
Package ‘nethet’
January 20, 2026

Type Package

Title A bioconductor package for high-dimensional exploration of
biological network heterogeneity

Version 1.42.0

Date 2020-09-27

Author Nicolas Staedler, Frank Dondelinger

Maintainer Nicolas Staedler <staedler.n@gmail.com>,
Frank Dondelinger <fdondelinger.work@gmail.com>

Description Package nethet is an implementation of statistical solid
methodology enabling the analysis of network heterogeneity from
high-dimensional data. It combines several implementations of recent
statistical innovations useful for estimation and comparison of networks in
a heterogeneous, high-dimensional setting. In particular, we provide code
for formal two-sample testing in Gaussian graphical models (differential
network and GGM-GSA; Stadler and Mukherjee, 2013, 2014) and make a novel
network-based clustering algorithm available (mixed graphical lasso,
Stadler and Mukherjee, 2013).

Imports glasso, mvtnorm, GeneNet, huge, CompQuadForm, ggm, mclust,
parallel, GSA, limma, multtest, ICSNP, glmnet, network,
ggplot2, grDevices, graphics, stats, utils

Suggests knitr, xtable, BiocStyle, testthat

biocViews Clustering, GraphAndNetwork

VignetteBuilder knitr

License GPL-2

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/nethet

git_branch RELEASE_3_22

git_last_commit bc1b9c9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

1

2 Contents

Contents
NetHet-package . 4
agg.pval . 4
agg.score.iriz.scale . 5
agg.score.iriz.shift . 5
aggpval . 6
aic.glasso . 6
beta.mat . 7
beta.mat.diffregr . 8
bic.glasso . 8
buildDotPlotDataFrame . 9
bwprun_mixglasso . 10
cv.fold . 11
cv.glasso . 12
diffnet_multisplit . 13
diffnet_pval . 15
diffnet_singlesplit . 16
diffregr_multisplit . 18
diffregr_pval . 20
diffregr_singlesplit . 22
dot_plot . 24
error.bars . 25
est2.my.ev2 . 25
est2.my.ev2.diffregr . 26
est2.my.ev3 . 27
est2.my.ev3.diffregr . 28
est2.ww.mat.diffregr . 29
est2.ww.mat2 . 30
est2.ww.mat2.diffregr . 30
export_network . 31
EXPStep.mix . 32
func.uinit . 33
generate_2networks . 34
generate_inv_cov . 35
getinvcov . 35
ggmgsa_multisplit . 36
ggmgsa_singlesplit . 38
glasso.invcor . 39
glasso.invcov . 39
glasso.parcor . 40
gsea.highdimT2 . 40
gsea.iriz . 41
gsea.iriz.scale . 42
gsea.iriz.shift . 43
gsea.t2cov . 44
het_cv_glasso . 44
hugepath . 45
inf.mat . 46
invcov2parcor . 47
invcov2parcor_array . 47
lambda.max . 48

Contents 3

lambdagrid_lin . 48
lambdagrid_mult . 49
loglik_mix . 49
logratio . 50
logratio.diffregr . 51
make_grid . 51
mcov . 52
mixglasso . 52
mixglasso_init . 55
mixglasso_ncomp_fixed . 56
mle.ggm . 57
MStepGlasso . 58
my.ev2.diffregr . 59
my.p.adjust . 59
my.ttest . 60
my.ttest2 . 60
mytrunc.method . 61
perm.diffregr_pval . 61
perm.diffregr_teststat . 62
plot.diffnet . 63
plot.diffregr . 63
plot.ggmgsa . 64
plot.nethetclustering . 64
plotCV . 65
plot_2networks . 66
print.nethetsummary . 67
q.matrix.diffregr . 67
q.matrix.diffregr3 . 68
q.matrix.diffregr4 . 68
q.matrix3 . 69
q.matrix4 . 70
scatter_plot . 70
screen_aic.glasso . 72
screen_bic.glasso . 73
screen_cv.glasso . 74
screen_cv1se.lasso . 75
screen_cvfix.lasso . 75
screen_cvmin.lasso . 76
screen_cvsqrt.lasso . 77
screen_cvtrunc.lasso . 77
screen_full . 78
screen_shrink . 79
shapiro_screen . 79
sim_mix . 80
sim_mix_networks . 81
sparse_conc . 82
summary.diffnet . 82
summary.diffregr . 83
summary.ggmgsa . 83
summary.nethetclustering . 84
sumoffdiag . 84
symmkldist . 85

4 agg.pval

t2cov.lr . 85
t2diagcov.lr . 86
test.sd . 86
test.t2 . 87
tr . 87
twosample_single_regr . 88
w.kldist . 88
ww.mat . 89
ww.mat.diffregr . 90
ww.mat2 . 90
ww.mat2.diffregr . 91

Index 92

NetHet-package NetHet-package

Description

A bioconductor package for high-dimensional exploration of biological network heterogeneity

Details

Includes: *Network-based clustering (MixGLasso) *Differential network (DiffNet) *Differential
regression (DiffRegr) *Gene-set analysis based on graphical models (GGMGSA) *Plotting func-
tions for exploring network heterogeneity

References

St\"adler, N. and Mukherjee, S. (2013). Two-Sample Testing in High-Dimensional Models. Preprint
http://arxiv.org/abs/1210.4584.

agg.pval P-value aggregation (Meinshausen et al 2009)

Description

P-value aggregation

Usage

agg.pval(gamma, pval)

Arguments

gamma see Meinshausen et al 2009

pval vector of p-values

Value

inf-quantile aggregated p-value

http://arxiv.org/abs/1210.4584

agg.score.iriz.scale 5

Author(s)

n.stadler

agg.score.iriz.scale Irizarry aggregate score (scale)

Description

Irizarry aggregate score (scale)

Usage

agg.score.iriz.scale(ttstat, geneset, gene.name)

Arguments

ttstat no descr
geneset no descr
gene.name no descr

Value

no descr

Author(s)

n.stadler

agg.score.iriz.shift Irizarry aggregate score (shift)

Description

Irizarry aggregate score (shift)

Usage

agg.score.iriz.shift(ttstat, geneset, gene.name)

Arguments

ttstat no descr
geneset no descr
gene.name no descr

Value

no descr

Author(s)

n.stadler

6 aic.glasso

aggpval Meinshausen p-value aggregation

Description

Meinshausen p-value aggregation.

Usage

aggpval(pval, gamma.min = 0.05)

Arguments

pval Vector of p-values.

gamma.min See inf-quantile formula of Meinshausen et al 2009 (default=0.05).

Details

Inf-quantile formula for p-value aggregation presented in Meinshausen et al 2009.

Value

Aggregated p-value.

Author(s)

n.stadler

Examples

pval=runif(50)
aggpval(pval)

aic.glasso AIC.glasso

Description

AIC.glasso

Usage

aic.glasso(x, lambda, penalize.diagonal = FALSE, plot.it = TRUE,
use.package = "huge", include.mean = FALSE)

beta.mat 7

Arguments

x no descr

lambda no descr
penalize.diagonal

no descr

plot.it no descr

use.package no descr

include.mean no descr

Value

no descr

Author(s)

n.stadler

beta.mat Compute beta-matrix

Description

Compute beta-matrix

Usage

beta.mat(ind1, ind2, sig1, sig2, sig)

Arguments

ind1 no descr

ind2 no descr

sig1 no descr

sig2 no descr

sig no descr

Details

beta-matrix=E[s_ind1(Y;sig1) s_ind2(Y;sig2)’|sig]

Value

no descr

Author(s)

n.stadler

8 bic.glasso

beta.mat.diffregr Computation beta matrix

Description

Computation beta matrix

Usage

beta.mat.diffregr(ind1, ind2, beta1, beta2, beta, sig1, sig2, sig, Sig)

Arguments

ind1 no descr

ind2 no descr

beta1 no descr

beta2 no descr

beta no descr

sig1 no descr

sig2 no descr

sig no descr

Sig no descr

Value

no descr

Author(s)

n.stadler

bic.glasso BIC.glasso

Description

BIC.glasso

Usage

bic.glasso(x, lambda, penalize.diagonal = FALSE, plot.it = TRUE,
use.package = "huge", include.mean = FALSE)

buildDotPlotDataFrame 9

Arguments

x no descr

lambda no descr
penalize.diagonal

no descr

plot.it no descr

use.package no descr

include.mean no descr

Value

no descr

Author(s)

n.stadler

buildDotPlotDataFrame Build up dataframe for plotting dot plot with ggplot2

Description

Internal function

Usage

buildDotPlotDataFrame(net.clustering, cluster.names, node.names)

Arguments

net.clustering Clustering

cluster.names Cluster names

node.names Node names

Value

A data frame for plotting the dotPlot with ggplot2 is returned. Column P.Corr contains the partial
correlations of each edge as a numeric, column Mean contains the minimum mean expression of
the two proteins (e.g. if the edge is e(p1, p2), then the column contains min(mean(p1), mean(p2))),
column Edge contains the name of the edge as a character string of the form "p1-p2" and column
Type contains the cluster name of the cluster that the edge belongs to as a character string.

10 bwprun_mixglasso

bwprun_mixglasso bwprun_mixglasso

Description

Mixglasso with backward pruning

Usage

bwprun_mixglasso(x, n.comp.min = 1, n.comp.max, lambda = sqrt(2 *
nrow(x) * log(ncol(x)))/2, pen = "glasso.parcor",
selection.crit = "mmdl", term = 10^{ -3 }, min.compsize = 5,
init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV",
nstart.kmeans = 1, iter.max.kmeans = 10, reinit.out = FALSE,
reinit.in = FALSE, mer = TRUE, del = TRUE, ...)

Arguments

x Input data matrix

n.comp.min Minimum number of components. Take n.comp.min=1 !

n.comp.max Maximum number of components

lambda Regularization parameter. Default=sqrt(2*n*log(p))/2

pen Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor

selection.crit Selection criterion. Default=’mmdl’

term Termination criterion of EM algorithm. Default=10^-3

min.compsize Stop EM if any(compsize)<min.compsize; Default=5

init Initialization. Method used for initialization init=’cl.init’,’r.means’,’random’,’kmeans’,’kmeans.hc’,’hc’.
Default=’kmeans.hc’

my.cl Initial cluster assignments; need to be provided if init=’cl.init’ (otherwise this
param is ignored). Default=NULL

modelname.hc Model class used in hc. Default="VVV"

nstart.kmeans Number of random starts in kmeans; default=1
iter.max.kmeans

Maximal number of iteration in kmeans; default=10

reinit.out Re-initialization if compsize<min.compsize (at the start of algorithm) ?

reinit.in Re-initialization if compsize<min.compsize (at the bwprun-loop level of algo-
rithm) ?

mer Merge closest comps for initialization

del Delete smallest comp for initialization

... Other arguments. See mixglasso_init

Details

This function runs mixglasso with various number of mixture components: It starts with a too
large number of components and iterates towards solutions with smaller number of components by
initializing using previous solutions.

cv.fold 11

Value

list consisting of

selcrit Selcrit for all models with number of components between n.comp.min and
n.comp.max

res.init Initialization for all components

comp.name List of names of components. Indicates which states where merged/deleted dur-
ing backward pruning

re.init.in Logical vector indicating whether re-initialization was performed or not
fit.mixgl.selcrit

Results for model with optimal number of components. List see mixglasso_init

Author(s)

n.stadler

Examples

##generate data
set.seed(1)
n <- 1000
n.comp <- 3
p <- 10

Create different mean vectors
Mu <- matrix(0,p,n.comp)

nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p))
for(k in 1:n.comp){

Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp))
}

sim <- sim_mix_networks(n, p, n.comp, Mu=Mu)

##run mixglasso

fit <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic')
plot(fit$selcrit,ylab='bic',xlab='Num.Comps',type='b')

cv.fold Make folds

Description

Make folds

Usage

cv.fold(n, folds = 10)

12 cv.glasso

Arguments

n no descr

folds no descr

Value

no descr

Author(s)

n.stadler

cv.glasso Crossvalidation for GLasso

Description

Crossvalidation for GLasso

Usage

cv.glasso(x, folds = 10, lambda, penalize.diagonal = FALSE,
plot.it = FALSE, se = TRUE, include.mean = FALSE)

Arguments

x no descr

folds no descr

lambda lambda-grid (increasing!)
penalize.diagonal

no descr

plot.it no descr

se no descr

include.mean no descr

Details

8! lambda-grid has to be increasing (see glassopath)

Value

no descr

Author(s)

n.stadler

diffnet_multisplit 13

diffnet_multisplit Differential Network

Description

Differential Network

Usage

diffnet_multisplit(x1, x2, b.splits = 50, frac.split = 1/2,
screen.meth = "screen_bic.glasso", include.mean = FALSE,
gamma.min = 0.05, compute.evals = "est2.my.ev3",
algorithm.mleggm = "glasso_rho0", method.compquadform = "imhof",
acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE,
save.mle = FALSE, verbose = TRUE, mc.flag = FALSE,
mc.set.seed = TRUE, mc.preschedule = TRUE,
mc.cores = getOption("mc.cores", 2L), ...)

