Package ‘monocle’

January 20, 2026
Type Package

Title Clustering, differential expression, and trajectory analysis for
single- cell RNA-Seq

Version 2.38.0

Date 2024-03-13

Author Cole Trapnell

Maintainer Cole Trapnell <coletrap@uw.edu>

Description Monocle performs differential expression and time-series analysis
for single-cell expression experiments. It orders individual cells
according to progress through a biological process, without knowing ahead
of time which genes define progress through that process. Monocle also
performs differential expression analysis, clustering, visualization, and
other useful tasks on single cell expression data. It is designed to work
with RNA-Seq and qPCR data, but could be used with other types as well.

License Artistic-2.0

Depends R (>=2.10.0), methods, Matrix (>= 1.2-6), Biobase, ggplot2
(>=1.0.0), VGAM (>= 1.0-6), DDRTree (>= 0.1.4),

Imports parallel, igraph (>= 1.0.1), BiocGenerics, HSMMSingleCell (>=
0.101.5), plyr, cluster, combinat, fastICA, grid, irlba (>=
2.0.0), matrixStats, Rtsne, MASS, reshape?2, leidenbase (>=
0.1.9), limma, tibble, dplyr, pheatmap, stringr, proxy, slam,
viridis, stats, biocViews, RANN(>= 2.5), Rcpp (>= 0.12.0)

LinkingTo Rcpp

Suggests destiny, Hmisc, knitr, Seurat, scater, testthat
VignetteBuilder knitr

Roxygen list(wrap = FALSE)

LazyData true

biocViews ImmunoOncology, Sequencing, RNASeq, GeneExpression,
DifferentialExpression, Infrastructure, Datalmport,
DataRepresentation, Visualization, Clustering,
MultipleComparison, QualityControl

RoxygenNote 7.3.1
git_url https://git.bioconductor.org/packages/monocle
git_branch RELEASE_3_22

2 Contents

git_last_commit 9f2ab5b
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-19

Contents
addCellType o e e e e 3
BEAM e e e e 4
branchTest e 5
buildBranchCellDataSet e 6
calABCs e e e 7
calibrate_per_cell_total_proposal 8
callLRs e e e e e 9
CellDataSet e e e e 10
CellDataSet-methods e e 11
cellPairwiseDistances e e e e 12
cellPairwiseDistances<- e e e e 13
CellType o e e 13
CellTypeHierarchy 14
clusterCells e e e e 14
clusterGenes e e e e 16
compareModels 17
detectBifurcationPoint 17
detectGenes e e e 19
differentialGeneTest 20
diff_test_helper 21
dispersionTable 21
estimateDispersionsForCellDataSet 22
estimateSizeFactorsForMatrix 23
eStiMAate_t e e e 23
exportCDS . . . e 24
extract_good_branched_ordering Lo 25
fitModel e 25
fit_model_helper 26
genSmoothCurveResiduals oL 27
genSmoothCurves L L e 28
get_classic_muscle_markers oL 28
importCDS L 29
load_HSMM e 29
load_HSMM_markers e e 30
load_lung e 30
markerDiffTable 30
MCESAPPLY . . . e e e e 31
minSpanningTree L. e e 32
minSpanningTree<- L. e 33
newCellDataSet e e e e 33
newCellTypeHierarchy 34
orderCells e e e e e 37
order_p_node e e e 38

plot_cell_clusters e e 38

addCellType 3

plot_cell_trajectory e 39
plot_clusters 41
plot_coexpression_matriX ol e e e e e e e 42
plot_complex_cell_trajectory 43
plot_genes_branched_heatmap L oL 44
plot_genes_branched_pseudotime oL 46
plot_genes_in_pseudotime e e 47
plot_genes_jitter e e 49
plot_genes_positive_cells L 50
plot_genes_violin e e 51
plot_multiple_branches_heatmap 52
plot_multiple_branches_pseudotime 54
plot_ordering_genes e e e e e 55
plot_pc_variance_explained 55
plot_pseudotime_heatmap Lo L 56
plot_rtho_delta e 58
plot_spanning_treeo e 58
pa_helper . ..o 60
reducedDimA 60
reducedDimA<- L 61
reducedDimK 61
reducedDimK<- 62
reducedDimS 62
reducedDimS<- 63
reducedDimW L 64
reducedDimW<- L 64
reduceDimension 65
relative2abs L L e e e e 66
residualMatrixX e e 68
responseMatrixX e e e e e 69
selectTopMarkers 70
setOrderingFilter e 70
spike_dfo 71
VSEEXPIS . . . o o e 71
Index 72
addCellType Add a new cell type
Description

adds a cell type to a pre-existing CellTypeHierarchy and produces a function that accepts expression
data from a CellDataSet. When the function is called on a CellDataSet a boolean vector is returned
that indicates whether each cell is or is not the cell type that was added by addCellType.

Usage

addCellType(cth, cell_type_name, classify_func, parent_cell_type_name = "root")

4 BEAM

Arguments

cth The CellTypeHierarchy object
cell_type_name The name of the new cell type. Can’t already exist in cth

classify_func A function that returns true when a cell is of the new type

parent_cell_type_name
If this cell type is a subtype of another, provide its name here

BEAM Branched expression analysis modeling (BEAM).

Description

Identify genes with branch-dependent expression. Branches in single-cell trajectories are generated
by cell fate decisions in development and also arise when analyzing genetic, chemical, or envi-
ronmental perturbations. Branch expression analysis modeling is a statistical approach for finding
genes that are regulated in a manner that depends on the branch. Consider a progenitor cell that
generates two distinct cell types. A single-cell trajectory that includes progenitor cells and both
differentiated cell types will capture the "decision" as a branch point, with progenitors upstream
of the branch and the differentiated cells positioned along distinct branches. These branches will
be characterized by distinct gene expression programs. BEAM aims to find all genes that differ
between the branches. Such "branch-dependent” genes can help identify the mechanism by which
the fate decision is made. BEAM() Takes a CellDataSet and either a specified branch point, or a pair
of trajectory outcomes (as States). If a branch point is provided, the function returns a dataframe of
test results for dependence on that branch. If a pair of outcomes is provided, it returns test results
for the branch that unifies those outcomes into a common path to the trajectory’s root state. BEAM()
compares two models with a likelihood ratio test for branch-dependent expression. The full model
is the product of smooth Pseudotime and the Branch a cell is assigned to. The reduced model just
includes Pseudotime. You can modify these to include arbitrary additional effects in the full or both

models.
Usage
BEAM(
cds,
fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)*Branch”,
reducedModelFormulaStr = "~sm.ns(Pseudotime, df = 3)",

branch_states = NULL,
branch_point = 1,
relative_expr = TRUE,
branch_labels = NULL,
verbose = FALSE,
cores = 1,

Arguments

cds a CellDataSet object upon which to perform this operation

branchTest

fullModelFormulaStr

a formula string specifying the full model in differential expression tests (i.e.
likelihood ratio tests) for each gene/feature.

reducedModelFormulaStr

branch_states

branch_point

relative_expr

branch_labels
verbose

cores

Value

a formula string specifying the reduced model in differential expression tests
(i.e. likelihood ratio tests) for each gene/feature.

ids for the immediate branch branch which obtained from branch construction
based on MST

The ID of the branch point to analyze. Can only be used when reduceDimension
is called with method = "DDRTree".

a logic flag to determine whether or not the relative gene expression should be
used

the name for each branch, for example, "AT1" or "AT2"
Whether to generate verbose output
the number of cores to be used while testing each gene for differential expression

additional arguments to be passed to differential GeneTest

a data frame containing the p values and g-values from the BEAM test, with one row per gene.

branchTest

Test for branch-dependent expression

Description

Testing for branch-dependent expression with BEAM() first involves constructing a CellDataSet that
assigns each cell to a branch, and then performing a likelihood ratio test to see if the branch assign-
ments significantly improves the fit over a null model that does not split the cells. branchTest ()
implements these two steps.

Usage
branchTest(
cds,
fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)*Branch”,
reducedModelFormulaStr = "~sm.ns(Pseudotime, df = 3)",

branch_states

= NULL,

branch_point = 1,

relative_expr
cores = 1,
branch_labels

= TRUE,

= NULL,

verbose = FALSE,

6 buildBranchCellDataSet

Arguments
cds a CellDataSet object upon which to perform this operation
fullModelFormulaStr

a formula string specifying the full model in differential expression tests (i.e.
likelihood ratio tests) for each gene/feature.

reducedModelFormulaStr
a formula string specifying the reduced model in differential expression tests
(i.e. likelihood ratio tests) for each gene/feature.

branch_states states corresponding to two branches

branch_point The ID of the branch point to analyze. Can only be used when reduceDimension
is called with method = "DDRTree".

relative_expr alogic flag to determine whether or not the relative gene expression should be
used

cores the number of cores to be used while testing each gene for differential expression
branch_labels the name for each branch, for example, AT1 or AT2
verbose Whether to show VGAM errors and warnings. Only valid for cores = 1.

Additional arguments passed to differential GeneTest

Value

a data frame containing the p values and g-values from the likelihood ratio tests on the parallel
arrays of models.

buildBranchCellDataSet
Build a CellDataSet that splits cells among two branches

Description

Analyzing branches with BEAM() requires fitting two models to the expression data for each gene.
The full model assigns each cell to one of the two outcomes of the branch, and the reduced model
excludes this assignment. buildBranchBranchCellDataSet () takes a CellDataSet object and re-
turns a version where the cells are assigned to one of two branches. The branch for each cell is
encoded in a new column, "Branch", in the pData table in the returned CellDataSet.

Usage
buildBranchCellDataSet(
cds,
progenitor_method = c("sequential_split”, "duplicate"”),

branch_states = NULL,
branch_point = 1,
branch_labels = NULL,
stretch = TRUE

calABCs 7

Arguments

cds CellDataSet for the experiment
progenitor_method
The method to use for dealing with the cells prior to the branch

branch_states The states for two branching branches

branch_point The ID of the branch point to analyze. Can only be used when reduceDimension()
is called with reduction_method = "DDRTree".

branch_labels The names for each branching branch

stretch A logical flag to determine whether or not the pseudotime trajectory for each
branch should be stretched to the same range or not

Value

a CellDataSet with the duplicated cells and stretched branches

calABCs Compute the area between curves (ABC) for branch-dependent genes

Description

This function is used to calculate the ABC score based on the the nature spline curves fitted for each
branch. ABC score is used to quantify the total magnitude of divergence between two branchs. By
default, the ABC score is the area between two fitted spline curves. The ABC score can be used to
rank gene divergence. When coupled with p-val calculated from the branchTest, it can be used to
identify potential major regulators for branch bifurcation.

Usage

calABCs(
cds,
trend_formula = "~sm.ns(Pseudotime, df = 3)*Branch”,
branch_point = 1,
trajectory_states = NULL,
relative_expr = TRUE,
stretch = TRUE,
cores =1,
verbose = F,
min_expr = 0.5,
integer_expression = FALSE,
num = 5000,
branch_labels = NULL,

Arguments

cds a CellDataSet object upon which to perform this operation

trend_formula a formula string specifying the full model in differential expression tests (i.e.
likelihood ratio tests) for each gene/feature.

8 calibrate_per_cell_total_proposal

branch_point the point where two branches diverge
trajectory_states
States corresponding to two branches

relative_expr a logic flag to determine whether or not the relative gene expression should be

used
stretch a logic flag to determine whether or not each branch should be stretched
cores the number of cores to be used while testing each gene for differential expression
verbose a logic flag to determine whether or not we should output detailed running in-
formation
min_expr the lower limit for the expressed gene

integer_expression
the logic flag to determine whether or not the integer numbers are used for cal-
culating the ABCs. Default is False.

num number of points on the fitted branch trajectories used for calculating the ABCs.
Default is 5000.

branch_labels the name for each branch, for example, AT1 or AT2
Additional arguments passed to buildBranchCellDataSet

Value

a data frame containing the ABCs (Area under curves) score as the first column and other meta
information from fData

calibrate_per_cell_total_proposal
Calibrate_per_cell_total_proposal

Description

Calibrate_per_cell_total_proposal

Usage

calibrate_per_cell_total_proposal(
relative_exprs_matrix,

t_estimate,
expected_capture_rate,
method = c("num_genes”, "tpm_fraction")
)
Arguments

relative_exprs_matrix
The matrix of relative TPM expression values
t_estimate the TPM value that corresponds to 1 cDNA copy per cell
expected_capture_rate
The fraction of mRNAs captured as cDNAs
method the formula to estimate the total mMRNAs (num_genes corresponds to the second
formula while tpm_fraction corresponds to the first formula, see the anounce-
ment on Trapnell lab website for the Census paper)

callLRs 9

calIlRs Calculate the Instantaneous Log Ratio between two branches

Description

This function is used to calculate the Instant Log Ratio between two branches which can be used
to prepare the heatmap demonstrating the branch gene expression divergence hirearchy. If "stretch"
is specifified, each branch will be firstly stretched into maturation level from 0-100. Since the
results when we use "stretching" are always better and IRLs for non-stretched spline curves are
often mismatched, we may only turn down "non-stretch” functionality in future versions. Then, we
fit two separate nature spline curves for each individual linages. The log-ratios of the value on each
spline curve corresponding to each branch are calculated, which can be used as a measure for the
magnitude of divergence between two branching branchs.

