Package ‘multistateQTL’

January 20, 2026
Type Package
Date 2025-03-07
Title Toolkit for the analysis of multi-state QTL data
Version 2.2.0

Description A collection of tools for doing various analyses of
multi-state QTL data, with a focus on visualization and interpretation.
The package 'multistateQTL' contains functions which can remove or impute
missing data, identify significant associations, as well as categorise features into global,
multi-state or unique. The analysis results are stored in a 'QTLExperiment' object,
which is based on the 'SummarisedExperiment' framework.

License GPL-3
URL https://github.com/dunstone-a/multistateQTL

BugReports https://github.com/dunstone-a/multistateQTL/issues
Encoding UTF-8
Depends QTLExperiment, SummarizedExperiment, ComplexHeatmap, collapse

Imports methods, S4Vectors, data.table, grid, dplyr, tidyr,
matrixStats, stats, fitdistrplus, viridis, ggplot2, circlize,
mashr, grDevices

Suggests testthat, BiocStyle, knitr, covr, rmarkdown

biocViews FunctionalGenomics, GeneExpression, Sequencing,
Visualization, SNP, Software

VignetteBuilder knitr

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/multistateQTL
git_branch RELEASE_3_22

git_last_commit ccf4a9e

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Christina Del Azodi [aut],
Davis McCarthy [ctb],
Amelia Dunstone [cre, aut] (ORCID:
<https://orcid.org/0009-0009-6426-1529>)

Maintainer Amelia Dunstone <amelia.dunstone@svi.edu.au>

https://github.com/dunstone-a/multistateQTL
https://github.com/dunstone-a/multistateQTL/issues
https://orcid.org/0009-0009-6426-1529

2 multistateQTL-package
Contents
multistateQTL-package 2
callSignificance L. e e 3
getComplete 4
getSignificant L e 5
getTopHits o e 6
plotCompareStates e e e e e e 7
plotPairwiseSharing L 8
plotQTLClusters 9
plotSimulationParamso oL 10
plotUpSet e e e e e 11
qtleEstimate 12
qtleParams e 13
qtleSimulate 14
replaceNAS e e e e 15
runPairwiseSharing L 16
runSignificantFeatures 17
runTestMetrics e 18
simPerformance 19
Index 20
multistateQTL-package multistateQTL: Toolkit for the analysis of multi-state QTL data
Description
A collection of tools for doing various analyses of multi-state QTL data, with a focus on visual-
ization and interpretation. The package *multistateQTL’ contains functions which can remove or
impute missing data, identify significant associations, as well as categorise features into global,
multi-state or unique. The analysis results are stored in a ’QTLExperiment’ object, which is based
on the ’SummarisedExperiment’ framework.
Author(s)
Maintainer: Amelia Dunstone <amelia.dunstone@svi.edu.au> (ORCID)
Authors:
e Christina Del Azodi <cazodi@svi.edu.au>
Other contributors:
* Davis McCarthy <dmccarthy@svi.edu. au> [contributor]
See Also

Useful links:

https://github.com/dunstone-a/multistateQTL
Report bugs at https://github.com/dunstone-a/multistateQTL/issues

https://orcid.org/0009-0009-6426-1529
https://github.com/dunstone-a/multistateQTL
https://github.com/dunstone-a/multistateQTL/issues

callSignificance 3

callSignificance Call associations as significant in each state.

Description

Call associations as significant in each state.

Usage
callSignificance(object, ...)
callSignificance(object, ...) <- value

S4 method for signature 'QTLExperiment'’
callSignificance(

object,

thresh = 0.05,

secondThresh = thresh,

feature = .feature_id,
assay = "pvalues”,
mode = "simple”,

p.adjust.method = "fdr",

)
Arguments
object A QTLExperiment object.
arguments passed to callSignificance
value Value to place in getSignificance
thresh Significance threshold.
secondThresh Significance threshold for associations with significance in one state.
feature rowData column name with feature identifier.
assay assay name with significance score.
mode Method to determine significance threshold per state. Options are ‘simple’,

‘feature-wise-FDR®, and ‘global-FDR".
p.adjust.method
Method of multiple-test correction if mode != simple
Details
This function adds a new assay to multistateQTL object with TRUE/FALSE significance calls for
each test for each state.
Value

A ‘QTLExperiment‘ object with a new assay called ‘significant* and with a column called nSignif-
icant added to the colData.