Arguments

x1 Data-matrix sample 1. You might need to center and scale your data-matrix.

x2 Data-matrix sample 1. You might need to center and scale your data-matrix.

b.splits Number of splits (default=50).

frac.split Fraction train-data (screening) / test-data (cleaning) (default=0.5).

screen.meth Screening procedure. Options: ’screen_bic.glasso’ (default), ’screen_cv.glasso’,
’screen_shrink’ (not recommended).

include.mean Should sample specific means be included in hypothesis? Use include.mean=FALSE
(default and recommended) which assumes mu1=mu2=0 and tests the hypothe-
sis H0: Omega_1=Omega_2.

gamma.min Tuning parameter in p-value aggregation of Meinshausen et al (2009). (De-
fault=0.05).

compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The
default and (currently) the only available option is the method ’est2.my.ev3’.

algorithm.mleggm

Algorithm to compute MLE of GGM. The algorithm ’glasso_rho’ is the default
and (currently) the only available option.

method.compquadform

Method to compute distribution function of weighted-sum-of-chi2s (default=’imhof’).

acc See ?davies (default 1e-04).

epsabs See ?imhof (default 1e-10).

epsrel See ?imhof (default 1e-10).

show.warn Should warnings be showed (default=FALSE)?

save.mle If TRUE, MLEs (inverse covariance matrices for samples 1 and 2) are saved for
all b.splits. The median aggregated inverse covariance matrix is provided in the
output as ’medwi’. The default is save.mle=FALSE.

verbose If TRUE, show output progress.

14 diffnet_multisplit

mc.flag If TRUE use parallel execution for each b.splits via function mclapply of package
parallel.

mc.set.seed See mclapply. Default=TRUE

mc.preschedule See mclapply. Default=TRUE

mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set,
or 2 otherwise.

... Additional arguments for screen.meth.

Details

Remark:

* If include.mean=FALSE, then x1 and x2 have mean zero and DiffNet tests the hypothesis H0:
Omega_1=Omega_2. You might need to center x1 and x2. * If include.mean=TRUE, then DiffNet
tests the hypothesis H0: mu_1=mu_2 & Omega_1=Omega_2 * However, we recommend to set
include.mean=FALSE and to test equality of the means separately. * You might also want to scale
x1 and x2, if you are only interested in differences due to (partial) correlations.

Value

list consisting of

ms.pval p-values for all b.splits

ss.pval single-split p-value

medagg.pval median aggregated p-value

meinshagg.pval meinshausen aggregated p-value (meinshausen et al 2009)

teststat test statistics for b.splits
weights.nulldistr

estimated weights

active.last active-sets obtained in last screening-step

medwi median of inverse covariance matrices over b.splits

sig.last constrained mle (covariance matrix) obtained in last cleaning-step

wi.last constrained mle (inverse covariance matrix) obtained in last cleaning-step

Author(s)

n.stadler

Examples

##
##This example illustrates the use of Differential Network##
##

##set seed
set.seed(1)

##sample size and number of nodes
n <- 40
p <- 10

diffnet_pval 15

##specifiy sparse inverse covariance matrices
gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),

n.nz.common=ceiling(p*0.8))
invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]
plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)

##get corresponding correlation matrices
cor1 <- cov2cor(solve(invcov1))
cor2 <- cov2cor(solve(invcov2))

##generate data under null hypothesis (both datasets have the same underlying
network)
library('mvtnorm')
x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)
x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)

##run diffnet (under null hypothesis)
dn.null <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE)
dn.null$ss.pval#single-split p-value

##generate data under alternative hypothesis (datasets have different networks)
x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)
x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2)

##run diffnet (under alternative hypothesis)
dn.altn <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE)
dn.altn$ss.pval#single-split p-value
dn.altn$medagg.pval#median aggregated p-value

##typically we would choose a larger number of splits
dn.altn <- diffnet_multisplit(x1,x2,b.splits=10,verbose=FALSE)
dn.altn$ms.pval#multi-split p-values
dn.altn$medagg.pval#median aggregated p-value
plot(dn.altn)#histogram of single-split p-values

diffnet_pval P-value calculation

Description

P-value calculation

Usage

diffnet_pval(x1, x2, x, sig1, sig2, sig, mu1, mu2, mu, act1, act2, act,
compute.evals, include.mean, method.compquadform, acc, epsabs, epsrel,
show.warn)

Arguments

x1 no descr

x2 no descr

16 diffnet_singlesplit

x no descr

sig1 no descr

sig2 no descr

sig no descr

mu1 no descr

mu2 no descr

mu no descr

act1 no descr

act2 no descr

act no descr

compute.evals no descr

include.mean no descr
method.compquadform

no descr

acc no descr

epsabs no descr

epsrel no descr

show.warn no descr

Value

no descr

Author(s)

n.stadler

diffnet_singlesplit Differential Network for user specified data splits

Description

Differential Network for user specified data splits

Usage

diffnet_singlesplit(x1, x2, split1, split2,
screen.meth = "screen_bic.glasso", compute.evals = "est2.my.ev3",
algorithm.mleggm = "glasso_rho0", include.mean = FALSE,
method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10,
epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE, ...)

diffnet_singlesplit 17

Arguments

x1 Data-matrix sample 1. You might need to center and scale your data-matrix.

x2 Data-matrix sample 2. You might need to center and scale your data-matrix.

split1 Samples (condition 1) used in screening step.

split2 Samples (condition 2) used in screening step.

screen.meth Screening procedure. Options: ’screen_bic.glasso’ (default), ’screen_cv.glasso’,
’screen_shrink’ (not recommended).

compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The
default and (currently) the only available option is the method ’est2.my.ev3’.

algorithm.mleggm

Algorithm to compute MLE of GGM. The algorithm ’glasso_rho’ is the default
and (currently) the only available option.

include.mean Should sample specific means be included in hypothesis? Use include.mean=FALSE
(default and recommended) which assumes mu1=mu2=0 and tests the hypothe-
sis H0: Omega_1=Omega_2.

method.compquadform

Method to compute distribution function of weighted-sum-of-chi2s (default=’imhof’).

acc See ?davies (default 1e-04).

epsabs See ?imhof (default 1e-10).

epsrel See ?imhof (default 1e-10).

show.warn Should warnings be showed (default=FALSE)?

save.mle Should MLEs be in the output list (default=FALSE)?

... Additional arguments for screen.meth.

Details

Remark:

* If include.mean=FALSE, then x1 and x2 have mean zero and DiffNet tests the hypothesis H0:
Omega_1=Omega_2. You might need to center x1 and x2. * If include.mean=TRUE, then DiffNet
tests the hypothesis H0: mu_1=mu_2 & Omega_1=Omega_2 * However, we recommend to set
include.mean=FALSE and to test equality of the means separately. * You might also want to scale
x1 and x2, if you are only interested in differences due to (partial) correlations.

Value

list consisting of

pval.onesided p-value

pval.twosided ignore this output

teststat log-likelihood-ratio test statistic
weights.nulldistr

estimated weights

active active-sets obtained in screening-step

sig constrained mle (covariance) obtained in cleaning-step

wi constrained mle (inverse covariance) obtained in cleaning-step

mu mle (mean) obtained in cleaning-step

18 diffregr_multisplit

Author(s)

n.stadler

Examples

##set seed
set.seed(1)

##sample size and number of nodes
n <- 40
p <- 10

##specifiy sparse inverse covariance matrices
gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),

n.nz.common=ceiling(p*0.8))
invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]
plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)

##get corresponding correlation matrices
cor1 <- cov2cor(solve(invcov1))
cor2 <- cov2cor(solve(invcov2))

##generate data under alternative hypothesis
library('mvtnorm')
x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)
x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2)

##run diffnet
split1 <- sample(1:n,20)#samples for screening (condition 1)
split2 <- sample(1:n,20)#samples for screening (condition 2)
dn <- diffnet_singlesplit(x1,x2,split1,split2)
dn$pval.onesided#p-value

diffregr_multisplit Differential Regression (multi-split version).

Description

Differential Regression (multi-split version).

Usage

diffregr_multisplit(y1, y2, x1, x2, b.splits = 50, frac.split = 1/2,
screen.meth = "screen_cvtrunc.lasso", gamma.min = 0.05,
compute.evals = "est2.my.ev3.diffregr",
method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10,
epsrel = 1e-10, show.warn = FALSE, n.perm = NULL,
mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE,
mc.cores = getOption("mc.cores", 2L), ...)

diffregr_multisplit 19

Arguments

y1 Response vector condition 1.

y2 Response vector condition 2.

x1 Predictor matrix condition 1.

x2 Predictor matrix condition 2.

b.splits Number of splits (default=50).

frac.split Fraction train-data (screening) / test-data (cleaning) (default=0.5).

screen.meth Screening method (default=’screen_cvtrunc.lasso’).

gamma.min Tuning parameter in p-value aggregation of Meinshausen et al (2009) (default=0.05).

compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The
default and (currently) the only available option is the method ’est2.my.ev3.diffregr’.

method.compquadform

Algorithm for computing distribution function of weighted-sum-of-chi2 (de-
fault=’imhof’).

acc See ?davies (default=1e-4).

epsabs See ?imhof (default=1e-10).

epsrel See ?imhof (default=1e-10).

show.warn Show warnings (default=FALSE)?

n.perm Number of permutation for "split-perm" p-value. Default=NULL, which means
that the asymptotic approximation is used.

mc.flag If TRUE use parallel execution for each b.splits via function mclapply of package
parallel.

mc.set.seed See mclapply. Default=TRUE

mc.preschedule See mclapply. Default=TRUE

mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set,
or 2 otherwise.

... Other arguments specific to screen.meth.

Details

Intercepts in regression models are assumed to be zero (mu1=mu2=0). You might need to center
the input data prior to running Differential Regression.

Value

List consisting of

ms.pval p-values for all b.splits

ss.pval single-split p-value

medagg.pval median aggregated p-value

meinshagg.pval meinshausen aggregated p-value (meinshausen et al 2009)

teststat test statistics for b.splits
weights.nulldistr

estimated weights

active.last active-sets obtained in last screening-step

beta.last constrained mle (regression coefficients) obtained in last cleaning-step

20 diffregr_pval

Author(s)

n.stadler

Examples

###
##This example illustrates the use of Differential Regression##
###

##set seed
set.seed(1)

Number of predictors and sample size
p <- 100
n <- 80

Predictor matrices
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)

Active-sets and regression coefficients
act1 <- sample(1:p,5)
act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2))
beta1 <- beta2 <- rep(0,p)
beta1[act1] <- 0.5
beta2[act2] <- 0.5

Response vectors under null-hypothesis
y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(beta1)+rnorm(n,sd=1)

Diffregr (asymptotic p-values)
fit.null <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5)
fit.null$ms.pval#multi-split p-values
fit.null$medagg.pval#median aggregated p-values

Response vectors under alternative-hypothesis
y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1)

Diffregr (asymptotic p-values)
fit.alt <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5)
fit.alt$ms.pval
fit.alt$medagg.pval

Diffregr (permutation-based p-values; 100 permutations)
fit.alt.perm <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5,n.perm=100)
fit.alt.perm$ms.pval
fit.alt.perm$medagg.pval

diffregr_pval Computation "split-asym" p-values.

diffregr_pval 21

Description

Computation "split-asym"/"split-perm" p-values.

