
Package ‘methylKit’
January 20, 2026

Type Package

Title DNA methylation analysis from high-throughput bisulfite
sequencing results

Version 1.36.0

Author Altuna Akalin [aut, cre], Matthias Kormaksson [aut],
Sheng Li [aut], Arsene Wabo [ctb], Adrian Bierling [aut],
Alexander Blume [aut], Katarzyna Wreczycka [ctb]

Maintainer Altuna Akalin <aakalin@gmail.com>, Alexander Blume

<alex.gos90@gmail.com>

Description methylKit is an R package for DNA methylation analysis and
annotation from high-throughput bisulfite sequencing. The package is
designed to deal with sequencing data from RRBS and its variants, but also
target-capture methods and whole genome bisulfite sequencing. It also has
functions to analyze base-pair resolution 5hmC data from experimental
protocols such as oxBS-Seq and TAB-Seq. Methylation calling can be
performed directly from Bismark aligned BAM files.

License Artistic-2.0

URL https://github.com/al2na/methylKit

BugReports https://github.com/al2na/methylKit/issues

LazyLoad yes

NeedsCompilation yes

LinkingTo Rcpp, Rhtslib (>= 1.13.1)

SystemRequirements GNU make

biocViews DNAMethylation, Sequencing, MethylSeq

Depends R (>= 3.5.0), GenomicRanges (>= 1.18.1), methods

Imports IRanges, data.table (>= 1.9.6), parallel, S4Vectors (>=
0.13.13), Seqinfo, KernSmooth, qvalue, emdbook, Rsamtools,
gtools, fastseg, rtracklayer, mclust, mgcv, Rcpp, R.utils,
limma, grDevices, graphics, stats, utils

Suggests testthat (>= 2.1.0), knitr, rmarkdown, genomation,
BiocManager

VignetteBuilder knitr

1

https://github.com/al2na/methylKit
https://github.com/al2na/methylKit/issues

2 Contents

Collate 'methylKit.R' 'backbone.R' 'diffMeth.R' 'clusterSamples.R'
'regionalize.R' 'processBismarkAln.R' 'RcppExports.R'
'document_data.R' 'bedgraph.R' 'reorganize.R'
'percMethylation.R' 'normalizeCoverage.R' 'pool.R'
'adjustMethylC.R' 'updateMethObject.R' 'batchControl.R'
'dataSim.R' 'methylDBClasses.R' 'methylDBFunctions.R'
'tabix.functions.R' 'methSeg.R' 'diffMethDSS.R'
'deprecated_defunct.R' 'onUnload.R'

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/methylKit

git_branch RELEASE_3_22

git_last_commit c65437a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
adjustMethylC . 3
assocComp . 5
bedgraph . 6
calculateDiffMeth . 8
calculateDiffMethDSS . 12
clusterSamples . 13
dataSim . 14
diffMethPerChr . 16
extract . 17
filterByCoverage . 19
getAssembly . 21
getContext . 22
getCorrelation . 23
getCoverageStats . 24
getData . 26
getDBPath . 27
getMethylationStats . 28
getMethylDiff . 29
getSampleID . 31
getTreatment . 32
joinSegmentNeighbours . 34
makeMethylDB . 34
methRead . 35
methSeg . 40
methSeg2bed . 41
methylBase-class . 42
methylBase.obj . 43
methylBaseDB-class . 44
methylDiff-class . 45
methylDiff.obj . 46
methylDiffDB-class . 46
methylKit-defunct . 47

adjustMethylC 3

methylRaw-class . 48
methylRawDB-class . 49
methylRawList-class . 50
methylRawList.obj . 51
methylRawListDB-class . 51
normalizeCoverage . 52
PCASamples . 54
percMethylation . 56
pool . 57
processBismarkAln . 58
readMethylDB . 61
reconstruct . 62
regionCounts . 63
removeComp . 68
reorganize . 69
select . 71
selectByOverlap . 73
show,methylBase-method . 74
tileMethylCounts . 75
unite . 78
updateMethObject . 80

Index 81

adjustMethylC Adjust measured 5mC levels using 5hmC levels

Description

Measured 5mC levels via bisulfite sequencing might be a combination of 5hmC and 5mC levels
since bisulfite sequencing can not distinguish between the two. This function can adjust 5mC levels
of a bisulfite sequencing experiment if the user supplies corresponding 5hmC levels from the same
sample.