Usage

calIlRs(
cds,
trend_formula = "~sm.ns(Pseudotime, df = 3)*Branch”,
branch_point = 1,
trajectory_states = NULL,
relative_expr = TRUE,
stretch = TRUE,
cores = 1,
ILRs_limit = 3,
label_by_short_name = TRUE,
useVST = FALSE,
round_exprs = FALSE,
output_type = "all"”,
branch_labels = NULL,
file = NULL,
return_all = F,
verbose = FALSE,

Arguments

cds CellDataSet for the experiment

trend_formula trend_formula a formula string specifying the full model in differential expres-
sion tests (i.e. likelihood ratio tests) for each gene/feature.

branch_point the point where two branches diverge

trajectory_states
states corresponding to two branches

relative_expr A logic flag to determine whether or not the relative expressed should be used
when we fitting the spline curves

stretch a logic flag to determine whether or not each branch should be stretched
cores Number of cores when fitting the spline curves

ILRs_limit the minimum Instant Log Ratio used to make the heatmap plot

10 CellDataSet

label_by_short_name
label the rows of the returned matrix by gene_short_name (TRUE) or feature id
(FALSE)

useVST A logic flag to determine whether or not the Variance Stablization Transforma-
tion should be used to stablize the gene expression. When VST is used, the
difference between two branchs are used instead of the log-ratio.

round_exprs A logic flag to determine whether or not the expression value should be rounded
into integer

output_type A character either of "all" or "after_bifurcation". If "after_bifurcation" is used,
only the time points after the bifurcation point will be selected

branch_labels the name for each branch, for example, AT1 or AT2

file the name for storing the data. Since the calculation of the Instant Log Ratio is
very time consuming, so by default the result will be stored

return_all A logic flag to determine whether or not all the results from the analysis should
be returned, this includes a dataframe for the log fold change, normalized log
fold change, raw divergence, normalized divergence, fitting curves for each
branch

verbose Whether or not detailed running information should be returned

Additional arguments passed to buildBranchCellDataSet

Value

a ggplot2 plot object

CellDataSet The CellDataSet class

Description

The main class used by Monocle to hold single cell expression data. CellDataSet extends the basic
Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values Methods that operate on CellDataSet
objects constitute the basic Monocle workflow.

Fields
reducedDimS Matrix of class numeric, containing the source values computed by Independent
Components Analysis.

reducedDimW Matrix of class numeric, containing the whitened expression values computed during
Independent Components Analysis.

reducedDimA Matrix of class numeric, containing the weight values computed by Independent
Components Analysis.

reducedDimK A Matrix of class numeric, containing the pre-whitening matrix computed by Inde-
pendent Components Analysis.

CellDataSet-methods 11

minSpanningTree An Object of class igraph, containing the minimum spanning tree used by Mon-
ocle to order cells according to progress through a biological process.

cellPairwiseDistances A Matrix of class numeric, containing the pairwise distances between
cells in the reduced dimension space.

expressionFamily An Object of class vglmff, specifying the VGAM family function used for
expression responses.

lowerDetectionLimit A numeric value specifying the minimum expression level considered to
be true expression.

dispFitInfo An environment containing lists, one for each set of estimated dispersion values. See
estimateDispersions.

dim_reduce_type A string encoding how this CellDataSet has been reduced in dimensionality

auxOrderingData An environment of auxilliary data structures used by various steps in Monocle.
Not to be accessed by users directly.

CellDataSet-methods Methods for the CellDataSet class

Description

Methods for the CellDataSet class

Usage

S4 method for signature 'CellDataSet'’
sizeFactors(object)

S4 replacement method for signature 'CellDataSet,numeric'
sizeFactors(object) <- value

S4 method for signature 'CellDataSet'
estimateSizeFactors(object, locfunc = median, ...)

S4 method for signature 'CellDataSet'
estimateDispersions(
object,
modelFormulaStr = "~ 1",
relative_expr = TRUE,
min_cells_detected = 1,
remove_outliers = TRUE,

cores = 1,
)
Arguments
object The CellDataSet object
value A vector of size factors, with length equal to the cells in object
locfunc A function applied to the geometric-mean-scaled expression values to derive the

size factor.

12 cellPairwiseDistances

Additional arguments to be passed to estimateSizeFactorsForMatrix

modelFormulaStr

A model formula, passed as a string, specifying how to group the cells prior to
estimated dispersion. The default groups all cells together.

relative_expr Whether to transform expression into relative values

min_cells_detected

Only include genes detected above lowerDetectionLimit in at least this many
cells in the dispersion calculation

remove_outliers
Whether to remove outliers (using Cook’s distance) when estimating dispersions

cores The number of cores to use for computing dispersions

cellPairwiseDistances Get the matrix of pairwise distances between cells

Description

Retrieves a matrix capturing distances between each cell used during cell ordering.

Usage

cellPairwiseDistances(cds)

Arguments

cds expression data matrix for an experiment

Value

A square, symmetric matrix containing the distances between each cell in the reduced-dimensionality
space.

Examples

Not run:
D <- cellPairwiseDistances(HSMM)

End(Not run)

cellPairwiseDistances<- 13

cellPairwiseDistances<-

Sets the matrix containing distances between each pair of cells used
by Monocle during cell ordering. Not intended to be called directly.

Description
Sets the matrix containing distances between each pair of cells used by Monocle during cell order-
ing. Not intended to be called directly.

Usage

cellPairwiseDistances(cds) <- value

Arguments

cds A CellDataSet object.

value a square, symmetric matrix containing pairwise distances between cells.
Value

An updated CellDataSet object

Examples

Not run:
cds <- cellPairwiseDistances(D)

End(Not run)

CellType The CellType class

Description

Classifies cells using a criterion function.

Details

Classifies cells via a user-defined gating function. The gating function accepts as input the entire
matrix of expression data from a CellDataSet, and return TRUE or FALSE for each cell in it,
depending on whether each meets the criteria in the gating function

Slots

classify_func: A function that accepts a matrix of expression values as input, and returns a
logical vector (of length equal to the number of columns in the matrix) as output

14 clusterCells

CellTypeHierarchy The CellTypeHierarchy class

Description

Classifies cells according to a hierarchy of types.

Details

Classifies cells according to a hierarchy of types via user-defined gating functions.

Slots

classificationTree: Object of class "igraph”

clusterCells Cluster cells into a specified number of groups based on .

Description

Unsupervised clustering of cells is a common step in many single-cell expression workflows. In
an experiment containing a mixture of cell types, each cluster might correspond to a different cell
type. This method takes a CellDataSet as input along with a requested number of clusters, clusters
them with an unsupervised algorithm (by default, density peak clustering), and then returns the
CellDataSet with the cluster assignments stored in the pData table. When number of clusters is set to
NULL (num_clusters = NULL), the decision plot as introduced in the reference will be plotted and
the users are required to check the decision plot to select the rho and delta to determine the number
of clusters to cluster. When the dataset is big, for example > 50 k, we recommend the user to use
the Leiden or Louvain clustering algorithm which is inspired from phenograph paper. Note Louvain
doesn’t support the num_cluster argument but the k (number of k-nearest neighbors) is relevant to
the final clustering number. The implementation of Louvain clustering is based on the Rphenograph
package but updated based on our requirement (for example, changed the jaccard_coeff function
as well as adding louvain_iter argument, etc.) The density peak clustering method was removed
because CRAN removed the densityClust package. Consequently, the parameters skip_rho_sigma,
inspect_rho_sigma, rho_threshold, delta_threshold, peaks, and gaussian no longer have an effect.

Usage

clusterCells(
cds,
skip_rho_sigma = F,
num_clusters = NULL,
inspect_rho_sigma = F,
rho_threshold = NULL,
delta_threshold = NULL,
peaks = NULL,
gaussian = T,
cell_type_hierarchy = NULL,
frequency_thresh = NULL,

clusterCells 15

enrichment_thresh = NULL,

clustering_genes = NULL,

k = 50,

louvain_iter = 1,

weight = FALSE,

method = c("leiden”, "louvain”, "DDRTree"),
verbose = F,

resolution_parameter = 0.1,

Arguments

cds the CellDataSet upon which to perform this operation

skip_rho_sigma A logic flag to determine whether or not you want to skip the calculation of rho
/ sigma

num_clusters Number of clusters. The algorithm use 0.5 of the rho as the threshold of rho and
the delta corresponding to the number_clusters sample with the highest delta as
the density peaks and for assigning clusters

inspect_rho_sigma
A logical flag to determine whether or not you want to interactively select the
rho and sigma for assigning up clusters

rho_threshold The threshold of local density (rho) used to select the density peaks
delta_threshold
The threshold of local distance (delta) used to select the density peaks

peaks A numeric vector indicates the index of density peaks used for clustering. This
vector should be retrieved from the decision plot with caution. No checking
involved. will automatically calculated based on the top num_cluster product of
rho and sigma.

gaussian A logic flag passed to densityClust function in densityClust package to deter-
mine whether or not Gaussian kernel will be used for calculating the local den-
sity

cell_type_hierarchy
A data structure used for organizing functions that can be used for organizing
cells

frequency_thresh
When a CellTypeHierarchy is provided, cluster cells will impute cell types in
clusters that are composed of at least this much of exactly one cell type.

enrichment_thresh
fraction to be multipled by each cell type percentage. Only used if frequency_thresh
is NULL, both cannot be NULL

clustering_genes
a vector of feature ids (from the CellDataSet’s featureData) used for ordering
cells

k number of kNN used in creating the k nearest neighbor graph for Leiden and
Louvain clustering. The number of kNN is related to the resolution of the clus-
tering result, bigger number of kNN gives low resolution and vice versa. Default
to be 50

louvain_iter number of iterations used for Leiden and Louvain clustering. The clustering
result gives the largest modularity score will be used as the final clustering result.
Default to be 1.

16 clusterGenes

weight A logic argument to determine whether or not we will use Jaccard coefficent for
two nearest neighbors (based on the overlapping of their kNN) as the weight
used for Louvain clustering. Default to be FALSE.

method method for clustering cells. Three methods are available, including leiden, lou-
vian and DDRTree. By default, we use the leiden algorithm for clustering.

verbose Verbose A logic flag to determine whether or not we should print the running
details.

resolution_parameter
A real value that controls the resolution of the leiden clustering. Default is .1.

Additional arguments passed to densityClust

Value

an updated CellDataSet object, in which phenoData contains values for Cluster for each cell

References

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science,
344(6191), 1492-1496. doi:10.1126/science.1242072

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre: Fast unfolding of
communities in large networks. J. Stat. Mech. (2008) P10008

Jacob H. Levine and et.al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like
Cells that Correlate with Prognosis. Cell, 2015.

clusterGenes Clusters genes by pseudotime trend.

Description

This function takes a matrix of expression values and performs k-means clustering on the genes.

Usage
clusterGenes(
expr_matrix,
K,
method = function(x) {
as.dist((1 - cor(Matrix::t(x)))/2)
3
)
Arguments
expr_matrix A matrix of expression values to cluster together. Rows are genes, columns are
cells.
k How many clusters to create
method The distance function to use during clustering

Extra parameters to pass to pam() during clustering

compareModels 17

Value

a pam cluster object

Examples

Not run:

full_model_fits <- fitModel (HSMM[sample(nrow(fData(HSMM_filtered)), 100),1,
modelFormulaStr="~sm.ns(Pseudotime)")

expression_curve_matrix <- responseMatrix(full_model_fits)

clusters <- clusterGenes(expression_curve_matrix, k=4)

plot_clusters(HSMM_filtered[ordering_genes,], clusters)

End(Not run)

compareModels Compare model fits

Description

Performs likelihood ratio tests on nested vector generalized additive models

Usage

compareModels(full_models, reduced_models)

Arguments

full_models a list of models, e.g. as returned by fitModels(), forming the numerators of the
L.R.Ts.

reduced_models a list of models, e.g. as returned by fitModels(), forming the denominators of
the L.R.Ts.

Value

a data frame containing the p values and g-values from the likelihood ratio tests on the parallel
arrays of models.

detectBifurcationPoint
Calculate divergence times for branch-dependent genes

Description

Branch-dependent genes may diverge at different points in pseudotime. detectBifurcationPoint()
calculates these times. Although the branch times will be shaped by and distributed around the
branch point in the trajectory, upstream regulators tend to branch earlier in pseudotime than their
targets.

18 detectBifurcationPoint

Usage

detectBifurcationPoint(
str_log_df = NULL,
ILRs_threshold = 0.1,
detect_all =T,
cds = cds,
Branch = "Branch”,
branch_point = NULL,
branch_states = c(2, 3),
stretch = T,
cores = 1,
trend_formula = "~sm.ns(Pseudotime, df = 3)",
ILRs_limit = 3,
relative_expr = TRUE,
label_by_short_name = TRUE,
useVST = FALSE,
round_exprs = FALSE,
output_type = "all"”,
return_cross_point =T,
file = "bifurcation_heatmap”,
verbose = FALSE,

Arguments

str_log_df the ILRs dataframe calculated from callLRs function. If this data.frame is pro-
vided, all the following parameters are ignored. Note that we need to only use
the ILRs after the bifurcation point if we duplicated the progenitor cell state.