Usage

diffregr_pval(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act,
compute.evals, method.compquadform, acc, epsabs, epsrel, show.warn,
n.perm)

Arguments

y1 Response vector condition 1.

y2 Response vector condition 2.

x1 Predictor matrix condition 1.

x2 Predictor matrix condition 2.

beta1 Regression coefficients condition 1.

beta2 Regression coefficients condition 2.

beta Pooled regression coefficients.

act1 Active-set condition 1.

act2 Active-set condition 2.

act Pooled active-set.

compute.evals Method for computation of weights.

method.compquadform

Method to compute distribution function of w-sum-of-chi2.

acc See ?davies.

epsabs See ?imhof.

epsrel See ?imhof.

show.warn Show warnings?

n.perm Number of permutations.

Value

P-value, test statistic, estimated weights.

Author(s)

n.stadler

22 diffregr_singlesplit

diffregr_singlesplit Differential Regression (single-split version).

Description

Differential Regression (single-split version).

Usage

diffregr_singlesplit(y1, y2, x1, x2, split1, split2,
screen.meth = "screen_cvtrunc.lasso",
compute.evals = "est2.my.ev3.diffregr",
method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10,
epsrel = 1e-10, show.warn = FALSE, n.perm = NULL, ...)

Arguments

y1 Response vector condition 1.

y2 Response vector condition 2.

x1 Predictor matrix condition 1.

x2 Predictor matrix condition 2.

split1 Samples condition 1 used in screening-step.

split2 Samples condition 2 used in screening-step.

screen.meth Screening method (default=’screen_cvtrunc.lasso’).

compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The
default and (currently) the only available option is the method ’est2.my.ev3.diffregr’.

method.compquadform

Algorithm for computing distribution function of weighted-sum-of-chi2 (de-
fault=’imhof’).

acc See ?davies (default=1e-4).

epsabs See ?imhof (default=1e-10).

epsrel See ?imhof (default=1e-10).

show.warn Show warnings (default=FALSE)?

n.perm Number of permutation for "split-perm" p-value (default=NULL).

... Other arguments specific to screen.meth.

Details

Intercepts in regression models are assumed to be zero (mu1=mu2=0). You might need to center
the input data prior to running Differential Regression.

diffregr_singlesplit 23

Value

List consisting of

pval.onesided "One-sided" p-value.

pval.twosided "Two-sided" p-value. Ignore all "*.twosided results.

teststat 2 times Log-likelihood-ratio statistics

weights.nulldistr

Estimated weights of weighted-sum-of-chi2s.

active List of active-sets obtained in screening step.

beta Regression coefficients (MLE) obtaind in cleaning-step.

Author(s)

n.stadler

Examples

##set seed
set.seed(1)

##number of predictors / sample size
p <- 100
n <- 80

##predictor matrices
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)

##active-sets and regression coefficients
act1 <- sample(1:p,5)
act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2))
beta1 <- beta2 <- rep(0,p)
beta1[act1] <- 0.5
beta2[act2] <- 0.5

##response vectors
y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1)

##run diffregr
split1 <- sample(1:n,50)#samples for screening (condition 1)
split2 <- sample(1:n,50)#samples for screening (condition 2)
fit <- diffregr_singlesplit(y1,y2,x1,x2,split1,split2)
fit$pval.onesided#p-value

24 dot_plot

dot_plot Create a plot showing the edges with the highest partial correlation in
any cluster.

Description

This function takes the output of het_cv_glasso or mixglasso and creates a plot of the highest
scoring edges along the y axis, where, the edge in each cluster is represented by a circle whose area
is proportional to the smallest mean of the two nodes that make up the edge, and the position along
the y axis shows the partial correlation of the edge.

Usage

dot_plot(net.clustering, p.corrs.thresh = 0.25, hard.limit = 50,
display = TRUE, node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)),
dot.size.range = c(3, 12))

Arguments

net.clustering A network clustering object as returned by het_cv_glasso or mixglasso.

p.corrs.thresh Cutoff for the partial correlations; only edges with absolute partial correlation >
p.corrs.thresh (in any cluster) will be displayed.

hard.limit Additional hard limit on the number of edges to display. If p.corrs.thresh results
in more edges than hard.limit, only hard.limit edges with the highest partial
correlation are returned.

display If TRUE, print the plot to the current output device.

node.names Names for the nodes in the network.

group.names Names for the clusters or groups.

dot.size.range Graphical parameter for scaling the size of the circles (dots) representing an
edge in each cluster.

Value

Returns a ggplot2 object. If display=TRUE, additionally displays the plot.

Examples

n = 500
p = 10
s = 0.9
n.comp = 3

Create different mean vectors
Mu = matrix(0,p,n.comp)

Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p))

Set non-zero means to fixed value

error.bars 25

for(k in 1:n.comp){
Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))

}

Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)
mixglasso.result = mixglasso(sim.result$data, n.comp=3)
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

dot_plot(mixglasso.clustering, p.corrs.thresh=0.5)

error.bars Error bars for plotCV

Description

Error bars for plotCV

Usage

error.bars(x, upper, lower, width = 0.02, ...)

Arguments

x no descr

upper no descr

lower no descr

width no descr

... no descr

Value

no descr

Author(s)

n.stadler

est2.my.ev2 Weights of sum-w-chi2

Description

Compute weights of sum-w-chi2 (2nd order simplification)

Usage

est2.my.ev2(sig1, sig2, sig, act1, act2, act, include.mean = FALSE)

26 est2.my.ev2.diffregr

Arguments

sig1 no descr

sig2 no descr

sig no descr

act1 no descr

act2 no descr

act no descr

include.mean no descr

Details

*expansion of W in two directions ("dimf>dimg direction" & "dimf>dimg direction") *simplified
computation of weights is obtained by assuming H0 and that X_u~X_v holds

Value

no descr

Author(s)

n.stadler

est2.my.ev2.diffregr Compute weights of sum-w-chi2 (2nd order simplification)

Description

*expansion of W in two directions ("dimf>dimg direction" & "dimf>dimg direction") *simplified
computation of weights is obtained by assuming H0 and that X_u~X_v holds

Usage

est2.my.ev2.diffregr(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act)

Arguments

y1 no descr

y2 no descr

x1 no descr

x2 no descr

beta1 no descr

beta2 no descr

beta no descr

act1 no descr

act2 no descr

act no descr

est2.my.ev3 27

Value

no descr

Author(s)

n.stadler

est2.my.ev3 Compute weights of sum-of-weighted-chi2s

Description

Compute weights of sum-of-weighted-chi2s

Usage

est2.my.ev3(sig1, sig2, sig, act1, act2, act, include.mean = FALSE)

Arguments

sig1 MLE (covariance matrix) sample 1

sig2 MLE (covariance matrix) sample 2

sig Pooled MLE (covariance matrix)

act1 Active-set sample 1

act2 Active-set sample 2

act Pooled active-set

include.mean Should the mean be in cluded in the likelihood?

Details

*’2nd order simplification’: 1) Factor out (1-vi)^(d1+d2) "expansion in dimf>dimg direction (old
terminology)" 2) Factor out (1-mu)^d0 *simplified computation of weights is obtained without
further invoking H0, or assuming X_u~X_v

Value

Eigenvalues of M, respectively the weights.

Author(s)

n.stadler

28 est2.my.ev3.diffregr

est2.my.ev3.diffregr Compute weights of sum-of-weighted-chi2s

Description

Compute weights of sum-of-weighted-chi2s

Usage

est2.my.ev3.diffregr(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act)

Arguments

y1 Response vector sample 1.

y2 Response vector sample 2.

x1 Predictor matrix sample 1.

x2 Predictor matrix sample 2.

beta1 MLE (regression coefficients) sample 1.

beta2 MLE (regression coefficients) sample 2.

beta Pooled MLE (regression coefficients).

act1 Active-set sample 1

act2 Active-set sample 2

act Pooled active-set

Details

*’2nd order simplification’: 1) Factor out (1-vi)^(d1+d2) "expansion in dimf>dimg direction (old
terminology)" 2) Factor out (1-mu)^d0 *simplified computation of weights is obtained without
further invoking H0, or assuming X_u~X_v

Value

Eigenvalues of M, respectively the weights.

Author(s)

n.stadler

est2.ww.mat.diffregr 29

est2.ww.mat.diffregr Estimate weights

Description

Estimate weights

Usage

est2.ww.mat.diffregr(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act)

Arguments

y1 no descr

y2 no descr

x1 no descr

x2 no descr

beta1 no descr

beta2 no descr

beta no descr

act1 no descr

act2 no descr

act no descr

Details

estimate W-matrix (using plug-in estimates of Beta-matrix); calculate eigenvalues(W-matrix)

Value

no descr

Author(s)

n.stadler

30 est2.ww.mat2.diffregr

est2.ww.mat2 Weights of sum-w-chi2

Description

Compute weights of sum-w-chi2 (1st order simplification)

Usage

est2.ww.mat2(sig1, sig2, sig, act1, act2, act, include.mean = FALSE)

Arguments

sig1 no descr

sig2 no descr

sig no descr

act1 no descr

act2 no descr

act no descr

include.mean no descr

Value

no descr

Author(s)

n.stadler

est2.ww.mat2.diffregr Estimate weights

Description

Estimate weights

Usage

est2.ww.mat2.diffregr(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act)

export_network 31

Arguments

y1 no descr

y2 no descr

x1 no descr

x2 no descr

beta1 no descr

beta2 no descr

beta no descr

act1 no descr

act2 no descr

act no descr

Value

no descr

Author(s)

n.stadler

export_network Export networks as a CSV table.

Description

This function takes the output of het_cv_glasso or mixglasso and exports it as a text table in
CSV format, where each entry in the table records an edge in one group and its partial correlation.

Usage

export_network(net.clustering, file = "network_table.csv",
node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)),
p.corrs.thresh = 0.2, ...)

Arguments

net.clustering A network clustering object as returned by screen_cv.glasso or mixglasso.

file Filename to save the network table under.

node.names Names for the nodes in the network. If NULL, names from net.clustering will
be used.

group.names Names for the clusters or groups. If NULL, names from net.clustering will be
used (by default these are integets 1:numClusters).

p.corrs.thresh Threshold applied to the absolute partial correlations. Edges that are below the
threshold in all of the groups are not exported. Using a negative value will export
all possible edges (including those with zero partial correlation).

... Further parameters passed to write.csv.

32 EXPStep.mix

Value

Function does not return anything.

Author(s)

Frank Dondelinger

Examples

n = 500
p = 10
s = 0.9
n.comp = 3

Create different mean vectors
Mu = matrix(0,p,n.comp)

Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p))

Set non-zero means to fixed value
for(k in 1:n.comp){
Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))

}

Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)
mixglasso.result = mixglasso(sim.result$data, n.comp=3)
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

Not run:
Save network in CSV format suitable for Cytoscape import
export_network(mixglasso.clustering, file='nethet_network.csv',

p.corrs.thresh=0.25, quote=FALSE)

End(Not run)

EXPStep.mix Performs EStep

Description

Performs EStep

Usage

EXPStep.mix(logphi, mix.prob)

Arguments

logphi no descr

mix.prob no descr

func.uinit 33

Value

list consiting of

u responsibilities

LL loglikelihood

Author(s)

n.stadler

func.uinit Initialization of MixGLasso

Description

Initialization of responsibilities

Usage

func.uinit(x, n.comp, init = "kmeans", my.cl = NULL,
nstart.kmeans = 1, iter.max.kmeans = 10, modelname.hc = "EII")

Arguments

x Observed data

n.comp Number of mixture components

init Method used for initialization init=’cl.init’,’r.means’,’random’,’kmeans’,’kmeans.hc’,’hc’

my.cl Initial cluster assignments; need to be provided if init=’cl.init’ (otherwise this
param is ignored)

nstart.kmeans Number of random starts in kmeans; default=1
iter.max.kmeans

Maximal number of iteration in kmeans; default=10

modelname.hc Model class used in hc; default=’EII’

Value

a list consisting of

u responsibilities

Author(s)

n.stadler

34 generate_2networks

generate_2networks Generate sparse invcov with overlap

Description

Generate two sparse inverse covariance matrices with overlap

Usage

generate_2networks(p, graph = "random", n.nz = rep(p, 2),
n.nz.common = p, n.hub = 2, n.hub.diff = 1, magn.nz.diff = 0.8,
magn.nz.common = 0.9, magn.diag = 0, emin = 0.1, verbose = FALSE)

Arguments

p number of nodes

graph ’random’ or ’hub’

n.nz number of edges per graph (only for graph=’random’)

n.nz.common number of edges incommon between graphs (only for graph=’random’)

n.hub number of hubs (only for graph=’hub’)

n.hub.diff number of different hubs

magn.nz.diff default=0.9

magn.nz.common default=0.9

magn.diag default=0

emin default=0.1 (see ?huge.generator)

verbose If verbose=FALSE then tracing output is disabled.

