratio.fw,

gc.ratio.rev,

min.GC,

max.GC,

fw.idx,

rev.idx,

mode.directionality = c("fw", "rev”, "both")

Arguments

gc.ratio.fw Forward values (comma-separated strings).

gc.ratio.rev Reverse values (comma-separated strings).

min.GC Minimal allowed value.
max . GC Maximal allowed value.
fw.idx Indices of forward values to consider.
rev.idx Indices of reverse values to consider.

mode.directionality
Direction of primers

Details

Applies a constraint to every element in a vector of comma separated strings. Applied when filtering
covered seqs according to primer efficiency.

Value

Data frame with TRUE for values fulfilling the constraints, FALSE otherwise.

assign_binding_regions.character
Character Assignment of Binding Regions

Description

Generic method for assigning the binding region using individual binding regions.

Usage

## S3 method for class 'character'
assign_binding_regions(
template.df,
fw,
rev,
optimize.region = FALSE,
primer.length = 20,
gap.char = "-"



20 assign_binding_regions.numeric

Arguments

template.df Template data frame.
fw FASTA file specifying the forward binding regions.

rev FASTA file specifying the reverse binding regions.

optimize.region
Should the primer binding region be optimized using secondary structure pre-
diction?

primer.length Probe length for optimizing template secondary structure.

gap.char The gap character for aligned sequences.

Value

Template data frame with assigned binding regions.

assign_binding_regions.numeric
Numeric Assignment of Binding Regions.

Description

Numeric S3 generic case for assigning binding regions.

Usage

## S3 method for class 'numeric'

assign_binding_regions(
template.df,
fw,
rev,
optimize.region = FALSE,
primer.length = 20,
gap.char = "-"

Arguments

template.df Template data frame.
fw Binding region data forward primers.

rev Binding region data for reverse primers.

optimize.region
Should the primer binding region be optimized using secondary structure pre-
diction?

primer.length Probe length for optimizing template secondary structure.

Value

The template data frame with assigned binding regions.



augment.primer.cvg 21

augment.primer.cvg Augmentation of Primer Coverage.

Description

Computes the coverage for the primers in primer.df that is still missing such that the relaxation
procedure can adjust appropriate constraints.

Usage

augment.primer.cvg(
primer.df,
template.df,
settings,
partial = FALSE,
constraint = NULL

Arguments

primer.df A Primers object for which the primer coverage shall be augmented.
template.df A Templates object.
settings A DesignSettings object giving the parameters for coverage computations.

partial Whether all missing primer coverage values should be computed. If partial
is TRUE, only the coverage values of the primers that were excluded due to the
specified constraint are computed.

constraint A character vector specifying the exclusion reason for which the partial aug-
mentation should take place.

Value

A Primers object with augmented coverage entries.

batchify Creates multiple Batches for Parallelization.

Description

Creates multiple Batches for Parallelization.

Usage
batchify(tasks, annealing.temps = NULL)

Arguments

tasks An integer vector with indices representing individual computations.
annealing. temps
Temperatures according to which to batchify.



22 batchity.temp

Value

A list of lists containing indices corresponding to tasks, each list gives a batch.

batchify.simple Simple Batchification

Description

Simple Batchification

Usage

batchify.simple(tasks)

Arguments

tasks The tasks to assign to individual batches.

Value

A list of lists containing indices corresponding to tasks, each list gives a batch.

batchify.temp Batchification by Temperature.

Description

Batchification by Temperature.

Usage

batchify.temp(tasks, annealing.temp)

Arguments

tasks The tasks to assign to individual batches.

annealing.temp The annealing temperatures according to which batches are to be created.

Value

A list of lists containing indices corresponding to tasks, each list gives a batch.



build.gain.df 23

build.gain.df Gain of Coverage by Excluded Primers.

Description

Computes a data frame on the excluded sequences per constraint.

Usage

build.gain.df(candidate.df, constraint.settings, constraint.limits, relax.df)

Arguments

candidate.df  An object of class Primers containing excluded primers that are considered for
addition to filtered.df.

constraint.settings
A list with the current constraint settings.

constraint.limits
The current constraint limits.

relax.df Data frame with count of relaxations per constraint.

Value

A data frame with exclusion data.

build.ILP.df Construction of ILP Results.

Description

Constructs a data frame summarizing the properties of an ILP solution.

Usage
build.ILP.df(
ILP,
vars,
primer.df,

template.df,

i,

target.temp,

time = NA,
deltaG_Cutoff = NA,
deltaG_Limit = NA



24

Arguments

ILP

vars
primer.df
template.df

i

target. temp
time
deltaG_Cutoff

deltaG_Limit

Value

build.tool.overview

A solved ILP instance.

The ILP decision variables.

The primer data frame correspdong to the ILP.

The template data frame.

Index for the ILP.

Target melting temperature in Celsius.

Runtime of the ILP.

Free energy cutoff used for the dimerization constraint.

The free energy boundary for dimerization.

Data frame summarizing the ILP solution.

build.tool.overview Creation of an Overview of Third-Party Tools.

Description

Creates a table of required third-party tools and their installation status.

Usage

build.tool.overview(AVAILABLE.TOOLS, for.shiny = FALSE)

Arguments

AVAILBLE.TOOLS A vector whose names give the required tools and whose entries give their in-

If

Value

stallation status as logicals.

for.shiny is TRUE, provide the URLs for the tool using HTML.

A data frame with information on third-part tools.



build_leader df

25

build_leader_df Building of Leader Data Frame.

Description

Constructs the leader data frame.

Usage
build_leader_df(
direction = c("fw", "rev"),
leader,
start,
end,
ali.start,
ali.end
)
Arguments
direction The primer direction for which we are annotating binding regions.
leader The binding region sequence.
start The start positions of the binding region.
end The end positions of the binding region.
ali.start The start positions of the binding region in the aligned input.
ali.end The end positions of the binding region in the aligned input.
Value

A data frame with binding region information.

call.melt Thermodynamic melting temperature computations.

Description

Computes the melting temperature for the input primers.

Usage

call.melt(
primers,
complements,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc



26

Arguments

primers
complements
primer_conc
na_salt_conc
mg_salt_conc
k_salt_conc

tris_salt_conc

Value

call. melt.single

Character vector of primer strings.

Character vector with complement sequences corresponding to primers.
Primer concentration.

Sodium ion concentration.

Magensium ion concentration.

Potassium ion concentration.

Tris buffer concentration

Melting temperature data frame.

References

Le Novere N. (2001). MELTING, computing the melting temperature of nucleic acid duplex. Bioin-
formatics, 17: 1226-1227. Dumousseau M., Rodriguez N., Juty N., Le Novere N. (2012) MELT-
ING, a flexible platform to predict the melting temperatures of nucleic acids. BMC Bioinformatics,

13: 101.

call.melt.single

Thermodynamic melting temperature computations.

Description

Computes the melting temperature for the input primers.

Usage

call.melt.single(

primers,
complements,
out.file,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,

tris_salt_conc,

ID

Arguments

primers
complements
out.file
primer_conc

na_salt_conc

List of primer strings.

List with corresponding complements.

Path to the file where MELTING will write the results.
Primer concentration.

Sodium ion concentration.



cascaded. filter

mg_salt_conc  Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris buffer concentration.

ID identifiers of the input primers

Value

Melting temperature data frame.

27

cascaded.filter Filtering for the Optimization

Description

Filter primers according to constraints and relax constraints if necessary.

Usage

cascaded.filter(
primer.df,
template.df,
settings,
mode.directionality = c("fw”, "rev", "both"),
required.cvg = 1,
target.temps = NULL,
updateProgress = NULL,
results.loc = NULL

Arguments

primer.df Primer data frame.
template.df Template data frame.

settings Settings object.
mode.directionality
Primer direction.

required.cvg Required ratio of covered templates. If required. cvg is set to 0, the constraints

are not relaxed.

target.temps  Target melting temperature of the primers in Celsius. This argument is only
required if we try to match the melting temperatures of another primer set, e.g.

when first optimizing forward and then optimizing reverse primers.
updateProgress Progress callback function for shiny.
results.loc Directory where the filtering results should be stored.
Details

Constraints are relaxed if the required. cvg could not be reached with the input constraints.

Value

The filtered primer data frame with respect to required. cvg.



28 cascaded filter.quick

cascaded.filter.quick Cascaded Filter

Description

Filter primers in a cascaded fashion.

Usage

cascaded.filter.quick(
primer.df,
template.df,
settings,
to.compute.constraints,
mode.directionality = c("fw”, "rev”, "both"),
active.constraints = NULL,
no.structures = FALSE,
updateProgress = NULL

Arguments

primer.df Primer data frame.
template.df Template data frame.

settings Settings object.

to.compute.constraints
Names of constraints that still have to be computed.

mode.directionality
Primer direction.

active.constraints
The constraints that are to be used for filtering. If active.constraintsis NULL,
all filtering constraints are used.

no.structures Whether dimerization structures shall be computed.

updateProgress Progress callback function for shiny.

Details

At each constraint evaluation all primers that do not fulfill the current constraint are removed.

Constraints that are specified in to.compute.constraints are computed on the fly.

Value

The filtered primer data frame.



cbind.Primers

29

cbind.Primers cbind for Primers class.

Description

Ensures that the cbind result has the appropriate class.

Usage
## S3 method for class 'Primers'
cbind(...)
Arguments
Parameters for cbind function.
Value

Column binded Primers data frame.

Examples

data(Ippolito)
primer.df <- cbind(primer.df, primer.df)

cbind.Templates cbind for Template class.

Description

Ensures that the cbind result has the appropriate class.

Usage
## S3 method for class 'Templates'
cbind(...)

Arguments

Parameters for cbind function.

Value

Column binded Templates data frame.

Examples

data(Ippolito)

template.df <- cbind(template.df, seq_len(nrow(template.df)))



30 cbind2,Primers,ANY-method

cbind2,Primers, ANY-method
S4 cbind for Primers.

Description

S4 cbind function for Primers.
S4 rbind function for Primers.
Slices a Primers data frame.

Stores data in a column of a Primers data frame.

Usage

## S4 method for signature 'Primers,ANY'
cbind2(x, vy, ...)

## S4 method for signature 'Primers,ANY'
rbind2(x, y, ...)

## S4 method for signature 'Primers,ANY'

x[i, j, ..., drop = TRUE]

## S4 replacement method for signature 'Primers'
x$name <- value

Arguments
X The Primers data frame.
y Another data frame.
Other arguments to the slice operator.
i The row index.
j The column index.
drop Simplify data frame?
name The name of the column.
value The values of the column.
Value

Cbinded primer data frame.
Rbinded primer data frame.
Subset of primer data frame.

Primer data frame with replaced column.



cbind2, Templates, AN Y-method

Examples

data(Ippolito)

primer.df <- cbind2(primer.df, seq_len(nrow(primer.df)))
data(Ippolito)

primer.df <- primer.df[1:2,]

data(Ippolito)

primer.df$Forward[1] <- "ctagcgggaccg”

cbind2, Templates,ANY-method
S4 cbind for Templates.

Description

S4 cbind function for Templates data frame.
S4 rbind function for templates.
Slicing of Templates data frame object.

Set a column in a Templates data frame.

Usage
## S4 method for signature 'Templates,ANY'
cbind2(x, vy, ...)

## S4 method for signature 'Templates,ANY'
rbind2(x, vy, ...)

## S4 method for signature 'Templates,ANY'
x[i, j, ..., drop = TRUE]

## S4 replacement method for signature 'Templates'
x$name <- value

Arguments
The Template data frame.
y Another data frame.
Other arguments to the slice operator.
i The row index.
j The column index.
drop Simplify data frame?
name The name of the column.
value The values of the column.
Value

Cbinded template data frame.
Rbinded template data frame.
Subsetted template data frame.

Templates with replaced column.



32 check.3prime.mismatches

Examples

data(Ippolito)

template.df <- cbind2(template.df, seq_len(nrow(template.df)))
data(Ippolito)

template.df <- rbind2(template.df, template.df)

data(Ippolito)

template.df <- template.df[1:2,]

data(Ippolito)

template.df$ID[1] <- "newID"

check.3prime.hexamers 3’ Hexamer Check.

Description

Check whether the 3’ hexamer of a primer is fully complementary to the corresponding region in
the template.

Usage

check. 3prime.hexamers(
template.df,
primer.df,
mode.directionality = c("fw", "rev”, "both")

)

Arguments

template.df Template data frame.

primer.df Primer data frame.

mode.directionality
Primer directionality.

Value

Returns TRUE if the 3° hexamer of a primer is fully complementary to the corresponding template
region and FALSE otherwise.

check.3prime.mismatches
3’ Mismatch Check.

Description

Check for mismatches at primer 3’ ends.



check.init.primer.length

Usage

check.3prime.mismatches(
template.df,
primer.df,
mode.directionality = c("fw”, "rev", "both")

)

Arguments

template.df Template data frame.

primer.df Primer data frame.
mode.directionality
Primer directionality.

Value

Returns the distance of mismatches from the 3’ terminal end of primers.

check.init.primer.length
Primer Length Check.

Description

Checks whether it is possible to construct primers of the desired length.

Usage

check.init.primer.length(
template.df,

allowed.region.definition = c("within”, "any"),
primer.lengths,
mode.directionality = c("fw”, "rev", "both")
)
Arguments

template.df Template data frame.
allowed.region.definition

Definition of allowed binding regions.
primer.lengths The desired lengths of the priemrs.

mode.directionality
The primer directionality.

Value

TRUE, if primers of the desired length can be constructed,



34 check.mutations

check.init.primer.length.single
Primer Length Check.

Description

Checks whether it is possible to construct primers of the desired length.

Usage
check.init.primer.length.single(
allowed,
allowed.region.definition = c("within", "any"),
min.len
)
Arguments
allowed String containing the allowed binding sequence.

allowed.region.definition
Definition of allowed binding regions.

min.len Minimal desired primer lengths.

Value

TRUE if primers of the desired length can be constructed, FALSE otherwise.

check.mutations Identification of Mismatch Mutations.

Description

Identifies primers that induce mutations due to mismatch binding.

Usage

check.mutations(
primer.seq,
pos.start,
pos.end,
template.df,
covered.segs,

ORF.data,
mode.directionality = c("fw”, "rev"),
mutation.types = c("stop_codon”, "substitution")



check.template.constraints 35

Arguments
primer.seq Primer sequence string.
pos.start Binding position of primer (start).
pos.end Binding position of primer (end).

template.df Template data frame.
covered.seqs Identifiers of covered templates.

ORF.data Reading frame information of templates.

mode.directionality
Directionality of primers.

mutation.types Character vector of the mutation types to be checked for.

Details

Checks for one primer and all covered templates whether any templates are bound with mismatches
such that a forbidden mutation is induced. A boolean vector indicating which binding events induce
a forbidden mutation is returned.

Value

TRUE if the primer. seqinduces a mutation that is forbidden according to the provided mutation. types.

check.template.constraints
Check Constraints on Templates

Description

Transforms the comma-separated input strings to a boolean representation.

Usage

check. template.constraints(template.constraints)

Arguments

template.constraints
Strings with comma-separated values to be turned to logical.

Value

List with boolean values



36 check.tool.installation

check. tool.function Check Functionality of Third-Party Tools.

Description

Checks whether all required tools should work.

Usage

check.tool.function(frontend = FALSE)

Arguments

frontend Whether tool functionality shall be checked for the frontend.

Value

TRUE for each functioning tool, FALSE for non-functioning tools.

check.tool.installation
Check Tool Installation

Description

Checks whether all required tools are installed.

Usage

check.tool.installation(frontend = FALSE)

Arguments
frontend Whether tool installation shall be checked for the frontend. If TRUE, dependen-
cies that are required only by the frontend are considered additionally.
Value

TRUE for each installed tool, FALSE otherwise.



check_constraints_comparison 37

check_constraints_comparison
Batch Procedure for Evaluating Primer Sets.

Description

Batch Procedure for Evaluating Primer Sets.

Usage

check_constraints_comparison(
primer.data,
template.data,
settings,
active.constraints = names(constraints(settings)),
to.compute.constraints = active.constraints,
for.shiny = FALSE,
updateProgress = NULL

Arguments

primer.data A list of objects of class Primers.
template.data A list of objects of class Templates corresponding to primer.data.

settings An object of class DesignSettings.

active.constraints
A character vector providing identifiers of constraints to be considered.

to.compute.constraints
A character vector providing identifiers of constraints to be computed.

for.shiny A logical indicating whether the results are indicated for the Shiny app or not.

updateProgress A callback function to track progress in the Shiny app.

Value

A list with objects of class Primers.

Examples

## Not run:
data(Comparison)
eval.data <- check_constraints_comparison(primer.datal[1:2], template.datal[1:2], settings)

## End(Not run)



38 check_correspondence

check_constraint_settings_validity
Check the Validity of the Constraint Settings.

Description

Checks whether the status and the active constraints match. Determines whether the constraints are
allowed/known.

Usage

check_constraint_settings_validity(object)

Arguments

object An AbstractConstraintSettings object.

Value

TRUE if the constraint settings are valid, FALSE otherwise.

check_correspondence  Check of Primer and Template Correspondence.

Description

Checks whether the primers relate to the correct templates.

Usage

check_correspondence(primer.df, template.df)

Arguments

primer.df An object of class Primers.

template.df An object of class Templates.

Value

TRUE if the primers and templates seem to correspond, FALSE otherwise.



check_cvg_constraints 39

check_cvg_constraints Evaluation of Coverage Constraints.

Description

Computes the biochemical properties specified in the settings object and determines whether the
primers fulfill the required constraints.

Usage

check_cvg_constraints(
primer.df,
template.df,
settings,
active.constraints = names(cvg_constraints(settings)),
to.compute.constraints = active.constraints,
for.shiny = FALSE,
updateProgress = NULL

)
Arguments
primer.df A Primers object containing the primers to be checked.
template.df A Templates object containing the template sequences corresponding to the
primers.
settings A DesignSettings object containing the coverage constraints to be checked

and their settings.

active.constraints

Identifiers of constraints that are to be checked.
to.compute.constraints

Constraints that are to be computed.

for.shiny Whether to format output for HTML.

updateProgress Progress callback function for shiny.

Value

A Primers object with with columns for each constraint in active.constraints.

Note

Please note that some constraints can only be computed if additional software is installed, please
see DesignSettings for an overview.



40 check_limits

check_interval Check Constraint Intervals

Description

Checks the validity of constraint intervals.

Usage

check_interval(constraints)

Arguments

constraints A list with constraint settings.

Value

TRUE, if all constraints specificy valid intervals, FALSE otherwise.

check_limits Validity Check for Limits.

Description

Checks whether the constraint limits are at least as general as the constraint settings. This ensures
that the relaxation works in the proper direction.

Usage

check_limits(constraint.settings, constraint.limits)

Arguments

constraint.settings
A list with the constraint settings.

constraint.limits
A list with the constraint relaxation limits.

Value

TRUE if the limits are at least as wide as the constraints, FALSE otherwise.



check limit value 41

check_limit_value Check of limit correctness.

Description

Checks whether a constraint limit is more general than the setting.

Usage

check_limit_value(setting, limit)

Arguments
setting A single constraint setting.
limit A single constraint limit.
Value

A vector containing TRUE if the limit is more general than the constraint setting and FALSE otherwise.

check_names Check Setting Names.

Description

Checks whether the specified settings hvae the correct names.

Usage

check_names(known.options, input.options)

Arguments

known.options Allowed setting names.

input.options Input setting names

Value

Mapping of input.options to known.options or NULL if invalid.



42 check_restriction_sites_single

check_report_deps Check for Report Dependencies.

Description

Checks whether the dependencies for rmarkdown::render() are fulfilled.

Usage

check_report_deps()

Value

A logical vector giving the dependency availability status.

check_restriction_sites_single
Identification of Sequence Restriction Sites.

Description

Checks the input sequences seqs for the presence of restriction sites. By removing the restric-
tion sites from a primer set, it is possible to identify the coverage of the primers (e.g. using
check_constraints) discounting for the impact of the mismatching bases caused by the insert.

Usage

check_restriction_sites_single(
primer.seqgs,
template.seqs,
adapter.action,
direction = c("fw", "rev"),
selected = NULL,
only.confident.calls = TRUE,
updateProgress = NULL

Arguments

primer.seqs Nucleotide sequences of primers to be checked for restriction sites in terms of a
DNAStringSet object.

template.seqs A DNAStringSet object with nucleotide sequences containing the templates cor-
responding to segs.

adapter.action The action to be performed when adapter sequences are found. Either "warn"
to issue warning about adapter sequences or "rm" to remove identified adapter
sequences.

selected Names of restriction sites that are to be checked. By default selected is NULL
in which case all REBASE restriction sites are checked.



check_setting 43

only.confident.calls

Only output confident calls of restriction sites.

updateProgress A Shiny progress callback function.

The primer direction that is checked.

Value

A data frame with restriction sites, if any could be found.
References

Roberts, R.J., Vincze, T., Posfai, J., Macelis, D. (2010) REBASE—-a database for DNA restriction
and modification: enzymes, genes and genomes. Nucl. Acids Res. 38: D234-D236. http://rebase.neb.com

check_setting Check Setting Validity.

Description

Checks whether the input settings are valid or not.
Usage

check_setting(known.options, options, mandatory.options = NULL)

Arguments
known.options Vector with names and classes of allowed options.

options Active options to be checked.
mandatory.options

Fields that have to be present.
Value

TRUE if the setting is valid, FALSE otherwise.

check_settings_validity
Validity Check for DesignSettings.

Description
Validates whether a DesignSettings object has the correct structure.
Usage

check_settings_validity(object)



44 combine.strings

Arguments

object A DesignSettings object to be checked for validity.

Value

TRUE if object is valid, FALSE otherwise.

combine.binding.events
Combination of Binding Events.

Description

Appends all binding events.

Usage

combine.binding.events(my.binding.fw, my.binding.rev, fw.m, rev.m)

Arguments

my.binding.fw Forward binding events of individual primers.

my.binding.rev Reverse binding events of individual primers.

fw.m Forward binding events of paired primers.
rev.m Reverse binding events of paired primers.
Value

IRanges of all binding events.

combine.strings Combination of OligoArrayAux Structure Sequences.

Description

Combines the input strings.

Usage

combine.strings(s1, s2)

Arguments
s1 A character vector to be combined with s2.
s2 A character vector to be included into s1.
Value

A character vector.



comp

45

comp Sequence complement

Description

Complements the input sequence (re-write of seqinr comp function for gap support)

Usage

comp(seq, forceToLower = TRUE, ambiguous = FALSE)

Arguments

seq Input char vector.
forceToLower if TRUE the input is transformed to lower case.

ambiguous if TRUE ambiguous [UPAC nucleotides are complemented.

Value

The complement of seq.

compare.constraints Constraint list comparison

Description

Determines whether two list with constraints are identical.

Usage

compare.constraints(A, B)

Arguments

A First constraint list.

B Second constraint list.
Value

TRUE if the constraints are identical, FALSE else.



46 comparison.stats.raw

comparison.cvg Comparison Coverage Stats.

Description

Computes coverage stats for primer comparison.

Usage

comparison.cvg(primer.data, template.data)

Arguments

primer.data List with primer data frames.

template.data List with template data frames.

Value

Coverage statistics for comparing primers.

comparison.stats.raw Computation of Raw Stats for Primer Comparison

Description

Computes raw stats for primer comparison.

Usage

comparison.stats.raw(primer.data, template.data)

Arguments

primer.data List with primer data frames.

template.data List with template data frames.

Value

Raw statistics for primer comparison.



complement.sequence

47

complement. sequence Sequence complement

Description

Computes the complement of the input sequence.

Usage

complement.sequence(seq)

Arguments

seq The input sequence strings.

Value

The complements of the input sequences.

compute.all.cross.dimers
Cross dimerization

Description

Compute worst-case DeltaG data frame with all possible primer cross-dimers.

Usage

compute.all.cross.dimers(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
annealing. temp,
results = NULL,
check.idx = NULL,
for.shiny = FALSE,
no.structures = FALSE



48 compute.all.cross.dimers.frontend

Arguments
primer.df Input primers data frame.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.
mg_salt_conc = Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris buffer concentration.

annealing.temp The PCR annealing temperature.

results (optional) Cross dimer data frame (unfiltered)
check. idx Indices of primers for checking cross-dimerization.
for.shiny Whether the table is inteded for HTML display.

no.structures Whether dimerization structures shall not be outputted.

Value

Worst-case cross dimers.

compute.all.cross.dimers.frontend
Cross Dimerization.

Description

Computes all cross dimers in a user-formatted way.

Usage

compute.all.cross.dimers.frontend(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
annealing. temp,
for.shiny = FALSE,
no.structures = FALSE

)

Arguments
primer.df Input primer data frame.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.

k_salt_conc Potassium ion concentration.



compute.all.cross.dimers.unfiltered 49

tris_salt_conc Tris buffer concentration.
annealing.temp The PCR annealing temperature.
for.shiny Whether to format the table for HTML output.

no.structures Whether to compute structures of dimers.

Value

A formatted data frame with cross-dimerization infos

compute.all.cross.dimers.unfiltered
Cross dimerization

Description

Compute DeltaG data frame for possible primer cross-dimers.

Usage

compute.all.cross.dimers.unfiltered(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
annealing. temp,
check.idx = NULL,
for.shiny = FALSE,
no.structures = FALSE

)

Arguments
primer.df Input primers data frame.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.

mg_salt_conc Magensium ion concentration.

k_salt_conc Potassium ion concentration.

tris_salt_conc Tris buffer concentration.

annealing.temp The PCR annealing temperature.

check. idx Indices of primers for checking cross-dimerization.
for.shiny Whether to format for HTML output.

no.structures Whether dimer structures shall not be determined. If TRUE, structures are not
computed resulting in faster runtimes.

Value

All cross dimers.



50 compute.all.self.dimers

compute.all.primer.subsets.ILP
Computation of Primer Subsets

Description

Computes all optimal primer subsets and stores their plots.

Usage

compute.all.primer.subsets.ILP(
primer.df,
template.df,
K,
groups,
cur.results.loc,
required.cvg = 1

Arguments

primer.df Primer data frame.
template.df Template data frame.
k Subset size-increment.

groups Identifiers of template groups in order to limit coverage to certain groups of
template sequences.

cur.results.loc
Location for storing the results.

required.cvg  The required coverage ratio.

Value

Write-out of results.

compute.all.self.dimers
Self dimers

Description

Computes all possible self dimers for the primers in the input data frame.



compute.all.self.dimers.frontend

Usage

compute.all.self.dimers(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
annealing. temp,
for.shiny = FALSE,
no.structures = FALSE

)

Arguments
primer.df Input primer data frame.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.

mg_salt_conc Magensium ion concentration

k_salt_conc Potassium ion concentration.

tris_salt_conc Tris buffer concentration.

annealing.temp The PCR annealing temperature.

for.shiny Whether the output is to be formatted for HTML.
no.structures Whether dimerization structures shall be outputted

Value

Data frame with thermodynamic information on all self dimers.

compute.all.self.dimers.frontend
Self Dimerization.

Description

Computes all self dimers in a user-formatted way.

Usage

compute.all.self.dimers.frontend(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
annealing. temp,
for.shiny = FALSE,
no.structures = FALSE



52

Arguments

primer.df
primer_conc
na_salt_conc
mg_salt_conc
k_salt_conc
tris_salt_conc
annealing. temp
for.shiny

no.structures

Value

compute.basic.details

Input primer data frame.

Primer concentration.

Sodium ion concentration.
Magensium ion concentration.

Potassium ion concentration.

Tris buffer concentration

The PCR annealing temperature.

Whether to format the table for HTML output.

Whether dimerization structures shall be outputted.

A formatted data frame with self-dimerization infos

compute.basic.details Computation of Coverage Details

Description

Determines binding properties of primers.

Usage

compute.basic.details(

binding,

mode = c("on_target”, "off_target”),

template.df,
primers,

mode.directionality = c("fw”, "rev", "both"),
allowed.mismatches,
allowed.other.binding.ratio,
allowed.region.definition = c("within”, "any"),
updateProgress = NULL

Arguments
binding
mode
template.df

primers

An IRanges object with primer binding information.
Either on_target for on-target binding or of f_target for off-target binding.
Template data frame.

Primer data frame.

mode.directionality

Primer directionality.

allowed.mismatches

The number of allowed mismatches per binding event.



compute.constraints 53

allowed.other.binding.ratio
Ratio of primers that are allowed to bind to non-allowed regions. If allowed.other.binding.ratio
>0 primers are allowed to bind at any location within the templates. However,
a warning is given if the ratio of primers binding to non-target regions exceeds
the allowed.other.binding.ratio.
allowed.region.definition
Definition of the target binding sites used for evaluating the coverage. If allowed.region.definitic
iswithin, primers have to lie within the allowed binding region. If allowed.region.definition
is any, primers have to overlap with the allowed binding region. The default is
that primers have to bind within the target binding region.

updateProgress Progress callback function for shiny.

Value

Primer data frame with information on the covered template sequences.

compute.constraints Computation of Constraints.

Description

Computes the specified constraints for the input primers.

Usage
compute.constraints(
primer.df,
mode.directionality = c("fw"”, "rev”, "both"),
template.df,
settings,
active.constraints = c("primer_coverage”, "primer_length”, "primer_specificity”,
"gc_clamp”, "gc_ratio”, "no_runs”, "no_repeats”, "self_dimerization”,
"cross_dimerization”, "melting_temp_range”, "melting_temp_diff",
"secondary_structure”, "primer_efficiency”, "annealing_DeltaG", "stop_codon”,
"terminal_mismatch_pos”, "substitution”, "hexamer_coverage", "coverage_model”,
"of f_primer_efficiency”, "off_annealing_DeltaG", "off_coverage_model"”),

no.structures = FALSE,

for.shiny = FALSE,

updateProgress = NULL
)

Arguments

primer.df Primer data frame.
mode.directionality

Primer directionality.
template.df Template data frame.

settings A DesignSettings object.
active.constraints
Strings giving the constraints that are to be computed.



54 compute.covered.Ta

no.structures Whether dimer structures shall be computed.
for.shiny Whether to format output for HTML.

updateProgress Progress callback function for shiny.

Value

A data frame with columns for each constraint in active.constraints.

compute.covered.Ta Annealing temperature

Description

Computes the annealing temperature using all binding events.

Usage

compute.covered.Ta(
primer.df,
mode.directionality = c("fw”, "rev", "both"),
template.df,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
primer_conc

Arguments

primer.df Primer data frame.

mode.directionality
Primer directionality.

template.df Template data frame
na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris buffer concentration.

primer_conc Primer concentration.

Value

The recommended annealing temperature.



compute.dimer.matrix 55

compute.dimer.matrix  Dimerization matrix

Description

Computes a matrix indicating all dimerizing primers according to a DeltaG cutoff.

Usage

compute.dimer.matrix(G, deltaG.cutoff = -7)

Arguments

G Matrix with free energies of all considered primer pairs.

deltaG.cutoff Primers with free energies below the cutoff are considered dimerizing.

Value

Binary matrix with dimerization events according to the deltaG.cutoff. Contains 1’ if primers
(i,j) dimerize and ’0’ else.

compute.efficiency Primer Efficiency.

Description

Computes the efficiency of primer binding events for Taq polymerase.

Usage

compute.efficiency(
fw.primers,
fw.start,
fw.end,
covered,
taqgEfficiency,
annealing. temp,
primer_conc,
sodium.eq.concentration,
mode.directionality = c("fw”, "rev"),
segs



56 compute.empiric.melting.temp

Arguments
fw.primers Primer sequence strings.
fw.start Binding position (start).
fw.end Binding position (end).
covered List of covered template indices per primer.

tagEfficiency Whether the efficiency shall be computed using a mismatch-model developed
for Taq polymerases. The default setting is TRUE. Set tagefficiency to FALSE
if you are using another polymerase than Tagq.

annealing.temp Annealing temperature for which to evaluate efficiency.

primer_conc Primer concentration.
sodium.eq.concentration

The sodium-equivalent concentration of ions.
mode.directionality

Primer directionality.

seqgs Template sequence strings.

Details
This function uses DECIPHER’s CalculateEfficiencyPCR.

Value

The efficiencies of primer binding events.

References

Wright, Erik S., et al. "Exploiting extension bias in polymerase chain reaction to improve primer
specificity in ensembles of nearly identical DNA templates." Environmental microbiology 16.5
(2014): 1354-1365.

compute.empiric.melting.temp
Non-Thermodynamic Computation of Melting Temperatures.

Description

Computes the melting temperature of primers from an empiric formula.

Usage

compute.empiric.melting. temp(primer.df)

Arguments

primer.df A Primers object.

Value

A data frame with melting temperature information for the primers.



compute.gc.ratio

57

compute.gc.ratio GC ratio

Description

Computes the ratio of G/Cs in a sequence.

Usage

compute.gc.ratio(x)

Arguments

X Input sequence.

Details

In case of ambiguities, the mean GC ratio of all possible sequences is computed.

Value

The fraction of G/Cs in x.

compute.melting.temps Computation of Melting Temperatures.

Description

Use nearest-neighbor thermodynamic computations to find melting temperatures.

Usage

compute.melting. temps(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,

mode.directionality = c("fw”, "rev", "both")
)
Arguments
primer.df Primer data frame.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.

k_salt_conc Potassium ion concentration.



58 compute.melting.temps.thermo

tris_salt_conc Tris buffer concentration.

mode.directionality
Direction of primers

Value

Data frame with melting temperature info for the input primers.

compute.melting. temps.thermo
Computation of Thermodynamic Melting Temperatures.

Description

Use nearest-neighbor thermodynamic computations to find melting temperatures.

Usage

compute.melting.temps.thermo(
primer.df,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,

mode.directionality = c("fw”, "rev", "both")
)
Arguments
primer.df Primer data frame.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.
mg_salt_conc  Magensium ion concentration.
k_salt_conc Potassium ion concentration.

tris_salt_conc Tris buffer concentration.
mode.directionality
Direction of primers

Value

Data frame with melting temperature info for the input primers.



compute.mismatch.table 59

compute.mismatch. table
Mismatch overview table

Description

Computes a table summarizing all of the mismatches caused by the primers in the input data frame.

Usage
compute.mismatch. table(
primer.df,
template.df,
mode.directionality = c("fw", "rev")
)
Arguments
primer.df Primer data frame.

template.df Template data.
mode.directionality
Direction of primers.

Value

: A data frame summarizing all mismatches of the input primers with the input templates.

compute.primer.efficiencies
Primer Efficiency.

Description

Computes the efficiency of primer binding events for Taq polymerase.

Usage

compute.primer.efficiencies(
primer.df,
template.df,
annealing. temp,
tagEfficiency,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
mode = c("on_target"”, "off_target"”)



60 compute.secondary.structures

Arguments

primer.df Primer data frame.
template.df Template data frame.
annealing.temp Annealing temperature for which to evaluate efficiency.

tagefficiency Whether the efficiency shall be computed using a mismatch-model developed
for Taq polymerases. The default setting is TRUE. Set tagEfficiency to FALSE
if you are using another polymerase than Taq.

primer_conc Primer concentration.
na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris ion concentration.

mode Compute efficiencies for on-target coverage events (on_target) or off-target
coverage events (of f_target).