ILRs_threshold the ILR value used to determine the earliest divergence time point

detect_all a logic flag to determine whether or not genes without ILRs pass the threshold
will still report a bifurcation point

cds CellDataSet for the experiment

Branch The column in pData used for calculating the ILRs (If not equal to "Branch", a

warning will report)

branch_point The ID of the branch point to analyze. Can only be used when reduceDimension
is called with method = "DDRTree".

branch_states The states for two branching branchs

stretch a logic flag to determine whether or not each branch should be stretched
cores Number of cores when fitting the spline curves

trend_formula the model formula to be used for fitting the expression trend over pseudotime
ILRs_limit the minimum Instant Log Ratio used to make the heatmap plot

relative_expr A logic flag to determine whether or not the relative expressed should be used
when we fitting the spline curves
label_by_short_name

label the rows of the returned matrix by gene_short_name (TRUE) or feature id
(FALSE)

detectGenes 19

useVsT A logic flag to determine whether or not the Variance Stablization Transforma-
tion should be used to stablize the gene expression. When VST is used, the
difference between two branchs are used instead of the log-ratio.

round_exprs A logic flag to determine whether or not the expression value should be rounded
into integer

output_type A character either of "all" or "after_bifurcation". If "after_bifurcation" is used,
only the time points after the bifurcation point will be selected. Note that, if
Branch is set to "Branch", we will only use "after_bifurcation" since we dupli-
cated the progenitor cells and the bifurcation should only happen after the largest
mature level from the progenitor cells

return_cross_point
A logic flag to determine whether or not only return the cross point

file the name for storing the data. Since the calculation of the Instant Log Ratio is
very time consuming, so by default the result will be stored

verbose Whether to report verbose output

Additional arguments passed to callLRs

Value

a vector containing the time for the bifurcation point with gene names for each value

detectGenes Detects genes above minimum threshold.

Description

Sets the global expression detection threshold to be used with this CellDataSet. Counts how many
cells each feature in a CellDataSet object that are detectably expressed above a minimum threshold.
Also counts the number of genes above this threshold are detectable in each cell.

Usage

detectGenes(cds, min_expr = NULL)

Arguments
cds the CellDataSet upon which to perform this operation
min_expr the expression threshold

Value

an updated CellDataSet object

Examples

Not run:
HSMM <- detectGenes(HSMM, min_expr=0.1)

End(Not run)

20 differentialGeneTest

differentialGeneTest Test genes for differential expression

Description

Tests each gene for differential expression as a function of pseudotime or according to other co-
variates as specified. differentialGeneTest is Monocle’s main differential analysis routine. It
accepts a CellDataSet and two model formulae as input, which specify generalized lineage models
as implemented by the VGAM package.

Usage

differentialGeneTest(
cds,
fullModelFormulaStr = "~sm.ns(Pseudotime, df=3)",
reducedModelFormulaStr = "~1",
relative_expr = TRUE,
cores = 1,

verbose FALSE

Arguments

cds a CellDataSet object upon which to perform this operation

fullModelFormulaStr
a formula string specifying the full model in differential expression tests (i.e.
likelihood ratio tests) for each gene/feature.

reducedModelFormulaStr
a formula string specifying the reduced model in differential expression tests
(i.e. likelihood ratio tests) for each gene/feature.

relative_expr Whether to transform expression into relative values.

cores the number of cores to be used while testing each gene for differential expres-
sion.
verbose Whether to show VGAM errors and warnings. Only valid for cores = 1.
Value

a data frame containing the p values and g-values from the likelihood ratio tests on the parallel
arrays of models.

See Also

vglm

diff_test_helper 21

diff_test_helper Helper function for parallel differential expression testing

Description

test

Usage

diff_test_helper(
X,
fullModelFormulaStr,
reducedModelFormulaStr,
expressionFamily,
relative_expr,
weights,
disp_func = NULL,
verbose = FALSE

)

Arguments
X test
fullModelFormulaStr

a formula string specifying the full model in differential expression tests (i.e.
likelihood ratio tests) for each gene/feature.

reducedModelFormulaStr
a formula string specifying the reduced model in differential expression tests
(i.e. likelihood ratio tests) for each gene/feature.

expressionFamily
specifies the VGAM family function used for expression responses

relative_expr Whether to transform expression into relative values

weights test
disp_func test
verbose Whether to show VGAM errors and warnings. Only valid for cores = 1.
dispersionTable Retrieve a table of values specifying the mean-variance relationship
Description

Calling estimateDispersions computes a smooth function describing how variance in each gene’s
expression across cells varies according to the mean. This function only works for CellDataSet
objects containing count-based expression data, either transcripts or reads.

Usage

dispersionTable(cds)

22 estimateDispersionsForCellDataSet

Arguments

cds The CellDataSet from which to extract a dispersion table.

Value

A data frame containing the empirical mean expression, empirical dispersion, and the value esti-
mated by the dispersion model.

estimateDispersionsForCellDataSet
Helper function to estimate dispersions

Description

Helper function to estimate dispersions

Usage

estimateDispersionsForCellDataSet(
cds,
modelFormulaStr,
relative_expr,
min_cells_detected,
removeOutliers,
verbose = FALSE

Arguments

cds a CellDataSet that contains all cells user wants evaluated
modelFormulaStr

a formula string specifying the model to fit for the genes.
relative_expr Whether to transform expression into relative values

min_cells_detected

Only include genes detected above lowerDetectionLimit in at least this many
cells in the dispersion calculation

removeOutliers aboolean it determines whether or not outliers from the data should be removed

verbose Whether to show detailed running information.

estimateSizeFactorsForMatrix 23

estimateSizeFactorsForMatrix

Function to calculate the size factor for the single-cell RNA-seq data
@importFrom stats median

Description

Function to calculate the size factor for the single-cell RNA-seq data

@importFrom stats median

Usage

estimateSizeFactorsForMatrix(
counts,
locfunc = median,
round_exprs = TRUE,

method = "mean-geometric-mean-total”
)
Arguments
counts The matrix for the gene expression data, either read counts or FPKM values or
transcript counts
locfunc The location function used to find the representive value
round_exprs A logic flag to determine whether or not the expression value should be rounded
method A character to specify the size factor calculation appraoches. It can be either
"mean-geometric-mean-total” (default), "weighted-median", "median-geometric-
mean", "median", "mode", "geometric-mean-total".
estimate_t Find the most commonly occuring relative expression value in each
cell
Description

Converting relative expression values to mRNA copies per cell requires knowing the most com-
monly occuring relative expression value in each cell This value typically corresponds to an RPC
value of 1. This function finds the most commonly occuring (log-transformed) relative expression
value for each column in the provided expression matrix.

Usage

estimate_t(relative_expr_matrix, relative_expr_thresh = 0.1)

24 exportCDS

Arguments

relative_expr_matrix
a matrix of relative expression values for values with each row and column rep-
resenting genes/isoforms and cells, respectively. Row and column names should
be included. Expression values should not be log-transformed.

relative_expr_thresh
Relative expression values below this threshold are considered zero.

Details

This function estimates the most abundant relative expression value (t**) using a gaussian kernel
density function. It can also optionally output the t"* based on a two gaussian mixture model based
on the smsn.mixture from mixsmsn package

Value

an vector of most abundant relative_expr value corresponding to the RPC 1.

Examples

Not run:
HSMM_fpkm_matrix <- exprs(HSMM)
t_estimate = estimate_t (HSMM_fpkm_matrix)

End(Not run)

exportCDS Export a monocle CellDataSet object to the Seurat single cell analysis
toolkit.

Description

This function takes a monocle CellDataSet and converts it to a Seurat object.

Usage

exportCDS(monocle_cds, export_to = c("Seurat"”), export_all = FALSE)

Arguments
monocle_cds the Monocle CellDataSet you would like to export into a Seurat object.
export_to the object type you would like to export to. Seurat is supported.
export_all Whether or not to export all the slots in Monocle and keep in another object
type. Default is FALSE (or only keep minimal dataset). If export_all is setted
to be true, the original monocle cds will be keeped in the other cds object too.
This argument is also only applicable when export_to is Seurat.
Value

a new object in the format of Seurat, as described in the export_to argument.

extract_good_branched_ordering 25

Examples

Not run:

lung <- load_lung()

seurat_lung <- exportCDS(lung)

seurat_lung_all <- exportCDS(lung, export_all =T)

End(Not run)

extract_good_branched_ordering
Extract a linear ordering of cells from a PQ tree

Description

Extract a linear ordering of cells from a PQ tree

Usage

extract_good_branched_ordering(
orig_pg_tree,
curr_node,
dist_matrix,
num_branches,
reverse_main_path = FALSE

Arguments

orig_pg_tree The PQ object to use for ordering
curr_node The node in the PQ tree to use as the start of ordering
dist_matrix A symmetric matrix containing pairwise distances between cells

num_branches The number of outcomes allowed in the trajectory.
reverse_main_path
Whether to reverse the direction of the trajectory

fitModel Fits a model for each gene in a CellDataSet object.

Description

This function fits a vector generalized additive model (VGAM) from the VGAM package for each
gene in a CellDataSet. By default, expression levels are modeled as smooth functions of the Pseudo-
time value of each cell. That is, expression is a function of progress through the biological process.
More complicated formulae can be provided to account for additional covariates (e.g. day collected,
genotype of cells, media conditions, etc).

26 fit_model_helper

Usage

fitModel(
cds,
modelFormulaStr = "~sm.ns(Pseudotime, df=3)",
relative_expr = TRUE,
cores =1

Arguments

cds the CellDataSet upon which to perform this operation
modelFormulaStr
a formula string specifying the model to fit for the genes.

relative_expr Whether to fit a model to relative or absolute expression. Only meaningful for
count-based expression data. If TRUE, counts are normalized by Size_Factor
prior to fitting.

cores the number of processor cores to be used during fitting.

Details

This function fits a vector generalized additive model (VGAM) from the VGAM package for each
gene in a CellDataSet. By default, expression levels are modeled as smooth functions of the Pseudo-
time value of each cell. That is, expression is a function of progress through the biological process.
More complicated formulae can be provided to account for additional covariates (e.g. day collected,
genotype of cells, media conditions, etc).

Value

a list of VGAM model objects

fit_model_helper Helper function for parallel VGAM fitting

Description

test

Usage

fit_model_helper(
X,
modelFormulaStr,
expressionFamily,
relative_expr,
disp_func = NULL,
verbose = FALSE,

genSmoothCurveResiduals 27

Arguments

X test
modelFormulaStr

a formula string specifying the model to fit for the genes.
expressionFamily

specifies the VGAM family function used for expression responses

relative_expr Whether to transform expression into relative values

disp_func test
verbose Whether to show VGAM errors and warnings. Only valid for cores = 1.
test

genSmoothCurveResiduals
Fit smooth spline curves and return the residuals matrix

Description

This function will fit smooth spline curves for the gene expression dynamics along pseudotime in
a gene-wise manner and return the corresponding residuals matrix. This function is build on other
functions (fit_models and residualsMatrix)

Usage
genSmoothCurveResiduals(
cds,
trend_formula = "~sm.ns(Pseudotime, df = 3)",
relative_expr =T,
residual_type = "response”,
cores =1
)
Arguments
cds a CellDataSet object upon which to perform this operation

trend_formula aformula string specifying the model formula used in fitting the spline curve for
each gene/feature.

relative_expr alogic flag to determine whether or not the relative gene expression should be
used

residual_type the response desired, as accepted by VGAM’s predict function

cores the number of cores to be used while testing each gene for differential expression

Value

a data frame containing the data for the fitted spline curves.

28 get_classic_muscle_markers

genSmoothCurves Fit smooth spline curves and return the response matrix

Description

This function will fit smooth spline curves for the gene expression dynamics along pseudotime in
a gene-wise manner and return the corresponding response matrix. This function is build on other
functions (fit_models and responseMatrix) and used in callLRs and calABCs functions

Usage

genSmoothCurves(
cds,
new_data,
trend_formula = "~sm.ns(Pseudotime, df = 3)",
relative_expr = T,
response_type = "response”,
cores = 1

Arguments

cds a CellDataSet object upon which to perform this operation

new_data a data.frame object including columns (for example, Pseudotime) with names
specified in the model formula. The values in the data.frame should be consist
with the corresponding values from cds object.

trend_formula aformula string specifying the model formula used in fitting the spline curve for
each gene/feature.

relative_expr alogic flag to determine whether or not the relative gene expression should be
used

response_type the response desired, as accepted by VGAM’s predict function

cores the number of cores to be used while testing each gene for differential expression

Value

a data frame containing the data for the fitted spline curves.

get_classic_muscle_markers
Return the names of classic muscle genes

Description

Returns a list of classic muscle genes. Used to add conveinence for loading HSMM data.

Usage

get_classic_muscle_markers()

importCDS 29

importCDS Import a Seurat object and convert it to a monocle cds.