4 getComplete

Author(s)
Christina B Azodi

See Also

wilcox.test, on which this function is based.
Examples
gtle <- mockQTLE()

assays(qtle)
gtle <- callSignificance(qtle)

There is now an assay called 'significant'
assays(qtle)

Use feature-wise FDR correction -------------—---———--————————-————
gtle_feat <- callSignificance(qtle, thresh=0.1, mode="feature-wise-FDR")

getComplete Filter QTLExperiment based on missing data

Description
Method to filter QTLExperiment objects to remove tests with greater than the permitted rate of
missing values.

Usage

getComplete(qtle, n = 1, verbose = FALSE)

Arguments
gtle A ‘QTLExperiment‘ object
n Number (or percent if n < 1) of states requiring non-null values
verbose logical. Whether to print progress messages.

Value

a subset of the ‘QTLExperiment* object, with only tests with fewer NAs than specified by n.

Examples

Create a QTLExperiment object with NA values -----------------——-—-c-——
sim <- gtleSimulate(

nStates=10, nFeatures=100, nTests=1000,

global=0.2, multi=0.4, unique=0.2, k=2)

Randomly remove 1000 elements from the betas matrix.
na_pattern <- sample(seq(l, ncol(sim)*nrow(sim)), 1000)

getSignificant

sim_na <- sim
assay(sim_na, "betas")[na_pattern] <- NA

Original object has more rows than the output of getComplete()
dim(sim_na)

sim_complete <- getComplete(sim_na)
dim(sim_complete)

getSignificant Filter to only QTLs significant in at least one state

Description

Filter to only QTLs significant in at least one state

Usage

getSignificant(qtle, n = 1, assaySig = "significant"”, verbose = FALSE)

Arguments
gtle ‘QTLExperiment* object
n Number (or percent if n < 1) of states with significant association
assaySig The assay containing TRUE/FALSE significance calls for each QTL test.
verbose logical. Whether to print progress messages.

Value

a subset of the ‘QTLExperiment* object, where all rows are significant in at least one state.

Examples

gtle <- mockQTLE()

gtle <- callSignificance(qgtle)
dim(qgtle)
gtle_sig <- getSignificant(qtle)

There are fewer rows because we have removed tests which are not significant
in any state.
dim(qtle_sig)

6 getTopHits

getTopHits Filter QTLExperiment to keep only top hits

Description

Method to return a subset of a QTLExperiment object containing only the tests that are top hits.
Top hits are defined as the test for each feature with the most significant test statistic. Returns an
array of the top QTL for each feature across all states

Usage
getTopHits(
qtle,
mode = c("global”, "state"),
assay = "pvalues”,
assaySig = "significant”,
verbose = FALSE
)
Arguments
gtle A ‘QTLExperiment‘ object
mode global/state to specify if the top hit per feature is desired from across all states
or for each state.
assay The assay containing the test statistic to minimize.
assaySig The assay containing TRUE/FALSE significance calls for each QTL test.
verbose logical. Whether to print progress messages.
Value

A subset of the ‘QTLExperiment‘ object, with only tests that are the top hits for each feature
(‘mode=global®) or for each feature for each state (‘mode=state®).

Examples

sumstats <- mockSummaryStats(nStates=10, nQTL=100, names=TRUE)
gtle <- QTLExperiment(

assay=list(

betas=sumstats$betas,

errors=sumstats$errors,

pvalues=sumstats$pvalues,

1fsrs=sumstats$pvalues))

Add 'significant' assay to object
gtle <- callSignificance(qgtle)

Filter to the top tests for each feature

gtle_glob <- getTopHits(qtle, assay="1lfsrs", mode="global”, verbose = TRUE)
There are 3 rows corresponding to the three features.
table(feature_id(qtle_glob))

plotCompareStates 7

At most one QTL is retained for each combination of feature_id and state_id
gtle_feat <- getTopHits(qtle, assay="1lfsrs", mode="state"”, verbose = TRUE)
table(feature_id(qtle_feat))

plotCompareStates Compare QTL between two states

Description

Convenience method for comparing the assay value, specified by assay, between two states.