Details
This function uses DECIPHER’s CalculateEfficiencyPCR.

Value

A list with the efficiency of every primer binding event.

Examples

data(Ippolito)

p <- PCR(settings)

# Requires 0ligoArrayAux software:

## Not run:

eff.df <- compute.primer.efficiencies(primer.df, template.df, 55,
p$primer_concentration, p$Na_concentration,
p$Mg_concentration, p$K_concentration, p$Tris_concentration)

## End(Not run)

compute.secondary.structures
Secondary Structure Computations.

Description

Computes the secondary structures of the input primers using ViennaRNA.

Usage
compute.secondary.structures(
primer.df,
mode.directionality = c("fw”, "rev", "both"),

annealing. temperature

)



compute.sodium.equivalent.conc 61

Arguments

primer.df Primer data frame.

mode.directionality
Direction of primers.

annealing.temperature
Temperatures at which to compute secondary structures for every primer

Value

Data frame with secondary structure information.

References

Lorenz, Ronny and Bernhart, Stephan H. and Honer zu Siederdissen, Christian and Tafer, Hakim
and Flamm, Christoph and Stadler, Peter F. and Hofacker, Ivo L. ViennaRNA Package 2.0 Algo-
rithms for Molecular Biology, 6:1 26, 2011, doi:10.1186/1748-7188-6-26

compute.sodium.equivalent.conc
Sodium-equivalent Concentration

Description

Computes the sodium-equivalent concentration for the input ion concentrations.

Usage

compute.sodium.equivalent.conc(
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc

Arguments

na_salt_conc Sodium ion concentration.
mg_salt_conc  Magensium ion concentration.
k_salt_conc Potassium ion concentration.

tris_salt_conc Tris buffer concentration.

Value

The sodium-equivalent concentration of the input ion concentrations.



62 compute.structure.vienna

References

Record, M. Thomas. "Effects of Na+ and Mg++ ions on the helix—coil transition of DNA." Biopoly-
mers 14.10 (1975): 2137-2158.

Owczarzy, Richard, et al. "Predicting stability of DNA duplexes in solutions containing magnesium
and monovalent cations." Biochemistry 47.19 (2008): 5336-5353.

Peyret, Nicolas. Prediction of nucleic acid hybridization: parameters and algorithms. Detroit:
Wayne State University, 2000.

compute.structure.vienna
Computation of Secondary Structures with ViennaRNA.

Description

Computes secondary structures using ViennaRNA.

Usage

compute.structure.vienna(
segs,
annealing.temperature,
folding.constraints = NULL,
id = ""

Arguments

seqgs The input sequences for which structures shall be computed.

annealing.temperature
The temperature in degree Celsius at which to compute secondary structures.

folding.constraints
Character vector specifying the folding conditions for every input sequence. For
example the constraint xxxxxx. . . would forbid folding in the first 6 bases and
allow folding in the last 3 bases.

id An identifier for storing the files
constraints If provide
Value

A data frame with secondary structures.



compute.Ta 63

compute.Ta Annealing temperature

Description

Computes the annealing temperature using all binding events.

Usage

compute.Ta(
primer.df,
template.df,
mode.directionality = c("fw”, "rev", "both"),
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
primer_conc

Arguments

primer.df Primer data frame.

template.df Template data frame

mode.directionality
Primer directionality.

na_salt_conc Sodium ion concentration.
mg_salt_conc = Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris buffer concentration.

primer_conc Primer concentration.

Value

All annealing temperatures for given binding events.

References

Rychlik, W. J. S. W., W. J. Spencer, and R. E. Rhoads. "Optimization of the annealing temperature
for DNA amplification in vitro." Nucleic acids research 18.21 (1990): 6409-6412.



64

compute.Tm.baldino

compute.template.secondary.structures
Template Secondary Structures

Description

Computes template secondary structures.

Usage

compute.template.secondary.structures(
template.df,
annealing.temperature,
regions = NULL,
constraints = NULL

Arguments

template.df Template data frame.
annealing.temperature

Temperature [C] at which to compute secondary structures.

regions List containing the positional intervals for which the template secondary struc-

ture should be computed.

constraints String giving secondary structure constraints. For example xxxxxx. .. would
forbid folding in the first 6 bases of a template with length 9 and allow folding

in its last 3 bases.

Value

Data frame with info on template secondary structures.

compute.Tm.baldino Baldino Formula

Description

Computes the melting temperature using the formulation by Baldino.

Usage

compute.Tm.baldino(
sequences,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
primer_conc



compute.Tm.sets 65

Arguments
sequences Input sequence strings.
na_salt_conc Sodium ion concentration.
mg_salt_conc  Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris buffer concentration.

primer_conc Primer concentration.

Value

The melting temperature for the input sequences.

References

Rychlik, W. J. S. W., W. J. Spencer, and R. E. Rhoads. "Optimization of the annealing temperature
for DNA amplification in vitro." Nucleic acids research 18.21 (1990): 6409-6412.

compute.Tm.sets Cross-Dimerization Filtering

Description

Removes cross-dimerizing primers from the input data.

Usage

compute.Tm.sets(
primer.df,
template.df,
Tm.brackets,
settings,
mode.directionality = c("fw", "rev"),
primer_conc,
template_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
allowed.mismatches,
allowed.other.binding.ratio,
allowed.stop.codons,
allowed.region.definition,
disallowed.mismatch.pos,
opti.mode = FALSE,
required.cvg = NULL,
primers.fw = NULL,
diagnostic.location = NULL,
updateProgress = NULL



66 compute.Tm.sets

Arguments

primer.df Primer data frame.
template.df Template data frame.
Tm.brackets Data frame with target primer melting temperatures.

settings A DesignSettings object.
mode.directionality
Identifier of strand for which primers shall be designed.
primer_conc Primer concentration.
template_conc Template concentration.
na_salt_conc Sodium ion concentration.
mg_salt_conc = Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris ion concentration.

allowed.mismatches
The number of mismatches primers are allowed to have with the templates.

allowed.other.binding.ratio
Ratio of primers allowed to bind to non-target regions.

allowed.stop.codons
Consider mismatch binding events that induce stop codons.

allowed.region.definition
Definition of the allowed region.

disallowed.mismatch.pos
The number of positions from the primer 3’ end where mismatches should not be
allowed. All primers binding templates with mismatches within disallowed.mismatch.pos
from the 3’ end are disregarded.

opti.mode Compute optimization constraints and relax delta Tm if necessary.
required.cvg  Target coverage ratio.

primers.fw Already designed primer sets for the target temperatures given in Tm.brackets.
Used to determine cross-dimerization.

diagnostic.location
Directory for storing results.

updateProgress Shiny progress callback function.

primers.rev The primer data set to be filtered for cross-dimers.

opti.constraints
List with optimization constraint settings.

annealing.temp The PCR annealing temperature.

Value

primers.rev with removed cross-dimerizing primers.

Primer data frames for every target temperature.



compute.unique.covered.idx 67

compute.unique.covered.idx
Unique Coverage Indices Computes the indices of templates that are
covered uniquely covered by an individual primer.

Description
Unique Coverage Indices Computes the indices of templates that are covered uniquely covered by
an individual primer.

Usage

compute.unique.covered.idx(primer.df, template.df)

Arguments

primer.df Primer data frame.

template.df Template data frame.

Value

Index of templates uniquely covered per input primer.

compute_annealing_temp
Annealing temperature.

Description

Identifies the optimal annealing temperature of a set of primers. If primers cover template se-
quences, the annealing temperature is computed using Rychlik’s formula. Otherwise, the annealing
temperature is determined using the rule of thumb based on the melting temperatures of the primers.

Usage

compute_annealing_temp(
primer.df,
mode.directionality,
template.df,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
primer_conc



68 condition

Arguments

primer.df Primer data frame.

mode.directionality
Primer directionality.

template.df Template data frame
na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris buffer concentration.

primer_conc Primer concentration.

Value

The optimal annealing temperature.

condition Condition Constructor

Description

Constructs a condition for custom errors.

Usage

condition(subclass, message, call = sys.call(-1), ...)
Arguments

subclass String giving the specific error.

message String giving the user message.

call Environment object.

Other arguments for the output structure.

Value

A condition structure.



consecutive.GC.count

69
consecutive.GC.count  Consecutive GCs
Description
Determines the maximum number of consecutive G/Cs
Usage
consecutive.GC.count(y, len)
Arguments
y Positions where G/C occurs. Positions are numbered from 1 to 5 where 5 is the
end of the primer.
len Is the number of bases from the primer end considered.
Value

The maximal number of consecutive G/Cs.

constraints.to.df Conversion of Constraints List to Data Frame.

Description

Converts the input constraints to a data frame representation.

Usage

constraints.to.df(
limit.constraints,
out.names,

format.type = c("backend”, "shiny", "report")

)

Arguments

limit.constraints
A list with constraints.

out.names The desired column names.

format.type The type of formatting to be performed on the table

Value

A data frame giving an overview of the constraints.



70 constraints_to_unit

constraints.xml.format
Constraint XML Format.

Description

Format constraint settings for XML output.

Usage

constraints.xml.format(constraints, set.name)

Arguments
constraints List with constraint settings.
set.name Identifier for the constraint settings.
Value

XML string containing the constraint settings.

constraints_to_unit Mapping of Constraints to Units.

Description

Maps constraints to units for plotting.

Usage

constraints_to_unit(
constraint,
use.unit = TRUE,
format.type = c(”backend”, "HTML", "report")

)
Arguments
constraint The names of the constraints to convert to their plot identifiers (units).
use.unit Whether constraint names should be annotated with their units.
use.HTML Whether constraint units should be annotated with HTML units.
Value

A list of constraint names.



convert.from.iupac 71

convert.from.iupac Conversion from IUPAC nucleotides

Description

Convert sequences with IUPAC ambiguity codes to all possible sequences without ambiguities.

Usage

convert.from.iupac(seqs)

Arguments

seqs A vector of strings.

Value

A list containing the disambiguated input sequences.

convert.PCR.units Conversion of PCR Units

Description

Converts frontend PCR concentration units to the units used for the backend.

Usage

convert.PCR.units(pcr.settings, to.mol = TRUE)

Arguments

pcr.settings List with several PCR settings (concentrations).

to.mol If TRUE, convert to the molar concentration. If FALSE convert to the unit repre-
sentation in the XML.

Value

List with concentrations for usage in the backend.



72 convert.to.iupac

convert.temperature Conversion between Celsius and Kelvin

Description

Converts the input from Kelvin to Celsius or from Celsius to Kelvin.

Usage

convert.temperature(temp, temp.scale = c("K", "C"))
Arguments

temp The input temperature.

temp.scale The desired unit of the output temperature.
Details

If temp.scale is 'K’, T_m is transformed from Celsius to Kelvin. If temp.scale is ’C’, T_m is
transformed from Kelvin to Celsius. The default is to transform from Celsius to Kelvin.

Value

Transforms the input temperature to the specified temp.scale.

convert.to.iupac Merge sequences.

Description

Merges the input sequences to one sequence containing [UPAC ambiguity codes.

Usage

convert.to.iupac(seqs)

Arguments

seqgs Vector of strings.

Value

Consensus sequence of seqs.



con_select

73

con_select Quick Selection of Constraints.

Description

Select constraints that can be used according to third-party tools quickly.

Usage

con_select(active.constraints)

Arguments

active.constraints
Identifiers of constraints.

Value

The identifiers of constraints that can be computed.

copy.melt.config Copy MELTING Config File

Description

Copies modified MELTING tandem mismatch file to the MELTING data folder.

Usage

copy.melt.config(melt.bin = NULL)

Value

TRUE if the file is available in the MELTING folder, FALSE otherwise.

covered.primers.to.ID.string
Conversion of Primer Indices to ID string

Description

Converts the input coverage indices to a comma-separated string with the template IDs.

Usage

covered.primers.to.ID.string(covered.primers, primer.df)



74 covered.seqs.to.idx

Arguments

covered.primers
Identifiers of primers covering sequences.

primer.df Primer data frame.

Value

String containing the covered template IDs.

A string containing the IDs of covering primers.

covered.segs.to.ID.string
Conversion of Template Coverage Indices to ID string

Description

Converts the input coverage indices to a comma-separated string with the template IDs.

Usage

covered.segs.to.ID.string(covered.seqs, template.df)

Arguments

covered.seqs  Indices of covered template sequences.
template.df Template data frame.

Value

A string containing the covered template IDs.

covered.seqgs.to.idx Conversion of Coverage Strings to Indices.

Description

Converts the input coverage strings (comma separated template Identifiers) into indices.

Usage

covered.seqs.to.idx(covered.seqs, template.df)

Arguments

covered.segs Strings of covered sequences to be converted.
template.df Template data frame containing the identifiers of templates

Value

Indices of covered templates.



create.constraint.table

75

create.constraint. table
Output a Constraint Overview Table

Description

Outputs a table showing the values of constraints.

Usage

create.constraint. table(
constraints,
constraint.limits = NULL,
constraints.used.fw = NULL,
constraints.used.rev = NULL,
format.type = c("backend”, "shiny"”, "report”)

Arguments

constraints List with constraint settings.
constraint.limits

List with constraint limits.
constraints.used. fw

Constraints used for forward primer design.
constraints.used.rev

Constraints used for reverse primer design.

format. type The type of formatting to be performed on entries.

Value

Data frame with summary of constraints.

create.constraint.XML XML Output of Constraints

Description

Creates an XML summarizing all settings.

Usage

create.constraint. XML (
filtering.constraints,
c.f.lim,
cvg.constraints,
PCR.settings,
constraint.settings



76 create.G.matrix

Arguments

filtering.constraints
List with constraint settings for filtering.

c.f.lim Relaxation limits for the filtering constraints.

cvg.constraints
List with constraints for coverage computations.

PCR.settings  Settings for the PCR.

constraint.settings
Other settings of constraints (e.g. coverage).

Value

String in XML format containing all constraint settings.

create.cvg.text Coverage Info Text

Description

Creates a string with information on the coverage

Usage

create.cvg.text(stats, selected.group = NULL, ident = NULL)

Arguments

stats Data frame with coverage statistics.
selected.group Retrieve information for a subgroup of templates only.

ident An identifier for the coverage.

Value

A string with information on the coverage.

create.G.matrix Create free energy matrix

Description

Creates a matrix giving the deltaG values of all primers.

Usage

create.G.matrix(primer.df, G.df, primer.df.2 = NULL)



create.initial. primer.set

Arguments
primer.df Primer data frame.
G.df Free energy data for the primers.
primer.df.2 Optional second primer data frame
Value

Matrix with the smallest free dimerization energy for every primer pair.

77

create.initial.primer.set

Creation of an Initial Primer Set.

Description

Creates an initial set of candidate primers for primer design.

Usage

create.initial.primer.set(

mode.directionality = c("fw”, "rev"),
sample,
allowed.region.definition = c("within”, "any"),
init.algo = c("naive”, "tree"),
max.degen,
conservation,
updateProgress = NULL
)
Arguments

template.df,
primer.lengths,

template.df Template data frame.

primer.lengths Vector containing the permissible primer lengths.

mode.directionality

Direction of primers to be created.

sample Name of the template sample.
allowed.region.definition

init.algo Algorithm for initializing primers.
max.degen Maximal allowed degeneration of created primers.
conservation

Definition of the allowed binding region.

range[0,1].

updateProgress Shiny progress object.

Value

An initialized data frame of candidate primers.

Required conservation of primers. The value of conservation should be in the



78

create.kmer

create.k.mers Creation of k-mers for multiple sequences.

Description

Creation of k-mers for multiple sequences.

Usage

create.k.mers(seqgs, k)

Arguments
k The size of the k-mer.
seq A character vector.
Value

A list with named character vectors, containing the k-mers.

create.kmer Creation of k-mers of a single sequence.

Description

Creation of k-mers of a single sequence.

Usage

create.kmer(seq, k)

Arguments

seq A character vector.

k The size of the k-mer.
Value

A names character vector, where the names are the relative positions of the k-mers and the values

give the character vector of the k-mer.



create.options.table

79

create.options.table  Creation of a Table for Constraint Options.

Description

Creation of a Table for Constraint Options.

Usage

create.options.table(
other.settings,
format.type = c("backend”, "shiny"”, "report")

)

Arguments

other.settings List with constraint options

format. type How the table shall be formatted.

Value

A data frame.

create.other.table Creation of a Table for Other Constraint Settings.

Description

Creation of a Table for Other Constraint Settings.

Usage

create.other.table(other.settings, col.names, format.type)

Arguments

other.settings List with other constraint settings.

format. type How the table shall be formatted.

Value

A data frame.



80

create.primer.ranges

create.PCR.table Creation of a Table for PCR Conditions

Description

Creation of a Table for PCR Conditions

Usage

create.PCR.table(other.settings, format.type = c("backend”, "shiny"”, "report"))

Arguments

other.settings List with PCR settings.
format. tyep How the table shall be formatted.

Value

A data frame.

create.primer.ranges  Ranges for Initial Primers.

Description

Creates a data frame indicating primer starts and ends.

Usage

create.primer.ranges(
end.position,
p.lens,
start.position,
step.size = 1,
groups = NULL

Arguments

end.position  End positions of primers.

p.lens Desired primer lengths.

step.size A numeric giving the steps with which start positions are cycled. Should be
1 for primer design (evaluate all positions) and higher values can be used for
windowing.

groups Character vector with group annotation.

start.posiion The start positions of primers.

Value

Data frame with ranges for initial primers.



create.primers.naive

81

create.primers.naive Naive Initialization of Primers.

Description

Initialize primers by extracting substrings from all templates.

Usage
create.primers.naive(
segs,
seq.1IDs,
seq.groups,
l.s,
e.s,

primer.lengths,
allowed.region.definition,

max.degen,
nn

sample = ,
identifier =

nn

’

updateProgress = NULL

Arguments
seqs
seq.IDs
seq. groups
l.s
e.s

primer.lengths

The template sequence strings.
The identifiers of the templates.

The group identifiers of the templates.

The positions where the allowed region starts for each template.

The positions where the allowed reigon ends for each template.

Vector of desired primer lengths.

allowed.region.definition

max . degen
sample

updatProgress

Value

Definition of the allowed region.
Maximum allowed degeneracy of primers.
Template sample identifier.

Shiny progress object.

Data frame with initialized primer candidates.



82

create.primers.tree

create.primers.tree Tree-based Initialization of Primers.

Description

Creates a set of candidate primers using a tree-based algorithm.

Usage

create.primers.
seqgs,
seq.1IDs,
seq.groups,
start,
end,

tree(

primer.lengths,
allowed.region.definition,

max.degen,
conservation,
nn

sample = ,
identifier =

nn
’

updateProgress = NULL

Arguments
seqs
seq.IDs
seq.groups
start
end

primer.lengths
allowed.region.

max . degen

conservation

sample
identifier

updateProgress

Details

Template sequences.

Identifiers of template sequences.

Group identifiers of template sequences.

For each template the start of the interval where primers should be created.
For each template the end of the interval where primers should be created.

Vector of desired primer lengths.
definition
Definition of allowed regions.

Maximal degeneracy of primers.

Required conservation of template regions considered for the generation of primers.
Conservation identifies the top conserved percentile of possible primers.

Sample name for the analysis.
Identifier (e.g. for directionality).
Shiny progress object.

First, primers are aligned and their sequence similarity is determined to compute a phylogenetic
tree using hierarchical clustering. Next, the tree is traversed from leaves to top in order to identify
groups of primers that can be merged (consensus) without exceeding the maximum degeneracy of

primers.



create. Tm.brackets 83

Value

A vector with initialized primers.

create.Tm.brackets Creation of Melting Temperature Groups

Description

Creates a data frame identifying target melting temperatures of individual primer sets.

Usage

create.Tm.brackets(primers, template.df, settings, target.temps = NULL)

Arguments
primers An object of class Primers for which to create groups based on melting temper-
atures.
template.df An object of class Templates corresponding to the primers.
settings A DesignSettings objects.

target. temps Pre-defined target melting temperatures to use instead of automatically deter-
mining groups from the primers.

Value

Data frame with target melting temperatures for individual primer sets.

create.uniform.leaders
Uniform Binding Ranges.

Description

Creates uniform binding regions for all templates.

Usage

create.uniform.leaders(fw.interval, rev.interval, template.df, gap.char)

Arguments

fw.interval Binding region for forward templates.
rev.interval Binding region for reverse templates.
template.df Template data frame.

gap.char The character for gaps in alignments.

Value

Data frame with binding region information.



84 create_report,list,list-method

create_fulfilled_counts
Creation of Fulfilled/Failed Constraint Counts.

Description

Creates counts of fullfilled/failed constraints.

Usage

create_fulfilled_counts(primer.df, eval.cols = NULL)

Arguments
primer.df An evaluated Primers object.
eval.cols Evaluation columns in primer.df to consider. By default (NULL) all evaluation
columns are considered.
Value

A data frame with the number of fulfilled/failed constraints for primer.df.

create_report,list,list-method
Creation of a PDF Report for Primer Comparison.

Description

Creates a PDF report for comparing multiple primers.

Usage

## S4 method for signature 'list,list'
create_report(

primers,

templates,

fname,

settings,

sample.name = NULL,

used.settings = NULL

)
Arguments
primers A list with evaluated Primers objects.
templates A list with Templates objects.
fname A character vector giving the file to store the report in.
settings A DesignSettings object.
sample.name An identifier for your analysis.

used.settings A named list (with fields "fw" and "rev") containing the forward/reverse used
design settings.



create_report,Primers, Templates-method 85

Value

Creates a PDF file giving a report on the comparison of the input primers.

Note

Creating the report requires the external programs Pandoc (http://pandoc.org) and LateX (http://latex-
project.org).

create_report,Primers, Templates-method
Creation of a PDF report.

Description

Creates a PDF report for a set of primers.

Usage

## S4 method for signature 'Primers,Templates'
create_report(

primers,

templates,

fname,

settings,

sample.name,

used.settings,

required.cvg = 1

)
Arguments
primers An evaluated Primers object.
templates A Templates object.
fname A character vector giving the file to store the report in.
settings A DesignSettings object.
sample.name An identifier for your analysis.

used.settings A named list (with fields "fw" and "rev") containing the forward/reverse used
design settings.

required.cvg  The required coverage ratio.

Value

Creates a PDF file reporting on the input primers.

Note

Creating the report requires the external programs Pandoc (http://pandoc.org) and LaTeX (http://latex-
project.org).



86

Data

Data Data Sets.

Description

Ippolito IGHV primer data from Ippolito et al.
Tiller IGHV primer data from Tiller et al.

Comparison Evaluated primer sets targeting the functional human IGH immunoglobulin genes.
The sets were generated using the default evaluation settings of openPrimeR. The primer sets
were gathered from IMGT and the literature.

RefCoverage Experimental results of multiplex PCR.

Usage

data(Comparison)
data(Ippolito)
data(RefCoverage)

data(Tiller)

Format

For the RefCoverage data set, the feature.matrix data frame contains the properties of the
primer set from Tiller et al. as well as a primer set that was designed by openPrimeR. The col-
umn Experimental_Coverage indicates the experimentally determined coverage, while the other
columns relate to properties of the primers that were computed with openPrimeR. The ref.data list
contains the raw experimental coverage of individual primers from the primer sets from Tiller and
openPrimeR, which both target templates from the IGH locus. The rows of the data frames indicate
primers and the columns indicate IGH templates for which experimental coverage was determined.
The cell entries are hex codes. Each hex code represents a color indicating a certain experimental
coverage status. Hex codes representing red shades indicate no or little amplification, while hex
codes for green shades indicate high yields.

For the Ippolito data set, primer.df provides a Primers object containing the evaluated set of
primers from Tiller et al. template.df provides a Templates object containing functional, human
IGHV templates for, and settings provides a DesignSettings object providing the used analysis
settings.

For the Comparison data set, primer.data and template.data are lists of Primers and Templates
objects, respectively.

Forthe Tiller dataset, tiller.primer.df provides a Primers object, tiller.template.df pro-
vides the corresponding Templates object, and tiller.settings provides the DesignSettings
object that was used for evaluating tiller.primer.df.

References

IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org (founder
and director: Marie-Paule Lefranc, Montpellier, France).



design_primers.single 87

Ippolito GC, Hoi KH, Reddy ST, Carroll SM, Ge X, Rogosch T, Zemlin M, Shultz LD, Ellington
AD, VanDenBerg CL, Georgiou G. 2012. Antibody Repertoires in Humanized NOD-scid-IL2R
gamma null Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Check-
points in the Mouse. PLoS One 7:€35497.

Tiller, Thomas, et al. "Efficient generation of monoclonal antibodies from single human B cells
by single cell RT-PCR and expression vector cloning." Journal of immunological methods 329.1
(2008): 112-124.

Examples

# Load the comparison data

data(Comparison)

# Explore the first entry of the primer and template data:
primer.datal[1]]

template.datal[1]1]

# Summarize the primer properties:
get_comparison_table(template.data, primer.data)

# Load the data from Ippolito et al.
data(Ippolito)

primer.df

template.df

constraints(settings)

# Load experimental PCR results
data(RefCoverage)

# Load the data from Tiller et al.
data(Tiller)

tiller.primer.df
tiller.template.df
constraints(tiller.settings)

design_primers.single Design Primers for a Single Direction

Description

Designs primers for a single direction.

Usage

design_primers.single(
template.df,
sample.name,
mode.directionality = c("fw", "rev"),
settings,
timeout,
opti.algo,
allowed.region.definition,
init.algo,
max.degen,
conservation,



88 design_primers.single

target.temps,
required.cvg,
fw.primers = NULL,
cur.results.loc = NULL,
primer.df = NULL,
updateProgress = NULL

)

Arguments
template.df Template data frame with sequences for which primers shall be designed.
sample.name Identifier for the templates.

mode.directionality
Template strands for which primers shall be designed. Primers can be designed
either only for forward strands, only for reverse strands, or both strand direc-

tions.
settings A DesignSettings object specifying the criteria for designing primers.
timeout Timeout in seconds for the optimization with ILPs.
opti.algo The algorithm to be used for solving the primer set covering problem.

allowed.region.definition
Definition of the target binding sites used for evaluating the coverage. If allowed. region.definitic
is "within", primers have to lie within the allowed binding region. If allowed.region.definition
is "any", primers have to overlap with the allowed binding region. The default
is that primers have to bind within the target binding region.

init.algo The algorithm to be used for initializing primers. If init.algo is naive, then
primers are constructed from substrings of the input template sequences. If
init.algo is tree, phylogenetic trees are used to form degenerate primers
whose degeneracy is bounded by max.degen.

max.degen Maximal degeneracy of merged primers.

conservation When using the tree-based primer initialization, consider only the conservation
percentile of regions with the highest conservation.

target.temps  Target melting temperatures for optimized primer sets in Celsius. Only required
when optimizing primers for both strand directions and one optimization was
already performed.

required.cvg  The target ratio of covered template sequences. If the target ratio cannot be
reached, the constraint settings are relaxed up to the relaxation limits.

fw.primers List with optimized primer data frames corresponding to target. temps. Only
required for optimizing both strand directions and only in the second optimiza-
tion run in order to check for cross dimerization.

cur.results.loc
Directory for storing results of the primer design procedure.

primer.df A data frame of evaluated primer candidates that can be optimized directly.

updateProgress Shiny progress callback function.

Value

A list containing the results of the primer design procedure:

opti: A Primers object representing the set of optimized primers.



detect.gap.columns 89

all_results: A list containing the optimal results for each sampled melting temperature range in
terms of a Primers object in case that the melting_temp_diff constraint was active. Other-
wise, all_results only has a single entry representing a primer set relating to an undefined
melting temperature.

used_constraints: A DesignSettings object with the (adjusted) analysis settings.

filtered: A Primers object containing the primer candidates that passed the filtering procedure
and which gave rise to the final optimal set.

detect.gap.columns Identification of Gappy Columns in Alignments.

Description

Identification of Gappy Columns in Alignments.

Usage
detect.gap.columns(bins, gap.cutoff = ©0.95, gap.char = "-")
Arguments
bins A list of DNABin alignments.
gap.cutoff The required percentage of gaps for consideration as a gap column.
gap.char The gap character in the alignments.
Value

A list with indices giving the gap columns for every alignment in bins.

dimerization.table Dimerization Table.

Description
Summarizes how often individual primers dimerize according to the deltaG.cutoff.

Usage

dimerization.table(
dimer.data,
deltaG.cutoff,

dimer.type = c("Self-Dimerization”, "Cross-Dimerization")
)
Arguments
dimer.data Data frame with dimerization data.

deltaG.cutoff Free energy cutoff for dimerization.

dimer.type String identifying whether dimer.data refers to cross-dimers or self-dimers?



90

Value

Data frame with dimer counts.

disambiguate.primers

dir.copy Copy Directories.

Description

Copies a directory to another location.

Usage

dir.copy(src.dir, dest.dir, overwrite)

Arguments
src.dir The directory to be copied.
dest.dir The target directory.
overwrite Overwrite existing files in dest.dir.
Value

TRUE if copying was successful, FALSE otherwise.

disambiguate.primers  Disambiguation of Primers.

Description

Disambiguates ambiguous primer sequences into all possible sequences.

Usage

disambiguate.primers(p.df)

Arguments

p.df Primer data frame.

Value

Data frame with disambiguated primers.



estimate.cvg 91

estimate.cvg Estimation of Primer Coverage.

Description

Estimates the possible coverage of primers using probes of size k and only considering perfect
matches without consideration of ambiguities.

Usage

estimate.cvg(lex.df, k = 18, mode.directionality, sample = "")
Arguments

k A numeric giving the size of the primers.

mode.directionality
Estimation of coverage for forward/reverse/both?

sample An optional identifier for the sample.
seqs A character vector of sequences to evaluate coverage for.
Value

A list with entries fw and rev giving data frames for forward/reverse binding.

estimate.cvg.dir Estimation of Primer Coverage.

Description

Estimates the possible coverage of primers using probes of size k and only considering perfect
matches without consideration of ambiguities.

Usage
estimate.cvg.dir(segs, k, id = "")
Arguments
seqs A character vector of sequences to evaluate coverage for.
k A numeric giving the size of the primers.
id An optional identifier for the primers.
Value

A data frame with binding information.



92

eval.constraints

eval.comparison.primers
Evaluation of Primers for Comparison

Description

Evaluate multiple primer sets according to the input constraint settings.

Usage

eval.comparison.primers(primer.data, constraint.settings)

Arguments

primer.data List with primer data frames.
constraint.settings
List with constraint.settings.

Value

List with evaluated primer data frames.

eval.constraints Evaluation of Constraints’

Description

Evaluates whether the given primer data frame fulfills the required conditions.

Usage

eval.constraints(
constraint.df,
constraint.settings,
active.constraints,
mode.directionality = c("fw”, "rev", "both"),
primer.df

Arguments

constraint.df Primer data frame with computed constraints.
constraint.settings

List with allowed values pers constraint.
active.constraints

Names of constraints to be evaluated.
mode.directionality

Directionality of primers

primer.df Primer data frame corresponding to constraint.df.



evaluate.basic.cvg 93

Details

Constraint values should be contained in constraint. df. For each constraintin active.constraints,
a boolean column with the name EVAL_<constraint_name> is generated, which indicates whether
a primer in a given rows fulfills a constraint or not.

Value

Augments the constraint.df data frame with evaluation columns.

evaluate.basic.cvg Evaluation of Primer Coverage.

Description

Evaluates the coverage of a set of primers.

Usage

evaluate.basic.cvg(
template.df,
primers,
mode.directionality = c("fw”, "rev", "both"),
allowed.mismatches,
allowed.other.binding.ratio,

allowed.region.definition = c("within”, "any"),
updateProgress = NULL
)
Arguments

template.df Template data frame.
primers Primer data frame.
mode.directionality
Primer directionality.
allowed.mismatches
The number of allowed mismatches per binding event.
allowed.other.binding.ratio

Ratio of primers that are allowed to bind to non-allowed regions. If allowed.other.binding.ratio

>0 primers are allowed to bind at any location within the templates. However,
a warning is given if the ratio of primers binding to non-target regions exceeds
the allowed.other.binding.ratio.

allowed.region.definition

Definition of the target binding sites used for evaluating the coverage. If allowed.region.definitic
iswithin, primers have to lie within the allowed binding region. If allowed.region.definition

is any, primers have to overlap with the allowed binding region. The default is
that primers have to bind within the target binding region.

updateProgress Progress callback function for shiny.

Value

Primer data frame with information on the covered template sequences.



94 evaluate.cvg

evaluate.constrained.cvg
Evaluation of Primer Coverage.

Description

Evaluates the coverage of a set of primers.

Usage

evaluate.constrained.cvg(
template.df,
primer.df,
cvg.df,
mode.directionality = c("fw”, "rev”, "both"),
settings,
updateProgress = NULL

Arguments

template.df Template data frame.
primer.df Primer data frame.

cvg.df Data frame with basic coverage entries.
mode.directionality
Primer directionality.

settings A DesignSettings object.

updateProgress Progress callback function for shiny.

Value

Primer data frame with information on the covered template sequences.

evaluate.cvg Evaluation of Coverage.

Description

Evaluates primer coverage.

Usage

evaluate.cvg(
template.seqs,
primers,
mode.directionality = c("fw”, "rev"),
allowed.mismatches,
updateProgress = NULL



evaluate.diff.primer.cvg

Arguments

template.seqs Template sequences as a DNAStringSet.

primers Primer sequences as a DNAStringSet.

mode.directionality
Directionality of primres

allowed.mismatches

Allowed number of mismatches between a primer and a template.

updateProgress Progress function for shiny

Value

IRanges object with primer coverage information.

95

evaluate.diff.primer.cvg
Evaluation of Coverage.

Description

Re-evaluates the coverage of primers under exclusion of certain templates.

Usage

evaluate.diff.primer.cvg(primers, excluded.seqs, template.df)

Arguments

primers Primer data frame.
excluded.seqs Identifiers of templates to be excluded.

template.df Template data frame

Details

This function requires that primers was already annotated with primer coverage before.

Value

Primer data frame with updated coverage under the exclusion of excluded. seegs.



96 evaluate.GC.clamp

evaluate.fw.rev.combinations
Evaluation of Set Combinations

Description

Evaluates the combinations of forward and reverse primer sets.

Usage

evaluate.fw.rev.combinations(opti.fw, opti.rev, compatible.df, template.df)

Arguments
opti.fw List with forward optimal primer sets.
opti.rev List with reverse optimal primer sets.

compatible.df Data frame containing the indicices of temperature-compatible forward and re-
verse primers sets.

template.df Template data frame for which primers were designed.
opti.rev.indices
Indices for accessing opti.rev.