Value

Two sparse inverse covariance matrices with overlap

Examples

n <- 70
p <- 30

Specifiy sparse inverse covariance matrices,
with number of edges in common equal to ~ 0.8*p
gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),

n.nz.common=ceiling(p*0.8))

invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]

plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)

generate_inv_cov 35

generate_inv_cov generate_inv_cov

Description

Generate an inverse covariance matrix with a given sparsity and dimensionality

Usage

generate_inv_cov(p = 162, sparsity = 0.7)

Arguments

p Dimensionality of the matrix.

sparsity Determined the proportion of non-zero off-diagonal entries.

Details

This function generates an inverse covariance matrix, with at most (1-sparsity)*p(p-1) non-zero
off-diagonal entries, where the non-zero entries are sampled from a beta distribution.

Value

A p by p positive definite inverse covariance matrix.

Examples

generate_inv_cov(p=162)

getinvcov Generate an inverse covariance matrix with a given sparsity and di-
mensionality

Description

Generate an inverse covariance matrix with a given sparsity and dimensionality

Usage

getinvcov(p, s, a.diff = 5, b.diff = 5, magn.diag = 0, emin = 0.1)

Arguments

p Dimensionality

s Sparsity

a.diff binomial parameter

b.diff binomial parameter

magn.diag Magnitude

emin e min

36 ggmgsa_multisplit

Value

Inverse covariance matrix Internal function

ggmgsa_multisplit Multi-split GGMGSA (parallelized computation)

Description

Multi-split GGMGSA (parallelized computation)

Usage

ggmgsa_multisplit(x1, x2, b.splits = 50, gene.sets, gene.names,
gs.names = NULL, method.p.adjust = "fdr",
order.adj.agg = "agg-adj", mc.flag = FALSE, mc.set.seed = TRUE,
mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L),
verbose = TRUE, ...)

Arguments

x1 Expression matrix for condition 1 (mean zero is required).

x2 Expression matrix for condition 2 (mean zero is required).

b.splits Number of random data splits (default=50).

gene.sets List of gene-sets.

gene.names Gene names. Each column in x1 (and x2) corresponds to a gene.

gs.names Gene-set names (default=NULL).
method.p.adjust

Method for p-value adjustment (default=’fdr’).

order.adj.agg Order of aggregation and adjustment of p-values. Options: ’agg-adj’ (default),
’adj-agg’.

mc.flag If TRUE use parallel execution for each b.splits via function mclapply of package
parallel.

mc.set.seed See mclapply. Default=TRUE

mc.preschedule See mclapply. Default=TRUE

mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set,
or 2 otherwise.

verbose If TRUE, show output progess.

... Other arguments (see diffnet_singlesplit).

Details

Computation can be parallelized over many data splits.

ggmgsa_multisplit 37

Value

List consisting of

medagg.pval Median aggregated p-values

meinshagg.pval Meinshausen aggregated p-values

pval matrix of p-values before correction and adjustement, dim(pval)=(number of
gene-sets)x(number of splits)

teststatmed median aggregated test-statistic
teststatmed.bic

median aggregated bic-corrected test-statistic
teststatmed.aic

median aggregated aic-corrected test-statistic

teststat matrix of test-statistics, dim(teststat)=(number of gene-sets)x(number of splits)

rel.edgeinter normalized intersection of edges in condition 1 and 2

df1 degrees of freedom of GGM obtained from condition 1

df2 degrees of freedom of GGM obtained from condition 2

df12 degrees of freedom of GGM obtained from pooled data (condition 1 and 2)

Author(s)

n.stadler

Examples

###
##This example illustrates the use of GGMGSA ##
###

Generate networks
set.seed(1)
p <- 9#network with p nodes
n <- 40
hub.net <- generate_2networks(p,graph='hub',n.hub=3,n.hub.diff=1)#generate hub networks
invcov1 <- hub.net[[1]]
invcov2 <- hub.net[[2]]
plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)

Generate data
library('mvtnorm')
x1 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcov1)))
x2 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcov2)))

Run DiffNet
fit.dn <- diffnet_multisplit(x1,x2,b.splits=2,verbose=FALSE)
fit.dn$medagg.pval

Identify hubs with 'gene-sets'
gene.names <- paste('G',1:p,sep='')
gsets <- split(gene.names,rep(1:3,each=3))

Run GGM-GSA

38 ggmgsa_singlesplit

fit.ggmgsa <- ggmgsa_multisplit(x1,x2,b.splits=2,gsets,gene.names,verbose=FALSE)
summary(fit.ggmgsa)
fit.ggmgsa$medagg.pval#median aggregated p-values
p.adjust(apply(fit.ggmgsa$pval,1,median),method='fdr')#or: first median aggregation,

#second fdr-correction

ggmgsa_singlesplit Single-split GGMGSA

Description

Single-split GGMGSA

Usage

ggmgsa_singlesplit(x1, x2, gene.sets, gene.names,
method.p.adjust = "fdr", verbose = TRUE, ...)

Arguments

x1 centered (scaled) data for condition 1

x2 centered (scaled) data for condition 2

gene.sets List of gene-sets.

gene.names Gene names. Each column in x1 (and x2) corresponds to a gene.

method.p.adjust

Method for p-value adjustment (default=’fdr’).

verbose If TRUE, show output progess.

... Other arguments (see diffnet_singlesplit).

Value

List of results.

Author(s)

n.stadler

glasso.invcor 39

glasso.invcor Graphical Lasso based on inverse covariance penalty

Description

Graphical Lasso based on inverse covariance penalty

Usage

glasso.invcor(s, rho, penalize.diagonal, term = 10^{ -3 })

Arguments

s no descr

rho no descr
penalize.diagonal

no descr

term no descr

Value

w; wi; iter

Author(s)

n.stadler

glasso.invcov Graphical Lasso based on inverse correlation penalty

Description

Graphical Lasso based on inverse correlation penalty

Usage

glasso.invcov(s, rho, penalize.diagonal, term = 10^{ -3 })

Arguments

s no descr

rho no descr
penalize.diagonal

no descr

term no descr

Value

w; wi; iter

40 gsea.highdimT2

Author(s)

n.stadler

glasso.parcor Graphical Lasso based on partial correlation penalty

Description

Graphical Lasso based on partial correlation penalty

Usage

glasso.parcor(s, rho, penalize.diagonal, maxiter = 1000, term = 10^{
-3 }, verbose = FALSE)

Arguments

s no descr

rho no descr
penalize.diagonal

no descr

maxiter no descr

term no descr

verbose set to TRUE to print out progress.

Value

w; wi; iter

Author(s)

n.stadler

gsea.highdimT2 GSA based on HighdimT2

Description

GSA based on HighdimT2

Usage

gsea.highdimT2(x1, x2, gene.sets, gene.names, gs.names = NULL,
method = "test.sd", method.p.adjust = "fdr")

gsea.iriz 41

Arguments

x1 no descr

x2 no descr

gene.sets no descr

gene.names no descr

gs.names no descr

method no descr
method.p.adjust

no descr

Value

no descr

Author(s)

n.stadler

gsea.iriz Irizarry approach for gene-set testing

Description

Irizarry approach for gene-set testing

Usage

gsea.iriz(x1, x2, gene.sets, gene.names, gs.names = NULL,
method.p.adjust = "fdr", alternative = "two-sided")

Arguments

x1 Expression matrix (condition 1)

x2 Expression matrix (condition 2)

gene.sets List of gene-sets

gene.names Gene names

gs.names Gene-set names
method.p.adjust

Method for p-value adjustment (default=’fdr’)

alternative Default=’two-sided’ (uses two-sided p-values).

Details

Implements the approach described in "Gene set enrichment analysis made simple" by Irizarry et al
(2011). It tests for shift and/or change in scale of the distribution.

42 gsea.iriz.scale

Value

List consisting of

pval.shift p-values measuring shift

pval.scale p-values measuring scale

pval.combined combined p-values (minimum of pval.shift and pval.scale)

Author(s)

n.stadler

Examples

n <- 100
p <- 20
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)
gene.names <- paste('G',1:p,sep='')
gsets <- split(gene.names,rep(1:4,each=5))
fit <- gsea.iriz(x1,x2,gsets,gene.names)
fit$pvals.combined

x2[,1:3] <- x2[,1:3]+0.5#variables 1-3 of first gene-set are upregulated
fit <- gsea.iriz(x1,x2,gsets,gene.names)
fit$pvals.combined

gsea.iriz.scale Irizarry approach (scale only)

Description

Irizarry approach (scale only)

Usage

gsea.iriz.scale(x1, x2, gene.sets, gene.names, gs.names = NULL,
method.p.adjust = "fdr", alternative = "two-sided")

Arguments

x1 no descr

x2 no descr

gene.sets no descr

gene.names no descr

gs.names no descr
method.p.adjust

no descr

alternative no descr

gsea.iriz.shift 43

Value

no descr

Author(s)

n.stadler

gsea.iriz.shift Irizarry approach (shift only)

Description

Irizarry approach (shift only)

Usage

gsea.iriz.shift(x1, x2, gene.sets, gene.names, gs.names = NULL,
method.p.adjust = "fdr", alternative = "two-sided")

Arguments

x1 no descr

x2 no descr

gene.sets no descr

gene.names no descr

gs.names no descr

method.p.adjust

no descr

alternative no descr

Value

no descr

Author(s)

n.stadler

44 het_cv_glasso

gsea.t2cov GSA using T2cov-test

Description

GSA using T2cov-test

Usage

gsea.t2cov(x1, x2, gene.sets, gene.names, gs.names = NULL,
method = "t2cov.lr", method.p.adjust = "fdr")

Arguments

x1 expression matrix (condition 1)

x2 expression matrix (condition 2)

gene.sets list of gene-sets

gene.names gene names

gs.names gene-set names

method method for testing equality of covariance matrices
method.p.adjust

method for p-value adjustment (default: ’fdr’)

Value

list of results

Author(s)

n.stadler

het_cv_glasso Cross-validated glasso on heterogeneous dataset with grouping

Description

Run glasso on a heterogeneous dataset to obtain networks (inverse covariance matrices) of the
variables in the dataset for each pre-specified group of samples.

Usage

het_cv_glasso(data, grouping = rep(1, dim(data)[1]), mc.flag = FALSE,
use.package = "huge", normalise = FALSE, verbose = FALSE, ...)

hugepath 45

Arguments

data The heterogenous network data. Needs to be a num.samples by dim.samples
matrix or dataframe.

grouping The grouping of samples; a vector of length num.samples, with num.groups
unique elements.

mc.flag Whether to use parallel processing via package mclapply to distribute the glasso
estimation over different groups.

use.package ’glasso’ for glasso package, or ’huge’ for huge package (default)

normalise If TRUE, normalise the columns of the data matrix before running glasso.

verbose If TRUE, output progress.

... Further parameters to be passed to screen_cv.glasso.

Details

This function runs the graphical lasso with cross-validation to determine the best parameter lambda
for each group of samples. Note that this function defaults to using package huge (rather than
package glasso) unless otherwise specified, as it tends to be more numerically stable.

Value

Returns a list with named elements ’Sig’, ’SigInv’, ’Mu’, ’Sigma.diag’, ’group.names’ and ’var.names.
The variables Sig and SigInv are arrays of size dim.samples by dim.samples by num.groups, where
the first two dimensions contain the (inverse) covariance matrix for the network obtained by run-
ning glasso on group k. Variables Mu and Sigma.diag contain the mean and variance of the input
data, and group.names and var.names contains the names for the groups and variables in the data (if
specified as colnames of the input data matrix).