Usage

plotCompareStates(
object,
X)
Y,
assay = "betas”,
FUN = identity,
assaySig = "significant”,
alpha = 0.2,

colBoth = "#4477AA",
colDiverging = "#EE6677",
colNeither = "gray50”,
colX = "#CCBB44",

colY = "#AA3377"

)
Arguments
object an QTLExperiment object.
X Name of state for x-axis
y Name of state for y-axis
assay name of assay to plot.
FUN Function to be applied to fillBy assay before plotting (e.g. identity, abs, log10).
assaySig name of assay with TRUE/FALSE significance calls.
alpha Transparency.
colBoth Color for tests significant in both states.

colDiverging Color for tests significant in both states, with diverging effect sizes.

colNeither Color for null tests.

colX Color for tests significant in the x-axis state only.

colYy Color for tests significant in the y-axis state only.
Value

Returns a list containing the counts for each color category and the plot object.

8 plotPairwiseSharing

Examples

sim <- gtleSimulate(
nStates=10, nFeatures=100, nTests=1000,
global=0.2, multi=0.4, unique=0.2, k=2)
sim <- callSignificance(sim, mode="simple"”, assay="1fsrs",
thresh=0.0001, secondThresh=0.0002)
sim_sig <- getSignificant(sim)
sim_top <- getTopHits(sim_sig, assay="1fsrs", mode="state")
sim_top <- runPairwiseSharing(sim_top)
sim_top <- runTestMetrics(sim_top)
plotCompareStates(sim_top, x="S01", y="S02")

plotPairwiseSharing Heatmap of pairwise QTL sharing with state-level annotations

Description

Methods to plot a heatmap of the pairwise sharing of QTL as calculated by ‘runPairwiseSharing*.

Usage
plotPairwiseSharing(
object,
slot = "pairwiseSharing”,

annotateRowsBy = NULL,
annotateColsBy = NULL,
annotateCells = FALSE,
colourRange = NULL,

name = "colnames”,
distMethod = "pearson”,
size = 8,
)
Arguments
object A QTLExperiment object
slot Name of slot in metadata list with Pairwise Sharing matrix.

annotateRowsBy character or array of characters specifying the column(s) in colData to be plotted
as row annotations.

annotateColsBy character or array of characters specifying the column(s) in colData to be plotted
as column annotations.

annotateCells Logical to annotate cells with their values.
colourRange Optional range for the color legend

name character specifying the column in colData to use to label rows and columns.
Default is colnames(qtle).

distMethod Distance method used for hierarchical clustering. Valid values are the supported
methods in dist() function.

size numeric scalar giving default font size for plotting theme.

Further arguments passed to Heatmap.

plotQTLClusters 9

Value

Returns a ComplexHeatmap object.

Examples

sim <- qgtleSimulate(
nStates=10, nFeatures=100, nTests=1000,
global=0.2, multi=0.4, unique=0.2, k=2)
sim <- callSignificance(sim, mode="simple"”, assay="1lfsrs",
thresh=0.0001, secondThresh=0.0002)
sim_sig <- getSignificant(sim)
sim_top <- getTopHits(sim_sig, assay="1lfsrs"”, mode="state")
sim_top <- runPairwiseSharing(sim_top)

plotPairwiseSharing(sim_top)

Plot with complex column annotations

plotPairwiseSharing(sim_top, annotateColsBy = c("nSignificant”, "multistateGroup"”))
plotQTLClusters Heatmap of QTL across states
Description

Convenience method for plotting values from any assay specified by fillBy across states and tests.

Usage

plotQTLClusters(
object,
fillBy = "betas”,
FUN = identity,
minSig = 1,
annotateColsBy = NULL,
annotateRowsBy = NULL,
show_row_names = FALSE,
state_id = "state_id",
columnOrder = NULL,
rowOrder = NULL,
row_km = @,
column_km = @,

)
Arguments
object an QTLExperiment object.
fillBy name of assay to use for main heatmap object.

FUN Function to be applied to fillBy assay before plotting (e.g. identity, abs, log10).

10 plotSimulationParams

minSig minimum number of significant states for QTL to be included.

annotateColsBy character or array of characters specifying the column(s) in colData to be plotted
to annotate states.

annotateRowsBy character or array of characters specifying the column(s) in rowData to be plot-
ted to annotate QTL tests.

show_row_names Logical to plot row (i.e. test) names.

state_id colData column to use to label states.
columnOrder Null for clustering or array to overwrite state order
rowOrder Null for clustering or array to overwrite test order
row_km Set k for k-means clustering of tests.

column_km Set k for k-means clustering of states

Further arguments passed to Heatmap.

Value

Returns a ComplexHeatmap object.