Value

List with information on the combinations of forward and reverse primers as well as the combined
data frames themselves.

evaluate.GC.clamp GC clamp

Description

Determines the number of consecutive G/Cs at the 3’ end.

Usage

evaluate.GC.clamp(y)

Arguments

y Pirmer sequence from 5’ to 3°.

Value

The length of the GC clamp.



evaluate.primer.cvg 97

evaluate.primer.cvg Evaluation of Primer Coverage.

Description

Evaluates the coverage of a set of primers.

Usage

evaluate.primer.cvg(
template.df,

primers,
mode.directionality = c("fw”, "rev", "both"),
settings,
updateProgress = NULL
)
Arguments

template.df Template data frame.

primers Primer data frame.
mode.directionality
Primer directionality.

settings A DesignSettings object.

updateProgress Progress callback function for shiny.

Value

Primer data frame with information on the covered template sequences.

evaluate.template.constraints
Evaluation of Template Constraints.

Description

Evaluates the input template constraints.

Usage

evaluate.template.constraints(
constraint.values,
constraint.settings,
active.constraints,
mode.directionality = c("fw", "rev"”, "both")



98 filter.by.constraints

Arguments

constraint.values

Data frame with template constraints
constraint.settings

List specifying the allowed values for constraint evaluation.
active.constraints

Strings specifying the constraints to check.
mode.directionality

Direction of primers.

Value

List indicating which template constraints where fulfilled or not (TRUE/FALSE).

exclude.cols Exclusion of Columns

Description

Removes columns from a data frame.

Usage

exclude.cols(excl.col, template.df)

Arguments
excl.col Names of columns in template.df to be removed.
template.df Data frame for which columns in excl. col should be removed.
Value

template.df with removed columns as specified in excl. col.

filter.by.constraints Filter By Constraints

Description

Remove primers that do not fulfill the current constraints (evaluate all primers).

Usage

filter.by.constraints(
filtered.df,
constraint.df,
current.constraints,
active.constraints,
mode.directionality = c("fw”, "rev", "both"),
template.df



filter.comparison.primers 99

Arguments

filtered.df Primer data frame.

constraint.df Data frame with constraint values.
current.constraints
List with constraint settings.

active.constraints
Strings giving the names of active constraints.

mode.directionality
Direction of primers

template.df Template data frame.

Value

A list containing the filtered primer data frame, as well as a data frame of the excluded primers and
the used filtering settings.

filter.comparison.primers
Filter Multiple Primer Sets.

Description

Filters multiple primer sets at once.

Usage
filter.comparison.primers(
primers,
templates,
active.constraints,
settings,
updateProgress = NULL
)
Arguments
primers List with primer data frames.
templates List with template data frames.

active.constraints
Strings giving the constraints that are to be checked.

settings List with settings.

updateProgress Progress callback function for shiny.

Value

A list with filtered primer data frames.



100 filter.primer.set.opti

filter.primer.candidates
Filtering of Primer Candidates

Description

Filters primer candidates according to length and duplications.

Usage

filter.primer.candidates(primer.candidates, min.len)

Arguments

primer.candidates
Alignment of candidate primers.

min.len Minimal required length of primers.

Value

Filtered alignment of candidate primers.

filter.primer.set.opti
Filtering of Primers

Description

Filters a primer set during the optimization procedure.

Usage

filter.primer.set.opti(
primer.df,
sample,
template.df,
settings,
mode.directionality,
required.cvg,
results.loc,
target.temps



filterLimits

Arguments

primer.df
sample
template.df

settings

101

Primer data frame.
Name of the current template sample.
Template data frame.

List with settings for the constraints to be used for filtering.

mode.directionality

required.cvg

results.loc

target.temps

Value

Primer direction.

Required ratio of covered templates. If required. cvg is set to 0, the constraints
are not relaxed.

Path to a directory where the results should be written.

Target melting temperature of the primers in Celsius. This argument is only
required if we try to match the melting temperatures of another primer set, e.g.
when first optimizing forward and then optimizing reverse primers.

The filtered primer data frame with respect to required. cvg.

filterLimits

Getter for Filtering Constraint Limits.

Description

Gets the limits on the constraints that are used for the filtering procedure when designing primers
using the Input_Constraint_Boundaries slot of the provided DesignSettings object x.

Usage

filterLimits(x)

## S4 method for signature 'DesignSettings'

filterLimits(x)

Arguments

X

Value

A DesignSettings object.

Gets the list of filtering limits.



102 filter_primers.by. Tm.delta

filters Getter for Filtering Constraints.

Description

Gets the constraints on the physicochemical properties that are used for the filtering procedure when
designing primers using the Input_Constraints slot of the provided DesignSettings object x.

Usage
filters(x)

## S4 method for signature 'DesignSettings'
filters(x)

Arguments

X A DesignSettings object.

Value

Gets the list of filtering constraints.

filter_primers.by.Tm.delta
Filter by Melting Temperature Difference

Description

Filters primers by melting temperature differences.

Usage

filter_primers.by.Tm.delta(target.temp, selected.primers, max.Tm.delta)

Arguments

target.temp Target melting temperature in Celsius.

selected.primers
Current candidate primer data frame.

max.Tm.delta Maximum allowed difference of primer melting temperatures to target tempera-
ture.

Value

Filtered primer data frame.



fix_constraint_boundaries 103

fix_constraint_boundaries
Correction of Constraint Boundaries.

Description

Fixes the constraint boundaries if they are more narrow than the current settings.

Usage

fix_constraint_boundaries(constraints, constraint.limits, fix.limit = TRUE)

Arguments

constraints A list with constraint settings.

constraint.limits
A list with constraint limits.

fix.limit Whether the constraint limits should be adjusted. If FALSE, the constraint set-
tings are adjusted.

Value

The corrected constraint limits.

format.constraints Format Constraint Names.

Description

Formats constraint names for frontend output.

Usage
## S3 method for class 'constraints'
format(constraints)
Arguments
constraints The character vector of constraints to transform.
Value

A character vector with formatted constraint names.



104 format.seqs.tex

format.seq.ali Format mismatches

Description

Formats a sequence for highlighting mismatches in an alignment.

Usage

## S3 method for class 'seq.ali'
format(seq, pos, format.type)

Arguments
seq The input sequence.
pos The mismatch positions to be formatted.

format.type Vector of giving the style (bold/italics) for each pos.

Value

The input sequence with highlighted mismatch positions.

format.seqgs. tex Format a Sequence for LateX output.

Description

Formats a sequence for LateX report output.

Usage

## S3 method for class 'segs.tex'
format(seqs)

Arguments

seqgs Character vector of sequences.

Value

Formatted sequences.



get.3prime.mismatch.pos 105

get.3prime.mismatch.pos
Identification of 3’ Mismatches.

Description

Computes the lastmost position of a 3’ mismatches of a primer with a template.

Usage

get.3prime.mismatch.pos(primers, mismatches)

Arguments

primers Primer sequence strings.

mismatches Comma-separated strings containing the primer mismatch positions.
Value

The closest position of a mismatch relative to the 3’ end of the primer. Here, 1 indicates the terminal
position, 2 the penultimate position, and so on. No mismatch is indicated by an infinite value.

get.analysis.mode Direction of Primers.

Description

Identifies the directionality of the input primers.

Usage

get.analysis.mode(primers)

Arguments

primers A primer data frame.

Value

both if both, forward and reverse primers exist in primers. Otherwise, if either only forward
primers or reverse primers exist, returns fw or rev, respectively.



106

get.constraint.value.idx

get.consensus.seq Computation of Consensus.

Description

Computes the consensus of the sequences in the input alignment.

Usage

get.consensus.seq(ali)

Arguments

ali An alignment object.

Value

A consensus sequence without gap characters.

get.constraint.value.idx
Retrive Constraint Indices.

Description

Gets the index of the required constraint columns in the primer data frame.

Usage

get.constraint.value.idx(active.constraints, constraint.df)

Arguments

active.constraints

The names of the constraints for which to find the indices in constraint.df.

constraint.df The primer data frame where the active.constraints should be found.

Value

Indices of active.constraints in constraint.df.



get.constraint.values 107

get.constraint.values Get the Values of a Constraint.

Description

Get the Values of a Constraint.

Usage

get.constraint.values(con.name, cur.candidates, mode.directionality)

Arguments

con.name The name of the constraint.

cur.candidates The Primers data frame where the values should be retrieved.
mode.directionality

The direction for which values should be retrieved.

Value

The constraint values corresponding to con.name for the primers cur.candidates.

get.coverage.matrix Coverage Matrix

Description

Constructs a coverage matrix where rows indicate templates and columns indicate primers.

Usage

get.coverage.matrix(primer.df, template.df, constraints = NULL)

Arguments

primer.df Primer data frame.

template.df Template data frame.

constraints A character vector of coverage constraints to be used as entries for the coverage
matrix instead of the 0/1 encoding. At its default setting (NULL), the 0/1 encoding
is used.
Details

Entry (i,j) in the matrix is equal to 1 if primer j covers template i and otherwise 0.

Value

The binary coverage matrix.



108 get.cross.dimers

get.covered. templates Covered Templates

Description

Get the indices of covered templates.

Usage

get.covered.templates(Tm.set, template.df)

Arguments

Tm.set Primer data frame.

template.df Template data set.

Value

Index of templates that are covered by the primers in Tm. set.

get.cross.dimers Cross dimers

Description

Computes all possible primer cross-dimers.

Usage

get.cross.dimers(
primers.1,
primers.2,
ions,
annealing. temp,
check.idx = NULL,
no.structures = FALSE,

mode = c("symmetric”, "asymmetric")
Arguments
primers.1 Input primers.
primers.2 Input primers.
ions Sodium-equivalent ionic concentration.

annealing.temp The PCR annealing temperature.
check. idx indices of primers for checking cross-dimerization
no.structures Whether to compute structures of dimers.

mode symmetric’, if primers.1 and primers.2 carry the same information (i.e. fw-
fw, rev-rev, fw-rev), ’asymetric’ else.



get.cvg.constraint.settings

Value

Data frame with potential cross dimers.

109

get.cvg.constraint.settings

Gather all Coverage Constraints.

Description

Constructor for coverage constraint settings.

Usage

get.cvg.constraint.settings(
allowed.stop.codons,
allowed.efficiency,
disallowed.mismatch.pos,
allowed.anneal.deltaG,
allowed.substitutions,
allowed.coverage.model

Arguments

allowed.stop.codons

Whether mismatch binding events inducing stop codons in the amino acid se-

quence are allowed.

allowed.efficiency
Min/max for primer efficiency.

disallowed.mismatch.pos

The positions from the 3’ terminal end of primers where mismatches shall be

prevented.

allowed.anneal.deltaG

Maximal allowed free energy of template-primer annealing.

allowed.substitutions

Whether mismatch binding events inducing substitutions in the amino acid se-

quence are allowed.

Value

List with all coverage constraint settings.



110 get.delta.G

get.cvg.gain Computation of Coverage Gain.

Description

Computes the coverage gain from covered. segs.

Usage

get.cvg.gain(
covered. seqs,
template.df,
missing.df,
candidate.df,
con.names,
constraint.limits,
feasible.only = FALSE

Arguments

covered.seqs  List with covered sequences.
template.df A Templates data frame.

missing.df A Templates data frame containing only the templates that still need to be cov-
ered.

candidate.df A Primers data frame containing candidate primers.

con.names The constraint to evaluate the coverage gain for upon being relaxed.
constraint.limits
A list with constraint limits.

feasible.only  Whether only feasible coverage gains are to be outtputed. Here, feasible relates
to coverage gains that can be obtained directly with the next relaxation.

Value

The number of covered sequences to be gained.

get.delta.G Change in Free Energy.

Description

Computes the change in free energy.

Usage

get.delta.G(delta.H, delta.S, temp = 37)



get.dimer.data 111

Arguments

delta.H Change in enthalpy in cal/mol.

delta.S Change in entropy cal/mol*K.

temp Temperature in Celsius for which to compute free energy change.
Value

The change in free energy in kcal/mol.

get.dimer.data Retrieval of dimerization energies.

Description

Uses OligoArrayAux to compute dimerization candidates.

Usage

get.dimer.data(s1, s2, annealing.temp, ions, no.structures)

Arguments
s1 Nucleotide character vectors (5’ to 3°)
s2 Nucleotide character vectors (5’ to 3”)

annealing.temp The PCR annealing temperature in Celsius.
ions The sodium-equivalent ions used in the PCR.

no.structures Whether to compute structures of dimers.

Value

A data frame containing free energies in the field DeltaG and the dimerization structure in Structure.

get.duplex.energies Determination of the Free Binding Energy.

Description

Computest the free energy of annealing between primers and templates. If the mode is set to
"on_target", the free energies of binding events in the allowed region are computed, while if the
mode is set to "off_target", the free energies of off-target events are computed.

Usage

get.duplex.energies(
primer.df,
template.df,
annealing. temp,
settings,
mode = c("on_target"”, "off_target"”)



112 get.extension

Arguments

primer.df A Primers object.

template.df A Templates object.

annealing.temp The vector of optimal annealing temperatures of the primers.
settings A DesignSettings object.

mode If the mode is set to "on_target", the free energies of binding events in the allowed
region are computed, while if the mode is set to "off_target", the free energies of
off-target events are computed.

Value

A list of lists containing the numeric free energies of the annealing events for every primer.

get.eval.cols Retrieval of Evaluation Columns.

Description
Retrieves the evaluation columns by intersecting the already evaluated constraints in primer.data
as well as the constraints specified in input constraint settings.

Usage

get.eval.cols(primer.data, constraint.settings)

Arguments

primer.data A list with Primers objects.
constraint.settings
A list with constraint settings.

Value

A character vector with EVAL-columns.

get.extension Identification of File extension.

Description

Identifies the file extension of x.

Usage

get.extension(x)

Arguments

X A string for a filename.



get.ILP.vars 113

Value

The extension of x.

get.ILP.vars Retrieval of ILP Decisions

Description

Retrieves ILP decision variables.

Usage

get.ILP.vars(ILP, original.dim = NULL)

Arguments

ILP A solved ILP instance.

original.dim  Dimension of ILP before using presolve.

Details
The original dimension of the ILP is required to determine the correct decisions when presolve has
been active and dimensions of the ILP might have changed.

Value

The ILP decision variables.

get.init.file.name File Name for Initialized Primers.

Description

Constructs a filename for initialized primers.

Usage

get.init.file.name(
cur.results.loc,
GROUP,
primer.lengths,
mode.directionality,
allowed.region.definition,
init.algo,
max.degen,
conservation



114 get.leader.exon.regions

Arguments

cur.results.loc
Directory where the file should be stored.

GROUP Sample name of templates.

primer.lengths Interval of desired primer lengths.
mode.directionality
Directionality of the primers

allowed.region.definition
Definition of the allowed region.

init.algo Initialization algorithm identifier.
max.degen Maximum degeneracy of primers.

conservation  Required ratio of primer conservation.

Value

A filename for the initialized primers.

get.leader.exon.regions
Assign Binding Regions

Description

Augments a template data frame with individual binding regions.

Usage

get.leader.exon.regions(lex.seqgs, uni.leaders)

Arguments

lex.seqgs Data frame with template sequences.

uni.leaders Data frame with individual allowed binding regions.
Value

Template data frame with annotated binding regions.



get.leader.exon.regions.single

115

get.leader.exon.regions.single
Individual Binding Annotation

Description

Annotate individual binding regions.

Usage
get.leader.exon.regions.single(
1.seq,
lex.seq,
direction = c("fw", "rev"),
gap.char
)
Arguments
1.seq Data frame with individual binding regions.
lex.seq Template data frame.
direction The primer direction for which the binding info is valid.
gap.char The character for gaps in alignments.
Value

Template data frame with annotated binding regions.

get.matches Identification of Sequence Matches.

Description

Identifies matches between two strings provided by OligoArrayAux.

Usage

get.matches(s1, s2)

Arguments
s1 The aligned nucleotide sequence character vector.
s2 The aligned, matching substring of s1.

Value

A match vector (M for matches, X for mismatches).



116 get.merge.idx

get.melting.temp.diff Computation of Maximal Melting Temperature Differences.

Description

Computation of Maximal Melting Temperature Differences.

Usage

get.melting.temp.diff(Tm.fw, Tm.rev)

Arguments
Tm. fw The melting temperatures of forward primers.
Tmr.rev The melting temperatures of reverse primers.
Value

The worst-case melting temperature difference, for every primer.

get.merge.idx Indices for merging sequences

Description

Identifies the indices of similar input sequences to be merged.

Usage

get.merge.idx(seqs, max.degeneracy)

Arguments

seqs The input sequence strings.

max.degeneracy The maximal allowed degeneracy of a merged seq.

Value

A list of lists containing the indices of seqs to be merged. For example [[1,2,3]] would indicate to
merge primers 1, 2, and 3.



get.missing.df 117

get.missing.df Uncovered Templates.

Description

Computes a data frame containing the templates that are not yet covered.

Usage

get.missing.df(
filtered.df,
template.df,
Tm.brackets,

settings,
mode.directionality
)
Arguments
filtered.df An object of class Primers.

template.df An object of class Templates.

Value

A Templates data frame containing the missing templates.

get.ORFs Identification of ORFs.

Description

Given a template data frame, identify the exon reading frames in the sequences.

Usage

get.ORFs(template.df)

Arguments

template.df template data frame.

Value

Returns a data frame containing the shift of the ORF (either 0,1, or 2) for every sequence, as well
as a comment in case of problems.



118 get.PCR.settings

get.other.constraint.settings
Gather all Other Constraints (for Shiny frontend).

Description

Constructor for other constraint settings (non-PCR, non-filtering, non-optimization).

Usage

get.other.constraint.settings(
allowed_mismatches,
allowed_other_binding_ratio,
allowed_region_definition

)

Arguments
allowed_mismatches
Allowed mismatches for primers binding events.
allowed_other_binding_ratio
Ratio of primers allowed to bind to non-target regions.
allowed_region_definition
The definition of the allowed region.

Value

List with all other constraint settings.

get.PCR.settings Gather all PCR settings.

Description

Gathers all PCR settings (e.g. for XML output).

Usage

get.PCR.settings(
use_taq_polymerase,
annealing_temp,
Na_concentration,
Mg_concentration,
K_concentration,
Tris_concentration,
primer_concentration,
template_concentration,
nbr.cycles



get.plot.height 119

Arguments

annealing_temp Annealing temperature in Celsius.

Na_concentration

Sodium ion concentration.
Mg_concentration

Magensium ion concentration.
K_concentration

Potassium ion concentration.
Tris_concentration

Tris buffer concentration
primer_concentration

Primer concentration.
template_concentration

Template concentration.

Value

List with all PCR settings.

get.plot.height Plot Extent

Description

Returns the extent of a plot.

Usage

get.plot.height(N, px.per.n = 50, min.size = 300, max.size = 1500000)

Arguments
N Number of observations to plot.
px.per.n Pixels required per observations.
min.size Minimal extent of plot in pixels.
max.size Maximal extent of plot in pixels.
Value

The extent of the plot.



120 get.primer.identifier.string

get.primer.binding.idx
Retrieval of Allowed Binding Indices.

Description

Retrieves the indices of allowed binding events in binding for the primer with index x and type
primer.type.

Usage
get.primer.binding.idx(
binding,
primer.type = c("fw", "rev", "both"),
X,
allowed.other.binding.ratio
)
Arguments
binding IRanges binding information.
primer.type Direction of primer.
X Index of primer in the primer data frame.

allowed.other.binding.ratio
The ratio of allowed off-target binding events.

Value

Indices in binding for primer with index codex that are allowed.

get.primer.identifier.string
Primer Identifier Creation.

Description

Creates identifiers for generated primers.

Usage

get.primer.identifier.string(
sample,
seq.1IDs,
seq.identifier,
all.starts,
all.ends,
identifier,
seq.primers



get.redundant.cols

Arguments

sample
seq.IDs
all.starts
all.ends
identifier

seq.primers

seq.identifiers

Value

Sample name of the templates.
Identifiers of the templates.
Primer positions (start).
Primer positions (end).

Direction keyword.

The primer sequences as strings.

The index of the seq.

Identifiers for each primer.

121

get.redundant.cols

Identification of Redudant Primers.

Description

Identifies primers that are redundant.

Usage

get.redundant.cols(cvg.matrix)

Arguments

cvg.matrix

Details

Redundant primers do not reduce the coverage when removed.

Value

Binary matrix of coverage events.

TRUE for redundant primers, FALSE otherwise.



122 get.run.names

get.relative.binding.pos
Retrieval of Relative Binding Positions.

Description
Retrieves primer binding position relative to allowed regions of either forward or reverse primers,
as specified by direction.

Usage

get.relative.binding.pos(allowed, primer.pos, direction, covered.seqs.idx)

Arguments
allowed Positions where binding is allowed in the templates.
primer.pos Binding position of primer (absolute).
direction Direction (either fw/rev).

covered.seqgs.idx
Indices of covered templates.

Value

Numeric of relative binding position to allowed region.

get.run.names Getter for Run Names.

Description

Retrieves the run names of the input data.

Usage

get.run.names(primer.data)

Arguments

primer.data A list with Primers or Templates.

Value

A vector with identifiers for every set.



get.self.dimers 123

get.self.dimers Self dimerization

Description

Computes possible self-dimers.

Usage

get.self.dimers(
primers.1,
primers.2,
ions,
annealing. temp,
no.structures = FALSE

)
Arguments
primers.1 Input primers
primers.2 (Copy/reverse) of the input primers
ions Sodium-equivalent ionic concentration.

annealing.temp The annealing temperature.

no.structures Whether the dimerization structure shall be computed.

Value

Possible self-dimer conformations.

get.sets.from.decisions
Optimal Sets from Decision Variables

Description

Determines primer sets from decision variables from ILP.

Usage

get.sets.from.decisions(ILP.df, Tm.sets)

Arguments

ILP.df Data frame with ILP optimization results.

Tm.sets List with primer data frames for every target melting temperature.
Value

A list with optimal primer data sets for every target temperature.



124

get.tree.seqs

get.static.tool.info  Retrieval of Tool Information.

Description

Constructs a data frame containing information about the tools.

Usage

get.static.tool.info()

Value

A data frame with information about the required tools.

get.tree.seqgs Determine Tree Consensus Sequences

Description

Creates all possible consensus sequences from a phylogenetic tree.

Usage

get.tree.seqs(tree, max.degen, primer.candidates)

Arguments
tree The phylogenetic tree.
max.degen The maximal degeneration of consensus primers.

primer.candidates
Alignment of primers.

Details

Ambiguous sequences are only generated with a degeneracy of at most max.degen. The tree is
iterated from leaves to the top, i.e., starting from least degeneracy to most degeneracy. Merges only
take place when the degeneracy of the resulting sequence would be at most max.degen. Gaps are

removed from the alignments.

Value

Data frame with consensus primers extracted from the tree.



get.unlist.idx 125

get.unlist.idx Index for Unlisting.

Description

Determines indices for unlisting.

Usage

get.unlist.idx(primer.start, primer.data.idx)

Arguments

primer.start Numeric vector.
primer.data.idx
Selection indices.

Value

Indices.

get_constraint_deviation_data
Retrieve data for Constraint Deviations.

Description

Retrieve data for Constraint Deviations.

Usage

get_constraint_deviation_data(constraint.df, constraint.settings)

Arguments

constraint.df  An evaluated object of class Primers.
constraint.settings
A list with settings for the constraints that are to be evalated.

Value

A data frame providing primer-specific information on deviations of primer properties from the
desired properties.



126 get_cvg_stats,list-method

get_covered.vanilla Determination of the Covered Sequences.

Description

Determines the covered template sequences given by template.df that are covered by the primers
given by primers.

Usage

get_covered.vanilla(primers, template.df, mode.directionality = NULL)

Arguments
primers A Primers object containing the primers for which the coverage should be eval-
uated.
template.df A Templates object containing the template sequences corresponding to primers.

mode.directionality
If mode.directionality is provided, the coverage of templates is computed
for a specific direction of primers. Either "fw" (forward coverage only), "rev"
(reverse coverage only), or "both" for both directions. If mode.directionality
is not provided the direction is determined by the input primers.

Details

The manner in which the coverage ratio is evaluated depends on the directionality of the input
primers. If either only forward or reverse primers are inputted, the individual coverage of each
primer is used to determine the overall coverage. If, however, forward and reverse primers are
inputted at the same time, the coverage is defined by the intersection of binding events from both,
forward and reverse primers.

Value

The IDs of all covered templates.

get_cvg_stats,list-method
Coverage Statistics for Multiple Primer Sets.

Description

Retrieve statistics on covered templates for multiple primer sets.



get_cvg_stats,Primers-method 127

Usage

## S4 method for signature 'list'
get_cvg_stats(
primers,
templates,
for.viewing = FALSE,
total.percentages = FALSE,
allowed.mismatches = Inf,

cvg.definition = c("constrained”, "basic")
)
Arguments
primers A list with objects of class Primers containing primers with evaluated coverage.
templates A list with objects of class Templates containing templates with evaluated cov-
erage.
for.viewing Whether the table should be formatted for viewing rather than processing.

total.percentages
Whether group coverage percentages should relate to all template sequences or
just those templates belonging to a specific group.

allowed.mismatches
The maximal allowed number of mismatches. By default, the number of mis-
matches is not restricted.

cvg.definition If cvg.definition is setto "constrained", the statistics for the expected cover-
age (after applying the coverage constraints) are retrieved. If cvg.definition
is set to "basic", the coverage is determined solely by string matching (i.e. with-
out applying the coverage constraints). By default, cvg.definition is set to
"constrained".

Value

Data frame with coverage statistics.

get_cvg_stats,Primers-method
Coverage Statistics of a Primer Set.

Description

Retrieve statistics on the templates that are covered by a primer set.

Usage

## S4 method for signature 'Primers'’
get_cvg_stats(

primers,

templates,

for.viewing = FALSE,

total.percentages = FALSE,

allowed.mismatches = Inf,

cvg.definition = c("constrained”, "basic")



128 get_max_set_coverage

Arguments

for.viewing Whether the table should be formatted for viewing rather than processing.
total.percentages
Whether group coverage percentages should relate to all template sequences or
just those templates belonging to a specific group.
allowed.mismatches
The maximal allowed number of mismatches. By default, the number of mis-
matches is not restricted.

cvg.definition If cvg.definition is setto "constrained", the statistics for the expected cover-
age (after applying the coverage constraints) are retrieved. If cvg.definition
is set to "basic", the coverage is determined solely by string matching (i.e. with-
out applying the coverage constraints). By default, cvg.definition is set to

"constrained".
primer.df An object of class Primers containing primers with evaluated coverage.
template.df An object of class Templates containing templates with evaluated coverage.

Value

Data frame with coverage statistics.

get_max_set_coverage Determination of Maximal Coverage.

Description

Determines the maximal coverage ratio of a set of primers for primer subsets valid for a certain
temperature range. a certain melting temperature range.

Usage

get_max_set_coverage(
primer.df,
template.df,
Tm.brackets,
settings,
mode.directionality,
max.only = TRUE

)

Arguments
primer.df An object of class Primers.
template.df An objectc of class Templates.
Tm.brackets A data frame with temperature information.
settings A DesignSettings object.

mode.directionality
The direction of the primers.

max.only Whether only the maxium coverage shall be returned. If max.only is FALSE, the
coverage ratios of all melting temperature sets according to Tm.brackets are
returned.



get_plot_primer_data 129

Value

The maximal coverage ratio of a primer set if max.only is TRUE or the coverages of all melting
temperature seets if max.only is FALSE.

get_plot_primer_data Data for Primer Plot.

Description

Constructs a data frame containing information about primer binding events.

Usage

get_plot_primer_data(
primer.df,
template.df,
identifier = NULL,

relation = c("fw", "rev")
)
Arguments
primer.df An object of class Primers containing primers with evaluated primer coverage.
template.df An object of class Templates with template sequences corresponding to primer . df.
identifier Identifiers of primers that are to be considered. If identifier is set to NULL
(the default), all primers are considered.
relation Compute binding positions relative to forward (fw) or reverse (rev) binding
regions. The default is "fw".
Value

Data frame with primer binding data.

get_primer_cvg_mm_plot_df
Data for Mismatch Primer Coverage Plot.

Description

Ensures that there’s an entry for every possible mismatch setting.

Usage
get_primer_cvg_mm_plot_df (primer.df, template.df)

Arguments

primer.df A Primers object.

template.df A Templates object.



130 get_template_cvg_data

Value

A data frame for plotting mismatch primer coverage.

get_report_fname Creation of a Filename for Reports.

Description

Creates the filename for reports.

Usage

get_report_fname(report.name, sample.name)

Arguments

report.name The identifier for the report type.

sample.name The identifier of the sample that was analyzed.

Value

A character vector.

get_template_cvg_data Retrieval of Template Coverage Data.

Description
Determines the coverage of the templates for individual allowed mismatch settings and coverage
definitions.

Usage

get_template_cvg_data(primer.df, template.df)

Arguments

primer.df A Primers object.

template.df A Templates object.

Value

Computes a data frame providing the coverage of the templates for the basic as well as expected
(constrained) coverage.



hclust.tree 131

hclust.tree Hierarchical Clustering.

Description

Performs hierarchical clustering on aligned primer sequences.

Usage

hclust.tree(primer.candidates)

Arguments

primer.candidates
Alignment of primer candidates.
Details
The clustering is performed to identify similar groups of primer candidates that can be merged to
form degenerate primers.
Value

Phylogeny of the input primer.candidates.

highlight.mismatch Highlight mismatches

Description
Collects information on the mutations present in the input and highlights the mutations in the se-
quence.

Usage

highlight.mismatch(seq, mm.seq)

Arguments
seq character vector of the original sequence
mm. seq character vector of the mutated sequence
Value

A list highlighting the mutations and additional information (mutation type, number, etc.)



132 Levg

html.format.structure Formats a Dimerization Structure for HTML.

Description

Formats a Dimerization Structure for HTML.

Usage

html.format.structure(structures)

Arguments

structures A character vector of dimerization structures.

Value

HTML-formatted character vectors.

I.cvg Primer Coverage.

Description

Determines the indices of covered templates for every primer.

Usage

I.cvg(cvg.matrix)

Arguments

cvg.matrix Binary matrix of covering events.

Value

A list with covered templates for every primer.



ILPConstrained 133

ILPConstrained Construct Coverage ILP.

Description

Constructs an ILP modeling the primer set cover problem.

Usage

ILPConstrained(D, cvg.matrix, time.limit = NULL, presolve.active = FALSE)

Arguments
D Binary dimerization matrix.
cvg.matrix Binary coverage matrix.
time.limit Time limit for ILP optimization in seconds.

presolve.active
Whether the ILP presolver should be used. This is set to FALSE by default,
since presolving may lead to inferior solutions. However, for large problems
presolving might be useful.

Value

An instance of the set cover ILP.

initialize.primer.set Creation of Initial Primers

Description

Creates a set of candidate primers.

Usage

initialize.primer.set(
template.df,
sample.name,
primer.lengths,
allowed.region.definition,
mode.directionality,
init.algo,
max.degen,
conservation,
cur.results.loc



134 Input

Arguments

template.df Template data frame.
sample.name Name of the template sample.

primer.lengths Interval of minimal and maximal desired primer length.
allowed.region.definition
Definition of the allowed binding region.
mode.directionality
Direction of primers to be created.
init.algo Algorithm for initializing primers.
max.degen Maximal allowed degeneration of created primers.
conservation  Required conservation of primers. The value of conservation should be in the
range[0,1].
cur.results.loc
Location for writing the primers as csv.

Value

An initial primer data frame.

Input Input Functionalities.

Description

read_primers Reads one or multiple input files with primer sequences. The input can either be in
FASTA or in CSV format.

read_templates Read one or multiple files with template sequences in FASTA or CSV format.
read_settings Loads primer analysis settings from an XML file.

Templates The Templates class encapsulates a data frame containing the sequencs of the tem-
plates, their binding regions, as well as additional information (e.g. template coverage).

Primers The Primers class encapsulates a data frame representing a set of primers. Objects of
this class store all properties associated with a set of primers, for example the results from
evaluating the properties of a primer set or from determining its coverage.

Usage
Templates(...)

read_templates(

fname,
hdr.structure = NULL,
delim = NULL,

id.column = NULL,
rm.keywords = NULL,
remove.duplicates = FALSE,
fw.region = c(1, 30),
rev.region = c(1, 30),



Input 135

n_n

gap.char = R
run = NULL
)

Primers(...)

read_primers(

fname,

fw.id = "_fw",

rev.id = "_rev",

merge.ambig = c("none”, "merge"”, "unmerge"),
max.degen = 16,

template.df = NULL,

adapter.action = c("warn”, "rm"),
sample.name = NULL,
updateProgress = NULL

)

read_settings(
filename = list.files(system.file("extdata”, "settings"”, package = "openPrimeR"),
pattern = "x.xml", full.names = TRUE),
frontend = FALSE

)
Arguments
A data frame fulfilling the structural requirements for initializing a Templates
or Primers object.
fname Character vector providing either a single or multiple paths to FASTA or CSV

files.

hdr.structure A character vector describing the information contained in the FASTA head-
ers. In case that the headers of fasta. file contain template group information,
please include the keyword "GROUP" in hdr.structure. If the numer of ele-
ments provided via hdr.structure is shorter than the actual header structure,
the missing fields are ignored.

delim Delimiter for the information in the FASTA headers.
id.column Field in the header to be used as the identifier of individual template sequences.
rm.keywords A vector of keywords that are used to remove templates whose headers contain

any of the keywords.

remove.duplicates
Whether duplicate sequence shall be removed.

fw.region The positional interval from the template 5’ end specifying the binding sites
for forward primers. The default fw.region is set to the first 30 bases of the
templates.

rev.region The positional interval from the template 3’ end specifying the binding sites
for reverse primers. The default rev.region is set to the last 30 bases of the
templates.

gap.char The character in the input file representing gaps. Gaps are automatically re-
moved upon input and the default character is "-".



136 Input

run An identifier for the set of template sequences. By default, run is NULL and its
value is set via template.file.

fw.id For FASTA input, the identifier for forward primers in the FASTA headers.

rev.id For FASTA input, the identifier for reverse primers in the FASTA headers.

merge.ambig Indicates whether similar primers should be merged ("merge") using IUPAC

ambiguity codes or whether primers should be disambiguated ("unmerge"). By
default merge.ambig is set to "none", leaving primers as they are.

max .degen A scalar numeric providing the maximum allowed degeneracy for merging primers
if merge.ambig is set to "merge". Degeneracy is defined by the number of dis-
ambiguated sequences that are represented by a degenerate primer.

template.df An object of class Templates. If template.df is provided for read_primers
then the primers are checked for restriction sites upon input; otherwhise they are
not checked.

adapter.action The action to be performed when template.df is provided for identifying adapter
sequences. Either "warn" to issue warning about adapter sequences or "rm" to
remove identified adapter sequences. The default is "warn".

sample.name An identifier for the input primers.

updateProgress A Shiny progress callback function. This is NULL by default such that no progress
is tracked.

filename Path to a valid XML file containing the primer analysis settings. By default,

filename is set to all settings that are shipped with openPrimeR and the lexico-
graphically first file is loaded.

frontend Indicates whether settings shall be loaded for the Shiny frontend. In this case
no unit conversions for the PCR settings are performed. The default setting is
FALSE such that the correct units are used.