Description

This function takes a Seurat object and converts it to a monocle cds. It currently supports only the
Seurat package.

Usage

importCDS(otherCDS, import_all = FALSE)

Arguments
otherCDS the object you would like to convert into a monocle cds
import_all Whether or not to import all the slots in seurat. Default is FALSE (or only keep
minimal dataset).
Value

a new monocle cell dataset object converted from Seurat object.

Examples

Not run:

lung <- load_lung()

seurat_lung <- exportCDS(lung)

seurat_lung_all <- exportCDS(lung, export_all = T)

importCDS(seurat_lung)
importCDS(seurat_lung, import_all = T)
importCDS(seurat_lung_all)
importCDS(seurat_lung_all, import_all = T)

End(Not run)

load_HSMM Build a CellDataSet from the HSMMSingleCell package

Description

Creates a cellDataSet using the data from the HSMMSingleCell package.

Usage

load_HSMM()

30 markerDiffTable

load_HSMM_markers Return a CellDataSet of classic muscle genes.

Description

Return a CellDataSet of classic muscle genes.

Usage

load_HSMM_markers ()

Value

A CellDataSet object

load_lung Build a CellDataSet from the data stored in inst/extdata directory.

Description

Build a CellDataSet from the data stored in inst/extdata directory.

Usage
load_lung()

markerDiffTable Test genes for cell type-dependent expression

Description

takes a CellDataSet and a CellTypeHierarchy and classifies all cells into types passed functions
passed into the CellTypeHierarchy. The function will remove all "Unknown" and "Ambiguous"
types before identifying genes that are differentially expressed between types.

Usage

markerDiffTable(
cds,
cth,
residualModelFormulaStr = "~1",
balanced = FALSE,
reclassify_cells = TRUE,
remove_ambig = TRUE,
remove_unknown = TRUE,
verbose = FALSE,
cores = 1

mcesApply 31

Arguments
cds A CellDataSet object containing cells to classify
cth The CellTypeHierarchy object to use for classification

residualModelFormulaStr
A model formula string specify effects you want to exclude when testing for cell
type dependent expression

balanced Whether to downsample the cells so that there’s an equal number of each type
prior to performing the test

reclassify_cells
a boolean that indicates whether or not the cds and cth should be run through
classifyCells again

remove_ambig a boolean that indicates whether or not ambiguous cells should be removed the

cds

remove_unknown a boolean that indicates whether or not unknown cells should be removed from
the cds

verbose Whether to emit verbose output during the the search for cell-type dependent
genes

cores The number of cores to use when testing

Value

A table of differential expression test results

mcesApply Multicore apply-like function for CellDataSet

Description

mcesApply computes the row-wise or column-wise results of FUN, just like esApply. Variables in
pData from X are available in FUN.

Usage

mcesApply(
X,
MARGIN,
FUN,
required_packages,
cores = 1,
convert_to_dense = TRUE,

32 minSpanningTree

Arguments
X a CellDataSet object
MARGIN The margin to apply to, either 1 for rows (samples) or 2 for columns (features)
FUN Any function

required_packages
A list of packages FUN will need. Failing to provide packages needed by FUN
will generate errors in worker threads.

cores The number of cores to use for evaluation
convert_to_dense
Whether to force conversion a sparse matrix to a dense one before calling FUN

Additional parameters for FUN

Value

The result of with(pData(X) apply(exprs(X)), MARGIN, FUN, ...))

minSpanningTree Retrieves the minimum spanning tree generated by Monocle during
cell ordering.

Description

Retrieves the minimum spanning tree (MST) that Monocle constructs during orderCells(). This
MST is mostly used in plot_spanning_tree to help assess the accuracy of Monocle\’s ordering.

Usage

minSpanningTree(cds)
Arguments

cds expression data matrix for an experiment
Value

An igraph object representing the CellDataSet’s minimum spanning tree.

Examples

Not run:
T <- minSpanningTree(HSMM)

End(Not run)

minSpanningTree<- 33

minSpanningTree<- Set the minimum spanning tree generated by Monocle during cell or-
dering.

Description

Sets the minimum spanning tree used by Monocle during cell ordering. Not intended to be called
directly.

Usage

minSpanningTree(cds) <- value

Arguments

cds A CellDataSet object.

value an igraph object describing the minimum spanning tree.
Value

An updated CellDataSet object

Examples

Not run:
cds <- minSpanningTree(T)

End(Not run)

newCellDataSet Creates a new CellDateSet object.

Description

Creates a new CellDateSet object.

Usage

newCellDataSet(
cellData,
phenoData = NULL,
featureData = NULL,
lowerDetectionLimit = 0.1,
expressionFamily = VGAM: :negbinomial.size()

34 newCellTypeHierarchy

Arguments
cellData expression data matrix for an experiment
phenoData data frame containing attributes of individual cells
featureData data frame containing attributes of features (e.g. genes)
lowerDetectionLimit
the minimum expression level that consistitutes true expression
expressionFamily
the VGAM family function to be used for expression response variables
Value

a new CellDataSet object

Examples

Not run:

sample_sheet_small <- read.delim(”../data/sample_sheet_small.txt"”, row.names=1)
sample_sheet_small$Time <- as.factor(sample_sheet_small$Time)

gene_annotations_small <- read.delim("”../data/gene_annotations_small.txt", row.names=1)
fpkm_matrix_small <- read.delim("../data/fpkm_matrix_small.txt")

pd <- new("AnnotatedDataFrame”, data = sample_sheet_small)

fd <- new("AnnotatedDataFrame”, data = gene_annotations_small)

HSMM <- new("CellDataSet"”, exprs = as.matrix(fpkm_matrix_small), phenoData = pd, featureData = fd)

End(Not run)

newCellTypeHierarchy Classify cells according to a set of markers

Description

Creates a CellTypeHierarchy object which can store cell types with the addCellType() function.
When classifyCells is used with a CellDataSet and a CellTypeHierarchy cells in the CellDataSet
can be classified as cell types found in the CellTypeHierarchy

classifyCells accepts a cellDataSet and and a cellTypeHierarchy. Each cell in the cellDataSet is
checked against the functions in the cellTypeHierarchy to determine each cell’s type

Usage

newCellTypeHierarchy()
classifyCells(cds, cth, frequency_thresh = NULL, enrichment_thresh = NULL, ...)

calculateMarkerSpecificity(
cds,
cth,
remove_ambig = TRUE,
remove_unknown = TRUE

newCellTypeHierarchy 35

Arguments
cds The CelllDataSet you want to classify
cth CellTypeHierarchy

frequency_thresh
If at least this fraction of group of cells meet a cell types marker criteria, impute
them all to be of that type.

enrichment_thresh
fraction to be multipled by each cell type percentage. Only used if frequency_thresh
is NULL, both cannot be NULL

character strings that you wish to pass to dplyr’s group_by_ routine
remove_ambig aboolean that determines if ambiguous cells should be removed

remove_unknown a boolean that determines whether unknown cells should be removed

Details

CellTypeHierarchy objects are Monocle’s mechanism for classifying cells into types based on
known markers. To classify the cells in a CellDataSet object according to known markers, first con-
struct a CellTypeHierachy with newCellTypeHierarchy() and addCellType() and then provide
both the Cel1lDataSet and the Cel1lTypeHierachyto classifyCells(). Each call to addCellType()
registers a classification function that accepts the expression data from a CellDataSet object as in-
put, and returns a boolean vector indicating whether each cell is of the given type. When you call
classifyCells(), each cell will be checked against the classification functions in the Cel1TypeHierachy.
If you wish to make a cell type a subtype of another that’s already been registered with a CellType-
Hierarchy object, make that one the "parent" type with the cell_type_name argument. If you want
two types to be mutually exclusive, make them "siblings" by giving them the same parent. The
classifcation functions in a CellTypeHierarchy must take a single argument, a matrix of expression
values, as input. Note that this matrix could either be a sparseMatrix or a dense matrix. Ex-
plicitly casting the input to a dense matrix inside a classification function is likely to drastically
slow down classifyCells and other routines that use CellTypeHierarhcy objects. Successive calls
to addCellType build up a tree of classification functions inside a CellTypeHierarchy. When two
functions are siblings in the tree, classifyCells expects that a cell will meet the classification criteria
for at most one of them. For example, you might place classification functions for T cells and B
cells as siblings, because a cell cannot be both of these at the same time. When a cell meets the
criteria for more than one function, it will be tagged as "Ambiguous". If classifyCells reports
a large number of ambiguous cells, consider adjusting your classification functions. For example,
some cells are defined by very high expression of a key gene that is expressed at lower levels in
other cell types. Raising the threshold for this gene in a classification could resolve the ambiguities.
A classification function can also have child functions. You can use this to specify subtypes of cells.
For example, T cells express the gene CD3, and there are many subtypes. You can encode each sub-
set by first adding a general T cell classification function that recognizes CD3, and then adding an
additional function that recognizes CD4 (for CD4+ helper T cells), one for CD8 (to identify CD8+
cytotoxic T cells), and so on. classifyCells will aim to assign each cell to its most specific sub-
type in the "CellType" column. By default, classifyCells applies the classification functions to
individual cells, but you can also apply it to cells in a "grouped" mode to impute the type of cells
that are missing expression of your known markers. You can specify additional (quoted) grouping
variables to classifyCells. The function will group the cells according to these factors, and then
classify the cells. It will compute the frequency of each cell type in each group, and if a cell type
is present at the frquency specified in frequency_thresh, all the cells in the group are classified
as that type. If group contains more one cell type at this frequency, all the cells are marked "Am-
biguous". This allows you to impute cell type based on unsupervised clustering results (e.g. with
clusterCells()) or some other grouping criteria.

36 newCellTypeHierarchy

Value

newCellTypeHierarchy and addCellType both return an updated CellTypeHierarchy object. classifyCells
returns an updated CellDataSet with a new column, "CellType", in the pData table.

For a CellDataset with N genes, and a CellTypeHierarchy with k types, returns a dataframe with N
x k rows. Each row contains a gene and a specifity score for one of the types.

Functions

* classifyCells(): Add a cell type to a CellTypeHierarchy

* calculateMarkerSpecificity(): Calculate each gene’s specificity for each cell type

Computes the Jensen-Shannon distance between the distribution of a gene’s expression across
cells and a hypothetical gene that is perfectly restricted to each cell type. The Jensen-Shannon
distance is an information theoretic metric between two probability distributions. It is a widely
accepted measure of cell-type specificity. For a complete description see Cabili et. al, Genes
& Development (2011).

Examples

Not run:
Initialize a new CellTypeHierachy

Register a set of classification functions. There are multiple types of T cells
A cell cannot be both a B cell and a T cell, a T cell and a Monocyte, or

a B cell and a Monocyte.

cth <- newCellTypeHierarchy()

cth <- addCellType(cth, "T cell”,
classify_func=function(x) {x["CD3D",] > @3})

cth <- addCellType(cth, "CD4+ T cell”,
classify_func=function(x) {x["CD4",] > @3},
parent_cell_type_name = "T cell"”)

cth <- addCellType(cth, "CD8+ T cell”,
classify_func=function(x) {
x["CD8A",]1 > @ | x["CD8B",]1 > @
}’

parent_cell_type_name = "T cell"”)

cth <- addCellType(cth, "B cell”,
classify_func=function(x) {x["MS4A1",]1 > 03})

cth <- addCellType(cth, "Monocyte”,
classify_func=function(x) {x["CD14",]1 > @})

Classify each cell in the CellDataSet "mix" according to these types
mix <- classifyCells(mix, cth)

Group the cells by the pData table column "Cluster”. Apply the classification
functions to the cells groupwise. If a group is at least 5% of a type, make
them all that type. If the group is 5% one type, and 5% a different, mutually
exclusive type, mark the whole cluster "Ambiguous”

mix <- classifyCells(mix, Cluster, 0.05)

End(Not run)

orderCells 37

orderCells Orders cells according to pseudotime.

Description

Learns a "trajectory" describing the biological process the cells are going through, and calcu-
lates where each cell falls within that trajectory. Monocle learns trajectories in two steps. The
first step is reducing the dimensionality of the data with reduceDimension(). The second is
this function. function. This function takes as input a CellDataSet and returns it with two new
columns: Pseudotime and State, which together encode where each cell maps to the trajectory.
orderCells() optionally takes a "root" state, which you can use to specify the start of the trajec-
tory. If you don’t provide a root state, one is selected arbitrarily.

Usage

orderCells(cds, root_state = NULL, num_paths = NULL, reverse = NULL)

Arguments
cds the CellDataSet upon which to perform this operation
root_state The state to use as the root of the trajectory. You must already have called
orderCells() once to use this argument.
num_paths the number of end-point cell states to allow in the biological process.
reverse whether to reverse the beginning and end points of the learned biological pro-
cess.
Details

The reduction_method argument to reduceDimension() determines which algorithm is used by
orderCells() to learn the trajectory. If reduction_method == "ICA", this function uses polyg-
onal reconstruction to learn the underlying trajectory. If reduction_method == "DDRTree"”, the
trajectory is specified by the principal graph learned by the DDRTree () function.