Examples

n = 100
p = 25

Generate networks with random means and covariances.
sim.result = sim_mix_networks(n, p, n.comp=3)

test.data = sim.result$data
test.labels = sim.result$comp

Reconstruct networks for each component
networks = het_cv_glasso(data=test.data, grouping=test.labels)

hugepath Graphical Lasso path with huge package

Description

Graphical Lasso path with huge package

Usage

hugepath(s, rholist, penalize.diagonal = NULL, trace = NULL)

46 inf.mat

Arguments

s no descr

rholist no descr
penalize.diagonal

no descr

trace no descr

Value

no descr

Author(s)

n.stadler

inf.mat Information Matrix of Gaussian Graphical Model

Description

Compute Information Matrix of Gaussian Graphical Model

Usage

inf.mat(Sig, include.mean = FALSE)

Arguments

Sig Sig=solve(SigInv) true covariance matrix under H0

include.mean no descr

Details

computes E_0[s(Y;Omega)s(Y;Omega)’] where s(Y;Omega)=(d/dOmega) LogLik

Value

no descr

Author(s)

n.stadler

invcov2parcor 47

invcov2parcor Convert inverse covariance to partial correlation

Description

Convert inverse covariance to partial correlation

Usage

invcov2parcor(invcov)

Arguments

invcov Inverse covariance matrix

Value

The partial correlation matrix.

Examples

inv.cov = generate_inv_cov(p=25)
p.corr = invcov2parcor(inv.cov)

invcov2parcor_array Convert inverse covariance to partial correlation for several inverse
covariance matrices collected in an array.

Description

Convert inverse covariance to partial correlation for several inverse covariance matrices collected in
an array.

Usage

invcov2parcor_array(invcov.array)

Arguments

invcov.array Array of inverse covariance matrices, of dimension numNodes by numNodes by
numComps.

Value

Array of partial correlation matrices of dimension numNodes by numNodes by numComps

Examples

invcov.array = sapply(1:5, function(x) generate_inv_cov(p=25), simplify='array')
p.corr = invcov2parcor_array(invcov.array)

48 lambdagrid_lin

lambda.max Lambdamax

Description

Lambdamax

Usage

lambda.max(x)

Arguments

x no descr

Value

no descr

Author(s)

n.stadler

lambdagrid_lin Lambda-grid

Description

Lambda-grid (linear scale)

Usage

lambdagrid_lin(lambda.min, lambda.max, nr.gridpoints)

Arguments

lambda.min no descr

lambda.max no descr

nr.gridpoints no descr

Value

no descr

Author(s)

n.stadler

lambdagrid_mult 49

lambdagrid_mult Lambda-grid

Description

Lambda-grid (log scale)

Usage

lambdagrid_mult(lambda.min, lambda.max, nr.gridpoints)

Arguments

lambda.min no descr
lambda.max no descr
nr.gridpoints no descr

Value

no descr

Author(s)

n.stadler

loglik_mix Log-likelihood for mixture model

Description

Log-likelihood for mixture model

Usage

loglik_mix(x, mix.prob, Mu, Sig)

Arguments

x no descr
mix.prob no descr
Mu no descr
Sig no descr

Value

log-likelihood

Author(s)

n.stadler

50 logratio

logratio Log-likelihood-ratio statistics used in DiffNet

Description

Log-likelihood-ratio statistics used in Differential Network

Usage

logratio(x1, x2, x, sig1, sig2, sig, mu1, mu2, mu)

Arguments

x1 data-matrix sample 1

x2 data-matrix sample 2

x pooled data-matrix

sig1 covariance sample 1

sig2 covariance sample 2

sig pooled covariance

mu1 mean sample 1

mu2 mean sample 2

mu pooled mean

Value

Returns a list with named elements ’twiceLR’, ’sig1’, ’sig2’, ’sig’. ’twiceLR’ is twice the log-
likelihood-ratio statistic.

Author(s)

n.stadler

Examples

x1=matrix(rnorm(100),50,2)
x2=matrix(rnorm(100),50,2)
logratio(x1,x2,rbind(x1,x2),diag(1,2),diag(1,2),diag(1,2),c(0,0),c(0,0),c(0,0))$twiceLR

logratio.diffregr 51

logratio.diffregr Log-likelihood ratio statistics for Differential Regression.

Description

Log-likelihood ratio statistics for Differential Regression.

Usage

logratio.diffregr(y1, y2, y, xx1, xx2, xx, beta1, beta2, beta)

Arguments

y1 Response vector condition 1.
y2 Response vector condition 2.
y Pooled response vector.
xx1 Predictor matrix condition 1.
xx2 Predictor matrix condition 2.
xx Pooled predictor matrix
beta1 Regression coefficients condition 1.
beta2 Regression coefficients condition 2.
beta Pooled regression coefficients.

Value

2 times log-likelihood ratio statistics.

Author(s)

n.stadler

make_grid Make grid

Description

Make grid

Usage

make_grid(lambda.min, lambda.max, nr.gridpoints,
method = "lambdagrid_mult")

Arguments

lambda.min no descr
lambda.max no descr
nr.gridpoints no descr
method no descr

52 mixglasso

Value

no descr

Author(s)

n.stadler

mcov Compute covariance matrix

Description

Compute covariance matrix

Usage

mcov(x, include.mean, covMethod = "ML")

Arguments

x no descr

include.mean no descr

covMethod no descr

Value

no descr

Author(s)

n.stadler

mixglasso mixglasso

Description

mixglasso

Usage

mixglasso(x, n.comp, lambda = sqrt(2 * nrow(x) * log(ncol(x)))/2,
pen = "glasso.parcor", init = "kmeans.hc", my.cl = NULL,
modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10,
term = 10^{ -3 }, min.compsize = 5, save.allfits = FALSE,
filename = "mixglasso_fit.rda", mc.flag = FALSE,
mc.set.seed = FALSE, mc.preschedule = FALSE,
mc.cores = getOption("mc.cores", 2L), ...)

mixglasso 53

Arguments

x Input data matrix

n.comp Number of mixture components. If n.comp is a vector, mixglasso will estimate
a model for each number of mixture components, and return a list of models, as
well as their BIC and MMDL scores and the index of the best model according
to each score.

lambda Regularization parameter. Default=sqrt(2*n*log(p))/2

pen Determines form of penalty: glasso.parcor (default) to penalise the partial cor-
relation matrix, glasso.invcov to penalise the inverse covariance matrix (this
corresponds to classical graphical lasso), glasso.invcor to penalise the inverse
correlation matrix.

init Initialization. Method used for initialization init=’cl.init’,’r.means’,’random’,’kmeans’,’kmeans.hc’,’hc’.
Default=’kmeans’

my.cl Initial cluster assignments; need to be provided if init=’cl.init’ (otherwise this
param is ignored). Default=NULL

modelname.hc Model class used in hc. Default="VVV"

nstart.kmeans Number of random starts in kmeans; default=1
iter.max.kmeans

Maximal number of iteration in kmeans; default=10

term Termination criterion of EM algorithm. Default=10^-3

min.compsize Stop EM if any(compsize)<min.compsize; Default=5

save.allfits If TRUE, save output of mixglasso for all k’s.

filename If save.allfits is TRUE, output of mixglasso will be saved as paste(filename,
_fit.mixgl_k.rda, sep='').

mc.flag If TRUE use parallel execution for each n.comp via function mclapply of package
parallel.

mc.set.seed See mclapply. Default=FALSE

mc.preschedule See mclapply. Default=FALSE

mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set,
or 2 otherwise.

... Other arguments. See mixglasso_init

Details

Runs mixture of graphical lasso network clustering with one or several numbers of mixture compo-
nents.

Value

A list with elements:

models List with each element i containing an S3 object of class ’nethetclustering’ that
contains the result of fitting the mixture graphical lasso model with n.comps[i]
components. See the documentation of mixglasso_ncomp_fixed for the descrip-
tion of this object.

bic BIC for all fits.

mmdl Minimum description length score for all fits.

54 mixglasso

comp Component assignments for all fits.

bix.opt Index of model with optimal BIC score.

mmdl.opt Index of model with optimal MMDL score.

Author(s)

n.stadler

Examples

###
##This an example of how to use MixGLasso##
###

##generate data
set.seed(1)
n <- 1000
n.comp <- 3
p <- 10

Create different mean vectors
Mu <- matrix(0,p,n.comp)

nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p))
for(k in 1:n.comp){

Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp))
}

sim <- sim_mix_networks(n, p, n.comp, Mu=Mu)

##run mixglasso
set.seed(1)
fit1 <- mixglasso(sim$data,n.comp=1:6)
fit1$bic
set.seed(1)
fit2 <- mixglasso(sim$data,n.comp=6)
fit2$bic
set.seed(1)
fit3 <- mixglasso(sim$data,n.comp=1:6,lambda=0)
set.seed(1)
fit4 <- mixglasso(sim$data,n.comp=1:6,lambda=Inf)
#set.seed(1)
#fit5 <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic')
#plot(fit5$selcrit,ylab='bic',xlab='Num.Comps',type='b')

##compare bic
library('ggplot2')
plotting.frame <-

data.frame(BIC= c(fit1$bic, fit3$bic, fit4$bic),
Num.Comps=rep(1:6, 3),
Lambda=rep(c('Default',

'Lambda = 0',
'Lambda = Inf'),

each=6))

mixglasso_init 55

p <- ggplot(plotting.frame) +
geom_line(aes(x=Num.Comps, y=BIC, colour=Lambda))

print(p)

mixglasso_init mixglasso_init

Description

mixglasso_init (initialization and lambda set by user)

Usage

mixglasso_init(x, n.comp, lambda, u.init, mix.prob.init, gamma = 0.5,
pen = "glasso.parcor", penalize.diagonal = FALSE, term = 10^{
-3 }, miniter = 5, maxiter = 1000, min.compsize = 5,
show.trace = FALSE)

Arguments

x Input data matrix

n.comp Number of mixture components

lambda Regularization parameter

u.init Initial responsibilities

mix.prob.init Initial component probablities

gamma Determines form of penalty

pen Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor

penalize.diagonal

Should the diagonal of the inverse covariance matrix be penalized ? Default=FALSE
(recommended)

term Termination criterion of EM algorithm. Default=10^-3

miniter Minimal number of EM iteration before ’stop EM if any(compsize)<min.compsize’
applies. Default=5

maxiter Maximal number of EM iteration. Default=1000

min.compsize Stop EM if any(compsize)<min.compsize; Default=5

show.trace Should information during execution be printed ? Default=FALSE

Details

This function runs mixglasso; requires initialization (u.init,mix.prob.init)

56 mixglasso_ncomp_fixed

Value

list consisting of

mix.prob Component probabilities

Mu Component specific mean vectors

Sig Component specific covariance matrices

SigInv Component specific inverse covariance matrices

iter Number of EM iterations

loglik Log-likelihood

bic -loglik+log(n)*DF/2

mmdl -loglik+penmmdl/2

u Component responsibilities

comp Component assignments

compsize Size of components

pi.comps Component probabilities

warn Warnings during EM algorithm

Author(s)

n.stadler

mixglasso_ncomp_fixed mixglasso_ncomp_fixed

Description

mixglasso_ncomp_fixed

Usage

mixglasso_ncomp_fixed(x, n.comp, lambda = sqrt(2 * nrow(x) *
log(ncol(x)))/2, pen = "glasso.parcor", init = "kmeans.hc",
my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1,
iter.max.kmeans = 10, term = 10^{ -3 }, min.compsize = 5, ...)