Details

In the following you can find a description of the most important columns that can be found in an
object of class Templates. Note that angle brackets in the column names indicate the existence of
multiple possibilities.

ID The identifiers of the templates.

Identifier The internal identifiers of the templates.

Group The identifiers of the groups that the templates belong to.

Allowed_Start_<fw|rev> The start of the interval in the templates where binding is allowed for
forward and reverse primers, respectively.

Allowed_End_<fw|rev> The end of the interval in the templates where binding is allowed for
forward and reverse primers, respectively.

Allowed_<fw|rev> The template sequence where binding is allowed for forward and reverse primers,
respectively.

Run An identifier for the set of template sequences.

Covered_By_Primers The identifiers of primers covering the templates, when the template cover-
age has been annotated.

primer_coverage The number of primers covering the templates, when the template coverage has
been annotated.



Input 137

When loading a FASTA file with read_templates, the input arguments hdr.structure, delim,
id.column, rm.keywords, remove.duplicates, fw.region, rev.region, gap.character, and

run are utilized. Most importantly, hdr.structure and delim should match the FASTA header
structure. To learn more about setting the primer binding regions, consider the assign_binding_regions
function. In contrast, when a CSV file is loaded with read_templates, the data are loaded without
performing any modifications because the CSV file should represent an object of class Templates,
which can be stored using the write_templates function.

When loading primers via read_primers, the input arguments fw.id, rev.id, merge.ambig, and
max.degen are only used for loading primers from a FASTA file. In this case, please ensure that
fw.id and rev.id are set according to the keywords indicating the primer directionalities in the
FASTA file. When loading primers from a CSV file, the format of the file should adhere to the
structure defined by the Primers class.

When loading a settings file with read_settings, if filename is not provided, a default XMI
settings file is loaded. Please review the function’s examples to learn more about the default settings.
If you want to load custom settings, you can store a modified DesignSettings object as an XML
file using write_settings.

Value

The Templates constructor returns a Templates object, an instance of a data frame.

read_templates returns a single object of class Templates if a single filename was provided or a
list of such objects if multiple file names were provided.

The Primers constructor returns an object of class Primers.

read_primers returns a single object of class Primers if a single input file is provided or a list of
such objects if multiple files are provided.

read_settings returns an object of class DesignSettings.

Basic columns

In the following you can find a description of the most important columns that can be found in
objects of class Primers. Note that angular brackets indicate the existence of multiple possibili-
ties. The following columns are present when a set of primers is loaded from a FASTA file using
read_primers:

ID The identifiers of the primers.

Identifier The internal identifiers of the primers.

Forward The sequences of forward primers.

Reverse The sequences of reverse primers.

primer_length<fw|rev> The lengths of forward and reverse primer sequences, respectively.
Direction Either *fw’ for forward primers, 'rev’ for reverse primers, or *both’ for a primer pair.
Degeneracy_<fw|rev> The degeneracy (ambiguity) of forward and reverse primers, respectively.
Run An identifier describing the primer set.

Coverage-related columns

The following columns are only available in an object of class Primers after primer coverage has
been computed, that is after check_constraints has been called with the active primer_coverage
constraint. Computed coverage values relating solely to string matching are indicated by the prefix
Basic_, while columns without this prefix relate to the coverage after applying the constraints
formulated via CoverageConstraints. Information on off-target coverage events are indicated by
the Of f_ prefix, while on-target coverage events do not carry this prefix.



138 Input

primer_coverage The number of templates that are covered by the primers. Note that if a primer
set contains primers of both directions, a template is only considered covered if it is covered
by primers of both directions.

Coverage_Ratio The ratio of templates that are covered by the primers.

Binding_Position_Start_<fw|rev> The upstream position in the templates where forward and
reverse primers respectively bind.

Binding_Position_End_<fw|rev> The downstream position in the templates where forward and
reverse primers respectively bind.

Relative_<Forward|Reverse>_Binding_Position_<Start|End>_<fw|rev> The binding upstream
(Start) or downstream (End) positions of the primers relative to the forward (Forward) or re-
verse (Reverse) binding regions, either for forward (fw) or reverse primers (rev).

Binding_Region_Allowed Whether a coverage event occurred in the target binding region or not.
If the allowed off-target ratio was set to 0 only coverage events within the the target region are
reported.

Nbr_of_mismatches_<fw|rev> The number of mismatches of forward and reverse primer cover-
age events, respectively.

Mismatch_pos_<fw|rev> The position of mismatches for forward and reverse coverage events,
respectively. Mismatch positions are reported relative to the 3’ end, that is, position 1 indicates
a mismatch in the last base of a primer.

primer_specificity The specificity of a primer as determined by its ratio of off-target binding
events.

Constraint-related columns

Each constraint that is considered when calling check_constraints gives rise to at least one col-
umn in the provided Primers object. Due to the large number of possible constraints, we will limit
our description to the gc_clamp constraint. Once the GC clamp property has been computed, the
gc_clamp_fw column contains the length of the GC clamp for forward primers and gc_clamp_rev
the corresponding length for reverse primers. Whether the desired extent of the GC clamp was ob-
tained by a primer is indicated by the EVAL_gc_clamp column. It contains TRUE when the GC clamp
constraint was fulfilled and FALSE when it was broken. To identify whether all required constraints
were fulfilled by a primer, the constraints_passed column can be used. It contains TRUE if all
active.constraints used by check_constraints were fulfilled and FALSE otherwise.

Examples

# Load a set of templates:
fasta.file <- system.file("extdata”, "IMGT_data”, "templates”,

"Homo_sapiens_IGH_functional_exon.fasta"”, package = "openPrimeR")
hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION")
template.df <- read_templates(fasta.file, hdr.structure, "|", "GROUP")

# Load templates from a FASTA file
fasta.file <- system.file("extdata”, "IMGT_data”, "templates”,

"Homo_sapiens_IGH_functional_exon.fasta"”, package = "openPrimeR")
hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION")
template.df.fasta <- read_templates(fasta.file, hdr.structure, "|", "GROUP")

# Load mutliple FASTA files
fasta.files <- c(fasta.file, fasta.file)
template.df.fastas <- read_templates(fasta.files, hdr.structure, "|", "GROUP")
# Load templates from a previously stored CSV file
csv.file <- system.file("extdata”, "IMGT_data”, "comparison”,
"templates”, "IGH_templates.csv”, package = "openPrimeR")



insert_str

template.df.csv <- read_templates(csv.file)

# Load

multiple CSV files:

csv.files <- c(csv.file, csv.file)
template.df.csvs <- read_templates(csv.files)

# Load

a mixture of FASTA/CSV files:

mixed.files <- c(csv.file, fasta.file)
template.data <- read_templates(mixed.files)

# Load

a set of primers

139

primer.location <- system.file("extdata”, "IMGT_data”, "primers"”, "IGHV",

primer.
primer.

primer.

# Read

fasta.files <- list.files(system.file("extdata”, "IMGT_data”, "primers”,
"IGHV", package = "openPrimeR"), pattern = "*\\.fasta",

primer.

# Read

primer.

primer.

# Read

primer.

primer.

# Read

"Ippolito2012.fasta”, package = "openPrimeR")
df <- read_primers(primer.location, "_fw", "_rev")

fasta <- system.file("extdata”, "IMGT_data”, "primers"”, "IGHV",
"Ippolito2012.fasta”, package = "openPrimeR")

df <- read_primers(primer.fasta, "_fw", "_rev")

multiple FASTA files

full.names = TRUE)[1:3]
data <- read_primers(fasta.files)
primers from a CSV file
csv <- system.file("extdata”, "IMGT_data”, "comparison”,
"primer_sets"”, "IGL", "IGL_openPrimeR2017.csv"”, package =
df <- read_primers(primer.csv)
multiple primer CSV files

"openPrimeR")

files <- list.files(path = system.file("extdata”, "IMGT_data”, "comparison"”,

"primer_sets"”, "IGH", package = "openPrimeR"),
pattern = "x\\.csv"”, full.names = TRUE)[1:3]
data <- read_primers(primer.files)
a mixture of FASTA/CSV files:

mixed.primers <- c(primer.fasta, primer.csv)

primer.

data <- read_primers(mixed.primers)

# Select available settings

available.settings <- list.files(
system.file("extdata”, "settings", package = "openPrimeR"),
pattern = "%.xml"”, full.names = TRUE)

# Select one of the settings and load them

filename <- available.settings[1]

settings <- read_settings(filename)

insert_str String Insertion

Description

Inserts a string into another string at the speficied position.

Usage

insert_str(target, insert, index)



140 Jevg

Arguments

target The string to be modified.

insert The string to be inserted.

index The position where the insertion should take place.
Value

A string where insert is inserted into target at position index.

interleave Interleave strings Combines the input vectors in an interleaved fash-
ion.

Description

Interleave strings Combines the input vectors in an interleaved fashion.

Usage

interleave(vl, v2)

Arguments
v Input string.
v2 Input string.
Value

The interleaved combination of v1 and v2.

J.cvg Template Coverage.

Description

Determines the indices of covering primers for every template.

Usage

J.cvg(cvg.matrix)

Arguments

cvg.matrix Binary matrix of covering events.

Value

A list with covering primers for every template.



joule.to.cal

141

joule.to.cal Conversion from J to cal

Description

Converts the input from Joule to calories.

Usage

joule.to.cal(val.J)

Arguments

val.J Numeric Joule value.

Value

The value correspdoning to val.J in calories.

listToXml List to XML

Description

Convert List to XML.

Usage

listToXml(item, tag)

Arguments
item

tag xml tag

Details

Can convert list or other object to an xml object using xmINode.

Value

xmINode

Author(s)

David LeBauer, Carl Davidson, Rob Kooper



142 merge.binding.information

merge.ambig.primers Merge similar primers

Description

Merges similar primers contained in the input primer data frame.

Usage

## S3 method for class 'ambig.primers'

merge(primer.df, mode.directionality = c("fw"”, "rev", "both"), max.degeneracy)
Arguments

primer.df Primer data frame.
mode.directionality
Analysis direction.

max.degeneracy Maximal degeneracy of merged primers.

Value

A primer data frame where similar primers are merged into one entry.

merge.binding.information
Merge of Forward/Reverse Binding Information.

Description

Determines binding events of individual and pairs of primers.

Usage

## S3 method for class 'binding.information'
merge (

primers,

fw.binding.filtered,

rev.binding.filtered,

mode.directionality = c("fw”, "rev", "both"),

idx.fw,

idx.rev



merge.primer.entries 143

Arguments

primers The primer data frame.

mode.directionality
Primer directionality.

idx. fw Index of fw primers.

idx.rev Index of rev primers.

fw.binding IRanges object with binding events of fw primers.

rev.binding IRanges object with binding events of rev primers.
Value

IRanges with correct binding events.

merge.primer.entries  Merge similar primers

Description

Merges the entries of similar entries in the input primer data frame, given a list with merge indices.

Usage

## S3 method for class 'primer.entries'

merge(opti.result, merge.idx, mode.directionality = c("fw", "rev”, "both"))
Arguments

opti.result Input primer data frame.

merge. idx List of lists with merge indices (get.merge.idx).

mode.directionality
Direction of primers.

Value

A primer data frame where entries of similar primers are merged.



144 merge.select

merge.primer.entries.single
Merge input sequences

Description

Merges the input sequences given a list with merge indices.

Usage

## S3 method for class 'primer.entries.single'
merge(seqs, merge.idx)

Arguments

seqgs The input sequences.

merge. idx List of list with merge indices.
Value

Merged input sequences according to the input merge indices.

merge.select Select merge indices

Description

Greedily identifies the smallest number of possible sequences merges that can be performed.

Usage
## S3 method for class 'select'
merge (merge.idx)

Arguments

merge.idx list of lists containing the indices of possible merges

Value

The smallest number of possible merge operations as an index list.



merge.template.decisions 145

merge.template.decisions
Merge Template Decisions.

Description

Merges the results for multiple template evaluations.

Usage

## S3 method for class 'template.decisions'
merge(eval.t)

Arguments

eval.t List with evaluated template constraints

Value

List with merged boolean decisions.

mismatch.info Information about Mismatches.

Description

Computes information about mismatch binding events.

Usage

mismatch.info(primer, seqgs)

Arguments

primer Primer character vector.

seqgs Template binding sequences of primers as a XStringsView object.
Value

List with positions and number of mismatches of the primer in the segs. The list contains the field
mm. pos containing a list with the positions of the mismatches and the field Nbr containing a numeric
vector with the number of mismatches per template binding event.



146 mismatch.string.to.list

mismatch.mutation.check
Identification of Mutations Induced by Mismatch Binding Events.

Description

Identifies whether mutations are induced by mismatch binding events.

Usage
mismatch.mutation.check(
primer.df,
template.df,
mutation.types = c("stop_codon”, "substitution")
)
Arguments
primer.df A Primers object.

template.df A Template object.

mutation.types Character vector of the mutation types to be checked for.

Details

Checks for one primer and all covered templates whether any templates are bound with mismatches
such that mismatches are induced. A numeric vector indicating which binding events induce a for-
bidden mismatch according to mutation. types is returned such that 1 indicates forbidden events
and 0 allowed events.

Value

A list containing data frames where an entry of 1 is present if the primer.seq induces a mutation
that is forbidden according to the provided mutation. types, otherwise 0.

mismatch.string.to.list
Conversion of Mismatch Postions String to List.

Description

Conversion of Mismatch Postions String to List.

Usage

mismatch.string.to.list(mismatches)

Arguments

mismatches A character vector where parenthesis give mismatches for a template binding
event.



modify.col.rep 147

Value

A list with the mismatches for every template for every primer.

modify.col.rep Modification of Column Names.

Description

Modifies column names for frontend output.

Usage

modify.col.rep(template.df, for.shiny = TRUE)

Arguments
template.df The data frame whose column names are to be modified.
for.shiny Whether formatting should be for shiny.

Value

template.df with modified column names.

my.disambiguate Disambiguation of Sequences.

Description

Disambiguates the input sequences, but does not disambiguate highly generate sequences.

Usage

my.disambiguate(template.seqs, gap.char = "-", degen.cutoff = 2*10)

Arguments

template.seqs A DNAStringSet object with sequences to disambiguate.
gap.char The character indicating gaps in alignments.

degen.cutoff  The maximal degeneration of sequences to be disambiguated.

Value

A DNAStringSetList object with disambiguated sequences.



148

my.read.fasta

my.error

Custom Error

Description

Creates an error with a custom class.

Usage

my.error(subclass, message, call = sys.call(-1), ...)
Arguments

subclass String giving the specific type of error.

message Message to be displayed to the user.

call Environment where the error ocurred.

Other arguments to be passed to the condition function.

Value

Generates a custom error.

my.read.fasta

Read FASTA File.

Description

Reads the input FASTA file.

Usage

my.read.fasta(fasta.file, NTs)

Arguments

fasta.file

NTs

Value

The path to a FASTA file.

The allowed set of nucleotides.

List with vectors of chars.



my.warning

149

my.warning Custom Warning.

Description

Creates a warning with a custom class.

Usage

my.warning(subclass, message, call = sys.call(-1), ...)
Arguments

subclass String giving the specific type of error.

message Message to be displayed to the user.

call Environment where the error ocurred.

Other arguments to the condition function.

Value

Generates a custom warning.

my_ggsave Wrapper for the ggplot2::ggsave function.

Description

Saves a plot using ggplot2’s ggsave function.

Usage
my_ggsave(filename, plot = ggplot2::last_plot(), ...)
Arguments
filename The filename to store the plot.
plot The ggplot object.
Further arguments to the ggplot2 ggsave function.
Value

Stores p in fname.



150 nbr.of.repeats

my_rbind Smartbind preserving classes.

Description

Rbind allowing for column mismatch, retains the classes of the data frames. Motivation: smart-
bind/rbind.fill only keep the data.frame class but not additional classes.

Usage

my_rbind(...)

Arguments

Data frames.

Value

A data frame resulting from row binding of . . ..

nbr.of.repeats Number of Repeats

Description

Computes the number of dinucleotide repeats in the input sequences.

Usage

nbr.of.repeats(x)

Arguments

X Input sequence strings.

Value

The maximal number of dinucleotide repeats in x.



nbr.of.runs 151

nbr.of.runs Number of Runs

Description

Computes the longest run of a single character in the input sequence.

Usage

nbr.of.runs(x)

Arguments

X Primer character sequences.

Value

The longest repeat of a single character in x.

opti Getter for Optimization Constraints.

Description
Gets the constraints on the physicochemical properties that are applied just before the optimization
procedure using the Input_Constraints slot of the provided DesignSettings object x.

Usage

opti(x)

## S4 method for signature 'DesignSettings'
opti(x)

Arguments

X A DesignSettings object.

Value

Gets the list of optimization constraints.



152

optimize.ILP

optiLimits

Getter for Optimization Constraint Limits.

Description

Gets the limits for the constraints that are applied just before the optimization procedure using the

Input_Constraint_Boundaries slot of the provided DesignSettings object x

Usage

optiLimits(x)

## S4 method for signature 'DesignSettings'

optiLimits(x)

Arguments

X

Value

Gets the optimization constraint limits.

A DesignSettings object.

optimize.ILP

Solver for ILP Set Cover

Description

Solves the primer set cover problem using an ILP formulation.

Usage

optimize.ILP(

primer.df,

template.df,

settings,

primer_conc,
template_conc,
na_salt_conc,
mg_salt_conc,

k_salt_conc,
tris_salt_conc,
allowed.mismatches,
allowed.other.binding.ratio,
allowed.stop.codons,
allowed.region.definition,
disallowed.mismatch.pos,
target.temps,
required.cvg,

fw.primers = NULL,



optimize.ILP 153

diagnostic.location = NULL,
timeout = Inf,
updateProgress = NULL

)

Arguments
primer.df Primer data frame to be optimized.
template.df Template data frame with sequences.
settings A DesignSettings object.
primer_conc Primer concentration.

template_conc Template concentration.
na_salt_conc Sodium ion concentration.
mg_salt_conc  Magensium ion concentration.
k_salt_conc Potassium ion concentration.

tris_salt_conc Tris ion concentration.
allowed.mismatches
The number of mismatches primers are allowed to have with the templates.
allowed.other.binding.ratio
Ratio of primers allowed to bind to non-target regions.
allowed.stop.codons
Consider mismatch binding events that induce stop codons.
allowed.region.definition
Definition of the target binding sites used for evaluating the coverage. If allowed.region.definitic
iswithin, primers have to lie within the allowed binding region. If allowed.region.definition
is any, primers have to overlap with the allowed binding region. The default is
that primers have to bind within the target binding region.
disallowed.mismatch.pos

The number of positions from the primer 3’ end where mismatches should not be
allowed. All primers binding templates with mismatches within disallowed.mismatch.pos
from the 3’ end are disregarded.

target. temps Target melting temperatures for primer sets in Celsius.
required.cvg  Target coverage ratio of the templates by the primers.

fw.primers List with optimized primer data frames corresponding to target. temps. Only
required for optimizing both strand directions and only in the second optimiza-
tion run in order to check for cross dimerization.

diagnostic.location
Directory for storing results.

timeout Timeout in seconds for the optimization with ILPs.

updateProgress Shiny progress callback function.

Value

List with optimization results.



154

optimize.primer.cvg

optimize.primer.cvg

Greedy Optimization

Description

Greedy approach for solving the primer set coverage problem.

Usage

optimize.primer.cvg(

primers,

template.df,
mode.directionality,
cur.opti.constraints,
target. temp,
allowed.mismatches,
opti.limits,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
updateProgress = NULL

Arguments

primers
template.df

mode.directionality

Primer direction.

cur.opti.constraints

target.temp

List with optimization constraint settings.

allowed.mismatches
The number of mismatches primers are allowed to have with the templates.

opti.limits

primer_conc

na_salt_conc
mg_salt_conc
k_
tris_salt_conc
updateProgress

template_conc

Value

salt_conc Potassium ion concentration

List with optimization data.

Primer data frame to be optimized.

Template data frame.

List with optimization limits.
Primer concentration.
Sodium ion concentration

Magensium ion concentration.

Tris ion concentration.
Shiny progress callback function.

Template concentration.

Target annealing temperature of the optimized primer set in Celsius.



optimize.template.binding.regions.dir

155

optimize.template.binding.regions.dir
Optimization of Binding Regions

Description

Optimizes the template binding regions.

Usage

optimize.template.binding.regions.dir(
template.df,
annealing.temperature = NULL,
primer.lengths,
mode.directionality = c("fw”, "rev", "both")

Arguments

template.df Template data frame.
annealing.temperature

Temperature at which to compute secondary structures.

primer.lengths Target length of primers that are to be used.

mode.directionality
Direction of primers.

Value

List with intervals indicating improved primer binding regions.

optimize.template.binding.regions.single
Optimization of Template Binding

Description

Optimizes template binding regions according to secondary structures.

Usage

optimize.template.binding.regions.single(
template.df,
annealing.temperature,
primer.lengths,
mode.directionality = c("fw", "rev")



156 Output

Arguments

template.df Template data frame.
annealing.temperature

Temperature at which to compute secondary structures.
primer.lengths Target length of primers that are to be used.

mode.directionality
Direction of primers.

Value

List with new binding intervals for every template.

Output Output Functionalities.

Description

write_primers Writes a set of primers to disk, either as a FASTA or CSV file.
write_settings Stores primer analysis settings to a file in XML format.
write_templates Stores a set of templates as a FASTA or CSV file.
create_report Creates a PDF report for analyzed primer sets.

create_coverage_x1ls Creation of an XLS spreadsheet providing an overview of the covered tem-
plate sequences for each primer. Each cell in the spreadsheet indicates a coverage event be-
tween a primer and template using color codes. Identified coverage events are indicated by
green, while primer-template pairs without coverage are indicated by red. In case that a primer
binding condition (see CoverageConstraints) was active when computing the coverage, the
numeric value of the coverage condition is annotated for each cell.

Usage

write_templates(template.df, fname, ftype = c("FASTA", "CSV"))
write_primers(primer.df, fname, ftype = c("FASTA", "CSV"))
create_coverage_xls(primer.df, template.df, fname, settings)

create_report(
primers,
templates,
fname,
settings,
sample.name = NULL,
used.settings = NULL,

write_settings(settings, fname)



Output 157

Arguments

template.df An object of class Templates.

fname The path to the output file.

ftype A character vector giving the type of the file. This can either be "FASTA" or
"CSV" (default: "FASTA").

primer.df An object of class Primers.

settings A DesignSettings object to be stored to disk.

primers To create a report for a single primer set, please provide an evaluated Primers

object. For creating a report comparing multiple primer sets, please provide a
list of Primers objects.

templates If primers is a Primers object, templates should be a Templates object. If
primers is a list of Primers objects, templates should be a list of Templates
objects of the same length as primers.

sample.name An identifier for your analysis. By default ( NULL), the sample identifier is se-
lected from the Run column of the input templates.

used.settings A named list (with fields fw and rev) containing the relaxed settings for de-
signing forward/reverse primers. By default (NULL), the relaxed settings are not
shown in the report.

required.cvg (optional, default: 1), the desired coverage ratio if primers is a
single primer set.

Value

write_templates stores templates to fname.
write_primers stores primers to disk.
create_coverage_x1s stores information on the primer coverage in a spreadsheet.

create_report Creates a PDF file summarizing the results from analyzing one or multiple sets of
primers.

write_settings returns the status from closing the connection to the output file.

Note

Creating the report requires the external programs Pandoc (http://pandoc.org) and LaTeX (http://latex-
project.org).

Examples

data(Ippolito)

# Store templates as FASTA

fname.fasta <- tempfile("my_templates”, fileext = ".fasta")
write_templates(template.df, fname.fasta)

# Store templates as CSV

fname.csv <- tempfile("my_templates”, fileext = ".csv")
write_templates(template.df, fname.csv, "CSV")
data(Ippolito)

# Store primers as FASTA

fname.fasta <- tempfile("my_primers”, fileext = ".fasta")

write_primers(primer.df, fname.fasta)
# Store primers as CSV



158 pair_primers

fname.csv <- tempfile("my_primers”, fileext = ".csv")
write_primers(primer.df, fname.csv, "CSV")

data(Ippolito)

filename <- tempfile("cvg_overview”, fileext = ".x1s")

# Store coverage of a single primer in an XLS file:

my.primers <- primer.df[3,]

cvd <- unique(unlist(strsplit(my.primers$Covered_Seqgs, split = ",")))
m <- match(cvd, template.df$Identifier)

my.templates <- template.df[m,]

create_coverage_xls(my.primers, my.templates, filename, settings)

setting.xml <- system.file("extdata”, "settings”,
"C_Taq_PCR_high_stringency.xml”, package = "openPrimeR")

settings <- read_settings(setting.xml)

# Creation of a report for a single primer set

data(Ippolito)

out.file.single <- tempfile("evaluation_report”, fileext = ".pdf")

create_report(primer.df, template.df, out.file.single, settings)

# Creation of a report for multiple primer sets

data(Comparison)

set.sizes <- sapply(primer.data, nrow)

sel.sets <- order(set.sizes)[1:2]

out.file.comp <- tempfile(”comparison_report”, fileext = ".pdf")

create_report(primer.data[sel.sets], template.data[sel.sets], out.file.comp, settings)

# Store settings to disk

xml <- system.file("extdata”, "settings”,
"C_Taq_PCR_high_stringency.xml”, package = "openPrimeR")

settings <- read_settings(xml)

out.file <- tempfile("my_settings"”, fileext = ".xml")

write_settings(settings, out.file)

pair_primers Pairing of Forward and Reverse Primers.

Description

Pairs forward and reverse primers such that coverage is maximized for every pair.

Usage

pair_primers(primer.df, template.df)

Arguments

primer.df An object of class Primers.

Value

An object of class Primers containing the paired primers.



parse.constraints 159

parse.constraints Parse XML Constraint Data.

Description

Parses the constraint settings contained in an XML object.

Usage

parse.constraints(xml_data)

Arguments

xml_data XML object from a parsed XML file.

Value

List with constraint settings.

parse.header Parse FASTA headers

Description

Parses the headers of a FASTA file.

Usage

parse.header(hdr, delim, hdr.str, id.column)

Arguments
hdr The headers (> entries) of a FASTA File.
delim The delimiter used to separate distinct fields in the headers. For example, | for
headers such as > E.coli | GeneX | ...
hdr.str Names of the fields appearing in the header.
id.column Field in the header to be used used as an identifier for the sequences.
Value

Data frame with structured information from the headers.



160 parse.oligo.results

parse.IMGT.gene.groups
Parser for IMGT Groups.

Description

Parses IMGT group information contained in FASTA headers.

Usage

parse.IMGT.gene.groups(IDs)

Arguments

IDs Group information strings to be parsed.

Value

Data frame with structured group information.

parse.oligo.results Parser for OligoArrayAux Dimerization Data.

Description

Parses the free energies and structures of OligoArrayAux.

Usage

parse.oligo.results(deltaG.file, struct.file)

Arguments

deltaG.file A path to a file with OligoArrayAux energies.

struct.file A path to a file with OligoArrayAux structures.

Value

A data frame with structures and free energies.



plot.all.cvg.info

161

plot.all.cvg.info Plots Coverage Information

Description

Visualizes all coverage-related data.

Usage

## S3 method for class 'all.cvg.info'
plot(

sample,

results.loc,
primers,
template.df,
mode.directionality,
identifier = c("filtering”, "optimized"),
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
settings,
required.cvg,
used.settings = NULL

Arguments

sample Primer design run identifier.

results.loc

primers Primer data frame.

template.df Template data frame.
mode.directionality

identifier

Design direction.

primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.

mg_salt_conc = Magensium ion concentration.

k_

salt_conc Potassium ion concentration.

tris_salt_conc Tris ion concentration

settings The DesignSettings object.

required.cvg  The required coverage.

used.settings

Value

Writes plots to files.

Location where the filtering results are stored.

Identifies whether filtering or optimization info should be displayed.

A list containing DesignSettings objects for the *fw’ and 'rev’ optimization.



162 plot.Delta.DeltaG

plot.all.filtering.stats
Plot Filtering Stats.

Description

Plots filtering statistics.

Usage

## S3 method for class 'all.filtering.stats'
plot(

results.loc,

sample,

excluded.df,

filtered.stats,

stats.relax,

template.df

)
Arguments
results.loc Location where the filtering results are stored.
sample Primer design run identifier.
excluded.df Data frame with excluded primers.

filtered.stats Filtering statistics data frame.
stats.relax Filtering statistics after relaxation.

template.df Template data frame.

Value

Write-out of filtering results.

plot.Delta.DeltaG Delta DeltaG Plot

Description

Plots the difference between the free energy of constrained and unconstrained foldings.

Usage

## S3 method for class 'Delta.DeltaG'
plot(constrained.foldings, stratify = FALSE)



plot.dimer.dist

Arguments

constrained.foldings

Data frame with info from constrained foldings.

163

stratify Stratify according to template groups?
Value
Plot of Delta DeltaG.
plot.dimer.dist Plot Dimer DeltaG
Description

Plot the distribution of dimerization free energies.

Usage
## S3 method for class 'dimer.dist'
plot(dimer.data, deltaG.cutoff)
Arguments

dimer.data Data frame with dimerization information.

deltaG.cutoff Free energy cutoff for dimerization.

Value

A plot of dimerization free energies.

plot.excluded.hist Plot of Excluded Primers

Description

Plots histogram of excluded primers.

Usage
## S3 method for class 'excluded.hist'
plot(excluded.df, filtered.stats, template.df)
Arguments

excluded.df Data frame with excluded primers.

filtered.stats Data frame with statistics of the filtering procedure.

template.df Template data frame.

Value

A plot of excluded primers.



164

plot.filtering.stats

plot.filtering.runtime
Plot Filtering Runtimes

Description

Plots the runtimes of individual evaluation steps in the filtering procedure.

Usage

## S3 method for class 'filtering.runtime'
plot(filtered.stats)

Arguments

filered.stats Stats from filtering.

Value

A plot of the runtime for each filtering step.

plot.filtering.stats  Plot of Overall Filtering Stats.

Description

Plots the number of primers remaining after each filtering step.

Usage

## S3 method for class 'filtering.stats'
plot(stats, stats.relax = NULL)

Arguments

stats Statistics on the filtering procedure

stats.relax Statistic on the filtering procedure after relaxation.
Value

A plot for the number of primers after filtering.



plot.filtering.stats.cvg 165

plot.filtering.stats.cvg
Plot of Filtering Stats for Coverage.

Description

Plots the remaining coverage after each filtering step.

Usage

## S3 method for class 'filtering.stats.cvg'
plot(stats, stats.relax = NULL)

Arguments
stats Statistics of the filtering procedure.
stats.relax Statistic of the relaxation procedure.
Value

A plot showing the possible coverage after each filtering step.

Plots Plotting Functions.

Description

plot_cvg_vs_set_size Plots the coverage ratios of the input primer sets against the size of the
sets.

plot_penalty_vs_set_size Plots the penalties of the input primer sets against the number of
primers contained in each set. The penalties are computed using score_primers where more
information is provided on how to set alpha.

plot_primer_subsets Visualizes the coverage of optimized primer subsets.

plot_primer Visualizes the binding positions of every primer relative to the target binding region
in the corresponding template sequences.

plot_template_cvg Creates a bar plot visualizing the covered templates.
plot_primer_cvg Shows which groups of templates are covered by individual primers.

plot_constraint Shows the distribution of the primer properties. The current constraint settings
are indicated with dashed lines.

plot_constraint_fulfillment Visualizes which primers pass the constraints and which primers
break the constraints

plot_cvg_constraints Plots the distribution of the coverage constraint values.
plot_constraint_deviation Plots the deviation of primer properties from the target ranges.

plot_primer_binding_regions Visualizes the number of binding events of the primers with re-
spect to the allowed binding regions in the templates.

plot_conservation Plots the template sequence conservation (range [0,1]) according to the Shan-
non entropy of the sequences.



166 Plots

Usage
plot_conservation(entropy.df, alignments, template.df, gap.char = "-")

plot_primer_binding_regions(
primers,
templates,
direction = c("both”, "fw", "rev"),
group = NULL,
relation = c("fw", "rev"),
region.names = c("Binding region”, "Amplification region”),

plot_constraint(
primers,
settings,
active.constraints = names(constraints(settings)),

plot_constraint_fulfillment(
primers,
settings,
active.constraints = names(constraints(settings)),
plot.p.vals = FALSE,

plot_cvg_constraints(
primers,
settings,
active.constraints = names(cvg_constraints(settings)),

plot_constraint_deviation(
primers,
settings,
active.constraints = names(constraints(settings)),

plot_cvg_vs_set_size(
primer.data,
template.data,
show. labels = TRUE,
highlight.set = NULL

plot_penalty_vs_set_size(
primer.data,
settings,



Plots 167

active.constraints = names(constraints(settings)),
alpha = 0
)

plot_primer_subsets(primer.subsets, template.df, required.cvg = 1)

plot_primer(
primer.df,
template.df,
identifier = NULL,

relation = c("fw", "rev"),
region.names = c("Binding region”, "Amplification region”)

)

plot_template_cvg(primers, templates, per.mismatch = FALSE, ...)

plot_primer_cvg(primers, templates, per.mismatch = FALSE, ...)

Arguments

entropy.df A data frame with entropies. Each row gives the entropies of a group of related
template sequences for all columns of the alignment.

alignments A list with DNABin alignment objects corresponding to the groups (rows) in the
alignment.

template.df An object of class Templates containing the template sequences.

gap.char The gap char in the alignments. By default, gap.char is set to "-".

primers Either a single Primers object with evaluated primer coverage or a list contain-
ing such Primers objects.

templates If primers is a Primers object, templates should be a Templates object. If
primers is a list, then templates should be a list of Templates objects.

direction The directionality of primers to be plotted. This can either be "both" to plot
primers of both directions (the default), "fw" to plot only forward primers, or
"rev" to plot only reverse primers.

group Optional identifiers of template groups for which binding events should be de-
termined. By default, group is set to NULL such that all templates are considered.

relation Whether binding positions are computed relative to forward ("fw") or reverse

("rev") binding regions. The default is "fw".

region.names  Character vector of length 2 providing the names of the binding and amplifica-
tion region.

Optional arguments groups (a character vector of groups to be plotted when
primers is a single primer set), highlight.set (the identifier of a primer set to
be highlighted when primers is a list), ncol (a numeric indicating the number
of facet columns if primers is a list), deviation.per.primer (a boolean indi-
cating whether constraint deviations should be plotted per primer rather than per
constraint if primers is a list)
settings An object of class DesignSettings containing the constraints to be considered.
active.constraints
A character vector containing the identifiers to be considered for plotting. By

default, active.constraints is NULL such that all computed constraints found
in settings are plotted.