Examples

sim <- qgtleSimulate(
nStates=10, nFeatures=100, nTests=1000,
global=0.2, multi=0.4, unique=0.2, k=2)

sim <- callSignificance(sim, mode="simple”, assay="1fsrs",
thresh=0.0001, secondThresh=0.0002)

sim_sig <- getSignificant(sim)

sim_top <- getTopHits(sim_sig, assay="1lfsrs"”, mode="state")
sim_top <- runTestMetrics(sim_top)

sim_top <- runPairwiseSharing(sim_top)

sim_top_ms <- subset(sim_top, qtl_type_simple == "multistate”)

plotQTLClusters(sim_top)
Plot with annotations for multi state group

plotQTLClusters(sim_top_ms, annotateColsBy = c("multistateGroup"”),
annotateRowsBy = c("qtl_type"”, "mean_beta”, "QTL"))

plotSimulationParams Distribution of estimated simulation parameters

Description

Distribution of estimated simulation parameters

Usage

plotSimulationParams(params, n = 1e+@5)

plotUpSet 11

Arguments

params Estimated simulation parameters from qtleEstimate.

n Number of random values to sample for plots.

Value

A ggplot2 object

Examples

qtle <- mockQTLE()
params <- gtleEstimate(qtle, threshSig = 0.05, threshNull = 0.5)
plotSimulationParams(params=params)

plotUpSet Upset plot of QTL sharing between states with state-level annotations

Description

Convenient method to plot an UpSet plot showing the number of QTL that are significant in sets of

states.
Usage
plotUpSet(
object,
assay = "significant”,
name = "colnames”,

minShared = 10,

minDegree = 2,

maxDegree = NULL,
annotateColsBy = NULL,
comb_order = "comb_size",
set_order = order(ss),

)
Arguments

object an QTLExperiment object

assay Name of assay to use to assess significance.

name character specifying the column in colData to use to label rows and columns.
Default is colnames(qtle).

minShared minimum number of shared QTL for set to be included.

minDegree minimum degree of sharing for set to be included.

maxDegree maximum degree of sharing for set to be included.

annotateColsBy character or array of characters specifying the column(s) in colData to be plotted
as annotations.

12 qtleEstimate

comb_order characters specifying how sets should be ordered. Options include the set size
(set_size), combination size (comb_size), degree (deg).

set_order Array specifying order of states.
Further arguments passed to UpSet

Value

Returns a ComplexHeatmap object.

Examples

sim <- gtleSimulate(
nStates=10, nFeatures=100, nTests=1000,
global=0.2, multi=0.4, unique=0.2, k=2)
sim <- callSignificance(sim, mode="simple"”, assay="1fsrs",
thresh=0.0001, secondThresh=0.0002)
sim_sig <- getSignificant(sim)
sim_top <- getTopHits(sim_sig, assay="lfsrs", mode="state")
sim_top <- runPairwiseSharing(sim_top)

plotUpSet(sim_top)

Upset plot with complex row annotations
plotUpSet(sim_top, annotateColsBy = c(”"nSignificant”, "multistateGroup"))

gtleEstimate Estimate parameters from real data for simulating multi-state QTL
summary statistics

Description

Estimate parameters from real data for simulating multi-state QTL summary statistics

Usage
gtleEstimate(
data,
assay = "pvalues”,

threshSig = 0.001,
threshNull = 0.1,
verbose = TRUE

)
gtleParams2()
Arguments
data A ‘QTLExperiment‘ object or named list containing "betas" and "errors" matri-
ces.
assay Assay containing test statistic information to use.
threshSig Max threshold (pval/lfsr) for calling tests as significant.
threshNull Min threshold (pval/lfsr) for calling tests as null.

verbose Logical.

qtleParams 13

Details

The simulation consists of user defined number of equal numbers of four different types of effects:
null, equal among conditions, present only in first condition, independent across conditions

Value

A list with parameter estimates for the QTLExperiment object.

Examples

gqtle <- mockQTLE()
gtleEstimate(qtle)

gtleParams Default gtle simulation parameters

Description

Returns a list of the default values used for parameters when simulating multistateQTL data. Pa-
rameters include:

Usage

betas.sig.shape
betas.sig.rate
cv.sig.shape
cv.sig.rate
betas.null.shape
betas.null.rate
cv.null.shape

cv.null.rate

gtleParams()

Details

The default parameters returned by this function were generated using expression QTL (eQTL)
summary statistics from the Genotype-Tissue Expression (GTEx) Project (Version 8) for the ten
tissues with the largest sample sizes for eQTL mapping. The eQTL tests were filtered to include
only eQTLs on chromosome 1 that were available in all 10 tissues.

gtleParams() returns the parameters used for the plots in the vignette. qtleParams2() returns
the parameter values from the ’Orchestrating multi-state QTL analysis with R’ manuscript and
accompanying reproducible analysis workflow (see WEEO_2022_multistateQTL).