Arguments

x Input data matrix

n.comp Number of mixture components

lambda Regularization parameter. Default=sqrt(2*n*log(p))/2

pen Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor

init Initialization. Method used for initialization init=’cl.init’,’r.means’,’random’,’kmeans’,’kmeans.hc’,’hc’.
Default=’kmeans’

my.cl Initial cluster assignments; need to be provided if init=’cl.init’ (otherwise this
param is ignored). Default=NULL

modelname.hc Model class used in hc. Default="VVV"

mle.ggm 57

nstart.kmeans Number of random starts in kmeans; default=1
iter.max.kmeans

Maximal number of iteration in kmeans; default=10

term Termination criterion of EM algorithm. Default=10^-3

min.compsize Stop EM if any(compsize)<min.compsize; Default=5

... Other arguments. See mixglasso_init

Details

This function runs mixglasso

Value

see return mixglasso_init. list consisting of

mix.prob

Mu

Sig

SigInv

iter

loglik

bic -loglik+log(n)*DF/2

mmdl -loglik+penmmdl/2

u responsibilities

comp component assignments

compsize size of components

pi.comps

warn warnings during optimization

Author(s)

n.stadler

mle.ggm MLE in GGM

Description

MLE in GGM

Usage

mle.ggm(x, wi, algorithm = "glasso_rho0", rho = NULL, include.mean)

58 MStepGlasso

Arguments

x no descr
wi no descr
algorithm no descr
rho no descr
include.mean no descr

Value

no descr

Author(s)

n.stadler

MStepGlasso MStep of MixGLasso

Description

MStep of MixGLasso

Usage

MStepGlasso(x, chromosome = NULL, u, v = NULL, lambda, gamma, pen,
penalize.diagonal, equal.prob.trans = NULL, term, model = "hmm")

Arguments

x no descr
chromosome no descr
u no descr
v no descr
lambda no descr
gamma no descr
pen no descr
penalize.diagonal

no descr
equal.prob.trans

no descr
term no descr
model no descr

Value

list consisting of mix.prob, Mu, Sig, SigInv

Author(s)

n.stadler

my.ev2.diffregr 59

my.ev2.diffregr Computation eigenvalues

Description

Computation eigenvalues

Usage

my.ev2.diffregr(Sig, act, act1, act2)

Arguments

Sig no descr

act no descr

act1 no descr

act2 no descr

Value

no descr

Author(s)

n.stadler

my.p.adjust P-value adjustment

Description

P-value adjustment

Usage

my.p.adjust(p, method = "fdr")

Arguments

p Vector of p-values.

method Method for p-value adjustment (default=’fdr’).

Value

Vector of adjusted p-values.

Author(s)

n.stadler

60 my.ttest2

my.ttest T-test

Description

T-test (equal variances)

Usage

my.ttest(x1, x2)

Arguments

x1 no descr

x2 no descr

Value

no descr

Author(s)

n.stadler

my.ttest2 T-test

Description

T-test (unequal variances)

Usage

my.ttest2(x1, x2)

Arguments

x1 no descr

x2 no descr

Value

no descr

Author(s)

n.stadler

mytrunc.method 61

mytrunc.method Additional thresholding

Description

Additional thresholding

Usage

mytrunc.method(n, wi, method = "linear.growth", trunc.k = 5)

Arguments

n no descr

wi no descr

method no descr

trunc.k no descr

Value

no descr

Author(s)

n.stadler

perm.diffregr_pval Computation "split-perm" p-value.

Description

Computation "split-perm" p-value.

Usage

perm.diffregr_pval(y1, y2, x1, x2, act1, act2, act, n.perm)

Arguments

y1 Response vector condition 1.

y2 Response vector condition 2.

x1 Predictor matrix condition 1.

x2 Predictor matrix condition 2.

act1 Active-set condition 1.

act2 Active-set condition 2.

act Pooled active-set.

n.perm Number of permutations.

62 perm.diffregr_teststat

Value

Permutation based p-value.

Author(s)

n.stadler

perm.diffregr_teststat

Auxiliary function for computation of "split-perm" p-value.

Description

Auxiliary function for computation of "split-perm" p-value.

Usage

perm.diffregr_teststat(y1, y2, y12, x1, x2, x12)

Arguments

y1 Response vector condition 1.

y2 Response vector condition 2.

y12 Pooled response vector.

x1 Predictor matrix condition 1.

x2 Predictor matrix condition 2.

x12 Pooled predictor matrix

Value

Test statistic (log-likelihood-ratio statistic).

Author(s)

n.stadler

plot.diffnet 63

plot.diffnet Plotting function for object of class ’diffnet’

Description

Plotting function for object of class ’diffnet’

Usage

S3 method for class 'diffnet'
plot(x, ...)

Arguments

x object of class ’diffnet’

... Further arguments.

Value

Histogram over multi-split p-values.

Author(s)

nicolas

plot.diffregr Plotting function for object of class ’diffregr’

Description

Plotting function for object of class ’diffregr’

Usage

S3 method for class 'diffregr'
plot(x, ...)

Arguments

x object of class ’diffregr’

... Further arguments.

Value

Histogram over multi-split p-values.

Author(s)

nicolas

64 plot.nethetclustering

plot.ggmgsa Plotting function for object of class ’ggmgmsa’

Description

Plotting function for object of class ’ggmgsa’

Usage

S3 method for class 'ggmgsa'
plot(x, ...)

Arguments

x object of class ’ggmgsa’

... Further arguments.

Value

Boxplot of single-split p-values.

Author(s)

nicolas

plot.nethetclustering Plot networks

Description

This function takes the output of screen_cv.glasso or mixglasso and creates a network plot
using the network library.

Usage

S3 method for class 'nethetclustering'
plot(x,
node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)),
p.corrs.thresh = 0.2, print.pdf = FALSE, pdf.filename = "networks",
...)

plotCV 65

Arguments

x A network clustering object as returned by screen_cv.glasso or mixglasso.

node.names Names for the nodes in the network. If NULL, names from net.clustering will
be used.

group.names Names for the clusters or groups. If NULL, names from net.clustering will be
used (by default these are integets 1:numClusters).

p.corrs.thresh Threshold applied to the absolute partial correlations. Edges that are below the
threshold in all of the groups are not displayed.

print.pdf If TRUE, save the output as a PDF file.

pdf.filename If print.pdf is TRUE, specifies the file name of the output PDF file.

... Further arguments

Value

Returns NULL and prints out the networks (or saves them to pdf if print.pdf is TRUE. The
networks are displayed as a series of nComps+1 plots, where in the first plot edge widths are shown
according to the maximum partial correlation of the edge over all groups. The following plots show
the edges for each group. Positive partial correlation edges are shown in black, negative ones in
blue. If an edge is below the threshold on the absolute partial correlation, it is displayed in gray or
light blue respectively.

plotCV plotCV

Description

plotCV

Usage

plotCV(lambda, cv, cv.error, se = TRUE, type = "b", ...)

Arguments

lambda no descr

cv no descr

cv.error no descr

se no descr

type no descr

... no descr

Value

no descr

Author(s)

n.stadler

66 plot_2networks

plot_2networks Plot two networks (GGMs)

Description

Plot two networks (GGMs)

Usage

plot_2networks(invcov1, invcov2, node.label = paste("X", 1:nrow(invcov1),
sep = ""), main = c("", ""), ...)

Arguments

invcov1 Inverse covariance matrix of GGM1.

invcov2 Inverse covariance matrix of GGM2.

node.label Names of nodes.

main Vector (two elements) with network names.

... Other arguments (see plot.network).

Value

Figure with two panels (for each network).

Author(s)

nicolas

Examples

n <- 70
p <- 30

Specifiy sparse inverse covariance matrices,
with number of edges in common equal to ~ 0.8*p
gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),

n.nz.common=ceiling(p*0.8))

invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]

plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)

print.nethetsummary 67

print.nethetsummary Print function for object of class ’nethetsummmary’

Description

Print function for object of class ’nethetsummary’

Usage

S3 method for class 'nethetsummary'
print(x, ...)

Arguments

x object of class ’nethetsummary’

... Other arguments

Value

Function does not return anything.

Author(s)

frankd

q.matrix.diffregr Computation Q matrix

Description

Computation Q matrix

Usage

q.matrix.diffregr(Sig, a, b, s)

Arguments

Sig no descr

a no descr

b no descr

s no descr

Value

no descr

Author(s)

n.stadler

68 q.matrix.diffregr4

q.matrix.diffregr3 Computation Q matrix

Description

Computation Q matrix

Usage

q.matrix.diffregr3(beta.a, beta.b, beta, sig.a, sig.b, sig, Sig, act.a,
act.b, ss)

Arguments

beta.a no descr

beta.b no descr

beta no descr

sig.a no descr

sig.b no descr

sig no descr

Sig no descr

act.a no descr

act.b no descr

ss no descr

Value

no descr

Author(s)

n.stadler

q.matrix.diffregr4 Computation Q matrix

Description

Computation Q matrix

Usage

q.matrix.diffregr4(b.mat, act.a, act.b, ss)

q.matrix3 69

Arguments

b.mat no descr

act.a no descr

act.b no descr

ss no descr

Value

no descr

Author(s)

n.stadler

q.matrix3 Compute Q-matrix

Description

Compute Q-matrix

Usage

q.matrix3(sig, sig.a, sig.b, act.a, act.b, ss)

Arguments

sig no descr

sig.a no descr

sig.b no descr

act.a no descr

act.b no descr

ss no descr

Value

no descr

Author(s)

n.stadler

70 scatter_plot

q.matrix4 q.matrix4

Description

q.matrix4

Usage

q.matrix4(b.mat, act.a, act.b, ss)

Arguments

b.mat no descr

act.a no descr

act.b no descr

ss no descr

Value

no descr

Author(s)

n.stadler

scatter_plot Create a scatterplot showing correlation between specific nodes in the
network for each pre-specified group.

Description

This function takes the output of het_cv_glasso or mixglasso and creates a plot showing the
correlation between specified node pairs in the network for all groups. The subplots for each node
pair are arranged in a numPairs by numGroups grid. Partial correlations associated with each node
pair are also displayed.

Usage

scatter_plot(net.clustering, data, node.pairs, display = TRUE,
node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)), cex = 1)

scatter_plot 71

Arguments

net.clustering A network clustering object as returned by het_cv_glasso or mixglasso.

data Observed data for the nodes, a numObs by numNodes matrix. Note that nodes
need to be in the same ordering as in node.names.

node.pairs A matrix of size numPairs by 2, where each row contains a pair of nodes to
display. If node.names is specified, names in node.pairs must correspond to
elements of node.names.

display If TRUE, print the plot to the current output device.

node.names Names for the nodes in the network. If NULL, names from net.clustering will
be used.

group.names Names for the clusters or groups. If NULL, names from net.clustering will be
used (by default these are integets 1:numClusters).

cex Scale factor for text and symbols in plot.

Value

Returns a ggplot2 object. If display=TRUE, additionally displays the plot.

Examples

n = 500
p = 10
s = 0.9
n.comp = 3

Create different mean vectors
Mu = matrix(0,p,n.comp)

Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p))

Set non-zero means to fixed value
for(k in 1:n.comp){
Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))

}

Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)
mixglasso.result = mixglasso(sim.result$data, n.comp=3)
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

Specify edges
node.pairs = rbind(c(1,3), c(6,9),c(7,8))

Create scatter plots of specified edges
scatter_plot(mixglasso.clustering, data=sim.result$data,

node.pairs=node.pairs)

72 screen_aic.glasso

screen_aic.glasso AIC-tuned glasso with additional thresholding

Description

AIC-tuned glasso with additional thresholding

Usage

screen_aic.glasso(x, include.mean = TRUE, length.lambda = 20,
lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001),
penalize.diagonal = FALSE, plot.it = FALSE,
trunc.method = "linear.growth", trunc.k = 5, use.package = "huge",
verbose = FALSE)

Arguments

x The input data. Needs to be a num.samples by dim.samples matrix.

include.mean Include mean in likelihood. TRUE / FALSE (default).

length.lambda Length of lambda path to consider (default=20).
lambdamin.ratio

Ratio lambda.min/lambda.max.
penalize.diagonal

If TRUE apply penalization to diagonal of inverse covariance as well. (de-
fault=FALSE)

plot.it TRUE / FALSE (default)

trunc.method None / linear.growth (default) / sqrt.growth

trunc.k truncation constant, number of samples per predictor (default=5)

use.package ’glasso’ or ’huge’ (default).

verbose If TRUE, output la.min, la.max and la.opt (default=FALSE).

Value

Returns a list with named elements ’rho.opt’, ’wi’, ’wi.orig’. Variable rho.opt is the optimal (scaled)
penalization parameter (rho.opt=2*la.opt/n). The variables wi and wi.orig are matrices of size
dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.

Author(s)

n.stadler

Examples

n=50
p=5
x=matrix(rnorm(n*p),n,p)
wihat=screen_aic.glasso(x,length.lambda=5)$wi

screen_bic.glasso 73

screen_bic.glasso BIC-tuned glasso with additional thresholding

Description

BIC-tuned glasso with additional thresholding

Usage

screen_bic.glasso(x, include.mean = TRUE, length.lambda = 20,
lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001),
penalize.diagonal = FALSE, plot.it = FALSE,
trunc.method = "linear.growth", trunc.k = 5, use.package = "huge",
verbose = FALSE)

Arguments

x The input data. Needs to be a num.samples by dim.samples matrix.

include.mean Include mean in likelihood. TRUE / FALSE (default).

length.lambda Length of lambda path to consider (default=20).
lambdamin.ratio

Ratio lambda.min/lambda.max.
penalize.diagonal

If TRUE apply penalization to diagonal of inverse covariance as well. (de-
fault=FALSE)

plot.it TRUE / FALSE (default)

trunc.method None / linear.growth (default) / sqrt.growth

trunc.k truncation constant, number of samples per predictor (default=5)

use.package ’glasso’ or ’huge’ (default).

verbose If TRUE, output la.min, la.max and la.opt (default=FALSE).