168 Plots

plot.p.vals An optional logical argument indicating whether p-values computed via primer_significance
should be annotated in the plot. The default is FALSE.

primer.data List with objects of class Primers containing the primer sets that are to be com-
pared.

template.data List with objects of class Templates containing the templates corresponding to
primer.data.

show.labels Whether the identifiers of the primer sets should be annotated in the plot. The
default is TRUE.

highlight.set A character vector providing the identifiers of primer sets to highlight. By de-
fault, highlight. set is NULL such that no highlighting takes place.

alpha A numeric in the range [0,1] defining the trade-off between the maximal devia-
tion of a constraint (large alpha) and all constraint deviations (large alpha). By
default, alpha is set to O such that the absolute deviation across all constraints
is considered.

primer.subsets A list with optimal primer subsets, each of class Primers. The k-th list entry
should correspond to an object of class Primers representing the primer subset
of size k whose coverage ratio is the largest among all possible subsets of size
k.

required.cvg  The required coverage ratio. The default is 100%; this value is plotted as a
horizontal line.

primer.df An object of class Primers containing primers with evaluated primer coverage.

identifier Identifiers of primers that are to be considered. If identifier is set to NULL
(the default), all primers are considered.

per.mismatch A logical specifying whether the visualization should be stratified according to
the allowed number of mismatches. By default, per.mismatch is set to FALSE
such that the overall coverage is plotted.

Details

The deviations for plot_constraint_deviation are computed in the following way. Let the min-
imum and maximum allowed constraint values be given by the interval [s, e] and the observed
value be p. Then, if p < s, we output —p/|s|, if p > e we output p/|e|, and otherwise, i.e. if
s <=p <= e, we output 0.

The primer.subsets argument for plot_primer_subsets can be computed using subset_primer_set.
The line plot indicates the ratio of covered templates when considering all primers in a primer set

of a given size. The bar plots indicate the coverage ratios of individual primers in a set. The target
coverage ratio is indicated by a horizontal line. Bars exceeding the target ratio possibly indicate the
existence of redundant coverage events.

Value

plot_conseration returns a plot showing the degree of sequence conservation in the templates.
plot_primer_binding_regions returns a plot of the primer binding regions.
plot_constraint returns a plot showing the distribution of primer properties.

plot_constraint_fulfillment returns a plot indicating the constraints that are fulfilled by the
input primers.

plot_cvg_constraints returns a plot showing the distribution of the coverage constraint values.



Plots 169

plot_constraint_deviation returns a plot showing the deviations of the primer properties from
the target constraints.

plot_cvg_vs_set_size returns a plot of coverage vs set size.

plot_penalty_vs_set_size returns a plot of constraint penalties vs primer set sizes.
plot_primer_subsets plots the coverages of the primer subsets provided via primer.subsets.
plot_primer plots the primer binding sites in the templates.

plot_template_cvg creates a plot showing the number of covered template sequences.

plot_primer_cvg creates a plot showing the coverage of individual primers.

Note

Computing the conservation scores for using plot_conservation requires the MAFFT software
for multiple alignments (http://mafft.cbrc.jp/alignment/software/).

Examples

data(Ippolito)
# Select binding regions for every group of templates and plot:
template.df <- select_regions_by_conservation(template.df, win.len = 30)
if (length(template.df) != @) {
p1 <- plot_conservation(attr(template.df, "entropies"),
attr(template.df, "alignments"), template.df)
3
# Select binding regions for all templates and plot:
data(Ippolito)
template.df <- select_regions_by_conservation(template.df, by.group = FALSE)
if (length(template.df) != 0) {
p2 <- plot_conservation(attr(template.df, "entropies”),
attr(template.df, "alignments”), template.df)
}

# Primer binding regions of a single primer set

data(Ippolito)

p <- plot_primer_binding_regions(primer.df, template.df)

# Primer binding regions of multiple primer sets

data(Comparison)

p.comp <- plot_primer_binding_regions(primer.datal[1:3], template.data[1:3])

# Plot histogram of constraints for a single primer set

data(Ippolito)
p <- plot_constraint(primer.df, settings,
active.constraints = c("gc_clamp”, "gc_ratio”))
# Compare constraints across multiple primer sets
data(Comparison)
p.cmp <- plot_constraint(primer.datal[1:3], settings,
active.constraints = c("gc_clamp”, "gc_ratio”))

# Plot fulfillment for a single primer set:

data(Ippolito)

p <- plot_constraint_fulfillment(primer.df, settings)

# Plot fulfillment for multiple primer sets:

data(Comparison)

p.cmp <- plot_constraint_fulfillment(primer.data[1:5], settings)



170 plot_constraint,list-method

# Plot coverage constraints of a single primer set
data(Ippolito)

p <- plot_cvg_constraints(primer.df, settings)

# Plot coverage constraints for mulitple primer sets
data(Comparison)

p.cmp <- plot_cvg_constraints(primer.datal[1:2], settings)

# Deviations for a single primer set

data(Ippolito)

p.dev <- plot_constraint_deviation(primer.df, settings)

# Deviations for multiple primer sets

data(Comparison)

p.dev.cmp <- plot_constraint_deviation(primer.data, settings)

# Plot coverage vs primer set size
data(Comparison)
p <- plot_cvg_vs_set_size(primer.data, template.data)

# Plot penalties vs number of primers
data(Comparison)
p <- plot_penalty_vs_set_size(primer.data, settings)

# Plot the coverage of optimal primer subsets

data(Ippolito)

primer.subsets <- subset_primer_set(primer.df, template.df, k = 3)
p <- plot_primer_subsets(primer.subsets, template.df)

# Plot of individual primer binding positions
data(Ippolito)
p <- plot_primer(primer.df[1,], template.df[1:30,1)

# Visualize the template coverage of a single primer set

data(Ippolito)

p.cvg <- plot_template_cvg(primer.df, template.df)

# Stratify by allowed mismatches:

p.mm.cvg <- plot_template_cvg(primer.df, template.df, per.mismatch = TRUE)

# Compare the coverage of multiple primer sets

data(Comparison)

p.cmp.cvg <- plot_template_cvg(primer.datal[1:2], template.datal1:2])

# Stratify by allowed mismatches:

p.cmp.cvg.mm <- plot_template_cvg(primer.datal[1:2], template.data[1:2],
per.mismatch = TRUE)

# Plot expected coverage per primer

data(Ippolito)

p.cvg <- plot_primer_cvg(primer.df, template.df)

# Plot coverage stratified by allowed mismatches:

p.cvg.mm <- plot_primer_cvg(primer.df, template.df, per.mismatch = TRUE)
# Plot coverage of multiple primer sets

data(Comparison)

p.cvg.cmp <- plot_primer_cvg(primer.data[1:3], template.datal[1:3])

plot_constraint,list-method
Boxplot for Comparing Constraints.




plot_constraint, Primers-method 171

Description

Creates a boxplot visualizing the physicochemical properties of multiple primer sets.

Usage

## S4 method for signature 'list'
plot_constraint(
primers,
settings,
active.constraints,
highlight.set = NULL,
nfacets = NULL

)
Arguments
primers List with evaluated objects of class Primers. Each list element corresponds to a
single primer set.
settings A DesignSettings object containing the constraints to be plotted.

active.constraints
The names of the constraints to be plotted.

highlight.set Identifiers of primer sets to be highlighted.

nfacets A numeric providing the number of facet columns to show. By default nfacets
is NULL such that the number of facet columns is chosen automatically.

constraint.settings
List with settings for each constraint.

Value

Boxplot comparing the values of the properties specified by constraints.

plot_constraint,Primers-method
Histogram of Constraint Values.

Description

Plots a histogram of constraint values.

Usage

## S4 method for signature 'Primers'
plot_constraint(primers, settings, active.constraints)



172 plot_constraint.histogram

Arguments
primers An evaluated object of class Primers.
settings A DesignSettings object containing the settings for the constraints to be plot-

ted.

active.constraints
Identifiers of constraints to be plotted. provided settings are used to visualize the
desired ranges of constraints. If active.constraints is not provided, the plot-
ting method will automatically try to plot all constraints defined in settings.

Value

A histogram of constraint values for the properties specified by constraints.

plot_constraint.histogram
Histogram of Constraints.

Description

Plots a histogram of constraint values.

Usage

plot_constraint.histogram(
primer.df,
con.cols,
con.identifier,
boundaries = NULL,
x.limits = NULL

)

Arguments
primer.df Primer data frame, not necessarily a Primers object.
con.cols Constraint identifiers in primer.df to plot.

con.identifier Name of the constraint to plot.

boundaries List with constraint settings.
x.limits Interval limiting the extent of the x-axis.
Value

A constraint histogram plot.



plot_constraint.histogram.nbr.mismatches 173

plot_constraint.histogram.nbr.mismatches
Histogram of Number of Mismatches.

Description

Plots a histogram of mismatches.

Usage

plot_constraint.histogram.nbr.mismatches(primer.df, allowed.mismatches)

Arguments

primer.df Primer data frame.
allowed.mismatches
Number of allowed mismatches.

Value

A plot of the number of primer mismatches.

plot_constraint.histogram.primer.efficiencies
Histogram of Efficiencies

Description

Plots a histogram of primer efficiencies.

Usage

plot_constraint.histogram.primer.efficiencies(primer.df, opti.constraints)

Arguments

primer.df Primer data frame.

opti.constraints
List with constraint settings.

Value

A plot of primer efficiencies.



174 plot_constraint_deviation,Primers-method

plot_constraint_deviation,list-method
Plot of Constraint Deviations for Multiple Primer Sets.

Description

Plots a box plot of the absolute mean deviation of each primer for comparing multiple primer sets.

Usage

## S4 method for signature 'list'
plot_constraint_deviation(
primers,
settings,
active.constraints,
deviation.per.primer = FALSE

Arguments

settings A DesignSettings object containing the target ranges for the primer properties.
active.constraints

Constraint identifiers to be plotted.
deviation.per.primer

Whether to show the deviation per primer or per constraint.

constraint.df  An evaluated object of class Primers.

Value

A boxplot of deviations

plot_constraint_deviation,Primers-method
Plot of Constraint Deviations for a Single Primer Set.

Description

Plots a box plot of deviations of primer properties from the target ranges.

Usage

## S4 method for signature 'Primers'’
plot_constraint_deviation(primers, settings, active.constraints)

Arguments
primers An evaluated object of class Primers.
settings A DesignSettings object containing the target ranges for the primer properties.

active.constraints
Constraint identifiers to be plotted.



plot_constraint_fulfillment,list-method 175

Value

A boxplot of deviations

plot_constraint_fulfillment,list-method
Comparison of Evaluation Results.

Description

Plots the percentage of primers fulfilling the specified constraints for multiple primer sets.

Usage

## S4 method for signature 'list'
plot_constraint_fulfillment(
primers,
settings,
active.constraints,
plot.p.vals = FALSE,

ncol = 2,
highlight.set = NULL
)
Arguments
primers A list of Primers objects.
settings A DesignSettings object.

active.constraints
The identifiers of constarints to be plotted for fulfillment.

plot.p.vals Whether p-values from Fisher’s exact test should be annotated for every primer
set.
ncol The number of columns for facet wrap.

highlight.set Identifiers of primer sets to be highlighted.

Value

Plot indicating the ratio of primers fulfilling the constraints specified in constraint.settings for
each primer set in primers.



176 plot_cvg_constraints,list-method

plot_constraint_fulfillment,Primers-method
Overview of Constraint Fulfillment.

Description

Plots an overview of which primers passed the filtering constraints and which primers did not.

Usage

## S4 method for signature 'Primers'
plot_constraint_fulfillment(
primers,
settings,
active.constraints,
plot.p.vals = TRUE

)

Arguments
primers A Primers object.
settings A DesignSettings object.

active.constraints
The identifiers of constarints to be plotted for fulfillment.

plot.p.vals Show p-value from Fisher’s exact test for the significance of primer constraint
fulfillment in comparison to reference primer sets.

Value

A data frame with statistics on fulfilled constraints.

plot_cvg_constraints,list-method
Plot for Comparing Primer Coverage Constraints.

Description

Plot for Comparing Primer Coverage Constraints.

Usage

## S4 method for signature 'list'
plot_cvg_constraints(
primers,
settings,
active.constraints,
highlight.set = NULL



plot_cvg_constraints, Primers-method 177

Arguments
primers List with objects of class Primers.
settings A DesignSettings object.

active.constraints
Names of the coverage constraints to be plotted.

highlight.set Primer sets to highlight in the plot.

Value

Plot of primer coverage constraints for multiple sets.

plot_cvg_constraints,Primers-method
Histogram of Coverage Constraints.

Description

Plots a histogram of coverage constraint values.

Usage

## S4 method for signature 'Primers'
plot_cvg_constraints(primers, settings, active.constraints)

Arguments
primers A Primers object.
settings A DesignSettings object.

active.constraints
Names of coverage constraints to be plotted.

Value

A plot of coverage constraints.

plot_primer.comparison.box
Boxplot for Primer Comparison

Description

Constructs a box plot showing constraint values for each primer set.



178 plot_primer.comparison.mismatches

Usage

plot_primer.comparison.box(
primer.data,
con.identifier,
con.cols,
boundaries,
y.limits = NULL,
show.points = TRUE,
highlight.set = NULL,
nfacets = NULL

Arguments

primer.data List with primer data frames.

con.identifier Identifier of constraint to be plotted.

con.cols Column names with the constraint values in the primer data frames.
boundaries List with constraint settings.
y.limits Limits for the extent of the y-axis.

show.points If TRUE (the default), individual data points are visualized in the boxplot, other-
wise they are not shown.

highlight.set The identifier of a primer set to highlight in the plot.

nfacets A numeric providing the number of facet columns to show. By default nfacets
is NULL such that the number of facet columns is chosen automatically.

Value

A boxplot for primer comparison.

plot_primer.comparison.mismatches
Plot Primer Mismatches

Description

Plots primer mismatches for every set.

Usage

plot_primer.comparison.mismatches(
primer.data,
template.data,
allowed.mismatches,
highlight.set = NULL



plot_primer_binding_regions,list,list-method

Arguments

primer.data List with primer data frames.

template.data List with template data frames.

allowed.mismatches

Allowed mismatches.

highlight.set Primer sets to highlight in the plot.

Value

Plot of mismatches for comparison.

179

plot_primer_binding_regions,list,list-method

Plot of Primer Binding Regions for Multiple Sets.

Description

Plots the primer binding regions for every primer set.

Usage

## S4 method for signature 'list,list'
plot_primer_binding_regions(

primers,
templates,
direction = c("both”, "fw", "rev"),
group = NULL,
relation = c("fw", "rev"),
region.names = c(”"Binding region”, "Amplification region”),
highlight.set = NULL
)
Arguments
primers List with primer data frames.
templates List with template data frames.
direction Direction of primers.
group Template groups to plot. This defaults to plotting all groups.
relation Plot binding region relative to forward binding region or reverse?

region.names  Names for the primer binding region and the amplified region.

highlight.set Primer sets to highlight in the plot.

Value

A plot for primer binding region comparison.



180 plot_primer._cvg,list,list-method

plot_primer_binding_regions,Primers, Templates-method
Plot of Primer Binding Regions for a Single Primer Set.

Description

Plots the primer binding regions in the templates.

Usage

## S4 method for signature 'Primers,Templates'
plot_primer_binding_regions(

primers,
templates,
direction = c("both”, "fw", "rev"),
group = NULL,
relation = c("fw", "rev"),
region.names = c("Binding region”, "Amplification region”)
)
Arguments
primers An object of class Primers with annotated primer coverage.
templates An object of class Templates providing the template sequences corresponding
to primers.
direction Primer direction
group The template groups for which binding events should be determined. By default,
group is set to NULL such that all templates are considered.
relation A character vector specifying whether binding region data shall be plotted rela-

tive to the forward (fw) or reverse (rev) target binding regions.

region.names Names for the primer binding region and the amplified region.

Value

A histogram of primer binding regions.

plot_primer_cvg,list,list-method
Plot Multiple Primer Coverages.

Description

Plots the coverage of individual primers for multiple sets.

Usage

## S4 method for signature 'list,list'
plot_primer_cvg(primers, templates, per.mismatch = FALSE)



plot_primer_cvg,Primers, Templates-method 181

Arguments
primers List with Primers objects.
templates List with Templates objects.

per.mismatch  Whether the coverage should be broken down for individual settings of allowed
mismatches.

Value

A bar plot showing the coverage of individual primers.

plot_primer_cvg,Primers,Templates-method
Plot Individual Primer Coverage.

Description

Shows which templates are covered by individual primers.

Usage

## S4 method for signature 'Primers,Templates’

plot_primer_cvg(primers, templates, per.mismatch = FALSE, groups = NULL)
Arguments

per.mismatch Whether the coverage should be broken down for individual settings of allowed
mismatches.

p.df Primer data frame.
template.df Template data frame.

excluded.seqs Identifiers of templates that should not be considered.

Value

A bar plot showing the coverage of individual primers.

plot_primer_cvg_mismatches
Plot of Individual Primer Coverage and Mismatches.

Description

Plots the coverage of individual primers for different mismatch settings.



182 plot_primer_cvg_unstratified

Usage

plot_primer_cvg_mismatches(
primer.df,
template.df,
groups = NULL,
nfacets = NULL

Arguments

primer.df A Primers object.
template.df A Templates object.

groups Optional identifiers of template groups to be considered. If not provided, all
template groups are considered.

nfacets A numeric providing the number of facet columns to use. By default, nfacets
is set to NULL such that a suitable number of columns is chosen automatically.

Value

A bar plot showing the coverage of individual primers for different mismatch settings.

plot_primer_cvg_unstratified
Plot Individual Primer Coverage.

Description

Plots the coverage of individual primers.

Usage

plot_primer_cvg_unstratified(p.df, template.df, groups = NULL)

Arguments

p.df Primer data frame.
template.df Template data frame.

groups Optional identifiers of template groups to be considered. If not provided, all
template groups are considered.

Value

A bar plot showing the coverage of individual primers.



plot_template_cvg,list,list-method 183
plot_template_cvg,list,list-method
Templates Coverage for Multiple Primer Sets.

Description

Plots the coverage of multiple primer sets.
Usage

## S4 method for signature 'list,list'

plot_template_cvg(primers, templates, per.mismatch, highlight.set = NULL)
Arguments

primers List with primer data frames.

templates List with template data frames.

highlight.set Primer sets to be highlighted.

colors Color for every primer set.
Value

A plot for comparing primer coverage.

plot_template_cvg,Primers,Templates-method
Bar Plot of Template Coverage.

Description

Creates a bar plot showing the coverage for every group of template sequences.
Usage

## S4 method for signature 'Primers,Templates’

plot_template_cvg(primers, templates, per.mismatch, groups = NULL)
Arguments

primers A Primers object with evaluated primer coverage.

templates A Templates object containing the template sequences.

per.mismatch Whether to stratify by mismatches.

groups Identifiers of template groups for which plot should be created. By default,

groups is set to NULL such that all templates are considered. according to the

number of mismatches between primer-template pairs.

Value

A plot showing the number of covered template sequences.



184 plot_template_cvg_comparison_unstratified

plot_template_cvg_comparison_mismatch
Templates Coverage for Multiple Primer Sets.

Description

Plots the coverage of multiple primer sets.

Usage

plot_template_cvg_comparison_mismatch(primers, templates, highlight.set = NULL)

Arguments
primers List with primer data frames.
templates List with template data frames.

highlight.set Primer sets to be highlighted.

Value

A plot for comparing primer coverage.

plot_template_cvg_comparison_unstratified
Templates Coverage for Multiple Primer Sets.

Description

Plots the coverage of multiple primer sets.

Usage
plot_template_cvg_comparison_unstratified(
primers,
templates,
highlight.set = NULL
)
Arguments
primers List with primer data frames.
templates List with template data frames.

highlight.set Primer sets to be highlighted.

Value

A plot for comparing primer coverage.



plot_template_cvg_mismatches 185

plot_template_cvg_mismatches
Bar Plot of Template Coverage for Mismatches.

Description

Creates a bar plot showing the coverage for every group of template sequences.

Usage

plot_template_cvg_mismatches(
primer.df,
template.df,
groups = NULL,
nfacets = 2

Arguments

primer.df A Primers object.

template.df A Templates object.

groups Identifiers of template groups for which plot should be created. By default,
groups is set to NULL such that all templates are considered.
nfacets The number of facets columns to plot. By default, nfacets is set to 2.
Value

A plot showing the number of covered template sequences.

plot_template_cvg_unstratified
Bar Plot of Template Coverage.

Description

Creates a bar plot showing the coverage for every group of template sequences.

Usage

plot_template_cvg_unstratified(primers, templates, groups = NULL)

Arguments
primers A Primers object with evaluated primer coverage.
templates A Templates object containing the template sequences.
groups Identifiers of template groups for which plot should be created. By default,

groups is set to NULL such that all templates are considered. according to the
number of mismatches between primer-template pairs.



186 pos.to.range

Value

A plot showing the number of covered template sequences.

plot_template_structure
Plot of Template Folding Energies.

Description

Plots the DeltaDeltaG of template folding, which is the difference between the free energy change
of the unconstrained folding and the free energy change of the constrained folding.

Usage

plot_template_structure(fold.df)

Arguments

fold.df A data frame with free energies for the template regions.

Value

A plot of DeltaDeltaG.

pos.to.range Conversion of Positions to Ranges.

Description

Converts two numeric values to a range.

Usage

pos.to.range(posl, pos2)

Arguments
pos1 The first value.
pos2 The second value.
Value

A character vector range.



predict_coverage 187

predict_coverage Prediction of Primer Coveragee.

Description

Predicts primer coverage using a logistic regression model. Converts coverage probabilities to
expected false positive rate for a given probability.

Usage

predict_coverage(
primer.df,
template.df,
settings,
mode = c("on_target"”, "off_target"),
updateProgress = NULL

Arguments

primer.df A Primers data frame.
template.df A Templates data frame.

settings A DesignSettings object.
mode Whether on-target or off-target events shall be considered.
Value

The predictions for primer coverage

prefilter.primer.candidates
Identication of Short Primers.

Description

Identify initial primers that are too short.

Usage

prefilter.primer.candidates(primer.candidates, min.len)

Arguments

primer.candidates
Primer alignment.

min.len Minimal primer length.

Value

The index of proposed primers that are shorter than min. len.



188 prepare.dimer.seqs

prepare.constraint.plot
Preparation of Comparison Plot for Evaluation.

Description

Preparation of Comparison Plot for Evaluation.

Usage

prepare.constraint.plot(primer.data, constraint.settings, plot.p.vals = FALSE)

Arguments

primer.data List with objects of class Primers. Each list entry corresponds to a single primer
set.

constraint.settings
List with settings for each constraint. If NULL (the default), use the available
evaluation results in primer.data.

plot.p.vals Whether p-values from Fisher’s exact test should be annotated for every primer
set.
Value

Plot indicating the ratio of primers fulfilling the constraints specified in constraint.settings for
each primer set in primer.data.

prepare.dimer.seqs Preparation of Input for Dimerization.

Description

Preparation of Input for Dimerization.

Usage

prepare.dimer.seqs(s1, s2)

Arguments
s1 Nucleotide character vectors (5’ to 3°)
s2 Nucleotide character vectors (5’ to 3”)
Value

A list with two fields containing character vectors.



prepare_mm_plot 189

prepare_mm_plot Data Preparation for Mismatch Plot.

Description

Data Preparation for Mismatch Plot.

Usage

prepare_mm_plot(primer.df, template.df, mode = c("on_target”, "off_target”))

Arguments

primer.df A Primers object.
template.df A Templates object.

mode Whether to compute for on-target or off-target events.

Value

A data frame with binding information for every primer.

prepare_template_cvg_mm_data
Preparation of Data for Plotting Mismatch Template Coverage.

Description

Creates a data frame for plotting a bar plot for the covered templates per allowed mismatches.

Usage

prepare_template_cvg_mm_data(primer.df, template.df, allowed.mismatches = NULL)

Arguments

primer.df A Primers object.

template.df A Templates object.
allowed.mismatches
An optional numeric specifying the number of mismatches to be considered at

most for plotting. If not provided, the maximal number of mismatches found for
the input primer set is used.

Value

A data frame for creating a plot.



190 primer.coverage.for.groups

primer.binding.regions.data
Primer Binding Region Data

Description

Collects all data concerning primer binding regions.

Usage
primer.binding.regions.data(
primer.df,
template.df,
direction = c("both”, "fw", "rev"),
group = NULL,
relation = c("fw", "rev")
)
Arguments
primer.df Primer data frame.

template.df Template data frame.

direction Primer direction

group The groups for which binding data shall be retrieved.

relation Binding region data relative to forward/reverse binding region?
Value

Data frame with primer binding data.

primer.coverage.for.groups
Determination of Primer Coverage for Groups.

Description

Modifies a primer data frame to retain only coverage events relating to the selected groups of tem-
plates.

Usage

primer.coverage.for.groups(primer.df, template.df, groups)

Arguments

primer.df Primer data frame.
template.df Template data frame.

groups Template groups for which coverage should be determined.



primer.set.parameter.stats 191

Value

primer.df with coverage considered only for groups.

primer.set.parameter.stats
Primer Set Statistics

Description

Creates an overview of all primer set constraint values.

Usage

primer.set.parameter.stats(primer.df, mode.directionality, lex.seq)

Arguments

primer.df Primer data frame.
mode.directionality
Direction of primers.

lex.seq Template data frame.

Value

A data frame with statistics.

PrimerDesign Primer Design Functionalities.

Description

design_primers Designs a primer set maximizing the number of covered templates using the
smallest possible number of primers. The algorithm tries to ensure that the designed set of
primers achieves a coverage ratio not lower than required. cvg. To this end, the constraints
for designing primers may be relaxed.

get_initial_primers Creates a set of primer candidates based on the input template sequences.
This set of primers can be used to create custom primer design algorithms.

Usage

classify_design_problem(
template.df,
mode.directionality = c("both”, "fw", "rev"),
primer.length = 18,
primer.estimate = FALSE,
required.cvg = 1

get_initial_primers(



192

sample,

template.df,
primer.lengt
mode.directi
allowed.regi
init.algo =
max.degen =
conservation
updateProgre

design_primers
template.df,
mode.directi
settings,
init.algo =
opti.algo =

PrimerDesign

hs,
onality = c("fw", "rev"),

on.definition = c("within"”, "any"),
c("naive”, "tree"),

16,

=1,

ss = NULL

(
onality = c("both”, "fw"”, "rev"),

c("naive”, "tree"),
c("Greedy"”, "ILP"),

required.cvg = 1,

timeout = In
max.degen =
conservation
sample.name
cur.results.
primer.df =
updateProgre

Arguments

template.df

mode.direction

primer.length

primer.estimat

required.cvg

sample
primer.lengths

allowed.region

f,

16,

=1,

= NULL,

loc = NULL,
NULL,

ss = NULL

A Templates object containing the template sequences with annotated primer
target binding regions.

ality
The template strand for which primers shall be designed. Primers can be de-
signed either for forward strands ("fw"), for reverse strands ("rev"), or for both
strands ("both"). The default setting is "both".

A scalar numeric providing the target length of the designed primers. The de-
fault length of generated primers is set to 18.

e
Whether the number of required primers shall be estimated. By default (FALSE),
the number of required primers is not estimated.

The desired ratio of of covered template sequences. If the target coverage ratio
cannot be reached, the constraint settings are relaxed according to the the con-
straint limits in order to reach the target coverage. The default required.cvg is
set to 1, indicating that 100% of the templates are to be covered.
Character vector providing an identifier for the templates.
Numeric vector of length 2 providing the minimal and maximal allowed lengths
for generated primers.

.definition
A character vector providing the definition of region where primers are to be
constructed. If allowed.region.definition is "within", constructed primers
lie within the allowed binding region. If allowed.region.definitionis "any",
primers overlap with the allowed binding region. The default is "within".



PrimerDesign 193

init.algo The algorithm to be used for initializing primers. If init.algo is "naive", then
primers are constructed from substrings of the input template sequences. If
init.algo is "tree", phylogenetic trees are used to form degenerate primers
whose degeneracy is bounded by max.degen. This option requires an installa-
tion of MAFFT (see notes). The default init.algo is "naive".

max.degen The maximal degeneracy of primer candidates. This setting is particularly rel-
evant when init.algo is set to "tree". The default setting is 16, which means
that at most 4 maximally degenerate positions are allowed per primer.

conservation  Restrict the percentile of considered regions according to their conservation.
Only applicable for the tree-based primer initialization. At the default of 1, all
available binding regions are considered.

updateProgress Shiny progress callback function. The default is NULL such that no progress is

logged.
settings A DesignSettings object specifying the constraint settings for designing primers.
opti.algo The algorithm to be used for solving the primer set covering problem. If opti.algo

is "Greedy" a greedy algorithm is used to solve the set cover problem. If opti.algo
is "ILP" an integer linear programming formulation is used. The default opti.algo
is "Greedy".

timeout Timeout in seconds. Only applicable when opti.algo is "ILP". The default is
Inf, which does not limit the runtime.

sample.name An identifier for the primer design task. The default setting is NULL, which
means that the run identifier provided in template.df is used.
cur.results.loc
Directory for storing the results of the primer design procedure. The default
setting is NULL such that no output is stored.

primer.df An optional Primers object. If an evaluated primer.df is provided, the primer
design procedure only optimizes primer.df and does not perform the initializa-
tion and filtering steps. The default is NULL such that primers are initialized and
filtered from scratch.

Details

classify_design_problem determines the difficulty of a primer design task by estimating the dis-
tribution of coverage ratios per primer by performing exact string matching with primers of length
primer.length, which are constructed by extracting template subsequences. Next, a beta distri-
bution is fitted to the estimated coverage distribution, which is then compare to reference distribu-
tions representing primer design problems of different difficulties via the total variance distance.
The difficulty of the input primer design problem is found by selecting the class of the reference
distributions that has the smallest distance to the estimated coverage distribution. An estimate
of the required number of primers to reach a given required.cvg can be computed by setting
primer.estimate to TRUE. Since this estimate is based solely on perfect matching primers, the
number of primers that would actually be required is typically less.

The primer design algorithm used by design_primers consists of three steps: primer initialization,
filtering, and optimization. The method for initializing a set of candidate primers is determined via
init.algo. If init.algo is set to naive, primers are created by extracting substrings from all input
template sequences. If init.algo is set to tree, degenerate primers are created by merging similar
subsequences by forming their consensus sequence up to a degeneracy of at most max.degen. The
tree-based initialization is recommended for related sequences.

The candidate primer set is filtered according to the constraints specified in the settings object.
In some cases, it is necessary to relax the constraints in order to reach the desired required. cvg.



194 PrimerDesign

In these cases, primers that fail the input constraints may be selected. If you would like to skip the
initialization and filtering stages, you can provide an evaluated Primers object via primer.df.

Optimizing a primer set entails finding the smallest subset of primers maximizing the coverage,
which is done by solving the set cover problem. If melting temperature differences are a constraint,
the optimization procedure automatically samples ranges of melting temperatures to find optimal
sets for all possible temperatures. You can select the used optimization algorithm via optia.algo,
where you can set "Greedy" for a greedy algorithm or "ILP for an integer linear program formulation
(ILP). While the worst-case runtime of the greedy algorithm is shorter than the worst-case runtime
of the ILP, the greedy solution may yield larger primer sets than the ILP solution.

Value
classify_design_problem returns a list with the following fields:

Classification The estimated difficulty of the primer design task.

Class-Distances The total variance distance of the fitted beta distribution to the reference distri-
bution.

Confidence The confidence in the estimate of the design tasks’ difficulty as based on the class
distances.

Uncertain Whether the classification is highly uncertain, that is low-confidence.

Nbr_primers_fw and Nbr_primers_rev The respective number of required forward and reverse
primers if primer.estimate was set to TRUE.

get_initial_primers returns a data frame with candidate primers for optimization.

design_primers returns a list with the following fields:

opti: A Primers object providing the designed primer set.

used_constraints: A list with DesignSettings objects for each primer direction providing the
(possibly relaxed) constraints used for designing the optimal primers.

all_results: A list containing objects of class Primers. Each list entry corresponds to an optimal
primer set for a given melting temperature.

all_used_constraints: A listcontaining DesignSettings object for each optimized setin all_results.

filtered: A list with data providing information on the results of the filtering procedure.

Note

Some constraints can only be computed if additional software is installed, please see the documen-
tation of DesignSettings for more information. The usage of init.algo = "tree"” requires an
installation of the multiple alignment program MAFFT (http://mafft.cbrc.jp/alignment/software/).

Examples

data(Ippolito)

# Naive primer initialization

init.primers <- get_initial_primers("InitialPrimers”, template.df,
c(18,18), "fw", init.algo = "naive")

# Tree-based primer initialization (requires MAFFT)

## Not run:

init.primers <- get_initial_primers("InitialPrimers”, template.df,
c(18,18), "fw", init.algo = "tree")

## End(Not run)



PrimerEval 195

# Define PCR settings and primer criteria

data(Ippolito)

# design only with minimal set of constraints

constraints(settings)$primer_length <- c("min” = 18, "max" = 18)
constraints(settings) <- constraints(settings)[c("primer_length”, "primer_coverage")]

# Design only forward primers using a greedy algorithm
optimal.primers.greedy <- design_primers(template.df[1:2,], "both”, settings, init.algo = "naive")
# Usage of the tree-based initialization strategy (requires MAFFT)
## Not run:
out.dir <- tempdir()
optimal.primers.tree <- design_primers(template.df[1:2,], "both”, settings,
init.algo = "tree"”, opti.algo = "ILP",
max.degen = 16,
cur.results.loc = out.dir)

## End(Not run)

PrimerEval Primer Evaluation.

Description

check_constraints Determines whether a set of primers fulfills the constraints on the properties
of the primers.

check_restriction_sites Checks a set of primers for the presence of restriction sites. To reduce
the number of possible restriction sites, only unambiguous restriction sites are taken into ac-
count and only common (typically used) restriction sites are checked if a common restriction
site can be found in a sequence.

filter_primers Filters a primer set according to the specified constraints such that all primers
that do not fulfill the constraints are removed from the primer set.

primer_significance Uses Fisher’s exact test to determine the significance of a primer set ac-
cording to its ratio of fulfilled constraints.

subset_primer_set Determines subsets of the input primer set that are optimal with regard to the
number of covered template sequences.