Value

A list with the default parameter values which can be used when simulating multistateQTL data.

https://www.gtexportal.org/home/
https://gitlab.svi.edu.au/biocellgen-public/WEEO_2022_multistateQTL

14 gtleSimulate
Examples
gtleParams()
gtleSimulate Create simulated multistateQTL data for testing purposes
Description
Create simulated multistateQTL data for testing purposes
Usage
gtleSimulate(
params = gtleParams(),
nTests = 100,
nFeatures = NULL,
nStates = 5,
global = 0.5,
multi = 0,
unique = 0,
k =2,
betaSd = 0.1,
1fsr = TRUE,
verbose = TRUE
)
Arguments
params list of parameters required to simulate betas and beta errors. Generated by
‘qtleEstimate()* or ‘qtleParams()°.
nTests number of QTL tests
nFeatures number of QTL features to simulate tests for, NULL mean nFeatures = nTests.
nStates number of states
global percent of QTL tests with significant effects shared across all states
multi percent of QTL tests with significant effects shared across a subset of states.
unique percent of QTL tests with significant effects in only one state
k number of multi-state clusters or an array with the cluster assignments.
betaSd The desired standard deviation or an array of standard deviations equal to the
length of states for sampling beta values for each state.
1fsr Logical to calculate Ifsr using mashr_1by]l.
verbose Logical.
Details

The simulation consists of user defined number of equal numbers of four different types of effects:
null, equal among conditions, present only in first condition, independent across conditions

replaceNAs 15

Value

A simulated ‘QTLExperiment‘ object.

Examples

gtleSimulate(nTests=100, nStates=5, global=0.1, multi=0.2, unique=0.05)

replaceNAs Return multistate QTL object with NAs filled in

Description

A convenience function for imputing or filling in NAs in a ‘QTLExperiment* object.

Usage
replaceNAs(
object,
methods = list(betas = @, errors = "mean”, pvalues = 1, 1fsrs = 1),
verbose = FALSE
)
Arguments
object A ‘QTLExperiment‘ object
methods A named list with the method for each assay. Available methods are to replace
with a given integer or with the row mean or median.
verbose logical. Whether to print progress messages.
Value

A ‘QTLExperiment‘ object with the same dimensions as the original object, but with the NA values
replaced according to the input specifications.

Examples

#' # Create a QTLExperiment object with NA values ----------=--=—-————-——-c——-
gtle <- mockQTLE()

Randomly remove 1000 elements from the betas matrix.
na_pattern <- sample(seq(1, ncol(qtle)*nrow(qtle)), 1000)
gtle_na <- qtle

assay(qtle_na, "betas"”)[na_pattern] <- NA

There are some NA values in the "betas” assay
any(is.na(betas(gtle_na)))

gtle_complete <- replaceNAs(gtle_na)

Now we don't have any NA values
any(is.na(betas(qtle_complete)))

16 runPairwiseSharing

Specify a specific method to impute NAs ------------------——————----—————-

gtle_median <- replaceNAs(
qtle_na,
methods=list(betas = @, errors = "median”, pvalues = 1),
verbose=TRUE)

runPairwiseSharing Compute the proportion of (significant) QTL shared by pairs of condi-
tions

Description

Compute the proportion of (significant) QTL shared by pairs of conditions

Usage

runPairwiseSharing(
qgtle,
assay = "betas”,
assaySig = "significant”,
factor = 0.5,
FUN = identity,

)
Arguments
gtle A ‘QTLExperiment‘ object.
assay The assay containing the metric used to determine sharing (i.e. the metric to be
within a factor X to be considered shared).
assaySig The assay containing significance information.
factor a number in [0,1] the factor within which effects are considered to be shared
FUN a function to be applied to the estimated effect sizes before assessing sharing.
Default "FUN=identity’, "TFUN=abs’ ignores the sign of the effects when assess-
ing sharing.
Additional parameters to pass on to internal functions.
Details

For each pair of states, the effects that are significant (as determined by ‘callSignificance®) in at
least one of the two states are identified. Then the fraction of those with an estimated effect size
(i.e. betas) within a factor ‘factor of one another is computed and returned.