Value

Returns a list with named elements ’rho.opt’, ’wi’, ’wi.orig’, Variable rho.opt is the optimal (scaled)
penalization parameter (rho.opt=2*la.opt/n). The variables wi and wi.orig are matrices of size
dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.

Author(s)

n.stadler

Examples

n=50
p=5
x=matrix(rnorm(n*p),n,p)
wihat=screen_bic.glasso(x,length.lambda=5)$wi

74 screen_cv.glasso

screen_cv.glasso Cross-validated glasso with additional thresholding

Description

Cross-validated glasso with additional thresholding

Usage

screen_cv.glasso(x, include.mean = FALSE, folds = min(10, dim(x)[1]),
length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01,
0.001), penalize.diagonal = FALSE, trunc.method = "linear.growth",
trunc.k = 5, plot.it = FALSE, se = FALSE, use.package = "huge",
verbose = FALSE)

Arguments

x The input data. Needs to be a num.samples by dim.samples matrix.

include.mean Include mean in likelihood. TRUE / FALSE (default).

folds Number of folds in the cross-validation (default=10).

length.lambda Length of lambda path to consider (default=20).
lambdamin.ratio

Ratio lambda.min/lambda.max.
penalize.diagonal

If TRUE apply penalization to diagonal of inverse covariance as well. (de-
fault=FALSE)

trunc.method None / linear.growth (default) / sqrt.growth

trunc.k truncation constant, number of samples per predictor (default=5)

plot.it TRUE / FALSE (default)

se default=FALSE.

use.package ’glasso’ or ’huge’ (default).

verbose If TRUE, output la.min, la.max and la.opt (default=FALSE).

Details

Run glasso on a single dataset, using cross-validation to estimate the penalty parameter lambda.
Performs additional thresholding (optionally).

Value

Returns a list with named elements ’rho.opt’, ’w’, ’wi’, ’wi.orig’, ’mu’. Variable rho.opt is the op-
timal (scaled) penalization parameter (rho.opt=2*la.opt/n). Variable w is the estimated covariance
matrix. The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing
the truncated and untruncated inverse covariance matrix. Variable mu is the mean of the input data.

Author(s)

n.stadler

screen_cv1se.lasso 75

Examples

n=50
p=5
x=matrix(rnorm(n*p),n,p)
wihat=screen_cv.glasso(x,folds=2)$wi

screen_cv1se.lasso Cross-validated Lasso screening (lambda.1se-rule)

Description

Cross-validated Lasso screening (lambda.1se-rule)

Usage

screen_cv1se.lasso(x, y)

Arguments

x Predictor matrix

y Response vector

Value

Active-set

Author(s)

n.stadler

Examples

screen_cv1se.lasso(matrix(rnorm(5000),50,100),rnorm(50))

screen_cvfix.lasso Cross-validated Lasso screening and upper bound on number of pre-
dictors.

Description

Cross-validated Lasso screening and upper bound on number of predictors

Usage

screen_cvfix.lasso(x, y, no.predictors = 10)

Arguments

x Predictor matrix.

y Response vector.

no.predictors Upper bound on number of active predictors,

76 screen_cvmin.lasso

Details

Computes Lasso coefficients (cross-validation optimal lambda). Truncates smalles coefficients to
zero such that there are no more than no.predictors non-zero coefficients

Value

Active-set.

Author(s)

n.stadler

Examples

screen_cvfix.lasso(matrix(rnorm(5000),50,100),rnorm(50))

screen_cvmin.lasso Cross-validation lasso screening (lambda.min-rule)

Description

Cross-validated Lasso screening (lambda.min-rule)

Usage

screen_cvmin.lasso(x, y)

Arguments

x Predictor matrix

y Response vector

Value

Active-set

Author(s)

n.stadler

Examples

screen_cvmin.lasso(matrix(rnorm(5000),50,100),rnorm(50))

screen_cvsqrt.lasso 77

screen_cvsqrt.lasso Cross-validated Lasso screening and sqrt-truncation.

Description

Cross-validated Lasso screening and sqrt-truncation.

Usage

screen_cvsqrt.lasso(x, y)

Arguments

x Predictor matrix.

y Response vector.

Details

Computes Lasso coefficients (cross-validation optimal lambda). Truncates smallest coefficients to
zero, such that there are no more than sqrt(n) non-zero coefficients.

Value

Active-set.

Author(s)

n.stadler

Examples

screen_cvsqrt.lasso(matrix(rnorm(5000),50,100),rnorm(50))

screen_cvtrunc.lasso Cross-validated Lasso screening and additional truncation.

Description

Cross-validated Lasso screening and additional truncation.

Usage

screen_cvtrunc.lasso(x, y, k.trunc = 5)

Arguments

x Predictor matrix.

y Response vector.

k.trunc Truncation constant="number of samples per predictor" (default=5).

78 screen_full

Details

Computes Lasso coefficients (cross-validation optimal lambda). Truncates smallest coefficients to
zero, such that there are no more than n/k.trunc non-zero coefficients.

Value

Active-set.

Author(s)

n.stadler

Examples

screen_cvtrunc.lasso(matrix(rnorm(5000),50,100),rnorm(50))

screen_full Screen_full

Description

Screen_full

Usage

screen_full(x, include.mean = NULL, length.lambda = NULL,
trunc.method = NULL, trunc.k = NULL)

Arguments

x no descr

include.mean no descr

length.lambda no descr

trunc.method no descr

trunc.k no descr

Value

no descr

Author(s)

n.stadler

screen_shrink 79

screen_shrink Shrinkage approach for estimating Gaussian graphical model

Description

Shrinkage approach for estimating Gaussian graphical model

Usage

screen_shrink(x, include.mean = NULL, trunc.method = "linear.growth",
trunc.k = 5)

Arguments

x The input data. Needs to be a num.samples by dim.samples matrix.

include.mean Include mean in likelihood. TRUE / FALSE (default).

trunc.method None / linear.growth (default) / sqrt.growth

trunc.k truncation constant, number of samples per predictor (default=5)

Value

Returns a list with named elements ’rho.opt’, ’wi’, ’wi.orig’. Variable rho.opt=NULL (no tuning
parameter involved). The variables wi and wi.orig are matrices of size dim.samples by dim.samples
containing the truncated and untruncated inverse covariance matrix.

Author(s)

n.stadler

shapiro_screen Filter "non-normal" genes

Description

Filter "non-normal" genes

Usage

shapiro_screen(x1, x2, sign.level = 0.001)

Arguments

x1 expression matrix (condition 1)

x2 expression matrix (condition 2)

sign.level sign.level in Shapiro-Wilk tests (default: sign.level=0.001)

Details

Discarding genes which have Shapiro-Wilk p-value (corrected for multiplicity) smaller than sign.level
in either of the two conditions. We used sign.level=0.001 in the GGMGSA paper.

80 sim_mix

Value

list consisting of

x1.filt expression matrix (condition 1) after filtering
x2.filt expression matrix (condition 2) after filtering

Author(s)

n.stadler

sim_mix Simulate from mixture model.

Description

Simulate from mixture model with multi-variate Gaussian or t-distributed components.

Usage

sim_mix(n, n.comp, mix.prob, Mu, Sig, dist = "norm", df = 2)

Arguments

n sample size
n.comp number of mixture components ("comps")
mix.prob mixing probablities (need to sum to 1)
Mu matrix of component-specific mean vectors
Sig array of component-specific covariance matrices
dist ’norm’ for Gaussian components, ’t’ for t-distributed components
df degrees of freedom of the t-distribution (not used for Gaussian distribution),

default=2

Value

a list consisting of:

S component assignments
X observed data matrix

Author(s)

n.stadler

Examples

n.comp = 4
p = 5 # dimensionality
Mu = matrix(rep(0, p), p, n.comp)
Sigma = array(diag(p), c(p, p, n.comp))
mix.prob = rep(0.25, n.comp)

sim_mix(100, n.comp, mix.prob, Mu, Sigma)

sim_mix_networks 81

sim_mix_networks sim_mix_networks

Description

Generate inverse covariances, means, mixing probabilities, and simulate data from resulting mixture
model.

Usage

sim_mix_networks(n, p, n.comp, sparsity = 0.7, mix.prob = rep(1/n.comp,
n.comp), Mu = NULL, Sig = NULL, ...)

Arguments

n Number of data points to simulate.

p Dimensionality of the data.

n.comp Number of components of the mixture model.

sparsity Determines the proportion of non-zero off-diagonal entries.

mix.prob Mixture probabilities for the components; defaults to uniform distribution.

Mu Means for the mixture components, a p by n.comp matrix. If NULL, sampled
from a standard Gaussian.

Sig Covariances for the mixture components, a p by p by n.comp array. If NULL,
generated using generate_inv_cov.

... Further arguments passed to sim_mix.

Details

This function generates n.comp mean vectors from a standard Gaussian and n.comp covariance ma-
trices, with at most (1-sparsity)*p(p-1)/2 non-zero off-diagonal entries, where the non-zero entries
are sampled from a beta distribution. Then it uses sim_mix to simulate from a mixture model with
these means and covariance matrices.

Means Mu and covariance matrices Sig can also be supplied by the user.

Value

A list with components: Mu Means of the mixture components. Sig Covariances of the mixture
components. data Simulated data, a n by p matrix. S Component assignments, a vector of length n.

Examples

Generate dataset with 100 samples of dimensionality 30, and 4 components
test.data = sim_mix_networks(n=100, p=30, n.comp=4)

82 summary.diffnet

sparse_conc Generates sparse inverse covariance matrices

Description

Generates sparse inverse covariance matrices

Usage

sparse_conc(p, K, s, s.common, magn.nz = 0.5, scale.parcor = TRUE)

Arguments

p Dimensionality of inverse covariance matrix

K Number of inverse covariance matrices

s Number of non-zero entries per inverse covariance matrix

s.common Number of non-zero entries shared across different inverse covariance matrices

magn.nz Magnitude of non-zero elements

scale.parcor Should SigInv be scaled to have diagonal equal one, siginv=parcor ?

Value

SigInv: list of inverse covariance matrices

Author(s)

n.stadler

summary.diffnet Summary function for object of class ’diffnet’

Description

Summary function for object of class ’diffnet’

Usage

S3 method for class 'diffnet'
summary(object, ...)

Arguments

object object of class ’diffnet’

... Other arguments.

Value

aggregated p-values

summary.diffregr 83

Author(s)

nicolas

summary.diffregr Summary function for object of class ’diffregr’

Description

Summary function for object of class ’diffregr’

Usage

S3 method for class 'diffregr'
summary(object, ...)

Arguments

object object of class ’diffregr
... Other arguments

Value

aggregated p-values

Author(s)

nicolas

summary.ggmgsa Summary function for object of class ’ggmgsa’

Description

Summary function for object of class ’ggmgsa’

Usage

S3 method for class 'ggmgsa'
summary(object, ...)

Arguments

object object of class ’ggmgsa’
... Other arguments

Value

aggregated p-values

Author(s)

nicolas

84 sumoffdiag

summary.nethetclustering

Summary function for object of class ’nethetclustering’

Description

Summary function for object of class ’nethetclustering’

Usage

S3 method for class 'nethetclustering'
summary(object, ...)