Usage
check_restriction_sites(
primer.df,
template.df,
adapter.action = c("warn”, "rm"),

selected = NULL,
only.confident.calls = TRUE,
updateProgress = NULL

check_constraints(
primer.df,
template.df,
settings,



196 PrimerEval

active.constraints = names(constraints(settings)),
to.compute.constraints = active.constraints,
for.shiny = FALSE,

updateProgress = NULL

filter_primers(
primer.df,
template.df,
settings,
active.constraints = names(constraints(settings))

subset_primer_set(
primer.df,
template.df,
k=1,
groups = NULL,
identifier = NULL,
cur.results.loc = NULL

primer_significance(primer.df, set.name = NULL, active.constraints = NULL)

Arguments
primer.df A Primers object containing the primers whose properties are to be checked.
template.df A Templates object containing the template sequences corresponding to primer.df.

adapter.action The action to be performed when adapter sequences are found. Either "warn"
to issue a warning about adapter sequences or "rm" to remove identified adapter
sequences. Currently, only the default setting ("warn") is supported.

selected Names of restriction sites that are to be checked. By default selected is NULL
in which case all REBASE restriction sites are taken into account.

only.confident.calls
Whether only confident calls of restriction sites are returned. All restriction site
call is considered confident if the restriction site is located in a region that does
not match the template sequences. Note that this classification requires that
the provided primers are somehow complementary to the provided templates.
In contrast, non-confident restriction site calls are based solely on the primer
sequences and do not take the templates into account, resulting in more false
positive calls of restriction sites.

updateProgress Progress callback function for shiny. The defaut is NULL meaning that no progress
is monitored via the Shiny interface.

settings A DesignSettings object containing the constraints that are to be considered.
active.constraints

A subset of the constraint identifiers provided by settings that are to be checked

for fulfillment. By default active.constraints is NULL such that all con-

straints found in settings are evaluated. Otherwise, only the constraints spec-

ified via active.constraints that are available in settings are considered.
to.compute.constraints

Constraints that are to be computed. By default, to.compute.constraints is

set to NULL such that all active.constraints are computed. If to.compute.constraints



PrimerEval 197

isasubset of active.constraints, all constraints specified via active.constraints
are evaluated for fulfillment, but only the constraints in to. compute.constraints
are newly calculated.

for.shiny Whether the output of the function shall be formatted as HTML. The default
setting is FALSE.

k The spacing between generated primer subset sizes. By default, k is set to 1 such
that all primer subsets are constructed.

groups The identifiers of template groups according to which coverage should be deter-
mined. By default, groups is set to NULL such that all all covered templates are
considered.

identifier An identifier for storing the primer set. By default, identifier is set to NULL.

cur.results.loc

Directory for storing the results. By default, cur.results.loc is set to NULL,
which means that no results are stored.

set.name An identifier for the input primers. If NULL, the run identifier is used.

Details

When the optional argument active.constraints is supplied to check_constraints, only a
subset of the constraints provided in settings is evaluated. Only constraints that are defined in
settings can be computed. For a detailed description of all possible constraints and their options,
please consider the ConstraintSettings documentation.

subset_primer_set determines optimal subsets of the input primer set by solving an integer-linear
program. Since the quality of the primers (in terms of properties) is not taken into account when
creating the subsets, this method should only be used for primer sets that are already of high quality.

primer_significance computes the significance by comparing the total count of fulfilled and
failed constraints with the corresponding counts of primer sets from the literature. Significant p-
values indicate primer sets whose rate of constraint fulfillment is higher compared to the reference
sets.

Value

check_restriction_sites returns a data frame with possible restriction sites found in the primers.

check_constraints returns a Primers object that is augmented with columns providing the results

for the evaluated constraints. The constraints_passed column indicates whether all active.constraints
were fulfilled. The EVAL_* columns indicate the fulfillment of primer-specific constraints. The
T_EVAL_* columns indicate the fulfillment of template-specific (e.g. coverage-based) constraints.

For the coverage computations, columns prefixed by Basic_, indicate the results from string match-

ing, while all other results (e.g. primer_coverage) indicate the expected coverage after applying

the coverage constraints specified in settings. Columns prefixed by Of f_ indicate off-target bind-

ing results.

filter_primers returns a Primers object containing only those primers fulfilling all specified
constraints.

subset_primer_set returns a list with optimal primer subsets, each of class Primers.
primer_significance returns a numeric providing the p-value of the primer set according to
Fisher’s exact test. The returned value has the following attributes:

test The results of the significance test

tab The confusion matrix for Fisher’s exact test

constraints The names of the considered constraints



198 rbind.primer.data

Note

Please note that some constraint computations may require the installation of additional programs;
for more information please view the documentation of DesignSettings.

References

Roberts, R.J., Vincze, T., Posfai, J., Macelis, D. (2010) REBASE—-a database for DNA restriction
and modification: enzymes, genes and genomes. Nucl. Acids Res. 38: D234-D236. http://rebase.neb.com

Examples

data(Ippolito)
# Check the first primer for restriction sites with respect to the first 10 templates
site.df <- check_restriction_sites(primer.df[1,], template.df[1:10])

data(Ippolito)
settings.xml <- system.file("extdata”, "settings”,
"C_Taq_PCR_high_stringency.xml”, package = "openPrimeR")
settings <- read_settings(settings.xml)
# Check GC clamp and number of runs for all primers:
constraint.df <- check_constraints(primer.df, template.df,
settings, active.constraints = c("gc_clamp”, "no_runs"))
# Summarize the evaluation results
summary(constraint.df)

data(Ippolito)
filename <- system.file("extdata”, "settings”,
"C_Taq_PCR_high_stringency.xml”, package = "openPrimeR")
settings <- read_settings(filename)
# Only retain the primers fulfilling the GC clamp constraint:
filtered.df <- filter_primers(primer.df, template.df, settings,
active.constraints = c("gc_ratio"))

# Determine optimal primer subsets
data(Ippolito)
primer.subsets <- subset_primer_set(primer.df, template.df, k = 3)

# Determine the significance of a primer set

data(Ippolito)

p.data <- primer_significance(primer.df, "Ippolito")
attr(p.data,”tab"”) # the confusion matrix

attr(p.data, "test"”) # results from Fisher's test

attr(p.data, "constraints”) # considered constraints for the test

rbind.primer.data Rbind for Primer Data Frames.

Description

Merges all primer data frames in primer.data into one data frame.

Usage

## S3 method for class 'primer.data'
rbind(primer.data)



rbind.Primers

Arguments

primer.data List with primer data frames.

Value

A data frame containing all data in primer.data.

199

rbind.Primers rbind for Primers class.

Description

Ensures that the rbind result has the appropriate class.

Usage
## S3 method for class 'Primers'
rbind(...)
Arguments
Parameters for rbind function.
Value

Row-binded Primers data frame.

Examples

data(Ippolito)
primer.df <- rbind(primer.df, primer.df)

rbind.Templates rbind for Template class.

Description

Ensures that the rbind result has the appropriate class.

Usage
## S3 method for class 'Templates'
rbind(...)

Arguments

Parameters for rbind function.

Value

Row-binded Templates data frame.



200 read.secondary.structure.raw

Examples

data(Ippolito)
template.df <- rbind(template.df, template.df)

read. leaders Read Individual Binding Regions

Description

Reads individual binding regions into a data frame.

Usage

read. leaders(
fasta.file,
direction = c("fw", "rev"),
rm.keywords = NULL,
gap.character

)
Arguments
fasta.file Path to a FASTA file with binding regions.
direction String identifying whether the FASTA file contains information pertaining to the
binding region of forward or reverse primers.
rm.keywords A vector of keywords that are used to remove templates whose headers contain

any of the keywords.
gap.character The character for indicating gaps in sequences.

Value

A data frame with individual binding regions.

read.secondary.structure.raw
Read a Secondary Structure

Description

Reads the secondary structure output of ViennaRNA.

Usage

read.secondary.structure.raw(fw.out)

Arguments

fw.out Path to a ViennaRNA secondary structure output file.

Value

Data frame with information on secondary structures.



read.sequences

201

read. sequences

Read Sequences.

Description

Reads an input FASTA file.

Usage

read.sequences(fasta.file, gap.character)

Arguments

fasta.file
The

Value

The path to a FASTA file.
character indicating gaps in sequences.

A data frame with sequences.

read_primers.internal Internal Function for Reading Primers

Description

Reads the given primer sequences into a data frame.

Usage

read_primers.internal(

primer.seqgs,
headers,
fw.id,
rev.id,

merge.ambig =

max.degen,
sample.name

Arguments

primer.seqgs
headers
fw.id
rev.id
merge.ambig
max.degen

Value

c("none”, "merge", "unmerge"),

Primer sequences.
Headers of the primer FASTA file.

Identifier of forward primers in the headers.

Identifier of reverse primers in the headers.
Should ambiguous primers be merged?
Maximum allowed degeneracy

A data frame with primer sequences.



202

read_primers_multiple

read_primers_csv Read Primer CSV File.

Description

Reads a primer data frame stored in a CSV file.

Usage

read_primers_csv(file)

Arguments

file The path to a csv file containing the primer data.

Value

A Primers object, an instance of a data frame.

read_primers_multiple [Input of Multiple Primer Sets.

Description

Reads multiple CSV files representing stored objects of class Primers.

Usage

read_primers_multiple(
filenames,
fw.id,
rev.id,
merge.ambig,
max.degen,
template.df,
adapter.action,
sample.name,

updateProgress
)
Arguments
filenames The paths to multiple primer CSV/FASTA files.
Value

A list containing objects of class Primers.



read_templates_csv

203

read_templates_csv

Read Template CSV File

Description

Reads an input template CSV file.

Usage

read_templates_csv(fname)

Arguments

fname The filename of the input template CSV file.

Value

A template data frame.

read_templates_fasta

Input of Template Sequences.

Description

Read template sequences from a FASTA file.

Usage

read_templates_fasta(
fasta.file,

hdr.structure = NULL,

delim = NULL,
id.column = NULL,
rm.keywords = NULL,

remove.duplicates =

FALSE,

fw.region = c(1, 30),
rev.region = c(1, 30),

n_n

gap.character =

run = NULL
)
Arguments
fasta.file Path to a FASTA file containing the template sequences.

hdr.structure Names describing the information contained in the FASTA headers. In case that
the headers of fasta.file contain template group information, please include

the keyword "GROUP" in hdr.structure.
delim Delimiter for the information in the FASTA headers.

id.column Field in the header to be used as the identifier.



204 read_templates_multiple

rm.keywords A vector of keywords that are used to remove templates whose headers contain
any of the keywords.

remove.duplicates
Whether duplicate sequence shall be removed.

fw.region The positional interval from the template 5’ end specifying the binding sites for
forward primers.

rev.region The positional interval from the template 3’ end specifying the binding sites for
reverse primers.

gap.character The character in the input file representing gaps. Gaps are automatically re-
moved upon input.

run An identifier for the template sequences.

Value

An object of class Templates.

Examples

fasta.file <- system.file("extdata”, "IMGT_data", "templates”,

"Homo_sapiens_IGH_functional_exon.fasta”, package = "openPrimeR")
hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION")
template.df <- read_templates(fasta.file, hdr.structure, "|", "GROUP")

read_templates_multiple
Input of Multiple Templates.

Description

Reads multiple template CSV/FASTA files.

Usage
read_templates_multiple(
filenames,
hdr.structure = NULL,
delim = NULL,

id.column = NULL,
rm.keywords = NULL,
remove.duplicates = FALSE,
fw.region = c(1, 30),
rev.region = c(1, 30),
gap.character = "-",

run = NULL



read_templates_single

Arguments

filenames

hdr.structure

delim
id.column

rm. keywords

205

Names of FASTA/CSYV files containing template data.

A character vector describing the information contained in the FASTA headers.
In case that the headers of fasta.file contain template group information,
please include the keyword "GROUP" in hdr.structure.

Delimiter for the information in the FASTA headers.
Field in the header to be used as the identifier.

A vector of keywords that are used to remove templates whose headers contain
any of the keywords.

remove.duplicates

fw.region

rev.region

gap.character

run

Value

Whether duplicate sequence shall be removed.

The positional interval from the template 5° end specifying the binding sites for
forward primers.

The positional interval from the template 3 end specifying the binding sites for
reverse primers.

The character in the input file representing gaps. Gaps are automatically re-
moved upon input.

An identifier for the template sequences.

A list containing objects of class Templates.

read_templates_single Input of a Single Template File.

Description

Read template sequences from a FASTA or CSV file.

Usage

read_templates_single(
template.file,

hdr.structure

delim = NULL,
id.column =

= NULL,

NULL,

rm.keywords = NULL,

remove.duplicates =
c(1, 30),
c(1, 30),

fw.region =
rev.region =

FALSE,

n_mn

gap.character = R

run = NULL



206 relax.constraints

Arguments

template.file Pathto a FASTA or CSV file containing the template sequences.

hdr.structure A character vector describing the information contained in the FASTA headers.
In case that the headers of fasta.file contain template group information,
please include the keyword "GROUP" in hdr.structure.

delim Delimiter for the information in the FASTA headers.
id.column Field in the header to be used as the identifier.
rm. keywords A vector of keywords that are used to remove templates whose headers contain

any of the keywords.
remove.duplicates
Whether duplicate sequence shall be removed.

fw.region The positional interval from the template 5° end specifying the binding sites for
forward primers.

rev.region The positional interval from the template 3 end specifying the binding sites for
reverse primers.

gap.character The character in the input file representing gaps. Gaps are automatically re-
moved upon input.

run An identifier for the template sequences.

Details

When supplying a FASTA file with template sequences, the input arguments hdr.structure,
delim, id.column, rm.keywords, remove.duplicates, fw.region, rev.region, gap.character,
and run are utilized. Most importantly, hdr. structure and delim should match the FASTA header
structure. When supplying a CSV file with template sequences, the data are loaded without any
modification and the CSV file should represent an object of class Templates, which can be stored
using the write_templates function.

Value

An object of class Templates.

relax.constraints Relaxation of Constraints

Description

Relax constraints trying to reach the target coverage ratio.

Usage

relax.constraints(
settings,
filtered.df,
excluded.df,
stat.df,
template.df,
mode.directionality = c("fw", "rev"),



relax.opti.constraints 207

required.cvg,
target.temps = NULL,
results.loc = NULL

)
Arguments
settings A DesignSettings object.
filtered.df Data set of primers that fulfilled all constraints of the filtering procedure.
excluded.df Data frame with excluded primers from the first filtering round.
stat.df Data frame with statistics from filtering.

template.df Template data frame.
mode.directionality
Primer direction.

required.cvg  Required ratio of covered templates.
target.temps Target melting temperature values.

results.loc The location where intermediary results should be stored.

Value

A list containing information about the relaxation as well as the filtered primers.

relax.opti.constraints
Relaxation of Optimization Constraints

Description

Relax optimization constraints.

Usage

relax.opti.constraints(
cur.opti.constraints,
initial.opti.limits,
initial.opti.constraints

)

Arguments

cur.opti.constraints

List with optimization constraint settings.
initial.opti.limits

Initial optimization limits.
initial.opti.constraints

Initial optimization constraints.

Value

Relaxed optimization constraints.



208 remove.seqs.by.keyword

remove.redundant.cols Removal of Redundant Primers.

Description

Removes redundant primers from an optimal solution.

Usage

remove.redundant.cols(S, cvg.matrix)

Arguments
S Indices of primers that are selected in an optimal solution.
cvg.matrix Binary matrix of coverage events.

Details

An optimal solution can contain primers with redundant coverage when using presolve or greedy
optimization.
Value

Updated indices of selected primers S such that indices representing primers with redundant cover-
age are removed.

remove.seqs.by.keyword
Removal of Partial Sequences.

Description

Removes partial template sequences.

Usage

remove.seqs.by.keyword(template.df, keyword = "partial”)

Arguments

template.df Template data frame.

Header keywords indiating templates that should be excluded.

Value

Template data frame with partial sequences removed.



rename.constraint.options 209

rename.constraint.options
Renaming of Constraint Options.

Description

Renames the input list with constraint options.

Usage

rename.constraint.options(constraint.options)

Arguments

constraint.options
A list with constraint options.

Value

A list with renamed constraint options.

render_report Renders an rmarkdown file using Pandoc.

Description

Creates a PDF report using rmarkdown and Pandoc by passing the specified params to the mark-
down file given by report_template and storing the PDF in out.file.

Usage

render_report(params, report_template, out.file)

Arguments

params A list with parameters for the R markdown parser.

report_template
A character vector giving the basename of the Rmarkdown template to use for
report creation.

out.file The filename of the report PDF to be created.

Value

Creates a PDF in out. file if successful.



210

restriction_ali

reorder.primer.table Reorder Primers

Description

Reorders a primer set according to the IDs of primers.

Usage

## S3 method for class 'primer.table'
reorder(filtered.primers, primer.ID.order)

Arguments

filtered.primers
Primer data frame.
primer.ID.order
new ordering of IDs in the data frame.

Value

Reordered primer data frame.

restriction_ali Identification of Badly Fitting Regions.

Description

Identify regions in the templates where the primers are not very complementary. These regions

indicate possible restriction enzyme adapters.

Usage

restriction_ali(primer.seqs, template.seqs, search.hits)

Arguments

primer.seqs Primer sequences.

template.seqs Template sequences.

search.hits Template substrings that agree well with the input primers.

Value

A list with putative restriction sites for every primer.



restriction_hits 211

restriction_hits Identification of Restriction Sites.

Description

Identifies restriction sites in a list with putative restriction sites provided by bad.regions using a
data frame of restriction sites given by DB.

Usage

restriction_hits(bad.regions, DB)

Arguments
DB A data frame with restriction enzyme sites.
bad.region IRanges with possible adapter sites.

Value

A boolean data frame indicating the presence of adapters for all considered restriction sites.

restriction_match Identification of Sequence Matches.

Description

Determines the most similar template sequence for every input primer sequence. Used to identify
regions for alignment for the identification of restriction sites.

Usage

restriction_match(primer.seqs, template.seqs)

Arguments

primer.seqs Primer sequences.

template.seqs Template sequences.

Value

A vector with the template regions matching the primer.seqs best.



212 rev.comp.sequence

retrieve.leader.region
Retrieval of Binding Regions

Description

Retrives information about individual binding regions.

Usage

retrieve.leader.region(
template.df,
direction = c("fw", "rev"),
start,
end,
gap.char,
init.from.leader

Arguments

template.df Template data frame.

direction Identify forward and reverse.

start Start positions.

end End positions.

gap.char The character for gaps in alignments.

init.from.leader
Whether the binding regions are initialized from leader sequences.

Value

Data frame with information on allowed binding regions.

rev.comp.sequence Reverse complement of a sequence

Description

Computes the reverse complement of the input sequences.

Usage
## S3 method for class 'comp.sequence'
rev(seq)

Arguments

seq the input strings



rev.sequence 213

Value

The reverse complement of the input sequences.

rev.sequence Reversion of a sequence

Description

Reverses the input sequences.

Usage
## S3 method for class 'sequence'
rev(seq)

Arguments

seq the input sequence.

Value

The input sequence in reverse order.

runTutorial The openPrimeR Tutorial.

Description

Starts a Shiny app containing the openPrimeR tutorial, which was built using the learnr package.
The application starts locally and should open a new tab in your default browser. If no browser is
opened, please consider the console output to identify the local port on which the server is running.

Usage
runTutorial(dev = FALSE)

Arguments
dev A logical indicating whether to start the development version of the tutorial (de-
fault: FALSE).
Value

Opens the openPrimeR tutorial in a web browser.

Note

The Shiny app can be started only if you fulfill all of the suggested package dependencies for
the Shiny framework, so please ensure that you’ve installed openPrimeR including all suggested
dependencies.



214 score.conservation

Examples

## Not run:

# Open the tutorial
if (interactive()) {
runTutorial()

}

## End(Not run)

sanitize_path Sanitiziation of Filename.

Description

Ensures that a filename is valid for the file system.

Usage
sanitize_path(path, suffix = "", sub.char = "_")
Arguments
path The path to the file to be sanitized, without file extension.
suffix The suffix (e.g. ".png") of a file.
sub_char The character used to replacing disallowed chars.
Value
The sanitized filename
score.conservation Conservation Scores

Description

Scores the conservation of alignment regions.

Usage

score.conservation(primer.range, ali.entropy)

Arguments

primer.range A data frame with starts/ends of primers.

ali.entropy Entropies corresponding to the alignment

Value

Entropies indicating conservation (similarity) of regions.



Scoring 215

Scoring Scoring Functions.

Description

score_degen Determines the degeneration score of a sequence.

score_conservation Determines the sequence conservation scores of a set of templates using
Shannon entropy.

score_primers Computes scores for a set of primers based on the deviations of the primers from
the constraints.

Usage
score_conservation(template.df, gap.char = "-", win.len = 30, by.group = TRUE)
score_degen(seq, gap.char = "-")

score_primers(
primer.df,
settings,
active.constraints = names(constraints(settings)),
alpha = 0.5

Arguments

template.df A Templates object providing the set of templates.

gap.char The gap character in the sequences. The default is "-".

win.len The size of a window for evaluating conservation. The default window size is
set to 30.

by.group Whether the determination of binding regions should be stratified according to

the groups defined in template.df. The default is TRUE.

seq A list of vectors containing individual characters of a nucleotide sequence.
primer.df A Primers object containing the primers.
settings A DesignSettings object containing the analysis settings.

active.constraints
A character vector of constraint identifiers that are considered for scoring the
primers.

alpha A numeric that is used to determine the trade-off between the impact of the
maximal observed deviation and the total deviation. At its default alpha is set
to 0.5 such that the maximal deviation and the total deviation have an equal
weight when computing the penalties.



216 Scoring

Details

score_degen computes the degeneration of an ambiguous sequence by considering the number of
unambiguous sequences that are represented by the the ambiguous sequence. Let a sequence S of
length n be represented by a collection of sets such that

S =51,82,...,5,

where s; indicates the set of unambiguous bases found at position ¢ of the primer. Then the degen-
eracy D of a primer can be defined as
i

where |s;| provides the number of disambiguated bases at position .

score_primers determines the penalty of a primer in the following way. Let d be a vector indicat-
ing the absolute deviations from individual constraints and let p be the scalar penalty that is assigned
to a primer. We define

p:a-maxdi+2(1—a)~di

such that for large values of alpha the maximal deviation dominates giving rise to a local penalty
(reflecting the largest absolute deviation) and for small alpha the total deviation dominates giving
rise to a global penalty (reflecting the sum of constraint deviations). When alpha is 1 only the most
extreme absolute deviation is considered and when alpha is O the sum of all absolute deviations is
computed.

Value

A list containing Entropies and Alignments. Entropies is a data frame with conservation scores.
Each column indicates a position in the alignment of template sequences and each row gives the
entropies of the sequences belonging to a specific group of template sequences. Alignments is a list
of DNABin objects, where each object gives the alignment corresponding to one group of template
sequences.

score_degen finds the number of unambiguous sequences that are represented by seq.

score_primers returns a data frame containing scores for individual primers.

Note

score_conservation requires the MAFFT software for multiple alignments (http://mafft.cbrc.jp/alignment/software/).

Examples

## Not run:
data(Ippolito)
entropy.data <- score_conservation(template.df, gap.char =

"-" win.len =18, by.group = TRUE)
## End(Not run)

# Compute degeneration for sequences with differing number of ambiguous bases

seq <- strsplit(c(”ctggaattacggtacc”, "taggaaccggrtaagc”, "rtaaasrygtar”), split = "")
degen <- score_degen(seq)

# Score the primers
data(Ippolito)
primer.scores <- score_primers(primer.df, settings)



select.allowed.binding.events 217

select.allowed.binding.events
Selection of Binding Events

Description

Selects primer binding events that are within the allowed binding regions.

Usage

select.allowed.binding.events(
bound. fw,
bound.to.allowed.region. fw,
allowed.other.binding.ratio

)

Arguments

bound. fw Indices of covered templates of a single primer.
bound.to.allowed.region.fw

Corresponding allowed binding regions.
allowed.other.binding.ratio

The ratio of other binding events. If this is different from 0, disallowed binding
events will also be reported.

Value

The indices of the allowed binding events.

select.best.ILP Selection of Best ILP

Description

Selects the best solution from multiple solved ILP instances.

Usage

select.best.ILP(ILP.df)

Arguments

ILP.df Data frame with ILP result properties.

Value

The index of the best solution.



218 select.best.primer.idx

select.best.opti.result
Selection of Best Greedy Result

Description

Selects best greedy primer data set.

Usage

select.best.opti.result(opti.results, template.df)

Arguments

opti.results  List with primer data frames for different target melting temperatures.

template.df Template data frame.

Value

The index of the best primer data set.

select.best.primer.idx
Greedy Choice

Description

Selects the currently best primer for Greedy primer selection.

Usage

select.best.primer.idx(
result,
primers,
deltaG.cutoff,
target.temp,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc



select.best.primer.set

Arguments

result
primers
deltaG.cutoff
target.temp
primer_conc
na_salt_conc
mg_salt_conc
k_salt_conc

tris_salt_conc

Value

219

Data frame of current optimized primer data set that is to be augmented.
Data frame of candidate primers for addition to result.

Free energy cutoff for cross-dimerization.

Target annealing temperature in Celsius.

Primer concentration.

Sodium ion concentration.

Magensium ion concentration.

Potassium ion concentration.

Tris ion concentration.

The index of a suitable primer according to Greedy selection.

select.best.primer.set

Selection of Best Primer Set.

Description

Selects the best primer set according to coverage and melting temperature differences among primers

in the set.

Usage

select.best.primer.set(stats)

Arguments

stats

Value

Statistics of the primer sets to be evaluated.

The index of the best primer set.



220 select.constraints

select.binding.events Selection of Individual Binding Events

Description

Selects only binding events of interest.

Usage

select.binding.events(fw.binding.filtered, p.idx)

Arguments

fw.binding.filtered
IRanges with binding events.

p.idx Index of binding events to keep.

Value

An IRanges object containing only the selected binding events.

select.constraints Selection of Constraints.

Description

Selects constraints that can be computed according to installed third-party software. This function
is only used for initializing the ’constraint_order’ option.

Usage

select.constraints(active.constraints)

Arguments

active.constraints
A vector whose names give the constraints to be checked.

Value

A vector of useable constraint identifiers.



select.min.cross.idx 221

select.min.cross.idx Selection of cross dimer index

Description

Select the index with the smallest DeltaG value.

Usage

select.min.cross.idx(deltaG, primers)

Arguments
deltaG Data frame with thermodynamic info.
primers The corresponding primers.

Value

The indices with smallest DeltaG for every primer.

select.primer.region.by.conservation
Selection by Conservation

Description

Selects primer regions for initialization of primers according to their conservation scores.

Usage

select.primer.region.by.conservation(
primer.range,
ali.entropy,
conservation,
bin,
gap.char = "-"

Arguments

primer.range Data frame with primer starts/stops.
ali.entropy Entropy values for the alignment.

conservation  Desired ratio of primer conservation. Only regions with a conservation of at
least conservation are considered for the initialization of primers.

bin DNABin alignment of templates.

gap.char The character for alignment gaps.



222

Details

Value

Updated primer regions according to the desired conservation.

select.primers.by.cvg

The conservation scores are computed using the entropies computed from the alignment of the
template sequence regions of interests.

select.primers.by.cvg Greedy Optimization.

Description

Usage

Arguments
primers Primer data frame to be optimized.
settings A DesignSettings object.

Greedy approach for solving the primer set coverage problem.

select.primers.by.cvg(

primers,

settings,

template.df,
mode.directionality = c("fw”, "rev"),
required.cvg = 1,
allowed.mismatches,
primer_conc,

na_salt_conc,

mg_salt_conc,

k_salt_conc,

tris_salt_conc,
template_conc,
allowed.other.binding.ratio,
allowed.stop.codons,

allowed.region.definition = c("within", "any"),

disallowed.mismatch.pos,
target.temps = NULL,
fw.primers = NULL,
updateProgress = NULL

template.df Template data frame.
mode.directionality

Primer direction.

required.cvg Target coverage ratio.
allowed.mismatches

The number of mismatches primers are allowed to have with the templates.



select_best_binding 223

primer_conc Primer concentration.
na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris ion concentration.

template_conc Template data frame.
allowed.other.binding.ratio

Ratio of primers allowed to bind to non-target regions.
allowed.stop.codons

Consider mismatch binding events that induce stop codons.
allowed.region.definition

Definition of the target binding sites used for evaluating the coverage. If allowed. region.definitic
iswithin, primers have to lie within the allowed binding region. If allowed.region.definition

is any, primers have to overlap with the allowed binding region. The default is

that primers have to bind within the target binding region.

disallowed.mismatch.pos

The number of positions from the primer 3’ end where mismatches should not be
allowed. All primers binding templates with mismatches within disallowed.mismatch.pos
from the 3’ end are disregarded.

target.temps Target melting temperatures for optimized sets in Celsius.
fw.primers List with already optimized primer data frames corresponding to target . temps.

updateProgress Shiny progress callback function.

Value

List with optimization data.

select_best_binding Selection of Best (smallest number of mismatches) Binding Event per
Template Coverage Event.

Description

Selection of Best (smallest number of mismatches) Binding Event per Template Coverage Event.

Usage

select_best_binding(binding, fw.mm.info)

Arguments
binding Binding information.
fw.mm.info Info about mismatches.
Value

A list with entries *fw’ and "rev’ giving the best indices of primers.



224 set.new.constraint.value

selenium.installed Determination if Selenium is installed.

Description

Checks whether selenium module for python is installed on the system.

Usage

selenium.installed()

Value

TRUE is selenium for python is available, FALSE otherwise.

set.new.constraint.value
Update Constraint Settings.

Description

Updates the constraint settings with new values. Sets to the maximal observed values within the
limits or less if relax. speed is less than 1.

Usage

set.new.constraint.value(values, relax.speed, cur.limits, cur.setting)

Arguments
values Observed constraint values considered for the update.
relax.speed The speed at which the constraints should be relaxed. This value should be in
the interval [0,1].
cur.limits List with current relaxation limits.
cur.setting List with current constraint settings.
Value

Relaxed constraint settings according to the given values and cur.limits.



set.new.limits 225

set.new.limits Relaxation of Constraint Limits.

Description

Relaxes the constraint limits by moving according to the difference between the initial.limits
and initial.constraints.

Usage

set.new.limits(
cur.limits,
initial.limits,
initial.constraints,
con.name = NULL

Arguments

cur.limits List with current constraint settings.

initial.limits List with initial coonstraint limits.
initial.constraints

List with initial constraint settings before relaxing.

con.name The constraint for which the settings are to be changed.

Value

A list with relaxed constraint limits.

Settings Settings Functionalities.

Description

DesignSettings The DesignSettings class encapsulates all settings for designing and evaluat-
ing primer sets. Upon loading an XML file, the DesignSettings class checks whether the
defined constraints can be applied by identifying whether the requirements for external pro-
grams are fulfilled. If the requirements are not fulfilled, the affected constraints are removed
from the loaded DesignSettings object and a warning is issued. The loaded constraints are
automatically ordered according to the option openPrimeR.constraint_order such that the
runtime of the design_primers and filter_primers functions is optimized.

constraints Gets the active constraints of the provided DesignSettings object.
constraints<- Sets the active constraints of the provided DesignSettings object.
cvg_constraints Gets the coverage constraints of the provided DesignSettings object.
cvg_constraints<- Sets the coverage constraints of the provided DesignSettings object.
conOptions Gets the constraint settings of the provided DesignSettings object.

conOptions<- Sets the constraint settings of the provided DesignSettings object.



226 Settings

constraintLimits Gets the constraint limits that are defined in the provided DesignSettings
object.

constraintLimits<- Sets the constraint limits of the provided DesignSettings object.
PCR Gets the PCR conditions that are defined in the provided DesignSettings object.
PCR<- Sets the PCR conditions that are defined in the provided DesignSettings object.

ConstraintSettings The ConstraintSettings class encapsulates the constraints on the physic-
ochemical properties of primers.

CoverageConstraints The CoverageConstraints class encapsulates the conditions under which
the coverage of primers is evaluated.

PCR_Conditions The PCR_Conditions class encapsulates the PCR conditions for the computation
of primer properties.

ConstraintOptions The ConstraintOptions class encapsulates the options for constraint com-
putations.

parallel_setup Registers the specified number of cores with the parallel backend.
Usage
constraints(x)

## S4 method for signature 'DesignSettings'
constraints(x)

## S4 method for signature 'AbstractConstraintSettings'
constraints(x)

cvg_constraints(x)

## S4 method for signature 'DesignSettings'
cvg_constraints(x)

PCR(x)

## S4 method for signature 'DesignSettings'
PCR(x)

conOptions(x)

## S4 method for signature 'DesignSettings'
conOptions(x)

constraintLimits(x)

## S4 method for signature 'DesignSettings'
constraintLimits(x)

constraints(x) <- value

## S4 replacement method for signature 'DesignSettings,list’
constraints(x) <- value



Settings 227

## S4 replacement method for signature 'AbstractConstraintSettings,list'
constraints(x) <- value

cvg_constraints(x) <- value

## S4 replacement method for signature 'DesignSettings'
cvg_constraints(x) <- value

constraintLimits(x) <- value

## S4 replacement method for signature 'DesignSettings'
constraintLimits(x) <- value

PCR(x) <- value

## S4 replacement method for signature 'DesignSettings'
PCR(x) <- value

conOptions(x) <- value

## S4 replacement method for signature 'DesignSettings'
conOptions(x) <- value

parallel_setup(cores = NULL)

Arguments

X A DesignSettings object.

value An object to be used in one of the setters. For constraints<-and constraintLimits<-,
a list with constraint settings or boundaries. Each list entry should have a per-
missible name and consist of at most two values providing the minimal and/or
maximal allowed values, which have to be denominated via min and max.
For conOptions<-, a list with constraint options. The permissible fields of the
list and their types are documented in the ConstraintOptions class.
For cvg_constraints<-, a list with coverage constraints. Each list entry must
have a permissible name and contain a numeric vector with at most two com-
ponents describing the minimal and/or maximal required values that are to be
indicated via min and max. The permissible contraint identifiers are documented
in the CoverageConstraints class.
For PCR<-, a named list providing PCR conditions The permissible fields of the
list and their types are documented in the PCR_Conditions class.

cores A numeric providing the number of cores to use. The default is NULL such that
half the number of available cores are used.

Details

Note that for the DesignSettings class, the fields Input_Constraints, Input_Constraint_Boundaries,
and Coverage_Constraints should contain entries with at most two components using the fields

min and/or max. The Input_Constraint_Boundaries should always be at least as general as the
specified Input_Constraints.

For an overview of permissible constraints, please consider the ConstraintSettings documenta-
tion.



228 Settings

Value

The ConstraintSettings constructor defines a new ConstraintSettings object.

The CoverageConstraints constructor initializes a new CoverageConstraints object.

The ConstraintOptions constructor returns a new ConstraintOptions object.

The PCR_Conditions constructor defines a new PCR_Conditions object.

The DesignSettings constructor defines a DesignSettings object.

constraints gets a list with the active constraint settings.

cvg_constraints returns the list of active coverage constraints.