Value

The ‘QTLExperiment* object with a matrix called pairwiseSharing added to the metadata.

runSignificantFeatures 17

Examples

m <- mockQTLE()

m <- callSignificance(m, assay="pvalues")

runPairwiseSharing(m) # sharing by magnitude (same sign)
runPairwiseSharing(m, factor=0) # sharing by sign

runPairwiseSharing(m, FUN=abs) # sharing by magnitude when sign is ignored

runSignificantFeatures
Function to summarize QTL summary statistics by feature ID

Description

This function adds a summary of the features with significant QTL in each state to the metadata of
the QTLExperiment object.

Usage
runSignificantFeatures(object, assay = "significant”)
Arguments
object A QTLExperiment object with multiple QTL tests (i.e., rows) for at least one
feature.
assay Assay containing T/F significance calls for each test.
Value

The ‘QTLExperiment‘ object with a summary of significant features in the metadata and a new
column ‘nSignificantFeatures‘ in the colData.

Examples

gtle <- mockQTLE()
gtle <- callSignificance(qgtle)

There is an assay called 'significant'
assays(qtle)

Obtain summary of significant features for each state
gtle <- runSignificantFeatures(qtle)

There is a summary added to the metadata of the object
metadata(qtle)

18 runTestMetrics

runTestMetrics Classify multi-state QTL

Description

Takes the results from ‘callSignificance()‘ and from the assay ‘betas to categorize each QTL test
using two classification strategies:

Strategy 1 (qtl_type): (1) global-shared, (2) global-diverging, (3) multi-state-shared, (4) multi-state-

diverging, or (5) unique.

Strategy 2 (qtl_type_simple): (1) global, (2) multi-state, or (3) unique.

Usage

runTestMetrics(
qtle,
assay = "betas”,
assaySig = "significant”,
globalBuffer = 0,

Arguments
gtle QTLExperiment qtle
assay Name of assay containing QTL effect size estimate (e.g. betas)
assaySig Name of assay with TRUE/FALSE significance calls

globalBuffer Number of states that can be not-significant and the QTL will still be called as
global, for example, if globalBuffer=1, then a QTL will be considered global if
if is significant in all or all but 1 state.

arguments passed to runTestMetrics

Details

If atest is significant in more than one sign across different states, returns TRUE in rowData(qtle)$diverging

Value

The ‘QTLExperiment‘ object with the following columns added to the rowData: nSignificant, ef-
fect_sd, qtl_type, qtl_type_simple

Examples

m <- mockQTLE()
m <- callSignificance(m)
m <- runTestMetrics(m)

simPerformance

19

simPerformance Performance metrics for multistateQTL simulations

Description

Performance metrics for multistateQTL simulations

Usage

simPerformance(qtle, assay = "significant")

Arguments

gtle A ‘multistateQTL* object.

assay Name of the ‘multistateQTL* assay containing the significance calls

Value

description

Examples

sim <- gtleSimulate()
sim <- callSignificance(sim, assay="1lfsrs"”, thresh=0.1)
simPerformance(sim)

Index

* internal
multistateQTL-package, 2

callSignificance, 3

callSignificance,QTLExperiment-method
(callSignificance), 3

callSignificance<- (callSignificance), 3

getComplete, 4
getSignificant, 5
getTopHits, 6

Heatmap, 8, 10

multistateQTL (multistateQTL-package), 2
multistateQTL-package, 2

plotCompareStates, 7
plotPairwiseSharing, 8
plotQTLClusters, 9
plotSimulationParams, 10
plotUpSet, 11

gtleEstimate, 12
gtleParams, 13

gtleParams2 (qtleEstimate), 12
gtleSimulate, 14
QTLExperiment, 3, 4,6, 17

replaceNAs, 15
runPairwiseSharing, 16
runSignificantFeatures, 17
runTestMetrics, 18

simPerformance, 19
UpSet, 12

wilcox.test, 4

20

	multistateQTL-package
	callSignificance
	getComplete
	getSignificant
	getTopHits
	plotCompareStates
	plotPairwiseSharing
	plotQTLClusters
	plotSimulationParams
	plotUpSet
	qtleEstimate
	qtleParams
	qtleSimulate
	replaceNAs
	runPairwiseSharing
	runSignificantFeatures
	runTestMetrics
	simPerformance
	Index