Whichever algorithm you use, the trajectory will be composed of segments. The cells from a seg-
ment will share the same value of State. One of these segments will be selected as the root of
the trajectory arbitrarily. The most distal cell on that segment will be chosen as the "first" cell in
the trajectory, and will have a Pseudotime value of zero. orderCells() will then "walk" along
the trajectory, and as it encounters additional cells, it will assign them increasingly large values of
Pseudotime.

Value

an updated CellDataSet object, in which phenoData contains values for State and Pseudotime for
each cell

38 plot_cell_clusters

order_p_node Return an ordering for a P node in the PQ tree

Description

Return an ordering for a P node in the PQ tree

Usage

order_p_node(qg_level_list, dist_matrix)

Arguments

g_level_list A list of Q nodes in the PQ tree

dist_matrix A symmetric matrix of pairwise distances between cells
plot_cell_clusters Plots clusters of cells .
Description

Plots clusters of cells .

Usage
plot_cell_clusters(
cds,
x =1,
y =2,

color_by = "Cluster”,
markers = NULL,
show_cell_names = FALSE,
cell_size = 1.5,
cell_name_size = 2,

Arguments
cds CellDataSet for the experiment
X the column of reducedDimS(cds) to plot on the horizontal axis
y the column of reducedDimS(cds) to plot on the vertical axis
color_by the cell attribute (e.g. the column of pData(cds)) to map to each cell’s color
markers a gene name or gene id to use for setting the size of each cell in the plot

show_cell_names
draw the name of each cell in the plot

cell_size The size of the point for each cell
cell_name_size the size of cell name labels

additional arguments passed into the scale_color_viridis function

plot_cell_trajectory

Value

a ggplot2 plot object

Examples

Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

HSMM <- reduceD

plot_cell_clusters(HSMM)
plot_cell_clusters(HSMM, color_by="Pseudotime")
plot_cell_clusters(HSMM, markers="MYH3")

End(Not run)

plot_cell_trajectory Plots the minimum spanning tree on cells.

Description

Plots the minimum spanning tree on cells.

Usage
plot_cell_trajectory(
cds,
x =1,
y =2,

color_by = "State",
show_tree = TRUE,
show_backbone = TRUE,
backbone_color = "black”,
markers = NULL,
use_color_gradient = FALSE,
markers_linear = FALSE,
show_cell_names = FALSE,
show_state_number = FALSE,
cell_size = 1.5,
cell_link_size = 0.75,
cell_name_size = 2,
state_number_size = 2.9,
show_branch_points = TRUE,

theta = 0,
)
Arguments
cds CellDataSet for the experiment
X the column of reducedDimS(cds) to plot on the horizontal axis

y the column of reducedDimS(cds) to plot on the vertical axis

40

plot_cell_trajectory

color_by the cell attribute (e.g. the column of pData(cds)) to map to each cell’s color
show_tree whether to show the links between cells connected in the minimum spanning
tree

show_backbone whether to show the diameter path of the MST used to order the cells
backbone_color the color used to render the backbone.

markers a gene name or gene id to use for setting the size of each cell in the plot

use_color_gradient
Whether or not to use color gradient instead of cell size to show marker expres-
sion level

markers_linear a boolean used to indicate whether you want to scale the markers logarithimi-

cally or linearly

show_cell_names
draw the name of each cell in the plot

show_state_number
show state number

cell_size The size of the point for each cell

cell_link_size The size of the line segments connecting cells (when used with ICA) or the
principal graph (when used with DDRTree)
cell_name_size the size of cell name labels

state_number_size
the size of the state number

show_branch_points
Whether to show icons for each branch point (only available when reduceDi-
mension was called with DDRTree)

theta How many degrees you want to rotate the trajectory

Additional arguments passed into scale_color_viridis function

Value

a ggplot2 plot object

Examples

Not run:

lung <- load_lung()

plot_cell_trajectory(lung)

plot_cell_trajectory(lung, color_by="Pseudotime", show_backbone=FALSE)
plot_cell_trajectory(lung, markers="MYH3")

End(Not run)

plot_clusters 41

plot_clusters Plots kinetic clusters of genes.

Description

returns a ggplot2 object showing the shapes of the expression patterns followed by a set of pre-
selected genes. The topographic lines highlight the distributions of the kinetic patterns relative to
overall trend lines.

Usage

plot_clusters(
cds,
clustering,
drawSummary = TRUE,
sumFun = mean_cl_boot,
ncol = NULL,
nrow = NULL,
row_samples = NULL,
callout_ids = NULL

)
Arguments
cds CellDataSet for the experiment
clustering a clustering object produced by clusterCells
drawSummary whether to draw the summary line for each cluster
sumFun whether the function used to generate the summary for each cluster
ncol number of columns used to layout the faceted cluster panels
nrow number of columns used to layout the faceted cluster panels
row_samples how many genes to randomly select from the data
callout_ids a vector of gene names or gene ids to manually render as part of the plot
Value
a ggplot2 plot object
Examples
Not run:

full_model_fits <- fitModel (HSMM_filtered[sample(nrow(fData(HSMM_filtered)), 100),],
modelFormulaStr="~VGAM: :bs(Pseudotime)")

expression_curve_matrix <- responseMatrix(full_model_fits)

clusters <- clusterGenes(expression_curve_matrix, k=4)

plot_clusters(HSMM_filtered[ordering_genes,], clusters)

End(Not run)

42 plot_coexpression_matrix

plot_coexpression_matrix
Not sure we’re ready to release this one quite yet: Plot the branch
genes in pseduotime with separate branch curves

Description

Not sure we're ready to release this one quite yet: Plot the branch genes in pseduotime with separate
branch curves

Usage

plot_coexpression_matrix(
cds,
rowgenes,
colgenes,
relative_expr = TRUE,
min_expr = NULL,
cell_size = 0.85,
label_by_short_name = TRUE,
show_density = TRUE,
round_expr = FALSE

)
Arguments
cds CellDataSet for the experiment
rowgenes Gene ids or short names to be arrayed on the vertical axis.
colgenes Gene ids or short names to be arrayed on the horizontal axis

relative_expr Whether to transform expression into relative values
min_expr The minimum level of expression to show in the plot

cell_size A number how large the cells should be in the plot

label_by_short_name
a boolean that indicates whether cells should be labeled by their short name

show_density a boolean that indicates whether a 2D density estimation should be shown in the
plot

round_expr a boolean that indicates whether cds_expr values should be rounded or not

Value

a ggplot2 plot object

plot_complex_cell_trajectory

43

plot_complex_cell_trajectory

Plots the minimum spanning tree on cells.

Description

Plots the minimum spanning tree on cells.

Usage
plot_complex_cell_trajectory(
cds,
x =1,
y =2,

root_states = NULL,
color_by = "State",
show_tree = TRUE,
show_backbone = TRUE,
backbone_color = "black”,
markers = NULL,
show_cell_names = FALSE,
cell_size = 1.5,
cell_link_size = 0.75,
cell_name_size = 2,
show_branch_points = TRUE,

Arguments
cds CellDataSet for the experiment
X the column of reducedDimS(cds) to plot on the horizontal axis
y the column of reducedDimS(cds) to plot on the vertical axis
root_states the state used to set as the root of the graph
color_by the cell attribute (e.g. the column of pData(cds)) to map to each cell’s color
show_tree whether to show the links between cells connected in the minimum spanning

tree

show_backbone whether to show the diameter path of the MST used to order the cells

backbone_color the color used to render the backbone.

markers a gene name or gene id to use for setting the size of each cell in the plot

show_cell_names
draw the name of each cell in the plot

cell_size The size of the point for each cell

cell_link_size The size of the line segments connecting cells (when used with ICA) or the

principal graph (when used with DDRTree)

cell_name_size the size of cell name labels

44 plot_genes_branched_heatmap

show_branch_points
Whether to show icons for each branch point (only available when reduceDi-
mension was called with DDRTree)

Additional arguments passed to the scale_color_viridis function

Value

a ggplot2 plot object

Examples

Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

plot_complex_cell_trajectory(HSMM)

plot_complex_cell_trajectory(HSMM, color_by="Pseudotime”, show_backbone=FALSE)
plot_complex_cell_trajectory(HSMM, markers="MYH3")

End(Not run)

plot_genes_branched_heatmap
Create a heatmap to demonstrate the bifurcation of gene expres-
sion along two branchs @description returns a heatmap that shows
changes in both lineages at the same time. It also requires that you
choose a branch point to inspect. Columns are points in pseudotime,
rows are genes, and the beginning of pseudotime is in the middle of
the heatmap. As you read from the middle of the heatmap to the right,
you are following one lineage through pseudotime. As you read left,
the other. The genes are clustered hierarchically, so you can visualize
modules of genes that have similar lineage-dependent expression pat-
terns.

Description

Create a heatmap to demonstrate the bifurcation of gene expression along two branchs

@description returns a heatmap that shows changes in both lineages at the same time. It also
requires that you choose a branch point to inspect. Columns are points in pseudotime, rows are
genes, and the beginning of pseudotime is in the middle of the heatmap. As you read from the
middle of the heatmap to the right, you are following one lineage through pseudotime. As you read
left, the other. The genes are clustered hierarchically, so you can visualize modules of genes that
have similar lineage-dependent expression patterns.

Usage

plot_genes_branched_heatmap(
cds_subset,
branch_point = 1,
branch_states = NULL,
branch_labels = c("Cell fate 1", "Cell fate 2"),
cluster_rows = TRUE,
hclust_method = "ward.D2",

plot_genes_branched_heatmap 45

num_clusters

:6,

hmcols = NULL,

branch_colors = c("#979797", "#F05662", "#7990C8"),
add_annotation_row = NULL,

add_annotation_col = NULL,

show_rownames = FALSE,

use_gene_short_name = TRUE,

scale_max = 3,

scale_min = -3,

norm_method = c("log", "vstExprs"),

trend_formula

= "~sm.ns(Pseudotime, df=3) * Branch”,

return_heatmap = FALSE,

cores =1,

Arguments

cds_subset

branch_point

branch_states
branch_labels
cluster_rows
hclust_method
num_clusters
hmcols

branch_colors

CellDataSet for the experiment (normally only the branching genes detected
with branchTest)

The ID of the branch point to visualize. Can only be used when reduceDimen-
sion is called with method = "DDRTree".

The two states to compare in the heatmap. Mutually exclusive with branch_point.
The labels for the branchs.

Whether to cluster the rows of the heatmap.

The method used by pheatmap to perform hirearchical clustering of the rows.
Number of clusters for the heatmap of branch genes

The color scheme for drawing the heatmap.

The colors used in the annotation strip indicating the pre- and post-branch cells.

add_annotation_row

Additional annotations to show for each row in the heatmap. Must be a dataframe
with one row for each row in the fData table of cds_subset, with matching IDs.

add_annotation_col

show_rownames

Additional annotations to show for each column in the heatmap. Must be a
dataframe with one row for each cell in the pData table of cds_subset, with
matching IDs.

Whether to show the names for each row in the table.

use_gene_short_name

scale_max

scale_min

norm_method

trend_formula

Whether to use the short names for each row. If FALSE, uses row IDs from the
fData table.

The maximum value (in standard deviations) to show in the heatmap. Values
larger than this are set to the max.

The minimum value (in standard deviations) to show in the heatmap. Values
smaller than this are set to the min.

Determines how to transform expression values prior to rendering

A formula string specifying the model used in fitting the spline curve for each
gene/feature.

return_heatmap Whether to return the pheatmap object to the user.

46 plot_genes_branched_pseudotime

cores Number of cores to use when smoothing the expression curves shown in the
heatmap.

Additional arguments passed to buildBranchCellDataSet

Value

A list of heatmap_matrix (expression matrix for the branch committment), ph (pheatmap heatmap
object), annotation_row (annotation data.frame for the row), annotation_col (annotation data.frame
for the column).

plot_genes_branched_pseudotime
Plot the branch genes in pseduotime with separate branch curves.

Description

Works similarly to plot_genes_in_psuedotime esceptit shows one kinetic trend for each lineage.

Usage

plot_genes_branched_pseudotime(
cds,
branch_states = NULL,
branch_point = 1,
branch_labels = NULL,
method = "fitting",
min_expr = NULL,
cell_size = 0.75,
nrow = NULL,
ncol =1,
panel_order = NULL,
color_by = "State",
expression_curve_linetype_by = "Branch”,
trend_formula = "~ sm.ns(Pseudotime, df=3) % Branch”,
reducedModelFormulaStr = NULL,
label_by_short_name = TRUE,
relative_expr = TRUE,

Arguments

cds CellDataSet for the experiment
branch_states The states for two branching branchs

branch_point The ID of the branch point to analyze. Can only be used when reduceDimension
is called with method = "DDRTree".

branch_labels The names for each branching branch

method The method to draw the curve for the gene expression branching pattern, either
loess (’loess’) or VGLM fitting (’fitting’)

plot_genes_in_pseudotime 47

min_expr The minimum (untransformed) expression level to use in plotted the genes.

cell_size The size (in points) of each cell used in the plot

nrow Number of columns used to layout the faceted cluster panels

ncol Number of columns used to layout the faceted cluster panels

panel_order The a character vector of gene short names (or IDs, if that’s what you’re us-
ing), specifying order in which genes should be layed out (left-to-right, top-to-
bottom)

color_by The cell attribute (e.g. the column of pData(cds)) to be used to color each cell

expression_curve_linetype_by
The cell attribute (e.g. the column of pData(cds)) to be used for the linetype of
each branch curve

trend_formula The model formula to be used for fitting the expression trend over pseudotime

reducedModelFormulaStr

A formula specifying a null model. If used, the plot shows a p value from the
likelihood ratio test that uses trend_formula as the full model

label_by_short_name
Whether to label figure panels by gene_short_name (TRUE) or feature id (FALSE)

relative_expr Whether or not the plot should use relative expression values (only relevant for
CellDataSets using transcript counts)

Additional arguments passed on to branchTest. Only used when reducedMod-
elFormulaStr is not NULL.