PCR gets the list of PCR conditions defined in the provided DesignSettings object.

conOptions returns a list with constraint options.

constraintLimits gets the list of constraint limits.

constraints<- sets the list of constraints in a DesignSettings object.

cvg_constraints<- sets the list of coverage constraints in the provided DesignSettings object.
constraintLimits<- sets the list of constraint limits in the provided DesignSettings object.
PCR<- sets the constraint options in the provided DesignSettings object.

conOptions<- sets the specified list of constraint options in the provided DesignSettings object.

parallel_setup returns NULL.

Slots

Input_Constraints A ConstraintSettings object specifying the desired target value ranges for
primer properties.

Input_Constraint_Boundaries A ConstraintSettings object specifying the limits for relax-
ing the constraints during the primer design procedure. This slot may contain the same fields
as the Input_Constraints slot, but the specified desired ranges should be at least as general
as those specified in the Input_Constraints slot.

Coverage_Constraints A CoverageConstraints object specifying the constraints for comput-
ing the primer coverage.

PCR_conditions A PCR_Conditions object specifying the PCR-related settings.

constraint_settings A ConstraintSettings object providing options for the computation of
individual physicochemical properties.

status Named boolean vector indicating which of the possible constraints are active (TRUE) and
which are not (FALSE).

settings For ConstraintSettings, a named list containing the settings for the active constraints.
The list may contain the following fields:
primer_coverage: The required number of covered template sequences per primer.

primer_specificity: The required required specificity of primers in terms of a ratio in the
interval [0,1].

primer_length: The required lengths of primer sequences.

gc_clamp: The desired number of GCs at primer 3’ termini.

gc_ratio: The desired ratio of GCs in primers in terms of numbers in the interval [0,1].
no_runs: The accepted length homopolymer runs in a primer.

no_repeats: The accepted length of dinucleotide repeats in a primer.



Settings

229

self_dimerization: The lowest acceptable free energy [kcal/mol] for the interaction of a
primer with itself. The identification of self dimers requires the software OligoArrayAux
(see notes).

melting_temp_range: The desired melting temperature (Celsius) of primers. The accurate
computation of melting temperatures requires the software MELTING (see notes).

melting_temp_diff: The maximal allowed difference between the melting temperatures (Cel-
sius) of primers contained in the same set. The accurate computation of melting temper-
atures requires the software MELTING (see notes).

cross_dimerization: The lowest acceptable free energy [kcal/mol] for the interaction of a
primer with another primer. The identification of cross dimers requires the software
OligoArrayAux (see notes).

secondary_structure: The lowest acceptable free energy [kcal/mol] for the formation of
primer secondary structures. Secondary structures are determined using the software
ViennaRNA (see notes).

For PCR_Conditions, a named list with PCR conditions. The following fields are possible:

use_tag_polymerase: A logical identifying whether you are performing PCR with a Taq
polymerase (TRUE) or not (FALSE).

annealing_temp: The annealing temperature in Celsius that is to be used for evaluating the
constraints defined in the ConstraintSettings object. If the annealing temperature field
is not provided, a suitable annealing temperature is automatically computed using a rule
of thumb (i.e. subtracting 5 from the melting temperature).

Na_concentration: The molar concentration of monovalent sodium ions.

Mg_concentration: The molar concentration of divalent magnesium ions.

K_concentration: The molar concentration of monovalent potassium ions.

Tris_concentration: The molar concentration of the Tris(hydroxymethyl)-aminomethan
buffer.

primer_concentration: The molar concentration of the PCR primers.
template_concentration: The molar concentration of the PCR templates.

For CoverageConstraints, a named list with constraint options. Each list entry should have
an entry min and/or max in order to indicate the minimal and maximal allowed values, respec-
tively. The following identifiers can be used as coverage constraints:

primer_efficiency: The desired efficiencies of primer-template amplification events in or-
der to be considered as covered. primer_efficiency provides a value in the interval
[0,1], which is based on DECIPHER’s thermodynamic model, which considers the im-
pact of 3’ terminal mismatches.

annealing_DeltaG: The desired free energies of annealing for putative coverage events be-
tween primers and templates. Typically, one would limit the maximally allowed free
energy.

stop_codon: Whether coverage events introducing stop codons into the amplicons should
be allowed or discarded. Here, a value of 1 indicates coverage events that induce stop
codons. As such, setting both minimum and maximium to zero will disregard coverage
events inducing stop codons, while setting the minimum to zero and the maximum to 1
will allow coverage events that induce stop codons.

substitution: Whether coverage events introducing substitutions into the amino acid se-
quence are considered or discarded. The same encoding as for stop_codon is used, that
is, the value 1 indicates coverage events inducing substitutions. Hence, to prevent substi-
tutions, the maximal value of substitution can be set to zero.

terminal_mismatch_pos: The position relative to the primer 3’ terminal end for which mis-
match binding events should be allowed, where the last base in a primer is indicated by



230

Settings

position 1. For example, setting the minimal value of terminal_mismatch_pos to 7
means that only coverage events that do not have a terminal mismatch within the last 6
bases of the primer are allowed.

coverage_model: Use a logistic regression model combining the free energy of annealing
and 3’ terminal mismatch positions to determine the expected rate of false positive cover-
age calls. Using coverage_model, you can specify the allowed ratio of falsely predicted
coverage events. Typically, one would limit the maximal allowed rate of false positives.
Note that setting a small false positive rate will reduce the sensitivity of the coverage calls
(i.e. true positives will be missed).

For ConstraintOptions, a named list with constraint options. The following fields are per-
missible:

allowed_mismatches: The maximal number of allowed mismatches between a primer and a
template sequence. If the number of mismatches of a primer with a template exceeds the
specified value, the primer is not considered to cover the corresponding template when
the coverage is being computed.

allowed_other_binding_ratio: Ratio of allowed binding events outside the target binding
ratio. This value should be in the interval [0,1]. If the specified value is greater than
zero, all coverage events outside the primer binding region are reported. If, however, the
identified ratio of off-target events should exceed the allowed ratio, a warning is issued.
If allowed_other_binding_ratio is set to @, only on-target primer binding events are
reported. The setting of allowed_other_binding_ratio is ignored when designing
primers, which always uses a value of 0.

allowed_region_definition: The definition of the target binding regions that is used for eval-
uating the coverage. In case that allowed_region_definition is within, primers have
to lie within the allowed binding region. If allowed_region_definitionis any, primers
only have to overlap with the target binding region.

hexamer_coverage: If hexamer_coverage is set to "active", primers whose 3’ hexamer (the
last 6 bases) is fully complementary to the corresponding template region are automat-
ically considered to cover the template. If hexamer_coverage is set to inactive, hex-
amer complementarity does not guarantee template coverage.

primer_coverage

Computing the primer coverage involves identifying which templates are expected to be amplified
(covered) by which primers. The primer_coverage constraint determines the minimal and maxi-
mal number of coverage events per primer that are required. The computation of primer coverage
is governed by the coverage constraints postulated via CoverageConstraints and the constraint
options defined via ConstraintOptions.

primer_specificity

Primer specificity is automatically determined during the primer coverage computations but the
constraint is only checked when the primer_specificity field is available. The specificity of a
primer is defined as its ratio of on-target vs total coverage events (including off-target coverage).
Low-specificity primers should be excluded as they may not amplify the target region effectively.

primer_length

The length of a primer is defined by its number of bases. Typical primers have lengths between 18
and 22. Longer primers may guarantee higher specificities.



Settings 231

gc_clamp

The GC clamp refers to the presence of GCs at the 3* end of a primer. For the gc_clamp constraint,
we consider the number of 3’ terminal GCs. For example, the primer actgaaatttcaccg has a GC
clamp of length 3. The presence of a GC clamp is supposed to aid the stability of the polymerase
complex. At the same time, long GC clamps should be avoided.

no_runs

Homopolymer runs (e.g. the primer aaaaa has a run of 5 A’s) may lead to secondary structure
formation and unspecific binding and should therefore be avoided.

no_repeats

Dinucleotide repeats (e.g. the primer tatata has 3 TA repeats) should be avoided for the same reason
a long homopolymer runs.

self_dimerization

Self dimerization refers to a primer that binds to itself rather than to one of the templates. Primers
exhibiting self dimers should be avoided as they may prevent the primer from amplifying the tem-
plates. Therefore primers with small free energies of dimerization should be avoided.

melting_temp_range

The melting temperature is the temperature at which 50 are in duplex with templates and 50 Hence,
primers exhibiting high melting temperatures have high affinities to the templates, while primers
with small melting temperatures have small affinities. The melting temperatures of the primers
determine the annealing temperature of the PCR, which is why the melting temperatures of the
primers should not deviate too much (see melting_temp_diff).

melting_temp_diff

The differences between the melting temperatures of primers in a set of primers should not deviate
too much as the annealing temperaturte of a PCR should be based on the smallest melting tem-
perature of a primer in the set. If there are other primers in the set exhibiting considerably higher
melting temperatures, these primers may bind inspecifically due to the low annealing temperature.

cross_dimerization

When two different primers bind to each each other rather than to the templates, this is called cross
dimerization. Cross dimerization should be prevent at all costs because such primers cannot effec-
tively amplify their target templates. Cross dimerizing primers can be excluding primers exhibiting
small free energies of cross dimerization.

secondary_structure

When a primer exhibits secondary structure, this may prevent it from binding to the templates. To
prevent this, primers with low free energies of secondary structure formation can be excluded.



232 Settings

Note
The following external programs are required for constraint computations:

MELTING (http://www.ebi.ac.uk/biomodels/tools/melting/): Thermodynamic computations (op-
tional) for determining melting temperatures for the constraints melting_temp_diff and
melting_temp_range

OligoArrayAux (http://unafold.rna.albany.edu/OligoArrayAux.php): Thermodynamic compu-
tations used for computing self_dimerization and cross_dimerization. Also required
for computing primer_coverage when a constraint based on the free energy of annealing is
active.

ViennaRNA (http://www.tbi.univie.ac.at/RNA/): Secondary structure predictions used for the con-
straint secondary_structure

The following external programs are required for computing the coverage constraints:

OligoArrayAux (http://unafold.rna.albany.edu/OligoArrayAux.php): Thermodynamic compu-
tations used for computing the coverage constraints annealing_DeltaG, primer_efficiency,
and coverage_model

See Also

read_settings for reading settings from XML files, write_settings for storing settings as XML
files, constraints for accessing constraints, constraintLimits for accessing constraint bound-
aries, cvg_constraints for accessing coverage constraints, conOptions for accessing constraint
options, PCR for accessing the PCR conditions.

Examples

# Initializing a new 'ConstraintSettings' object:

constraint.settings <- new("ConstraintSettings")

# Retrieving the constraint settings from a 'DesignSettings' object:

data(Ippolito) # loads a 'DesignSettings' object into 'settings'

constraints(settings)

# Modifying the constraint settings:

constraints(settings)$no_runs["max"] <- 10

constraints(settings) <- constraints(settings)[names(constraints(settings)) != "gc_clamp"]

# Initialize a new 'CoverageConstraints' object:

cvg.constraints <- new("”CoverageConstraints”)

# Retrieving the coverage constraints from a 'DesignSettings' object:
data(Ippolito) # loads a 'DesignSettings' object into 'settings'
cvg_constraints(settings)

# Modifying the coverage constraints
cvg_constraints(settings)$primer_efficiency[”"min"] <- 0.001

# Initialize a new 'ConstraintOptions' object:

constraint.options <- new("”ConstraintOptions")

# Retrieve the constraint options from a 'DesignSettings' object:
data(Ippolito) # loads a 'DesignSettings' object into 'settings'
conOptions(settings)

# Prevent off-target binding:
conOptions(settings)$allowed_other_binding_ratio <- @

# Initialize a new 'PCR_Conditions' object:
PCR.conditions <- new("PCR_Conditions")



Settings 233

# Retrieving the PCR conditions from a 'DesignSettings' object:
data(Ippolito) # loads a 'DesignSettings' object into 'settings'
PCR(settings)

# Modifying the PCR conditions:

PCR(settings)$use_tag_polymerase <- FALSE

# Load a settings object

filename <- system.file("extdata”, "settings”,
"C_Tagq_PCR_high_stringency.xml”, package = "openPrimeR")

settings <- read_settings(filename)

# Modify the constraints

constraints(settings)$gc_clamp["min"] <- @

# Modify the constraint limits for designing primers

constraintLimits(settings)$gc_clamp["max"] <- 6

# Modify the coverage constraints

cvg_constraints(settings)$primer_efficiency["min"] <- 0.001

# Modify the PCR conditions

PCR(settings)$Na_concentration <- 0.0001

# Modify the constraint options

conOptions(settings)$allowed_mismatches <- @

# Load some settings

data(Ippolito)

# View the active constraints
constraints(settings)

# Require a minimal GC clamp extent of @
constraints(settings)$gc_clamp["min"] <- @
# View available constraints

settings

# Load some settings

data(Ippolito)

# View all active coverage constraints

cvg_constraints(settings)

# Increase the maximal false positive rate to increase the sensitiviity of coverage predictions
cvg_constraints(settings)$coverage_model <- c("max" = 0.1)

# View available coverage constraints:

settings

# Load some settings

data(Ippolito)

# View the active constraint limits

constraintLimits(settings)

# Extend the GC relaxation limit
constraintLimits(settings)$gc_clamp <- c("min” = @, "max"” = 6)
# View available constraints

settings

# Load some settings

data(Ippolito)

# View the active PCR conditions

PCR(settings)

# Evaluate primers with a fixed annealing temperature
PCR(settings)$annealing_temperature <- 50 # celsius
# View available PCR conditions

settings



234 solve.ILP

# Load some settings

data(Ippolito)

# View the active constraint options
conOptions(settings)

# Prevent mismatch binding events
conOptions(settings)$allowed_mismatches <- @
# View available constraint options

settings

# Use two cores for parallel processing:
parallel_setup(2)

shannon.entropy Shannon Entropy

Description

Computation of Shannon entropy for an alignment.

Usage

shannon.entropy(ali)

Arguments

ali An alignment of primer sequences.

Value

The Shannon entropy for the alignment.

solve.ILP Solve an ILP

Description

Constructs and solves an ILP and outputs a list with the reuslts.

Usage

## S3 method for class 'ILP'
solve(
cur.D,
cur.G,
cur.settings,
cur.cvg.matrix,
time.limit,
required.cvg,
primer.df,
template.df



split_str_by_index

Arguments
cur.D Binary dimerization matrix.
cur.G Free energy matrix for cross-dimerization.

cur.settings Current DesignSettings object.
cur.cvg.matrix Binary coverage matrix.

time.limit Time limit for solving the ILP in seconds.

required.cvg  The target coverage of the designed primer set.

primer.df A Primers object.
template.df A Templates object.
deltaG.cutoff Cutoff for dimerization free energy.

deltaG.limit  Relaxation limit for free energy cutoff.

Value

List with ILP solution data.

235

split_str_by_index Split a sequence

Description

Splits a sequence at a specified positions

Usage

split_str_by_index(target, index)

Arguments

target The target string.

index The position for the split.
Value

List with splitted strings



236

store.filtering.sets

stats_plot_data Combination of Filtering Stats.

Description

Summarizes filtering/relaxation statistics for plotting.

Usage

stats_plot_data(stats, stats.relax)

Arguments
stats Statistics of the filtering procedure.
stats.relax Statistic of the relaxation procedure.
Value

A data frame combinin filtering/relaxation stats.

store.filtering.sets  Writes Filtering Data Sets to Disk.

Description

Writes Filtering Data Sets to Disk.

Usage

store.filtering.sets(
filtered.df,
excluded.df,
results.loc,
tag = "",
stat.df = NULL,
settings = NULL

Arguments

filtered.df A filtered Primers set.

excluded.df A set of Primers that were excluded.
results.loc The location where to store the data.
tag A tag for the output files.
stat.df Data frame with statistics of the filtering procedure.
settings A DesignSettings object.
Value

No return value, writes output to disk.



string.list.format 237

string.list.format Format a String List.

Description

Formats a string list, summarizing values with percentages.

Usage
string.list.format(values, order.mode = c("percentage”, "value"))
Arguments
values The string list to format.
order.mode How the result should be ordered. For "percentage", the strings are ordered by
their percentages, while for "value", the strings are ordered by their values.
Value

A formatted string with percentage annotations.

string.list.format.total
Format Strings

Description

Changes the representation of the comma-separated string input.

Usage

string.list.format.total(values)

Arguments

values A comma-separated string with values.

Value

A percentage-formatted representation of the input string.



238 subset.ILP

string.to.IQR Conversion of Comma-Separated String to IQR String

Description

Conversion of Comma-Separated String to IQR String

Usage

string.to.IQR(string.values)

Arguments

string.values A vector of comma-separated numeric strings.

Value

The IQR corresponding to the input string.

subset.ILP Subset ILP Constructor

Description

Constructs an ILP for selecting optimal primer subsets.

Usage

## S3 method for class 'ILP'
subset(primer.df, template.df, k)

Arguments

primer.df Primer data frame to be subsetted.
template.df Template data frame.

k Required number of primers to be selected.

Details

Here, "optimal" refers to a subset of a certain size that maximizes the coverage.

Value

An ILP for choosing the primer subset of size k with the largest coverage.



TemplatesFunctions 239

TemplatesFunctions Template Functionalities.

Description

adjust_binding_regions Adjusts the existing annotation of binding regions by specifying a new
binding interval relative to the existing binding region.

assign_binding_regions Assigns the primer target binding regions to a set of template sequences.
update_template_cvg Annotates the template coverage.

select_regions_by_conservation Computes Shannon entropy for the defined binding regions
and determines the most conserved regions.

Usage
update_template_cvg(template.df, primer.df, mode.directionality = NULL)

adjust_binding_regions(template.df, region.fw, region.rev)

assign_binding_regions(
template.df,
fw = NULL,
rev = NULL,
optimize.region = FALSE,
primer.length = 20,
gap.char = "-"

)

select_regions_by_conservation(
template.df,
gap.char = "-",
win.len = 30,
by.group = TRUE,
mode.directionality = c("both”, "fw"”, "rev")

Arguments

template.df An object of class Templates.
primer.df An object of class Primers containing primers with annotated coverage that are
to be used to update the template coverage in template.df.
mode.directionality
The directionality of primers/templates.

region.fw Interval of new binding regions relative to the forward binding region defined in
template.df.

region.rev Interval of new binding regions relative to the reverse binding region defined in
template.df

fw Binding regions for forward primers. Either a numeric interval indicating a uni-

form binding range relative to the template 5’ end or a path to a FASTA file
providing binding sequences for every template. If fw is missing, only rev is
considered.



240

TemplatesFunctions

rev Binding regions for reverse primers. Either a numeric interval indicating a uni-
form binding range relative to the template 3’ end or the path to a FASTA file
providing binding sequences for every template. If rev is missing, only fw is
considered.

optimize.region
If TRUE, the binding regions specified via fw and rev are adjusted such that
binding regions that may form secondary structures are avoided. This feature
requires ViennaRNA (see notes). If FALSE (the default), the input binding re-
gions are not modified.

primer.length A numeric scalar providing the probe length that is used for adjusting the primer
binding regions when optimize.region is TRUE.

gap.char The character in the input file representing gaps.

win.len The extent of the desired primer binding region. This should be smaller than the
allowed.region. The default is 30.

by.group Shall the determination of binding regions be stratified according to the groups
defined in template.df. By default, this is set to TRUE.

Details

When modifying binding regions with adjust_binding_regions, new binding intervals can be
specified via fw and rev for forward and reverse primers, respectively. The new regions should be
provided relative to the existing definition of binding regions in template.df. For specifying the
new binding regions, position @ refers to the first position after the end of the existing binding region.
Hence, negative positions relate to regions within the existing binding region, while non-negative
values relate to positions outside the defined binding region.

Binding regions are defined using assign_binding_regions, where the arguments fw and rev
provide data describing the binding regions of the forward and reverse primers, respectively. To
specify binding regions for each template individually, fw and rev should provide the paths to
FASTA files. The headers of these FASTA file should match the headers of the loaded template.df
and the sequences in the files specified by fw and rev should indicate the target binding regions.

To specify uniform binding regions, fw and rev should be numeric intervals indicating the allowed
binding range for primers in the templates. Setting the forward interval to (1,30) indicates that
the first 30 bases should be used for forward primers and specifying the reverse interval to (1,30)
indicates that the last 30 bases should be used for reverse primer binding.

If optimize.region is TRUE, the input binding region is adjusted such that regions forming sec-
ondary structures are avoided.

Value

update_template_cvg returns an object of class Templates with updated coverage columns.
adjust_binding_regions returns a Templates object with updated binding regions.

assign_binding_regions returns an object of class Templates with newly assigned binding re-
gions.

select_regions_by_conservation returns a Templates object with adjusted binding regions.
The attribute entropies gives a data frame with positional entropies and the attribute alignments
gives the alignments of the templates.



ungap_sequence 241

Note

assign_binding_regions requires the program ViennaRNA (https://www.tbi.univie.ac.at/RNA/)
for adjusting the binding regions when optimize.region is set to TRUE.

select_regions_by_conservation requires the MAFFT software for multiple alignments (http://mafft.cbrc.jp/alignme

Examples

# Annotate the coverage of the templates

data(Ippolito)

template.df <- update_template_cvg(template.df, primer.df)

data(Ippolito)

# Extend the binding region by one position

relative.interval <- c(-max(template.df$Allowed_End_fw), @)

template.df.adj <- adjust_binding_regions(template.df, relative.interval)

# compare old and new annotations:

head(cbind(template.df$Allowed_Start_fw, template.df$Allowed_End_fw))

head(cbind(template.df.adj$Allowed_Start_fw, template.df.adj$Allowed_End_fw))

data(Ippolito)

# Assignment of individual binding regions

1l.fasta.file <- system.file("extdata”, "IMGT_data", "templates”,
"Homo_sapiens_IGH_functional_leader.fasta"”, package = "openPrimeR")

template.df.individual <- assign_binding_regions(template.df, 1.fasta.file, NULL)

# Assign the first/last 30 bases as forward/reverse binding regions

template.df.uniform <- assign_binding_regions(template.df, c(1,30), c(1,30))

# Optimization of binding regions (requires ViennaRNA)

## Not run: template.df.opti <- assign_binding_regions(template.df, c(1,30), c(1,30),

optimize.region = TRUE, primer.length = 20)

## End(Not run)

data(Ippolito)

new.template.df <- select_regions_by_conservation(template.df)

ungap_sequence Ungapping of Sequences.

Description

Removes gaps from the input sequences.

Usage
ungap_sequence(seqs, gap.char = "-")
Arguments
seqgs The input character vector with sequences
gap.char The character used to represent gaps.
Value

segs with gaps removed.



242 update.binding.ranges.by.conservation

unify.leaders Unification of Leaders

Description

Unifies individual binding regions for forward and reverse primers.

Usage

unify.leaders(l.seq.fw, l.seq.rev, lex.seq, gap.char)

Arguments
1.seq.fw Data frame with binding information for forward primers.
1.seq.rev Data frame with binding information for reverse primers.
lex.seq Template data frame.
gap.char The character for indicating alignment gaps.

Value

Template data frame with annotated binding regions.

update.binding.ranges.by.conservation
Updates Binding Region in the Alignment by conservation.

Description

Updates Binding Region in the Alignment by conservation.

Usage

## S3 method for class 'binding.ranges.by.conservation'
update(

template.df,

bins,

entropy.df,

gap.char = "-",

win.len = 30,

direction = c("fw", "rev")

Arguments

template.df A Templates object.

bins A list with DNAbin alignments, one for each group of template sequences.
entropy.df A data frame with entropy information.

gap.char The gap character for alignments.

win.len The desired length of the new binding region.

direction The direction for which the binding range shall be adjusted.



update.binding.regions 243

Value

A Templates object with modified binding regions.

update.binding.regions
Update of Binding Regions.

Description
Updates the binding regions in the templates by providing new intervals for forward and reverse
binding regions.
Usage
## S3 method for class 'binding.regions'
update(template.df, opti.regions)
Arguments

template.df An object of class Templates.
opti.regions  List with new binding intervals. The list can contain the components fw and rev

providing numeric vectors of length 2 providing the start and end of the binding
regions in the templates, for forward and reverse binding regions, respectively.

Value

A Templates object with updated binding regions.

update.constraint.values
Update of Primer Constraints.

Description

Updates the input primer data frame with the computed constraint values.

Usage
## S3 method for class 'constraint.values'
update(constraint.df, constraint.values)
Arguments

constraint.df Primer data frame.
constraint.values

Data frame with computed constraint values.

Value

A primer data frame with updated columns.



244 update.individual.binding.region

update.cvg.data Update Coverage Information.

Description

Updates the coverage-related columns in the input primer data frame. Does not modify the entries
of template-specific coverage columns such as primer efficiency (comma-separated values).

Usage

## S3 method for class 'cvg.data'
update(
filtered.df,
sel,
template.df,
mode = c("on_target”, "off_target”),
active.constraints

)
Arguments
filtered.df Primer data frame.
sel List with indices of covered templates to be retained, one list with template

indices to keep per primer.
template.df Template data frame.

mode Either on_target to filter on-target binding events or of f_target to filter off-
target binding events. The corresponding sel argument should be different.

active.constraints
The active coverage constraints.

Details

Removes all coverage events of templates whose index is not in sel.

Value

A primer data frame with updated coverage information.

update.individual.binding.region
Adjustment of Existing Binding Regions for one Direction.

Description

Adjusts the existing annotation of binding regions by specifying an interval relative to the existing
binding region.



update.opti.results 245

Usage

## S3 method for class 'individual.binding.region'
update(min, max, template.df, mode.directionality)

Arguments
min Position where binding should start.
max End position of binding.

mode.directionality
Directionality of primers.

Template data frame.

Details

Position @ indicates the first position after the existing binding region. Hence, negative positions
adjust the binding region towards the existing binding regions and non-negative positionis extend
the existing binding region definition aways from the existing target region.

Value

Template data frame with updated binding regions.

update.opti.results Augmentation of Optimized Primer Data.

Description

Adds melting_temp_diff and cross_dimerization info to optimized sets.

Usage

## S3 method for class 'opti.results'
update(primer.df, settings, template.df)

Arguments
primer.df A primer data frame.
settings A DesignSettings object.
Value

An updated primer data frame.



246 update_primer_cvg

update_primer_binding_regions
Update of Primer Binding Regions.

Description
Updates the relative primer binding sites in the templates when the template binding regions have
changed since the last coverage computation.

Usage

update_primer_binding_regions(primer.df, template.df, old.template.df)

Arguments
primer.df A Primers data frame.
template.df Templates with the new binding regions.

old.template.df
Templates with the old binding regions.

Value

A Primers object with updated relative binding positions.

update_primer_cvg Updates the Primer Coverage.

Description

Updates the most important columns in a primer data frame according to the selected coverage def-
inition. Only coverage events with less or equal than the allowed number of mismatches according
to the selected coverage definition will be retained.

Usage

update_primer_cvg(
primer.df,
template.df,
allowed.mismatches,

cvg.definition = c("constrained”, "basic")
)
Arguments
primer.df A Primers object.

template.df A Templates object.
allowed.mismatches
A numeric giving the maximal number of allowed.mismatches.

cvg.definition The definition of coverage to be used, either "constrained" or "basic".



validate_primers

Value

A primer data frame with modified coverage information.

247

validate_primers Validates a Primers Object.

Description

Checks whether a Primers object is valid or not.

Usage

validate_primers(object)

Arguments

object An input data frame to be checked for being a primer data frame.

Value

TRUE, if the object is valid, FALSE otherwise.

validate_templates Validates a Template Object.

Description

Checks whether a Templates object is valid or not.

Usage

validate_templates(object)

Arguments

object An input data frame to be checked for being a template data frame.

Value

TRUE, if the object is valid, FALSE otherwise.



248 view.dimer.df

view.cvg.primers View the Evaluated Primers.

Description

Creates a formatted primers table.

Usage

view.cvg.primers(
primer.df,
template.df,
mode.directionality,

view.cvg.individual = c("active”, "inactive"),
for.shiny = TRUE
)
Arguments
primer.df A Primers object.

template.df A Templates object.
mode.directionality
The direction of the primers.
view.cvg.individual
Whether information on individual coverage events should be retrained.

for.shiny Whether the table is intended for Shiny (HTML) or not.

Value

A formatted primer table.

view.dimer.df Formatted dimerization data.

Description

Format a dimerization data frame for frontend output.

Usage

view.dimer.df (dimers, type = c("Self"”, "Cross"))

Arguments
dimers Dimerization data frame.
type Type of dimerization.
Value

A data frame whose columns are formatted in a user-readable way.



view.input.primers

249

view.input.primers View the Input Primers.

Description

Creates a formatted primers table.

Usage

view.input.primers(primer.df, mode.directionality, for.shiny = TRUE)

Arguments

primer.df A Primers object.

mode.directionality
The direction of the primers.

for.shiny Whether output is intended for Shiny.

Value

A formatted primer table.

view.primers View the Evaluated Primers.

Description

Creates a formatted primers table.

Usage

view.primers(primer.df, template.df)

Arguments

primer.df A Primers object.

template.df A Templates object.

Value

A formatted primer table.



250 visualize.all.results

view.primers.report View the Evaluated Primers in the Report.

Description

Creates a formatted primers table for the report PDF.

Usage

view.primers.report(primer.df, template.df)

Arguments

primer.df A Primers object.

template.df A Templates object.

Value

A formatted primer table.

visualize.all.results Visualization of Design Results.

Description

Visualizes all results from designing primers.

Usage

visualize.all.results(
sample,
filtering.results.loc,
opti.results.loc,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
settings,
mode.directionality,
used.settings,
required.cvg



visualize.filtering.results 251

Arguments

sample Identifier of the design run
filtering.results.loc

Location of filtering results.
opti.results.loc

Location of optimization results.

primer_conc Primer concentration.
na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.
k_salt_conc Potassium ion concentration
tris_salt_conc Tris ion concentration.

settings The DesignSettings object.
mode.directionality
Strand direction for which primers were designed.

used.settings A list with the used settings for optimization (fields "fw" and "rev").
required.cvg  The required coverage.
template_conc  Template concentration.

Value

Werites visualizations to files in.

visualize.filtering.results
Visualization of Filtering Results.

Description

Visualizes the filtering results.

Usage

visualize.filtering.results(
sample,
results.loc,
mode.directionality,
excluded.df,
template.df,
filtered.df,
filtered.stats,
stats.relax,
primer_conc,
na_salt_conc,
mg_salt_conc,
k_salt_conc,
tris_salt_conc,
settings,
required.cvg



252 were.constraints.relaxed

Arguments
sample Primer design run identifier.
results.loc Location where the filtering results are stored.

mode.directionality
Design direction.

excluded.df Data frame with excluded primers.

template.df Template data frame.

filtered.df Primer data frame containing the primers that passed the constraints.
stats.relax Filtering statistics after relaxation.
primer_conc Primer concentration.

na_salt_conc Sodium ion concentration.
mg_salt_conc Magensium ion concentration.
k_salt_conc Potassium ion concentration.
tris_salt_conc Tris ion concentration.
settings A DesignSettings object.
required.cvg The required coverage.

template_conc Template concentration.

Value

Write-out of filtering results.

were.constraints.relaxed
Check for Relaxation

Description

Determines whether constraints where relaxed or not.

Usage

were.constraints.relaxed(used.constraints, input.constraints)

Arguments

used.constraints

The constraints that were used during the optimization.
input.constraints

The user-specified constraints.

Value

If input.constraints was relaxed TRUE is returned, otherwise FALSE.



write.out.primer.info 253

write.out.primer.info Write Out Optimization Data

Description

Writes out all data relating to the optimization of primers.

Usage

write.out.primer.info(
opti.results.loc,
optimal.primers.data,
mode.directionality,
settings,
sample.name,
template.df,
max .degen

Arguments

opti.results.loc

Folder where optimization data reside.
optimal.primers.data

List with optimization results.
mode.directionality

Direction of primers.

settings Settings used in the optimization procedure. List containing fw, rev settings.
sample.name Name of template sample.
template.df Template data frame.

max.degen Maximal degeneracy of primers.

Value

Write-out of primer information to opti.results.loc.

xmlToChar Conversion of XML to Character.

Description

Converts an XML object to a character string.

Usage
xmlToChar (xml)



254 xmlToChar

Arguments

xml An xml object to be converted to character.

Value

A character vector.