Usage

adjustMethylC(mc,hmc,save.db,...,chunk.size)

S4 method for signature 'methylRaw,methylRaw'
adjustMethylC(mc, hmc, save.db = FALSE, ..., chunk.size = 1e+06)

S4 method for signature 'methylRawList,methylRawList'
adjustMethylC(mc, hmc, save.db = FALSE, ..., chunk.size = 1e+06)

S4 method for signature 'methylRawDB,methylRawDB'
adjustMethylC(mc, hmc, save.db = TRUE, ..., chunk.size = 1e+06)

S4 method for signature 'methylRawListDB,methylRawListDB'
adjustMethylC(mc, hmc, save.db = TRUE, ..., chunk.size = 1e+06)

4 adjustMethylC

Arguments

mc a methylRawList, methylRaw, methylRawDB or methylRawListDB containing
5mC levels of a sample or set of samples

hmc a methylRawList, methylRaw, methylRawDB or methylRawListDB containing
5hmC levels of a sample or set of samples. If a methylRawList or methylRawListDB
given the sample order should be same as "mc" methylRawList or methylRawListDB
object.

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_filtered” to current file-
name if database already exists or generate new file with filename “sampleID_filtered”
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

chunk.size Number of rows to be taken as a chunk for processing the methylRawDB or
methylRawListDB objects (default: 1e6)

Value

returns adjusted 5-methyl cytosine levels in the form of methylRawList, methylRaw, methylRawDB
or methylRawListDB object depending on the input object

Details

The parameter chunk.size is only used when working with methylRawDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are
stored as flat file database. Per default the chunk.size is set to 1M rows, which should work for most
systems. If you encounter memory problems or have a high amount of memory available feel free
to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylRawDB and methylRawListDB,
while being per default FALSE for methylRaw and methylRawList. If you wish to save the result
of an in-memory-calculation as flat file database or if the size of the database allows the calculation
in-memory, then you might change the value of this parameter.

References

1. Booth, Branco, et al. (2012). Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine
at Single-Base Resolution. Science, 934

2. Yu, Hon, et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the Mammalian
genome. Cell, 149(6), 1368-80.

Examples

read 5hmC and 5mC files
hmc.file=system.file("extdata", "test1.myCpG.txt", package = "methylKit")
mc.file =system.file("extdata", "test2.myCpG.txt", package = "methylKit")

assocComp 5

my5hmC=methRead(hmc.file,sample.id="hmc",assembly="hg18")
my5mC =methRead(mc.file,sample.id="mc",assembly="hg18")

adjusting the 5mC levels using 5hmC levels
adjusted.5mC=adjustMethylC(my5mC,my5hmC)

assocComp Associate principal components with sample annotations

Description

This function associates principal components with sample annotations such as age, gender, batch_id.
Can be used to detect which batch effects are associated with the variation in the methylation values.

Usage

assocComp(mBase, sampleAnnotation)

Arguments

mBase methylBase or methylBaseDB object with no NA values in the data part.

sampleAnnotation

a data frame where columns are different annotations and rows are the samples,
in the same order as in the methylBase object.

Value

a named list of principal component matrix (named ’pcs’), by principal compopents (named ’vars’)
and a p-value matrix showing association p-values between sample annotations and principal com-
ponents (named ’association’).