Details

This plotting function is used to make the branching plots for a branch dependent gene goes through
the progenitor state and bifurcating into two distinct branchs (Similar to the pitch-fork bifurcation
in dynamic systems). In order to make the bifurcation plot, we first duplicated the progenitor states
and by default stretch each branch into maturation level 0-100. Then we fit two nature spline curves
for each branchs using VGAM package.

Value

a ggplot2 plot object

plot_genes_in_pseudotime
Plots expression for one or more genes as a function of pseudotime

Description

Plots expression for one or more genes as a function of pseudotime. Plotting allows you determine
if the ordering produced by orderCells() is correct and it does not need to be flipped using the
"reverse" flag in orderCells

plot_genes_in_pseudotime

Usage

plot_genes_in_pseudotime(
cds_subset,
min_expr = NULL,
cell_size = 0.75,
nrow = NULL,
ncol = 1,
panel_order = NULL,
color_by = "State”,
trend_formula = "~ sm.ns(Pseudotime, df=3)",
label_by_short_name = TRUE,
relative_expr = TRUE,
vertical_jitter = NULL,
horizontal_jitter = NULL

)

Arguments
cds_subset CellDataSet for the experiment
min_expr the minimum (untransformed) expression level to use in plotted the genes.
cell_size the size (in points) of each cell used in the plot
nrow the number of rows used when laying out the panels for each gene’s expression
ncol the number of columns used when laying out the panels for each gene’s expres-

sion
panel_order the order in which genes should be layed out (left-to-right, top-to-bottom)
color_by the cell attribute (e.g. the column of pData(cds)) to be used to color each cell
trend_formula the model formula to be used for fitting the expression trend over pseudotime
label_by_short_name

label figure panels by gene_short_name (TRUE) or feature id (FALSE)
relative_expr Whether to transform expression into relative values
vertical_jitter

A value passed to ggplot to jitter the points in the vertical dimension. Prevents

overplotting, and is particularly helpful for rounded transcript count data.
horizontal_jitter

A value passed to ggplot to jitter the points in the horizontal dimension. Prevents
overplotting, and is particularly helpful for rounded transcript count data.

Value

a ggplot2 plot object

Examples

Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

my_genes <- row.names(subset(fData(HSMM), gene_short_name %in% c("CDK1", "MEF2C", "MYH3")))
cds_subset <- HSMM[my_genes,]

plot_genes_in_pseudotime(cds_subset, color_by="Time")

End(Not run)

plot_genes_jitter 49

plot_genes_jitter Plots expression for one or more genes as a jittered, grouped points

Description

Accepts a subset of a CellDataSet and an attribute to group cells by, and produces one or more
ggplot2 objects that plots the level of expression for each group of cells.

Usage

plot_genes_jitter(
cds_subset,
grouping = "State”,
min_expr = NULL,
cell_size = 0.75,
nrow = NULL,
ncol = 1,
panel_order = NULL,
color_by = NULL,
plot_trend = FALSE,
label_by_short_name = TRUE,
relative_expr = TRUE

)
Arguments
cds_subset CellDataSet for the experiment
grouping the cell attribute (e.g. the column of pData(cds)) to group cells by on the hori-
zontal axis
min_expr the minimum (untransformed) expression level to use in plotted the genes.
cell_size the size (in points) of each cell used in the plot
nrow the number of rows used when laying out the panels for each gene’s expression
ncol the number of columns used when laying out the panels for each gene’s expres-

sion

panel_order the order in which genes should be layed out (left-to-right, top-to-bottom)

color_by the cell attribute (e.g. the column of pData(cds)) to be used to color each cell
plot_trend whether to plot a trendline tracking the average expression across the horizontal
axis.

label_by_short_name
label figure panels by gene_short_name (TRUE) or feature id (FALSE)

relative_expr Whether to transform expression into relative values

Value

a ggplot2 plot object

50 plot_genes_positive_cells

Examples

Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

my_genes <- HSMM[row.names (subset(fData(HSMM), gene_short_name %in% c("MYOG", "ID1", "CCNB2"))),]
plot_genes_jitter(my_genes, grouping="Media", ncol=2)

End(Not run)

plot_genes_positive_cells
Plots the number of cells expressing one or more genes as a barplot

Description

@description Accetps a CellDataSet and a parameter,"grouping”, used for dividing cells into groups.
Returns one or more bar graphs (one graph for each gene in the CellDataSet). Each graph shows the
percentage of cells that express a gene in the in the CellDataSet for each sub-group of cells created
by "grouping".

Let’s say the CellDataSet passed in included genes A, B, and C and the "grouping parameter divided
all of the cells into three groups called X, Y, and Z. Then three graphs would be produced called A,

B, and C. In the A graph there would be three bars one for X, one for Y, and one for Z. So X bar in
the A graph would show the percentage of cells in the X group that express gene A.

Usage

plot_genes_positive_cells(
cds_subset,
grouping = "State”,
min_expr = 0.1,
nrow = NULL,
ncol = 1,
panel_order = NULL,
plot_as_fraction = TRUE,
label_by_short_name = TRUE,
relative_expr = TRUE,
plot_limits = c(@, 100)

)

Arguments
cds_subset CellDataSet for the experiment
grouping the cell attribute (e.g. the column of pData(cds)) to group cells by on the hori-

zontal axis

min_expr the minimum (untransformed) expression level to use in plotted the genes.
nrow the number of rows used when laying out the panels for each gene’s expression
ncol the number of columns used when laying out the panels for each gene’s expres-

sion

panel_order the order in which genes should be layed out (left-to-right, top-to-bottom)

plot_genes_violin 51

plot_as_fraction
whether to show the percent instead of the number of cells expressing each gene

label_by_short_name
label figure panels by gene_short_name (TRUE) or feature id (FALSE)

relative_expr Whether to transform expression into relative values

plot_limits A pair of number specifying the limits of the y axis. If NULL, scale to the range

of the data.
Value
a ggplot2 plot object
Examples
Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

MYOG_ID1 <- HSMM[row.names(subset(fData(HSMM), gene_short_name %in% c("MYOG", "ID1"))),]
plot_genes_positive_cells(MYOG_ID1, grouping="Media”, ncol=2)

End(Not run)

plot_genes_violin Plots expression for one or more genes as a violin plot

Description

Accepts a subset of a CellDataSet and an attribute to group cells by, and produces one or more
ggplot2 objects that plots the level of expression for each group of cells.

Usage

plot_genes_violin(
cds_subset,
grouping = "State”,
min_expr = NULL,
cell_size = 0.75,
nrow = NULL,
ncol = 1,
panel_order = NULL,
color_by = NULL,
plot_trend = FALSE,
label_by_short_name = TRUE,
relative_expr = TRUE,
log_scale = TRUE

52 plot_multiple_branches_heatmap

Arguments
cds_subset CellDataSet for the experiment
grouping the cell attribute (e.g. the column of pData(cds)) to group cells by on the hori-

zontal axis

min_expr the minimum (untransformed) expression level to use in plotted the genes.
cell_size the size (in points) of each cell used in the plot
nrow the number of rows used when laying out the panels for each gene’s expression
ncol the number of columns used when laying out the panels for each gene’s expres-

sion

panel_order the order in which genes should be layed out (left-to-right, top-to-bottom)

color_by the cell attribute (e.g. the column of pData(cds)) to be used to color each cell
plot_trend whether to plot a trendline tracking the average expression across the horizontal
axis.

label_by_short_name
label figure panels by gene_short_name (TRUE) or feature id (FALSE)

relative_expr Whether to transform expression into relative values

log_scale a boolean that determines whether or not to scale data logarithmically
Value

a ggplot2 plot object
Examples

Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

my_genes <- HSMM[row.names(subset (fData(HSMM), gene_short_name %in% c("ACTA1", "ID1", "CCNB2"))),]
plot_genes_violin(my_genes, grouping="Hours", ncol=2, min_expr=0.1)

End(Not run)

plot_multiple_branches_heatmap
Create a heatmap to demonstrate the bifurcation of gene expression
along multiple branches

Description

Create a heatmap to demonstrate the bifurcation of gene expression along multiple branches

plot_multiple_branches_heatmap 53

Usage

plot_multiple_branches_heatmap(

cds,
branches,

branches_name = NULL,

cluster_rows

= TRUE,

hclust_method = "ward.D2",

num_clusters

:6,

hmcols = NULL,

add_annotation_row = NULL,
add_annotation_col = NULL,
show_rownames = FALSE,
use_gene_short_name = TRUE,
norm_method = c("vstExprs”, "log"),
scale_max = 3,

scale_min = -3,

trend_formula

= "~sm.ns(Pseudotime, df=3)",

return_heatmap = FALSE,

cores =1

Arguments

cds

branches

branches_name

cluster_rows
hclust_method
num_clusters

hmcols

CellDataSet for the experiment (normally only the branching genes detected
with BEAM)

The terminal branches (states) on the developmental tree you want to investigate.

Name (for example, cell type) of branches you believe the cells on the branches
are associated with.

Whether to cluster the rows of the heatmap.
The method used by pheatmap to perform hirearchical clustering of the rows.
Number of clusters for the heatmap of branch genes

The color scheme for drawing the heatmap.

add_annotation_row

Additional annotations to show for each row in the heatmap. Must be a dataframe
with one row for each row in the fData table of cds_subset, with matching IDs.

add_annotation_col

show_rownames

Additional annotations to show for each column in the heatmap. Must be a
dataframe with one row for each cell in the pData table of cds_subset, with
matching IDs.

Whether to show the names for each row in the table.

use_gene_short_name

norm_method

scale_max

scale_min

Whether to use the short names for each row. If FALSE, uses row IDs from the
fData table.

Determines how to transform expression values prior to rendering

The maximum value (in standard deviations) to show in the heatmap. Values
larger than this are set to the max.

The minimum value (in standard deviations) to show in the heatmap. Values
smaller than this are set to the min.

54 plot_multiple_branches_pseudotime

trend_formula A formula string specifying the model used in fitting the spline curve for each

gene/feature.

return_heatmap Whether to return the pheatmap object to the user.

cores Number of cores to use when smoothing the expression curves shown in the

heatmap.

Value

A list of heatmap_matrix (expression matrix for the branch committment), ph (pheatmap heatmap
object), annotation_row (annotation data.frame for the row), annotation_col (annotation data.frame

for the column).

plot_multiple_branches_pseudotime

Create a kinetic curves to demonstrate the bifurcation of gene expres-

sion along multiple branches

Description

Create a kinetic curves to demonstrate the bifurcation of gene expression along multiple branches

Usage

plot_multiple_branches_pseudotime(
cds,
branches,
branches_name = NULL,
min_expr = NULL,
cell_size = 0.75,

norm_method = c("vstExprs"”, "log"),
nrow = NULL,
ncol = 1,
panel_order = NULL,
color_by = "Branch”,
trend_formula = "~sm.ns(Pseudotime, df=3)",
label_by_short_name = TRUE,
TPM = FALSE,
cores = 1

)

Arguments
cds CellDataSet for the experiment (normally only the branching genes detected
with BEAM)
branches The terminal branches (states) on the developmental tree you want to investigate.

branches_name Name (for example, cell type) of branches you believe the cells on the branches

are associated with.
min_expr The minimum level of expression to show in the plot

cell_size A number how large the cells should be in the plot

plot_ordering_genes 55

norm_method Determines how to transform expression values prior to rendering

nrow the number of rows used when laying out the panels for each gene’s expression

ncol the number of columns used when laying out the panels for each gene’s expres-
sion

panel_order the order in which genes should be layed out (left-to-right, top-to-bottom)
color_by the cell attribute (e.g. the column of pData(cds)) to be used to color each cell

trend_formula the model formula to be used for fitting the expression trend over pseudotime

label_by_short_name
label figure panels by gene_short_name (TRUE) or feature id (FALSE)

TPM Whether to convert the expression value into TPM values.
cores Number of cores to use when smoothing the expression curves shown in the
heatmap.
Value
a ggplot2 plot object

plot_ordering_genes Plots genes by mean vs. dispersion, highlighting those selected for
ordering

Description

Each gray point in the plot is a gene. The black dots are those that were included in the last call to
setOrderingFilter. The red curve shows the mean-variance model learning by estimateDispersions().

Usage

plot_ordering_genes(cds)

Arguments

cds The CellDataSet to be used for the plot.

plot_pc_variance_explained
Plots the percentage of variance explained by the each component
based on PCA from the normalized expression data using the same
procedure used in reduceDimension function.