Arguments

object object of class ’nethetclustering’

... Other arguments

Value

Network statistics (a ’nethetsummary’ object)

Author(s)

frankd

sumoffdiag Sum of non-diag elements of a matrix

Description

Sum of non-diag elements of a matrix

Usage

sumoffdiag(m)

Arguments

m no descr

Value

Sum of non-diag elements

Author(s)

n.stadler

symmkldist 85

symmkldist Compute symmetric kull-back leibler distance

Description

Compute symmetric kull-back leibler distance

Usage

symmkldist(mu1, mu2, sig1, sig2)

Arguments

mu1 no descr

mu2 no descr

sig1 no descr

sig2 no descr

Value

symmetric kull-back leibler distance

Author(s)

n.stadler

t2cov.lr Classical likelihood-ratio test

Description

Classical likelihood-ratio test (equality of covariance matrices)

Usage

t2cov.lr(x1, x2, include.mean = FALSE)

Arguments

x1 no descr

x2 no descr

include.mean no descr

Value

no descr

Author(s)

n.stadler

86 test.sd

t2diagcov.lr Diagonal-restricted likelihood-ratio test

Description

Diagonal-restricted likelihood-ratio test

Usage

t2diagcov.lr(x1, x2, include.mean = FALSE)

Arguments

x1 no descr

x2 no descr

include.mean no descr

Value

no descr

Author(s)

n.stadler

test.sd High-Dim Two-Sample Test (Srivastava, 2006)

Description

High-Dim Two-Sample Test (Srivastava, 2006)

Usage

test.sd(x1, x2)

Arguments

x1 no descr

x2 no descr

Value

no descr

Author(s)

n.stadler

test.t2 87

test.t2 HotellingsT2

Description

HotellingsT2

Usage

test.t2(x1, x2)

Arguments

x1 no descr

x2 no descr

Value

no descr

Author(s)

n.stadler

tr Compute trace of matrix

Description

Compute trace of matrix

Usage

tr(m)

Arguments

m no descr

Value

trace of matrix

Author(s)

n.stadler

88 w.kldist

twosample_single_regr old single-split function for diffregr

Description

Old single-split function for diffregr

Usage

twosample_single_regr(y1, y2, x1, x2, n.screen.pop1 = 100,
n.screen.pop2 = 100, screen.meth = "screen_cvmin.lasso",
compute.evals = "est2.my.ev3.diffregr")

Arguments

y1 no descr

y2 no descr

x1 no descr

x2 no descr

n.screen.pop1 no descr

n.screen.pop2 no descr

screen.meth no descr

compute.evals no descr

Value

no descr

Author(s)

n.stadler

w.kldist Distance between comps based on symm. kl-distance

Description

Distance between comps based on symm. kl-distance

Usage

w.kldist(Mu, Sig)

Arguments

Mu no descr

Sig no descr

ww.mat 89

Value

list consisting of

comp.kldist

min.comp.kldist

Author(s)

n.stadler

ww.mat Weight-matrix and eigenvalues

Description

Calculates weight-matrix and eigenvalues

Usage

ww.mat(imat, act, act1, act2)

Arguments

imat no descr

act I_uv

act1 I_u

act2 I_v

Details

calculation based on true information matrix

Value

no descr

Author(s)

n.stadler

90 ww.mat2

ww.mat.diffregr Computation M matrix and eigenvalues

Description

Computation M matrix and eigenvalues

Usage

ww.mat.diffregr(Sig, act, act1, act2)

Arguments

Sig no descr

act no descr

act1 no descr

act2 no descr

Value

no descr

Author(s)

n.stadler

ww.mat2 Calculates eigenvalues of weight-matrix (using 1st order simplifica-
tion)

Description

Calculates eigenvalues of weight-matrix (using 1st order simplification)

Usage

ww.mat2(imat, act, act1, act2)

Arguments

imat no descr

act I_uv

act1 I_u

act2 I_v

Details

calculation based on true information matrix

ww.mat2.diffregr 91

Value

no descr

Author(s)

n.stadler

ww.mat2.diffregr Computation M matrix and eigenvalues

Description

Computation M matrix and eigenvalues

Usage

ww.mat2.diffregr(Sig, act, act1, act2)

Arguments

Sig no descr

act no descr

act1 no descr

act2 no descr

Value

no descr

Author(s)

n.stadler

Index

∗ Removed
screen_shrink, 79

∗ examples
screen_shrink, 79

∗ export
screen_shrink, 79

∗ fixed.
screen_shrink, 79

∗ internal
agg.pval, 4
agg.score.iriz.scale, 5
agg.score.iriz.shift, 5
aic.glasso, 6
beta.mat, 7
beta.mat.diffregr, 8
bic.glasso, 8
buildDotPlotDataFrame, 9
cv.fold, 11
cv.glasso, 12
diffnet_pval, 15
error.bars, 25
est2.my.ev2, 25
est2.my.ev2.diffregr, 26
est2.my.ev3, 27
est2.my.ev3.diffregr, 28
est2.ww.mat.diffregr, 29
est2.ww.mat2, 30
est2.ww.mat2.diffregr, 30
EXPStep.mix, 32
func.uinit, 33
getinvcov, 35
glasso.invcor, 39
glasso.invcov, 39
glasso.parcor, 40
gsea.highdimT2, 40
gsea.iriz.scale, 42
gsea.iriz.shift, 43
gsea.t2cov, 44
hugepath, 45
inf.mat, 46
lambda.max, 48
lambdagrid_lin, 48
lambdagrid_mult, 49

loglik_mix, 49
logratio.diffregr, 51
make_grid, 51
mcov, 52
mixglasso_ncomp_fixed, 56
mle.ggm, 57
MStepGlasso, 58
my.ev2.diffregr, 59
my.p.adjust, 59
my.ttest, 60
my.ttest2, 60
mytrunc.method, 61
perm.diffregr_pval, 61
perm.diffregr_teststat, 62
plotCV, 65
q.matrix.diffregr, 67
q.matrix.diffregr3, 68
q.matrix.diffregr4, 68
q.matrix3, 69
q.matrix4, 70
screen_full, 78
screen_shrink, 79
shapiro_screen, 79
sparse_conc, 82
sumoffdiag, 84
symmkldist, 85
t2cov.lr, 85
t2diagcov.lr, 86
test.sd, 86
test.t2, 87
tr, 87
twosample_single_regr, 88
w.kldist, 88
ww.mat, 89
ww.mat.diffregr, 90
ww.mat2, 90
ww.mat2.diffregr, 91

∗ is
screen_shrink, 79

∗ n=50
screen_shrink, 79

∗ p=5
screen_shrink, 79

92

INDEX 93

∗ package
screen_shrink, 79

∗ parcor
screen_shrink, 79

∗ until
screen_shrink, 79

∗ wihat=screen_shrink(x)$wi
screen_shrink, 79

∗ x=matrix(rnorm(n*p),n,p)
screen_shrink, 79

agg.pval, 4
agg.score.iriz.scale, 5
agg.score.iriz.shift, 5
aggpval, 6
aic.glasso, 6

beta.mat, 7
beta.mat.diffregr, 8
bic.glasso, 8
buildDotPlotDataFrame, 9
bwprun_mixglasso, 10

cv.fold, 11
cv.glasso, 12

diffnet_multisplit, 13
diffnet_pval, 15
diffnet_singlesplit, 16
diffregr_multisplit, 18
diffregr_pval, 20
diffregr_singlesplit, 22
dot_plot, 24

error.bars, 25
est2.my.ev2, 25
est2.my.ev2.diffregr, 26
est2.my.ev3, 27
est2.my.ev3.diffregr, 28
est2.ww.mat.diffregr, 29
est2.ww.mat2, 30
est2.ww.mat2.diffregr, 30
export_network, 31
EXPStep.mix, 32

func.uinit, 33

generate_2networks, 34
generate_inv_cov, 35, 81
getinvcov, 35
ggmgsa_multisplit, 36
ggmgsa_singlesplit, 38
glasso.invcor, 39
glasso.invcov, 39

glasso.parcor, 40
gsea.highdimT2, 40
gsea.iriz, 41
gsea.iriz.scale, 42
gsea.iriz.shift, 43
gsea.t2cov, 44

het_cv_glasso, 24, 31, 44, 70, 71
hugepath, 45

inf.mat, 46
invcov2parcor, 47
invcov2parcor_array, 47

lambda.max, 48
lambdagrid_lin, 48
lambdagrid_mult, 49
loglik_mix, 49
logratio, 50
logratio.diffregr, 51

make_grid, 51
mcov, 52
mixglasso, 24, 31, 52, 64, 65, 70, 71
mixglasso_init, 55
mixglasso_ncomp_fixed, 56
mle.ggm, 57
MStepGlasso, 58
my.ev2.diffregr, 59
my.p.adjust, 59
my.ttest, 60
my.ttest2, 60
mytrunc.method, 61

NetHet-package, 4

perm.diffregr_pval, 61
perm.diffregr_teststat, 62
plot.diffnet, 63
plot.diffregr, 63
plot.ggmgsa, 64
plot.nethetclustering, 64
plot_2networks, 66
plotCV, 65
print.nethetsummary, 67

q.matrix.diffregr, 67
q.matrix.diffregr3, 68
q.matrix.diffregr4, 68
q.matrix3, 69
q.matrix4, 70

scatter_plot, 70
screen_aic.glasso, 72

94 INDEX

screen_bic.glasso, 73
screen_cv.glasso, 31, 64, 65, 74
screen_cv1se.lasso, 75
screen_cvfix.lasso, 75
screen_cvmin.lasso, 76
screen_cvsqrt.lasso, 77
screen_cvtrunc.lasso, 77
screen_full, 78
screen_shrink, 79
shapiro_screen, 79
sim_mix, 80, 81
sim_mix_networks, 81
sparse_conc, 82
summary.diffnet, 82
summary.diffregr, 83
summary.ggmgsa, 83
summary.nethetclustering, 84
sumoffdiag, 84
symmkldist, 85

t2cov.lr, 85
t2diagcov.lr, 86
test.sd, 86
test.t2, 87
tr, 87
twosample_single_regr, 88

w.kldist, 88
write.csv, 31
ww.mat, 89
ww.mat.diffregr, 90
ww.mat2, 90
ww.mat2.diffregr, 91

	NetHet-package
	agg.pval
	agg.score.iriz.scale
	agg.score.iriz.shift
	aggpval
	aic.glasso
	beta.mat
	beta.mat.diffregr
	bic.glasso
	buildDotPlotDataFrame
	bwprun_mixglasso
	cv.fold
	cv.glasso
	diffnet_multisplit
	diffnet_pval
	diffnet_singlesplit
	diffregr_multisplit
	diffregr_pval
	diffregr_singlesplit
	dot_plot
	error.bars
	est2.my.ev2
	est2.my.ev2.diffregr
	est2.my.ev3
	est2.my.ev3.diffregr
	est2.ww.mat.diffregr
	est2.ww.mat2
	est2.ww.mat2.diffregr
	export_network
	EXPStep.mix
	func.uinit
	generate_2networks
	generate_inv_cov
	getinvcov
	ggmgsa_multisplit
	ggmgsa_singlesplit
	glasso.invcor
	glasso.invcov
	glasso.parcor
	gsea.highdimT2
	gsea.iriz
	gsea.iriz.scale
	gsea.iriz.shift
	gsea.t2cov
	het_cv_glasso
	hugepath
	inf.mat
	invcov2parcor
	invcov2parcor_array
	lambda.max
	lambdagrid_lin
	lambdagrid_mult
	loglik_mix
	logratio
	logratio.diffregr
	make_grid
	mcov
	mixglasso
	mixglasso_init
	mixglasso_ncomp_fixed
	mle.ggm
	MStepGlasso
	my.ev2.diffregr
	my.p.adjust
	my.ttest
	my.ttest2
	mytrunc.method
	perm.diffregr_pval
	perm.diffregr_teststat
	plot.diffnet
	plot.diffregr
	plot.ggmgsa
	plot.nethetclustering
	plotCV
	plot_2networks
	print.nethetsummary
	q.matrix.diffregr
	q.matrix.diffregr3
	q.matrix.diffregr4
	q.matrix3
	q.matrix4
	scatter_plot
	screen_aic.glasso
	screen_bic.glasso
	screen_cv.glasso
	screen_cv1se.lasso
	screen_cvfix.lasso
	screen_cvmin.lasso
	screen_cvsqrt.lasso
	screen_cvtrunc.lasso
	screen_full
	screen_shrink
	shapiro_screen
	sim_mix
	sim_mix_networks
	sparse_conc
	summary.diffnet
	summary.diffregr
	summary.ggmgsa
	summary.nethetclustering
	sumoffdiag
	symmkldist
	t2cov.lr
	t2diagcov.lr
	test.sd
	test.t2
	tr
	twosample_single_regr
	w.kldist
	ww.mat
	ww.mat.diffregr
	ww.mat2
	ww.mat2.diffregr
	Index