Index

* Creation
compute.Tm. sets, 65
* Cross-dimerization
compute.Tm. sets, 65
+* FALSE
check.init.primer.length, 33
+x Melting
compute.Tm.sets, 65
* Sets.
compute.Tm. sets, 65
* Settings
Settings, 225
x Stratifies
compute.Tm. sets, 65
+ Temperature
compute.Tm.sets, 65
* according
compute.Tm. sets, 65
+ and
compute.Tm. sets, 65
*a
compute.Tm. sets, 65
* between
compute.Tm.sets, 65
* case
compute.Tm. sets, 65
x checked
compute.Tm. sets, 65
* checks
compute.Tm. sets, 65
* constraints.
compute.Tm. sets, 65
+ datasets
Data, 86
+ data
compute.Tm. sets, 65
x forward
compute.Tm.sets, 65
* frames
compute.Tm. sets, 65
* here,
compute.Tm. sets, 65
* internal

255

AbstractConstraintSettings-class,
10
add.coverage.constraints, 11
add.dimerization.constraints, 11
add.uniform.leaders.to.seqgs, 12
adjust.ORF.start, 12
align.segs, 13
align.structures, 13
ancestor_of, 16
annealing.temp.rule.of.thumb, 17
annotate.binding.events, 17
apply.constraint, 18
apply.constraint.list, 18
assign_binding_regions.character,
19
assign_binding_regions.numeric, 20
augment.primer.cvg, 21
batchify, 21
batchify.simple, 22
batchify. temp, 22
build.gain.df, 23
build.ILP.df, 23
build.tool.overview, 24
build_leader_df, 25
call.melt, 25
call.melt.single, 26
cascaded.filter, 27
cascaded.filter.quick, 28
cbind.Primers, 29
cbind.Templates, 29
cbind2,Primers,ANY-method, 30
cbind2,Templates, ANY-method, 31
check.3prime.hexamers, 32
check.3prime.mismatches, 32
check.init.primer.length, 33
check.init.primer.length.single,
34
check.mutations, 34
check.template.constraints, 35
check.tool.function, 36
check.tool.installation, 36
check_constraint_settings_validity,
38



256

check_constraints_comparison, 37
check_correspondence, 38
check_cvg_constraints, 39
check_interval, 40
check_limit_value, 41
check_limits, 40
check_names, 41
check_report_deps, 42
check_restriction_sites_single, 42
check_setting, 43
check_settings_validity, 43
combine.binding.events, 44
combine.strings, 44
comp, 45
compare.constraints, 45
comparison.cvg, 46
comparison.stats.raw, 46
complement.sequence, 47
compute.all.cross.dimers, 47
compute.all.cross.dimers. frontend,
48
compute.all.cross.dimers.unfiltered,
49
compute.all.primer.subsets.ILP, 50
compute.all.self.dimers, 50
compute.all.self.dimers.frontend,
51
compute.basic.details, 52
compute.constraints, 53
compute.covered.Ta, 54
compute.dimer.matrix, 55
compute.efficiency, 55
compute.empiric.melting.temp, 56
compute.gc.ratio, 57
compute.melting.temps, 57
compute.melting. temps. thermo, 58
compute.mismatch.table, 59
compute.primer.efficiencies, 59
compute.secondary.structures, 60
compute.sodium.equivalent.conc, 61
compute.structure.vienna, 62
compute.Ta, 63
compute.template.secondary.structures,
64
compute.Tm.baldino, 64
compute.Tm. sets, 65
compute.unique.covered.idx, 67
compute_annealing_temp, 67
con_select, 73
condition, 68
consecutive.GC.count, 69
constraints.to.df, 69

INDEX

constraints.xml.format, 70
constraints_to_unit, 70
convert.from.iupac, 71
convert.PCR.units, 71
convert.temperature, 72
convert.to.iupac, 72
copy.melt.config, 73
covered.primers.to.ID.string, 73
covered.segs.to.ID.string, 74
covered.segs.to.idx, 74
create.constraint. table, 75
create.constraint.XML, 75
create.cvg.text, 76
create.G.matrix, 76
create.initial.primer.set, 77
create.k.mers, 78
create.kmer, 78
create.options.table, 79
create.other.table, 79
create.PCR. table, 80
create.primer.ranges, 80
create.primers.naive, 81
create.primers.tree, 82
create.Tm.brackets, 83
create.uniform.leaders, 83
create_fulfilled_counts, 84
create_report,list,list-method, 84
create_report,Primers,Templates-method,
85
design_primers.single, 87
detect.gap.columns, 89
dimerization.table, 89
dir.copy, 90
disambiguate.primers, 90
estimate.cvg, 91
estimate.cvg.dir, 91
eval.comparison.primers, 92
eval.constraints, 92
evaluate.basic.cvg, 93
evaluate.constrained.cvg, 94
evaluate.cvg, 94
evaluate.diff.primer.cvg, 95
evaluate.fw.rev.combinations, 96
evaluate.GC.clamp, 96
evaluate.primer.cvg, 97
evaluate.template.constraints, 97
exclude.cols, 98
filter.by.constraints, 98
filter.comparison.primers, 99
filter.primer.candidates, 100
filter.primer.set.opti, 100
filter_primers.by.Tm.delta, 102



INDEX 257

filterLimits, 101 get_template_cvg_data, 130
filters, 102 hclust.tree, 131
fix_constraint_boundaries, 103 highlight.mismatch, 131
format.constraints, 103 html.format.structure, 132
format.seq.ali, 104 I.cvg, 132
format.segs.tex, 104 ILPConstrained, 133
get.3prime.mismatch.pos, 105 initialize.primer.set, 133
get.analysis.mode, 105 insert_str, 139
get.consensus.seq, 106 interleave, 140
get.constraint.value.idx, 106 J.cvg, 140
get.constraint.values, 107 joule.to.cal, 141
get.coverage.matrix, 107 listToXml, 141
get.covered. templates, 108 merge.ambig.primers, 142
get.cross.dimers, 108 merge.binding.information, 142
get.cvg.constraint.settings, 109 merge.primer.entries, 143
get.cvg.gain, 110 merge.primer.entries.single, 144
get.delta.G, 110 merge.select, 144
get.dimer.data, 111 merge.template.decisions, 145
get.duplex.energies, 111 mismatch.info, 145
get.eval.cols, 112 mismatch.mutation.check, 146
get.extension, 112 mismatch.string.to.list, 146
get.ILP.vars, 113 modify.col.rep, 147
get.init.file.name, 113 my.disambiguate, 147
get.leader.exon.regions, 114 my.error, 148
get.leader.exon.regions.single, my.read. fasta, 148

115 my.warning, 149
get.matches, 115 my_ggsave, 149
get.melting. temp.diff, 116 my_rbind, 150
get.merge.idx, 116 nbr.of.repeats, 150
get.missing.df, 117 nbr.of.runs, 151
get.ORFs, 117 opti, 151
get.other.constraint.settings, 118 optiLimits, 152
get.PCR.settings, 118 optimize.ILP, 152
get.plot.height, 119 optimize.primer.cvg, 154
get.primer.binding.idx, 120 optimize.template.binding.regions.dir,
get.primer.identifier.string, 120 155
get.redundant.cols, 121 optimize.template.binding.regions.single,
get.relative.binding.pos, 122 155
get.run.names, 122 pair_primers, 158
get.self.dimers, 123 parse.constraints, 159
get.sets.from.decisions, 123 parse.header, 159
get.static.tool.info, 124 parse.IMGT.gene.groups, 160
get.tree.seqgs, 124 parse.oligo.results, 160
get.unlist.idx, 125 plot.all.cvg.info, 161
get_constraint_deviation_data, 125 plot.all.filtering.stats, 162
get_covered.vanilla, 126 plot.Delta.DeltaG, 162
get_cvg_stats,list-method, 126 plot.dimer.dist, 163
get_cvg_stats,Primers-method, 127 plot.excluded.hist, 163
get_max_set_coverage, 128 plot.filtering.runtime, 164
get_plot_primer_data, 129 plot.filtering.stats, 164
get_primer_cvg_mm_plot_df, 129 plot.filtering.stats.cvg, 165

get_report_fname, 130 plot_constraint,list-method, 170



258

plot_constraint,Primers-method,
171
plot_constraint.histogram, 172
plot_constraint.histogram.nbr.mismatches
173

INDEX

primer.coverage.for.groups, 190
primer.set.parameter.stats, 191
rbind.primer.data, 198
rbind.Primers, 199
rbind.Templates, 199

plot_constraint.histogram.primer.efficienciesread.leaders, 200

173
plot_constraint_deviation,list-method,
174
plot_constraint_deviation,Primers-method,
174
plot_constraint_fulfillment,list-method,
175
plot_constraint_fulfillment,Primers-method,
176
plot_cvg_constraints,list-method,
176
plot_cvg_constraints,Primers-method,
177
plot_primer.comparison.box, 177
plot_primer.comparison.mismatches,
178

read.secondary.structure.raw, 200
read. sequences, 201
read_primers.internal, 201
read_primers_csv, 202
read_primers_multiple, 202
read_templates_csv, 203
read_templates_fasta, 203
read_templates_multiple, 204
read_templates_single, 205
relax.constraints, 206
relax.opti.constraints, 207
remove.redundant.cols, 208
remove.seqs.by.keyword, 208
rename.constraint.options, 209
render_report, 209
reorder.primer.table, 210

plot_primer_binding_regions,list,list-method, restriction_ali, 210

179

restriction_hits, 211

plot_primer_binding_regions,Primers,Templatesrasthodtion_match, 211

180
plot_primer_cvg,list,list-method,
180
plot_primer_cvg,Primers,Templates-method,
181
plot_primer_cvg_mismatches, 181
plot_primer_cvg_unstratified, 182
plot_template_cvg,list,list-method,
183
plot_template_cvg,Primers, Templates-method,
183
plot_template_cvg_comparison_mismatch,
184
plot_template_cvg_comparison_unstratified,
184
plot_template_cvg_mismatches, 185
plot_template_cvg_unstratified,
185
plot_template_structure, 186
pos.to.range, 186
predict_coverage, 187
prefilter.primer.candidates, 187
prepare.constraint.plot, 188
prepare.dimer.seqs, 188
prepare_mm_plot, 189
prepare_template_cvg_mm_data, 189
primer.binding.regions.data, 190

retrieve.leader.region, 212
rev.comp.sequence, 212
rev.sequence, 213
sanitize_path, 214
score.conservation, 214
select.allowed.binding.events, 217
select.best.ILP, 217
select.best.opti.result, 218
select.best.primer.idx, 218
select.best.primer.set, 219
select.binding.events, 220
select.constraints, 220
select.min.cross.idx, 221
select.primer.region.by.conservation,
221
select.primers.by.cvg, 222
select_best_binding, 223
selenium.installed, 224
set.new.constraint.value, 224
set.new.limits, 225
shannon.entropy, 234
solve.ILP, 234
split_str_by_index, 235
stats_plot_data, 236
store.filtering.sets, 236
string.list.format, 237
string.list.format.total, 237



INDEX

string.to.IQR, 238
subset.ILP, 238
ungap_sequence, 241
unify.leaders, 242
update.binding.ranges.by.conservation,
242
update.binding.regions, 243
update.constraint.values, 243
update.cvg.data, 244
update.individual.binding.region
244

update.opti.results, 245
update_primer_binding_regions, 246
update_primer_cvg, 246
validate_primers, 247
validate_templates, 247
view.cvg.primers, 248
view.dimer.df, 248
view.input.primers, 249
view.primers, 249
view.primers.report, 250
visualize.all.results, 250
visualize.filtering.results, 251
were.constraints.relaxed, 252
write.out.primer.info, 253
xmlToChar, 253

* in
compute.Tm. sets, 65

* IS
compute.Tm. sets, 65

* list(primers.fw)
compute.Tm.sets, 65

* list
compute.Tm.sets, 65

* melting
compute.Tm. sets, 65

x of
compute.Tm.sets, 65

* optimization
compute.Tm. sets, 65

* otherwise.
check.init.primer.length, 33

* primers
compute.Tm.sets, 65

* primer
compute.Tm.sets, 65

* provided.
compute.Tm. sets, 65

* reverse
compute.Tm.sets, 65

* run
compute.Tm. sets, 65

259

* second
compute.Tm. sets, 65
* settings functions
Settings, 225
+ temperature-dependent
compute.Tm.sets, 65
* temperatures
compute.Tm. sets, 65
* templates
Plots, 165
* their
compute.Tm.sets, 65
* this
compute.Tm. sets, 65
* 1o
compute.Tm. sets, 65
* with
compute.Tm.sets, 65
[,Primers,ANY-method
(cbind2,Primers, ANY-method), 30
[,Primers-method
(cbind2,Primers,ANY-method), 30
[,Templates, ANY-method
(cbind2,Templates,ANY-method),
31
[, Templates-method
(cbind2,Templates,ANY-method),
31
$<-,Primers-method
(cbind2,Primers, ANY-method), 30
$<-,Templates-method
(cbind2,Templates,ANY-method),
31

AbstractConstraintSettings
(AbstractConstraintSettings-class),
10
AbstractConstraintSettings-class, 10
add.coverage.constraints, 11
add.dimerization.constraints, 11
add.uniform.leaders.to.seqgs, 12
adjust.ORF.start, 12
adjust_binding_regions
(TemplatesFunctions), 239
align.segs, 13
align.structures, 13
AnalysisStats, 14
ancestor_of, 16
annealing.temp.rule.of. thumb, 17
annotate.binding.events, 17
apply.constraint, 18
apply.constraint.list, 18
assign_binding_regions, 137



260

assign_binding_regions
(TemplatesFunctions), 239
assign_binding_regions.character, 19
assign_binding_regions.numeric, 20
augment.primer.cvg, 21

batchify, 21
batchify.simple, 22
batchify. temp, 22
build.gain.df, 23
build.ILP.df, 23
build.tool.overview, 24
build_leader_df, 25

CalculateEfficiencyPCR, 56, 60
call.melt, 25
call.melt.single, 26
cascaded. filter, 27
cascaded.filter.quick, 28
cbind.Primers, 29
cbind.Templates, 29
cbind2,Primers, ANY-method, 30
cbind2,Templates, ANY-method, 31
check.3prime.hexamers, 32
check.3prime.mismatches, 32
check.init.primer.length, 33
check.init.primer.length.single, 34
check.mutations, 34
check.template.constraints, 35
check. tool. function, 36
check.tool.installation, 36
check_constraint_settings_validity, 38
check_constraints, 9, 42, 137, 138
check_constraints (PrimerEval), 195
check_constraints_comparison, 37
check_correspondence, 38
check_cvg_constraints, 39
check_interval, 40
check_limit_value, 41
check_limits, 40
check_names, 41
check_report_deps, 42
check_restriction_sites (PrimerEval),
195
check_restriction_sites_single, 42
check_setting, 43
check_settings_validity, 43
classify_design_problem (PrimerDesign),
191
combine.binding.events, 44
combine.strings, 44
comp, 45
compare.constraints, 45

INDEX

comparison.cvg, 46
comparison.stats.raw, 46
complement.sequence, 47
compute.all.cross.dimers, 47
compute.all.cross.dimers.frontend, 48
compute.all.cross.dimers.unfiltered,
49
compute.all.primer.subsets.ILP, 50
compute.all.self.dimers, 50
compute.all.self.dimers.frontend, 51
compute.basic.details, 52
compute.constraints, 53
compute.covered.Ta, 54
compute.dimer.matrix, 55
compute.efficiency, 55
compute.empiric.melting. temp, 56
compute.gc.ratio, 57
compute.melting.temps, 57
compute.melting. temps. thermo, 58
compute.mismatch. table, 59
compute.primer.efficiencies, 59
compute.secondary.structures, 60
compute.sodium.equivalent.conc, 61
compute.structure.vienna, 62
compute.Ta, 63
compute.template.secondary.structures,
64
compute.Tm.baldino, 64
compute.Tm.sets, 65
compute.unique.covered.idx, 67
compute_annealing_temp, 67
con_select, 73
condition, 68
conOptions, 9, 232
conOptions (Settings), 225
conOptions,DesignSettings-method
(Settings), 225
conOptions<- (Settings), 225
conOptions<-,DesignSettings-method
(Settings), 225
consecutive.GC.count, 69
constraintLimits, 9, 232
constraintLimits (Settings), 225
constraintLimits,DesignSettings-method
(Settings), 225
constraintLimits<- (Settings), 225
constraintLimits<-,DesignSettings-method
(Settings), 225
ConstraintOptions, 227, 230
ConstraintOptions (Settings), 225
ConstraintOptions-class (Settings), 225
constraints, 9, 232



INDEX 261

constraints (Settings), 225 cvg_constraints,DesignSettings-method

constraints,AbstractConstraintSettings-method

(Settings), 225
constraints,DesignSettings-method

(Settings), 225
constraints.to.df, 69
constraints.xml.format, 70
constraints<- (Settings), 225

(Settings), 225
cvg_constraints<- (Settings), 225

cvg_constraints<-,DesignSettings-method

(Settings), 225

Data, 86
design_primers, 9, 225

constraints<-,AbstractConstraintSettings,listdfgisaderimers (PrimerDesign), 191

(Settings), 225

constraints<-,DesignSettings,list-method

(Settings), 225
constraints_to_unit, 70
ConstraintSettings, 197, 227-229
ConstraintSettings (Settings), 225

ConstraintSettings-class (Settings), 225

convert.from. iupac, 71
convert.PCR.units, 71
convert.temperature, 72
convert.to.iupac, 72
copy.melt.config, 73
CoverageConstraints, 156, 227, 228, 230
CoverageConstraints (Settings), 225
CoverageConstraints-class (Settings),
225
covered.primers.to.ID.string, 73
covered.segs.to.ID.string, 74
covered.seqs.to.idx, 74
create.constraint. table, 75
create.constraint.XML, 75
create.cvg.text, 76
create.G.matrix, 76
create.initial.primer.set, 77
create.k.mers, 78
create.kmer, 78
create.options.table, 79
create.other.table, 79
create.PCR. table, 80
create.primer.ranges, 80
create.primers.naive, 81
create.primers.tree, 82
create.Tm.brackets, 83
create.uniform.leaders, 83
create_coverage_x1s (Output), 156
create_fulfilled_counts, 84
create_report, 9
create_report (Output), 156
create_report,list,list-method, 84

create_report,Primers, Templates-method,

85
cvg_constraints, 9, 232
cvg_constraints (Settings), 225

design_primers.single, 87
DesignSettings, 9, 39, 194, 198
DesignSettings (Settings), 225
DesignSettings-class (Settings), 225
detect.gap.columns, 89
dimerization.table, 89

dir.copy, 90
disambiguate.primers, 90

estimate.cvg, 91
estimate.cvg.dir, 91
eval.comparison.primers, 92
eval.constraints, 92
evaluate.basic.cvg, 93
evaluate.constrained.cvg, 94
evaluate.cvg, 94
evaluate.diff.primer.cvg, 95
evaluate.fw.rev.combinations, 96
evaluate.GC.clamp, 96
evaluate.primer.cvg, 97
evaluate.template.constraints, 97
exclude.cols, 98

feature.matrix (Data), 86
filter.by.constraints, 98
filter.comparison.primers, 99
filter.primer.candidates, 100
filter.primer.set.opti, 100
filter_primers, 225
filter_primers (PrimerEval), 195
filter_primers.by.Tm.delta, 102
filterLimits, 101
filterLimits,DesignSettings-method
(filterLimits), 101
filters, 102
filters,DesignSettings-method
(filters), 102
fix_constraint_boundaries, 103
format.constraints, 103
format.seq.ali, 104
format.segs. tex, 104

get.3prime.mismatch.pos, 105
get.analysis.mode, 105



262

get.consensus.seq, 106
get.constraint.value.idx, 106
get.constraint.values, 107
get.coverage.matrix, 107
get.covered. templates, 108
get.cross.dimers, 108
get.cvg.constraint.settings, 109
get.cvg.gain, 110

get.delta.G, 110
get.dimer.data, 111
get.duplex.energies, 111
get.eval.cols, 112
get.extension, 112
get.ILP.vars, 113
get.init.file.name, 113
get.leader.exon.regions, 114
get.leader.exon.regions.single, 115
get.matches, 115
get.melting.temp.diff, 116
get.merge.idx, 116
get.missing.df, 117

get.ORFs, 117
get.other.constraint.settings, 118
get.PCR.settings, 118
get.plot.height, 119
get.primer.binding.idx, 120
get.primer.identifier.string, 120
get.redundant.cols, 121
get.relative.binding.pos, 122
get.run.names, 122
get.self.dimers, 123
get.sets.from.decisions, 123
get.static.tool.info, 124
get.tree.seqgs, 124
get.unlist.idx, 125
get_comparison_table (AnalysisStats), 14
get_constraint_deviation_data, 125
get_covered.vanilla, 126
get_cvg_ratio (AnalysisStats), 14
get_cvg_stats, 9

get_cvg_stats (AnalysisStats), 14
get_cvg_stats,list-method, 126
get_cvg_stats,Primers-method, 127
get_cvg_stats_primer (AnalysisStats), 14
get_initial_primers (PrimerDesign), 191
get_max_set_coverage, 128
get_plot_primer_data, 129
get_primer_cvg_mm_plot_df, 129
get_report_fname, 130
get_template_cvg_data, 130

hclust.tree, 131
highlight.mismatch, 131

INDEX

html.format.structure, 132

I.cvg, 132
ILPConstrained, 133
initialize.primer.set, 133
Input, 134

insert_str, 139
interleave, 140

J.cvg, 140
joule.to.cal, 141

listToXml, 141

merge.ambig.primers, 142
merge.binding.information, 142
merge.primer.entries, 143
merge.primer.entries.single, 144
merge.select, 144
merge.template.decisions, 145
mismatch.info, 145
mismatch.mutation.check, 146
mismatch.string.to.list, 146
modify.col.rep, 147
my.disambiguate, 147
my.error, 148
my.read.fasta, 148
my.warning, 149

my_ggsave, 149

my_rbind, 150

nbr.of.repeats, 150
nbr.of.runs, 151

openPrimeR (openPrimeR-package), 9
openPrimeR-package, 9
opti, 151
opti,DesignSettings-method (opti), 151
optiLimits, 152
optiLimits,DesignSettings-method
(optiLimits), 152
optimize.ILP, 152
optimize.primer.cvg, 154
optimize.template.binding.regions.dir,
155

optimize.template.binding.regions.single,

155
Output, 156

pair_primers, 158
parallel_setup (Settings), 225
parse.constraints, 159
parse.header, 159
parse.IMGT.gene.groups, 160



INDEX

parse.oligo.results, 160
PCR, 9, 232
PCR (Settings), 225
PCR,DesignSettings-method (Settings),
225
PCR<- (Settings), 225
PCR<-,DesignSettings-method (Settings),
225
PCR_Conditions, 227, 228
PCR_Conditions (Settings), 225
PCR_Conditions-class (Settings), 225
plot.all.cvg.info, 161
plot.all.filtering.stats, 162
plot.Delta.DeltaG, 162
plot.dimer.dist, 163
plot.excluded.hist, 163
plot.filtering.runtime, 164
plot.filtering.stats, 164
plot.filtering.stats.cvg, 165
plot_conservation (Plots), 165
plot_constraint (Plots), 165
plot_constraint,list-method, 170
plot_constraint,Primers-method, 171
plot_constraint.histogram, 172
plot_constraint.histogram.nbr.mismatches
173

plot_constraint.histogram.primer.efficiencies

173
plot_constraint_deviation, 9
plot_constraint_deviation (Plots), 165
plot_constraint_deviation,list-method,

174
plot_constraint_deviation,Primers-method,

174
plot_constraint_fulfillment (Plots), 165
plot_constraint_fulfillment,list-method,

175
plot_constraint_fulfillment,Primers-method,

176
plot_cvg_constraints (Plots), 165
plot_cvg_constraints,list-method, 176
plot_cvg_constraints,Primers-method,

177
plot_cvg_vs_set_size (Plots), 165
plot_penalty_vs_set_size (Plots), 165
plot_primer (Plots), 165
plot_primer.comparison.box, 177
plot_primer.comparison.mismatches, 178
plot_primer_binding_regions (Plots), 165

263

180
plot_primer_cvg (Plots), 165
plot_primer_cvg,list,list-method, 180
plot_primer_cvg,Primers,Templates-method,
181
plot_primer_cvg_mismatches, 181
plot_primer_cvg_unstratified, 182
plot_primer_subsets (Plots), 165
plot_template_cvg (Plots), 165
plot_template_cvg,list,list-method,
183
plot_template_cvg,Primers, Templates-method,
183
plot_template_cvg_comparison_mismatch,
184
plot_template_cvg_comparison_unstratified,
184
plot_template_cvg_mismatches, 185
plot_template_cvg_unstratified, 185
plot_template_structure, 186
Plots, 165
pos.to.range, 186
predict_coverage, 187
prefilter.primer.candidates, 187
prepare.constraint.plot, 188
prepare.dimer.seqs, 188
prepare_mm_plot, 189
prepare_template_cvg_mm_data, 189
primer.binding.regions.data, 190
primer.coverage.for.groups, 190
primer.data (Data), 86
primer.df (Data), 86
primer.set.parameter.stats, 191
primer_significance, 168
primer_significance (PrimerEval), 195
PrimerDesign, 191
PrimerEval, 195
Primers, 137
Primers (Input), 134
Primers-class (Input), 134

rbind.primer.data, 198

rbind.Primers, 199

rbind.Templates, 199

rbind2,Primers, ANY-method
(cbind2,Primers, ANY-method), 30

rbind2,Templates,ANY-method
(cbind2,Templates, ANY-method),
31

read. leaders, 200

plot_primer_binding_regions,list,list-method, read.secondary.structure.raw, 200

179

read. sequences, 201

plot_primer_binding_regions,Primers,Templatesreadthpdimers, 9, 137



264

read_primers (Input), 134
read_primers.internal, 201
read_primers_csv, 202
read_primers_multiple, 202
read_settings, 9, 232
read_settings (Input), 134
read_templates, 9
read_templates (Input), 134
read_templates_csv, 203
read_templates_fasta, 203
read_templates_multiple, 204
read_templates_single, 205
ref.data (Data), 86
RefCoverage (Data), 86
relax.constraints, 206
relax.opti.constraints, 207
remove.redundant.cols, 208
remove.seqs.by.keyword, 208
rename.constraint.options, 209
render_report, 209
reorder.primer.table, 210
restriction_ali, 210
restriction_hits, 211
restriction_match, 211
retrieve.leader.region, 212
rev.comp.sequence, 212
rev.sequence, 213
runTutorial, 213

sanitize_path, 214
score.conservation, 214
score_conservation (Scoring), 215
score_degen (Scoring), 215
score_primers, 165
score_primers (Scoring), 215
Scoring, 215
select.allowed.binding.events, 217
select.best.ILP, 217
select.best.opti.result, 218
select.best.primer.idx, 218
select.best.primer.set, 219
select.binding.events, 220
select.constraints, 220
select.min.cross.idx, 221
select.primer.region.by.conservation
221
select.primers.by.cvg, 222
select_best_binding, 223
select_regions_by_conservation
(TemplatesFunctions), 239
selenium.installed, 224
set.new.constraint.value, 224
set.new.limits, 225

INDEX

Settings, 225

settings (Data), 86
shannon.entropy, 234
solve.ILP, 234
split_str_by_index, 235
stats_plot_data, 236
store.filtering.sets, 236
string.list.format, 237
string.list.format. total, 237
string.to.IQR, 238
subset.ILP, 238
subset_primer_set, 168
subset_primer_set (PrimerEval), 195

template.data (Data), 86
template.df (Data), 86
Templates, 9, 137, 206
Templates (Input), 134
Templates-class (Input), 134
TemplatesFunctions, 239
Tiller (Data), 86
tiller.primer.df (Data), 86
tiller.settings (Data), 86
tiller.template.df (Data), 86

ungap_sequence, 241
unify.leaders, 242
update.binding.ranges.by.conservation,
242
update.binding.regions, 243
update.constraint.values, 243
update.cvg.data, 244
update.individual.binding.region, 244
update.opti.results, 245
update_primer_binding_regions, 246
update_primer_cvg, 246
update_template_cvg
(TemplatesFunctions), 239

validate_primers, 247
validate_templates, 247
view.cvg.primers, 248
view.dimer.df, 248
view.input.primers, 249
view.primers, 249
view.primers.report, 250
visualize.all.results, 250
visualize.filtering.results, 251

were.constraints.relaxed, 252
write.out.primer.info, 253
write_primers (Output), 156
write_settings, 137,232



INDEX

write_settings (Output), 156
write_templates, 137, 206
write_templates (Output), 156

xmlToChar, 253

265



	openPrimeR-package
	AbstractConstraintSettings-class
	add.coverage.constraints
	add.dimerization.constraints
	add.uniform.leaders.to.seqs
	adjust.ORF.start
	align.seqs
	align.structures
	AnalysisStats
	ancestor_of
	annealing.temp.rule.of.thumb
	annotate.binding.events
	apply.constraint
	apply.constraint.list
	assign_binding_regions.character
	assign_binding_regions.numeric
	augment.primer.cvg
	batchify
	batchify.simple
	batchify.temp
	build.gain.df
	build.ILP.df
	build.tool.overview
	build_leader_df
	call.melt
	call.melt.single
	cascaded.filter
	cascaded.filter.quick
	cbind.Primers
	cbind.Templates
	cbind2,Primers,ANY-method
	cbind2,Templates,ANY-method
	check.3prime.hexamers
	check.3prime.mismatches
	check.init.primer.length
	check.init.primer.length.single
	check.mutations
	check.template.constraints
	check.tool.function
	check.tool.installation
	check_constraints_comparison
	check_constraint_settings_validity
	check_correspondence
	check_cvg_constraints
	check_interval
	check_limits
	check_limit_value
	check_names
	check_report_deps
	check_restriction_sites_single
	check_setting
	check_settings_validity
	combine.binding.events
	combine.strings
	comp
	compare.constraints
	comparison.cvg
	comparison.stats.raw
	complement.sequence
	compute.all.cross.dimers
	compute.all.cross.dimers.frontend
	compute.all.cross.dimers.unfiltered
	compute.all.primer.subsets.ILP
	compute.all.self.dimers
	compute.all.self.dimers.frontend
	compute.basic.details
	compute.constraints
	compute.covered.Ta
	compute.dimer.matrix
	compute.efficiency
	compute.empiric.melting.temp
	compute.gc.ratio
	compute.melting.temps
	compute.melting.temps.thermo
	compute.mismatch.table
	compute.primer.efficiencies
	compute.secondary.structures
	compute.sodium.equivalent.conc
	compute.structure.vienna
	compute.Ta
	compute.template.secondary.structures
	compute.Tm.baldino
	compute.Tm.sets
	compute.unique.covered.idx
	compute_annealing_temp
	condition
	consecutive.GC.count
	constraints.to.df
	constraints.xml.format
	constraints_to_unit
	convert.from.iupac
	convert.PCR.units
	convert.temperature
	convert.to.iupac
	con_select
	copy.melt.config
	covered.primers.to.ID.string
	covered.seqs.to.ID.string
	covered.seqs.to.idx
	create.constraint.table
	create.constraint.XML
	create.cvg.text
	create.G.matrix
	create.initial.primer.set
	create.k.mers
	create.kmer
	create.options.table
	create.other.table
	create.PCR.table
	create.primer.ranges
	create.primers.naive
	create.primers.tree
	create.Tm.brackets
	create.uniform.leaders
	create_fulfilled_counts
	create_report,list,list-method
	create_report,Primers,Templates-method
	Data
	design_primers.single
	detect.gap.columns
	dimerization.table
	dir.copy
	disambiguate.primers
	estimate.cvg
	estimate.cvg.dir
	eval.comparison.primers
	eval.constraints
	evaluate.basic.cvg
	evaluate.constrained.cvg
	evaluate.cvg
	evaluate.diff.primer.cvg
	evaluate.fw.rev.combinations
	evaluate.GC.clamp
	evaluate.primer.cvg
	evaluate.template.constraints
	exclude.cols
	filter.by.constraints
	filter.comparison.primers
	filter.primer.candidates
	filter.primer.set.opti
	filterLimits
	filters
	filter_primers.by.Tm.delta
	fix_constraint_boundaries
	format.constraints
	format.seq.ali
	format.seqs.tex
	get.3prime.mismatch.pos
	get.analysis.mode
	get.consensus.seq
	get.constraint.value.idx
	get.constraint.values
	get.coverage.matrix
	get.covered.templates
	get.cross.dimers
	get.cvg.constraint.settings
	get.cvg.gain
	get.delta.G
	get.dimer.data
	get.duplex.energies
	get.eval.cols
	get.extension
	get.ILP.vars
	get.init.file.name
	get.leader.exon.regions
	get.leader.exon.regions.single
	get.matches
	get.melting.temp.diff
	get.merge.idx
	get.missing.df
	get.ORFs
	get.other.constraint.settings
	get.PCR.settings
	get.plot.height
	get.primer.binding.idx
	get.primer.identifier.string
	get.redundant.cols
	get.relative.binding.pos
	get.run.names
	get.self.dimers
	get.sets.from.decisions
	get.static.tool.info
	get.tree.seqs
	get.unlist.idx
	get_constraint_deviation_data
	get_covered.vanilla
	get_cvg_stats,list-method
	get_cvg_stats,Primers-method
	get_max_set_coverage
	get_plot_primer_data
	get_primer_cvg_mm_plot_df
	get_report_fname
	get_template_cvg_data
	hclust.tree
	highlight.mismatch
	html.format.structure
	I.cvg
	ILPConstrained
	initialize.primer.set
	Input
	insert_str
	interleave
	J.cvg
	joule.to.cal
	listToXml
	merge.ambig.primers
	merge.binding.information
	merge.primer.entries
	merge.primer.entries.single
	merge.select
	merge.template.decisions
	mismatch.info
	mismatch.mutation.check
	mismatch.string.to.list
	modify.col.rep
	my.disambiguate
	my.error
	my.read.fasta
	my.warning
	my_ggsave
	my_rbind
	nbr.of.repeats
	nbr.of.runs
	opti
	optiLimits
	optimize.ILP
	optimize.primer.cvg
	optimize.template.binding.regions.dir
	optimize.template.binding.regions.single
	Output
	pair_primers
	parse.constraints
	parse.header
	parse.IMGT.gene.groups
	parse.oligo.results
	plot.all.cvg.info
	plot.all.filtering.stats
	plot.Delta.DeltaG
	plot.dimer.dist
	plot.excluded.hist
	plot.filtering.runtime
	plot.filtering.stats
	plot.filtering.stats.cvg
	Plots
	plot_constraint,list-method
	plot_constraint,Primers-method
	plot_constraint.histogram
	plot_constraint.histogram.nbr.mismatches
	plot_constraint.histogram.primer.efficiencies
	plot_constraint_deviation,list-method
	plot_constraint_deviation,Primers-method
	plot_constraint_fulfillment,list-method
	plot_constraint_fulfillment,Primers-method
	plot_cvg_constraints,list-method
	plot_cvg_constraints,Primers-method
	plot_primer.comparison.box
	plot_primer.comparison.mismatches
	plot_primer_binding_regions,list,list-method
	plot_primer_binding_regions,Primers,Templates-method
	plot_primer_cvg,list,list-method
	plot_primer_cvg,Primers,Templates-method
	plot_primer_cvg_mismatches
	plot_primer_cvg_unstratified
	plot_template_cvg,list,list-method
	plot_template_cvg,Primers,Templates-method
	plot_template_cvg_comparison_mismatch
	plot_template_cvg_comparison_unstratified
	plot_template_cvg_mismatches
	plot_template_cvg_unstratified
	plot_template_structure
	pos.to.range
	predict_coverage
	prefilter.primer.candidates
	prepare.constraint.plot
	prepare.dimer.seqs
	prepare_mm_plot
	prepare_template_cvg_mm_data
	primer.binding.regions.data
	primer.coverage.for.groups
	primer.set.parameter.stats
	PrimerDesign
	PrimerEval
	rbind.primer.data
	rbind.Primers
	rbind.Templates
	read.leaders
	read.secondary.structure.raw
	read.sequences
	read_primers.internal
	read_primers_csv
	read_primers_multiple
	read_templates_csv
	read_templates_fasta
	read_templates_multiple
	read_templates_single
	relax.constraints
	relax.opti.constraints
	remove.redundant.cols
	remove.seqs.by.keyword
	rename.constraint.options
	render_report
	reorder.primer.table
	restriction_ali
	restriction_hits
	restriction_match
	retrieve.leader.region
	rev.comp.sequence
	rev.sequence
	runTutorial
	sanitize_path
	score.conservation
	Scoring
	select.allowed.binding.events
	select.best.ILP
	select.best.opti.result
	select.best.primer.idx
	select.best.primer.set
	select.binding.events
	select.constraints
	select.min.cross.idx
	select.primer.region.by.conservation
	select.primers.by.cvg
	select_best_binding
	selenium.installed
	set.new.constraint.value
	set.new.limits
	Settings
	shannon.entropy
	solve.ILP
	split_str_by_index
	stats_plot_data
	store.filtering.sets
	string.list.format
	string.list.format.total
	string.to.IQR
	subset.ILP
	TemplatesFunctions
	ungap_sequence
	unify.leaders
	update.binding.ranges.by.conservation
	update.binding.regions
	update.constraint.values
	update.cvg.data
	update.individual.binding.region
	update.opti.results
	update_primer_binding_regions
	update_primer_cvg
	validate_primers
	validate_templates
	view.cvg.primers
	view.dimer.df
	view.input.primers
	view.primers
	view.primers.report
	visualize.all.results
	visualize.filtering.results
	were.constraints.relaxed
	write.out.primer.info
	xmlToChar
	Index