Description

Plots the percentage of variance explained by the each component based on PCA from the normal-
ized expression data using the same procedure used in reduceDimension function.

56 plot_pseudotime_heatmap

Usage
plot_pc_variance_explained(
cds,
max_components = 100,
norm_method = c("log", "vstExprs”, "none"),

residualModelFormulaStr = NULL,
pseudo_expr = NULL,

return_all = F,
use_existing_pc_variance = FALSE,
verbose = FALSE,

Arguments

cds CellDataSet for the experiment after running reduceDimension with reduction_method
as tSNE

max_components Maximum number of components shown in the scree plot (variance explained
by each component)
norm_method Determines how to transform expression values prior to reducing dimensionality
residualModelFormulaStr
A model formula specifying the effects to subtract from the data before cluster-

ing.
pseudo_expr amount to increase expression values before dimensionality reduction
return_all A logical argument to determine whether or not the variance of each component

is returned
use_existing_pc_variance
Whether to plot existing results for variance explained by each PC

verbose Whether to emit verbose output during dimensionality reduction

additional arguments to pass to the dimensionality reduction function

Examples

Not run:
library(HSMMSingleCell)

HSMM <- load_HSMM()
plot_pc_variance_explained(HSMM)

End(Not run)

plot_pseudotime_heatmap
Plots a pseudotime-ordered, row-centered heatmap

Description

The function plot_pseudotime_heatmap takes a CellDataSet object (usually containing a only subset
of significant genes) and generates smooth expression curves much like plot_genes_in_pseudotime.
Then, it clusters these genes and plots them using the pheatmap package. This allows you to visu-
alize modules of genes that co-vary across pseudotime.

plot_pseudotime_heatmap 57

Usage

plot_pseudotime_heatmap(

cds_subset,

cluster_rows

= TRUE,

hclust_method = "ward.D2",

num_clusters

:6,

hmcols = NULL,

add_annotation_row = NULL,
add_annotation_col = NULL,
show_rownames = FALSE,
use_gene_short_name = TRUE,
norm_method = c("log", "vstExprs"),

scale_max =

3,

scale_min = -3,

trend_formula

= "~sm.ns(Pseudotime, df=3)",

return_heatmap = FALSE,

cores = 1

Arguments

cds_subset

cluster_rows
hclust_method
num_clusters

hmcols

CellDataSet for the experiment (normally only the branching genes detected
with branchTest)

Whether to cluster the rows of the heatmap.
The method used by pheatmap to perform hirearchical clustering of the rows.
Number of clusters for the heatmap of branch genes

The color scheme for drawing the heatmap.

add_annotation_row

Additional annotations to show for each row in the heatmap. Must be a dataframe
with one row for each row in the fData table of cds_subset, with matching IDs.

add_annotation_col

show_rownames

Additional annotations to show for each column in the heatmap. Must be a
dataframe with one row for each cell in the pData table of cds_subset, with
matching IDs.

Whether to show the names for each row in the table.

use_gene_short_name

norm_method

scale_max

scale_min

trend_formula

Whether to use the short names for each row. If FALSE, uses row IDs from the
fData table.

Determines how to transform expression values prior to rendering

The maximum value (in standard deviations) to show in the heatmap. Values
larger than this are set to the max.

The minimum value (in standard deviations) to show in the heatmap. Values
smaller than this are set to the min.

A formula string specifying the model used in fitting the spline curve for each
gene/feature.

return_heatmap Whether to return the pheatmap object to the user.

cores

Number of cores to use when smoothing the expression curves shown in the
heatmap.

58 plot_spanning_tree

Value

A list of heatmap_matrix (expression matrix for the branch committment), ph (pheatmap heatmap
object), annotation_row (annotation data.frame for the row), annotation_col (annotation data.frame
for the column).

plot_rho_delta Plots the decision map of density clusters .

Description

Plots the decision map of density clusters .

Usage

plot_rho_delta(cds, rho_threshold = NULL, delta_threshold = NULL)

Arguments

cds CellDataSet for the experiment after running clusterCells_Density_Peak

rho_threshold The threshold of local density (rho) used to select the density peaks for plotting

delta_threshold
The threshold of local distance (delta) used to select the density peaks for plot-
ting

Examples

Not run:
library(HSMMSingleCell)
HSMM <- load_HSMM()
plot_rho_delta(HSMM)

End(Not run)

plot_spanning_tree Plots the minimum spanning tree on cells. This function is deprecated.

Description

This function arranges all of the cells in the cds in a tree and predicts their location based on their
pseudotime value

plot_spanning_tree 59

Usage
plot_spanning_tree(
cds,
x =1,
y =2,

color_by = "State”,
show_tree = TRUE,
show_backbone = TRUE,
backbone_color = "black”,
markers = NULL,
show_cell_names = FALSE,
cell_size = 1.5,
cell_link_size = 0.75,
cell_name_size = 2,
show_branch_points = TRUE

)
Arguments
cds CellDataSet for the experiment
X the column of reducedDimS(cds) to plot on the horizontal axis
y the column of reducedDimS(cds) to plot on the vertical axis
color_by the cell attribute (e.g. the column of pData(cds)) to map to each cell’s color
show_tree whether to show the links between cells connected in the minimum spanning

tree
show_backbone whether to show the diameter path of the MST used to order the cells
backbone_color the color used to render the backbone.

markers a gene name or gene id to use for setting the size of each cell in the plot

show_cell_names
draw the name of each cell in the plot

cell_size The size of the point for each cell

cell_link_size The size of the line segments connecting cells (when used with ICA) or the
principal graph (when used with DDRTree)

cell_name_size the size of cell name labels

show_branch_points
Whether to show icons for each branch point (only available when reduceDi-
mension was called with DDRTree)

Value

a ggplot2 plot object

See Also

plot_cell_trajectory

60 reducedDimA

Examples

Not run:

library(HSMMSingleCell)

HSMM <- load_HSMM()

plot_cell_trajectory(HSMM)

plot_cell_trajectory(HSMM, color_by="Pseudotime", show_backbone=FALSE)
plot_cell_trajectory(HSMM, markers="MYH3")

End(Not run)

pg_helper Recursively builds and returns a PQ tree for the MST

Description

Recursively builds and returns a PQ tree for the MST

Usage

pg_helper(mst, use_weights = TRUE, root_node = NULL)

Arguments

mst The minimum spanning tree, as an igraph object.

use_weights Whether to use edge weights when finding the diameter path of the tree.

root_node The name of the root node to use for starting the path finding.
reducedDimA Get the weights needed to lift cells back to high dimensional expression
space.
Description

Retrieves the weights that transform the cells’ coordinates in the reduced dimension space back to
the full (whitened) space.

Usage

reducedDimA(cds)
Arguments

cds A CellDataSet object.
Value

A matrix that when multiplied by a reduced-dimension set of coordinates for the CellDataSet, re-
covers a matrix in the full (whitened) space

reducedDimA<- 61

Examples

Not run:
A <- reducedDimA(HSMM)

End(Not run)

reducedDimA<- Get the weights needed to lift cells back to high dimensional expression
space.

Description
Sets the weights transform the cells’ coordinates in the reduced dimension space back to the full
(whitened) space.

Usage

reducedDimA(cds) <- value

Arguments

cds A CellDataSet object.

value A whitened expression data matrix
Value

An updated CellDataSet object

Examples

Not run:
cds <- reducedDimA(A)

End(Not run)

reducedDimK Retrieves the the whitening matrix during independent component
analysis.

Description

Retrieves the the whitening matrix during independent component analysis.

Usage
reducedDimK (cds)

Arguments

cds A CellDataSet object.

62 reducedDimS

Value

A matrix, where each row is a set of whitened expression values for a feature and columns are cells.

Examples

Not run:
K <- reducedDimW(HSMM)

End(Not run)

reducedDimK<- Sets the the whitening matrix during independent component analysis.

Description

Sets the the whitening matrix during independent component analysis.

Usage

reducedDimK(cds) <- value

Arguments
cds A CellDataSet object.
value a numeric matrix
Value

A matrix, where each row is a set of whitened expression values for a feature and columns are cells.

Examples

Not run:
cds <- reducedDimK(K)

End(Not run)

reducedDimS Retrieves the coordinates of each cell in the reduced-dimensionality
space generated by calls to reduceDimension.

Description

Reducing the dimensionality of the expression data is a core step in the Monocle workflow. Af-
ter you call reduceDimension(), this function will return the new coordinates of your cells in the
reduced space.

Usage
reducedDimS(cds)

reducedDimS<- 63

Arguments

cds A CellDataSet object.

Value

A matrix, where rows are cell coordinates and columns correspond to dimensions of the reduced
space.

Examples

Not run:
S <- reducedDimS(HSMM)

End(Not run)

reducedDimS<- Set embedding coordinates of each cell in a CellDataSet.

Description

This function sets the coordinates of each cell in a new (reduced-dimensionality) space. Not in-
tended to be called directly.

Usage

reducedDimS(cds) <- value

Arguments
cds A CellDataSet object.
value A matrix of coordinates specifying each cell’s position in the reduced-dimensionality
space.
Value

An update CellDataSet object

Examples

Not run:
cds <- reducedDimS(S)

End(Not run)

64 reducedDimW«<-

reducedDimwW Get the whitened expression values for a CellDataSet.

Description
Retrieves the expression values for each cell (as a matrix) after whitening during dimensionality
reduction.

Usage

reducedDimW(cds)

Arguments

cds A CellDataSet object.

Value

A matrix, where each row is a set of whitened expression values for a feature and columns are cells.

Examples

Not run:
W <- reducedDimW(HSMM)

End(Not run)

reducedDimwW<- Sets the whitened expression values for each cell prior to independent
component analysis. Not intended to be called directly.

Description

Sets the whitened expression values for each cell prior to independent component analysis. Not
intended to be called directly.

Usage

reducedDimW(cds) <- value

Arguments

cds A CellDataSet object.

value A whitened expression data matrix
Value

An updated CellDataSet object

reduceDimension 65

Examples

Not run:
#' cds <- reducedDimA(A)

End(Not run)

reduceDimension Compute a projection of a CellDataSet object into a lower dimensional
space

Description

Monocle aims to learn how cells transition through a biological program of gene expression changes
in an experiment. Each cell can be viewed as a point in a high-dimensional space, where each
dimension describes the expression of a different gene in the genome. Identifying the program of
gene expression changes is equivalent to learning a trajectory that the cells follow through this
space. However, the more dimensions there are in the analysis, the harder the trajectory is to
learn. Fortunately, many genes typically co-vary with one another, and so the dimensionality of
the data can be reduced with a wide variety of different algorithms. Monocle provides two different
algorithms for dimensionality reduction via reduceDimension. Both take a CellDataSet object and
a number of dimensions allowed for the reduced space. You can also provide a model formula
indicating some variables (e.g. batch ID or other technical factors) to "subtract” from the data so it
doesn’t contribute to the trajectory.

Usage

reduceDimension(
cds,
max_components = 2,
reduction_method = c("DDRTree”, "ICA", "tSNE", "SimplePPT", "L1-graph”, "SGL-tree"),
norm_method = c("log", "vstExprs”, "none"),
residualModelFormulaStr = NULL,
pseudo_expr = 1,
relative_expr = TRUE,
auto_param_selection = TRUE,
verbose = FALSE,
scaling = TRUE,

Arguments

cds the CellDataSet upon which to perform this operation

max_components the dimensionality of the reduced space
reduction_method
A character string specifying the algorithm to use for dimensionality reduction.

norm_method Determines how to transform expression values prior to reducing dimensionality
residualModelFormulaStr
A model formula specifying the effects to subtract from the data before cluster-
ing.

66

relative2abs

pseudo_expr amount to increase expression values before dimensionality reduction

relative_expr When this argument is set to TRUE (default), we intend to convert the expression
into a relative expression.

auto_param_selection
when this argument is set to TRUE (default), it will automatically calculate the
proper value for the ncenter (number of centroids) parameters which will be
passed into DDRTree call.

verbose Whether to emit verbose output during dimensionality reduction

scaling When this argument is set to TRUE (default), it will scale each gene before
running trajectory reconstruction.

additional arguments to pass to the dimensionality reduction function

Details

You can choose two different reduction algorithms: Independent Component Analysis (ICA) and
Discriminative Dimensionality Reduction with Trees (DDRTree). The choice impacts numerous
downstream analysis steps, including orderCells. Choosing ICA will execute the ordering proce-
dure described in Trapnell and Cacchiarelli et al., which was implemented in Monocle version 1.
DDRTree is a more recent manifold learning algorithm developed by Qi Mao and colleages. It is
substantially more powerful, accurate, and robust for single-cell trajectory analysis than ICA, and
is now the default method.

Often, experiments include cells from different batches or treatments. You can reduce the effects of
these treatments by transforming the data with a linear model prior to dimensionality reduction. To
do so, provide a model formula through residualModelFormulaStr.

Prior to reducing the dimensionality of the data, it usually helps to normalize it so that highly
expressed or highly variable genes don’t dominate the computation. reduceDimension() auto-
matically transforms the data in one of several ways depending on the expressionFamily of the
CellDataSet object. If the expressionFamily is negbinomial or negbinomial.size, the data are
variance-stabilized. If the expressionFamily is Tobit, the data are adjusted by adding a pseudo-
count (of 1 by default) and then log-transformed. If you don’t want any transformation at all, set
norm_method to "none" and pseudo_expr to 0. This maybe useful for single-cell gPCR data, or
data you’ve already transformed yourself in some way.

Value

an updated CellDataSet object

relative2abs Transform relative expression values into absolute transcript counts.

Description

Converts FPKM/TPM data to transcript counts. This allows for the use for negative binomial as an
expressionFamily. These results are often far more accurate than using tobit().

relative2abs 67

Usage

relative2abs(
relative_cds,
t_estimate = estimate_t(exprs(relative_cds)),
modelFormulaStr = "~1",
ERCC_controls = NULL,
ERCC_annotation = NULL,
volume = 10,
dilution = 40000,
mixture_type = 1,
detection_threshold = 800,
expected_capture_rate = 0.25,
verbose = FALSE,
return_all = FALSE,
method = c("num_genes”, "tpm_fraction”),
cores =1

Arguments

relative_cds the cds object of relative expression values for single cell RNA-seq with each
row and column representing genes/isoforms and cells. Row and column names
should be included

t_estimate an vector for the estimated most abundant FPKM value of isoform for a single
cell. Estimators based on gene-level relative expression can also give good ap-
proximation but estimators based on isoform FPKM will give better results in
general

modelFormulaStr
modelformula used to grouping cells for transcript counts recovery. Default is
"~ 1", which means to recover the transcript counts from all cells.

ERCC_controls the FPKM matrix for each ERCC spike-in transcript in the cells if user wants
to perform the transformation based on their spike-in data. Note that the row and
column names should match up with the ERCC_annotation and relative_exprs_matrix
respectively.

ERCC_annotation
the ERCC_annotation matrix from illumina USE GUIDE which will be ued for
calculating the ERCC transcript copy number for performing the transformation.

volume the approximate volume of the lysis chamber (nanoliters). Default is 10

dilution the dilution of the spikein transcript in the lysis reaction mix. Default is 40, 000.
The number of spike-in transcripts per single-cell lysis reaction was calculated
from

mixture_type the type of spikein transcripts from the spikein mixture added in the experiments.
By default, it is mixture 1. Note that m/c we inferred are also based on mixture
1.

detection_threshold
the lowest concentration of spikein transcript considered for the regression. De-
fault is 800 which will ensure (almost) all included spike transcripts expressed
in all the cells. Also note that the value of c is based on this concentration.

expected_capture_rate
the expected fraction of RNA molecules in the lysate that will be captured as
cDNAs during reverse transcription

68

residualMatrix

verbose a logical flag to determine whether or not we should print all the optimization
details

return_all parameter for the intended return results. If setting TRUE, matrix of m, ¢, k**,

b/ * as well as the transformed absolute cds will be returned in a list format

method the formula to estimate the total mRNAs (num_genes corresponds to the second
formula while tpm_fraction corresponds to the first formula, see the anounce-
ment on Trapnell lab website for the Census paper)

cores number of cores to perform the recovery. The recovery algorithm is very effi-
cient so multiple cores only needed when we have very huge number of cells or
genes.
Details

Transform a relative expression matrix to absolute transcript matrix based on the inferred linear
regression parameters from most abundant isoform relative expression value. This function takes
a relative expression matrix and a vector of estimated most abundant expression value from the
isoform-level matrix and transform it into absolute transcript number. It is based on the observa-
tion that the recovery efficient of the single-cell RNA-seq is relative low and that most expressed
isoforms of gene in a single cell therefore only sequenced one copy so that the most abundant iso-
form log10-FPKM (t**) will corresponding to 1 copy transcript. It is also based on the fact that the
spikein regression parameters k/b for each cell will fall on a line because of the intrinsic properties
of spikein experiments. We also assume that if we perform the same spikein experiments as Treut-
lein et al. did, the regression parameters should also fall on a line in the same way. The function
takes the the vector t"* and the detection limit as input, then it uses the t** and the m/c value corre-
sponding to the detection limit to calculate two parameters vectors k** and b** (corresponding to
each cell) which correspond to the slope and intercept for the linear conversion function between
log10 FPKM and logl10 transcript counts. The function will then apply a linear transformation to
convert the FPKM to estimated absolute transcript counts based on the the k** and bA*. The default
m/c values used in the algoritm are 3.652201, 2.263576, respectively.

Value

an matrix of absolute count for isoforms or genes after the transformation.

Examples

Not run:

HSMM_relative_expr_matrix <- exprs(HSMM)

HSMM_abs_matrix <- relative2abs(HSMM_relative_expr_matrix,
t_estimate = estimate_t(HSMM_relative_expr_matrix))

End(Not run)

residualMatrix Response values

Description

Generates a matrix of response values for a set of fitted models

responseMatrix 69

Usage

residualMatrix(models, residual_type = "response”, cores = 1)
Arguments

models a list of models, e.g. as returned by fitModels()

residual_type the response desired, as accepted by VGAM’s predict function

cores number of cores used for calculation

Value

a matrix where each row is a vector of response values for a particular feature’s model, and columns
are cells.

responseMatrix Calculates response values.

Description

Generates a matrix of response values for a set of fitted models

Usage

responseMatrix(models, newdata = NULL, response_type = "response”, cores = 1)
Arguments

models a list of models, e.g. as returned by fitModels()

newdata a dataframe used to generate new data for interpolation of time points

response_type the response desired, as accepted by VGAM’s predict function

cores number of cores used for calculation

Value

a matrix where each row is a vector of response values for a particular feature’s model, and columns
are cells.

70 setOrderingFilter

selectTopMarkers Select the most cell type specific markers

Description

This is a handy wrapper function around dplyr’s top_n function to extract the most specific genes
for each cell type. Convenient, for example, for selecting a balanced set of genes to be used in
semi-supervised clustering or ordering.

Usage

selectTopMarkers(marker_specificities, num_markers = 10)

Arguments

marker_specificities
The dataframe of specificity results produced by calculateMarkerSpecificity()

num_markers The number of markers that will be shown for each cell type

Value

A data frame of specificity results

setOrderingFilter Marks genes for clustering

Description

The function marks genes that will be used for clustering in subsequent calls to clusterCells. The
list of selected genes can be altered at any time.

Usage

setOrderingFilter(cds, ordering_genes)

Arguments

cds the CellDataSet upon which to perform this operation

ordering_genes a vector of feature ids (from the CellDataSet’s featureData) used for ordering
cells

Value

an updated CellDataSet object

spike_df 71

spike_df Spike-in transcripts data.

Description

A dataset containing the information for the 92 ERCC spikein transcripts (This dataset is based on
the data from the Nature paper from Stephen Quake group)

Usage
spike_df

Format
A data frame with 92 rows and 9 variables:

ERCC_ID ID for ERCC transcripts

subgroup Subgroup for ERCC transcript

conc_attomoles_ul_Mix1 Contration of Mix 1 (attomoles / ul)
conc_attomoles_ul_Mix2 Contration of Mix 2 (attomoles / ul)

exp_fch_ratio expected fold change between mix 1 over mix 2

numMolecules number of molecules calculated from concentration and volume

rounded_numMolecules number in rounded digit of molecules calculated from concentration and
volume

vstExprs Return a variance-stabilized matrix of expression values

Description

This function was taken from the DESeq package (Anders and Huber) and modified to suit Mono-
cle’s needs. It accpets a either a CellDataSet or the expression values of one and returns a variance-
stabilized matrix based off of them.

Usage
vstExprs(cds, dispModelName = "blind”, expr_matrix = NULL, round_vals = TRUE)

Arguments

cds A CellDataSet to use for variance stabilization.
dispModelName The name of the dispersion function to use for VST.

expr_matrix An matrix of values to transform. Must be normalized (e.g. by size factors)
already. This function doesn’t do this for you.

round_vals Whether to round expression values to the nearest integer before applying the
transformation.

Index

x datasets
spike_df, 71

addCellType, 3

BEAM, 4, 5, 6
branchTest, 5
buildBranchCellDataSet, 6

calABCs, 7
calculateMarkerSpecificity, 70
calculateMarkerSpecificity
(newCellTypeHierarchy), 34
calibrate_per_cell_total_proposal, 8
calIlRs, 9
CellDataSet, 10
CellDataSet,ANY,ANY-method
(CellDataSet-methods), 11
CellDataSet-class (CellDataSet), 10
CellDataSet-methods, 11
cellPairwiseDistances, 12
cellPairwiseDistances<-, 13
CellType, 13
CellType-class (CellType), 13
CellTypeHierarchy, 14
CellTypeHierarchy-class
(CellTypeHierarchy), 14
classifyCells (newCellTypeHierarchy), 34
clusterCells, 14, 35
clusterGenes, 16
compareModels, 17

DDRTree, 37, 66
detectBifurcationPoint, 17
detectGenes, 19
diff_test_helper, 21
differentialGeneTest, 20
dispersionTable, 21

estimate_t, 23
estimateDispersions,CellDataSet-method
(CellDataSet-methods), 11

estimateDispersionsForCellDataSet, 22
estimateSizeFactors,CellDataSet-method
(CellDataSet-methods), 11

72

estimateSizeFactorsForMatrix, 23
exportCDS, 24
extract_good_branched_ordering, 25

fit_model_helper, 26
fitModel, 25

genSmoothCurveResiduals, 27
genSmoothCurves, 28
get_classic_muscle_markers, 28

importCDS, 29

load_HSMM, 29
load_HSMM_markers, 30
load_lung, 30

markerDiffTable, 30
mcesApply, 31
minSpanningTree, 32
minSpanningTree<-, 33

newCellDataSet, 33
newCellTypeHierarchy, 34

order_p_node, 38
orderCells, 37, 66

plot_cell_clusters, 38
plot_cell_trajectory, 39
plot_clusters, 41
plot_coexpression_matrix, 42
plot_complex_cell_trajectory, 43
plot_genes_branched_heatmap, 44
plot_genes_branched_pseudotime, 46
plot_genes_in_pseudotime, 47
plot_genes_jitter, 49
plot_genes_positive_cells, 50
plot_genes_violin, 51
plot_multiple_branches_heatmap, 52
plot_multiple_branches_pseudotime, 54
plot_ordering_genes, 55
plot_pc_variance_explained, 55
plot_pseudotime_heatmap, 56
plot_rho_delta, 58

INDEX

plot_spanning_tree, 58
pg_helper, 60

reducedDimA, 60
reducedDimA<-, 61
reducedDinmK, 61
reducedDimK<-, 62
reducedDimS, 62
reducedDimS<-, 63
reducedDimW, 64
reducedDimwW<-, 64
reduceDimension, 7, 37, 65
relative2abs, 66
residualMatrix, 68
responseMatrix, 69

selectTopMarkers, 70

setOrderingFilter, 70

sizeFactors,CellDataSet-method
(CellDataSet-methods), 11

sizeFactors<-,CellDataSet,numeric-method
(CellDataSet-methods), 11

sparseMatrix, 35

spike_df, 71

vglm, 20
vstExprs, 71

73

	addCellType
	BEAM
	branchTest
	buildBranchCellDataSet
	calABCs
	calibrate_per_cell_total_proposal
	calILRs
	CellDataSet
	CellDataSet-methods
	cellPairwiseDistances
	cellPairwiseDistances<-
	CellType
	CellTypeHierarchy
	clusterCells
	clusterGenes
	compareModels
	detectBifurcationPoint
	detectGenes
	differentialGeneTest
	diff_test_helper
	dispersionTable
	estimateDispersionsForCellDataSet
	estimateSizeFactorsForMatrix
	estimate_t
	exportCDS
	extract_good_branched_ordering
	fitModel
	fit_model_helper
	genSmoothCurveResiduals
	genSmoothCurves
	get_classic_muscle_markers
	importCDS
	load_HSMM
	load_HSMM_markers
	load_lung
	markerDiffTable
	mcesApply
	minSpanningTree
	minSpanningTree<-
	newCellDataSet
	newCellTypeHierarchy
	orderCells
	order_p_node
	plot_cell_clusters
	plot_cell_trajectory
	plot_clusters
	plot_coexpression_matrix
	plot_complex_cell_trajectory
	plot_genes_branched_heatmap
	plot_genes_branched_pseudotime
	plot_genes_in_pseudotime
	plot_genes_jitter
	plot_genes_positive_cells
	plot_genes_violin
	plot_multiple_branches_heatmap
	plot_multiple_branches_pseudotime
	plot_ordering_genes
	plot_pc_variance_explained
	plot_pseudotime_heatmap
	plot_rho_delta
	plot_spanning_tree
	pq_helper
	reducedDimA
	reducedDimA<-
	reducedDimK
	reducedDimK<-
	reducedDimS
	reducedDimS<-
	reducedDimW
	reducedDimW<-
	reduceDimension
	relative2abs
	residualMatrix
	responseMatrix
	selectTopMarkers
	setOrderingFilter
	spike_df
	vstExprs
	Index