Author(s)

Altuna Akalin

Examples

data(methylKit)
sampleAnnotation=data.frame(batch_id=c("a","a","b","b"),age=c(19,34,23,40))
as=assocComp(mBase=methylBase.obj,sampleAnnotation)

6 bedgraph

bedgraph Get bedgraph from methylRaw, methylRawList and methylDiff objects

Description

The function converts methylRaw, methylRawDB, methylRawList, methylRawListDB, methylDiff
or methylDiffDB object into a bedgraph format. It either writes as a file or returns a data.frame

Usage

bedgraph(
methylObj,
file.name = NULL,
col.name,
unmeth = FALSE,
log.transform = FALSE,
negative = FALSE,
add.on = "",
chunk.size = 1e+06

)

S4 method for signature 'methylDiff'
bedgraph(
methylObj,
file.name,
col.name,
unmeth,
log.transform,
negative,
add.on

)

S4 method for signature 'methylRaw'
bedgraph(
methylObj,
file.name,
col.name,
unmeth,
log.transform,
negative,
add.on

)

S4 method for signature 'methylRawList'
bedgraph(
methylObj,
file.name,
col.name,
unmeth,
log.transform,
negative,

bedgraph 7

add.on
)

S4 method for signature 'methylRawDB'
bedgraph(
methylObj,
file.name = NULL,
col.name,
unmeth = FALSE,
log.transform = FALSE,
negative = FALSE,
add.on = "",
chunk.size = 1e+06

)

S4 method for signature 'methylRawListDB'
bedgraph(
methylObj,
file.name = NULL,
col.name,
unmeth = FALSE,
log.transform = FALSE,
negative = FALSE,
add.on = "",
chunk.size = 1e+06

)

S4 method for signature 'methylDiffDB'
bedgraph(
methylObj,
file.name,
col.name,
log.transform,
negative,
add.on,
chunk.size

)

Arguments

methylObj a methylRaw, methylRawDB, methylRawList, methylRawListDB, methylDiff
or methylDiffDB object

file.name Default: NULL. if a string is given a bedgraph file will be written, if NULL a
data.frame or a list of data frames will be returned

col.name name of the column in methylRaw, methylRawDB, methylRawList, methylRawListDB,
methylDiff or methylDiffDB objects to be used as a score for the bedgraph.
For methylDiff or methylDiffDB, col.name must be one of the following
’pvalue’,’qvalue’, ’meth.diff’. For methylRaw, methylRawDB, methylRawList
and methylRawListDB it must be one of the following ’coverage’, ’numCs’,’numTs’,
’perc.meth’

unmeth when working with methylRaw, methylRawDB, methylRawList and methylRawListDB
objects should you output unmethylated C percentage this makes it easier to

8 calculateDiffMeth

see the unmethylated bases because their methylation percentage values will be
zero. Only invoked when file.name is not NULL.

log.transform Default FALSE, If TRUE the score column of the bedgraph wil be in log10
scale. Ignored when col.name=’perc.meth’

negative Default FALSE, If TRUE, the score column of the bedgraph will be multiplied
by -1. Ignored when col.name=’perc.meth’

add.on additional string to be add on the track line of bedgraph. can be viewlim-
its,priority etc. Check bedgraph track line options at UCSC browser

chunk.size Number of rows to be taken as a chunk for processing the methylRawDB, methylRawListDB
or methylDiffDB objects, default: 1e6

Value

Returns a data.frame or list of data.frames if file.name=NULL, if a file.name given appropriate
bed file will be written to that file

Details

The parameter chunk.size is only used when working with methylRawDB, methylRawListDB or
methylDiffDB objects, as they are read in chunk by chunk to enable processing large-sized objects
which are stored as flat file database. Per default the chunk.size is set to 1M rows, which should
work for most systems. If you encounter memory problems or have a high amount of memory
available feel free to adjust the chunk.size.

Examples

data(methylKit)

getting a bedgraph file from a methylDiff object containing differential
methylation percentages
bedgraph(methylDiff.obj, file.name="test.bed", col.name="meth.diff",

unmeth=FALSE,log.transform=FALSE,negative=FALSE,add.on="")

remove the file
unlink("test.bed")

getting a bedgraph file from a methylBase object containing percent
#methylation values
bedgraph(methylRawList.obj[[1]], file.name="test2.bed", col.name="perc.meth",

unmeth=FALSE,log.transform=FALSE,negative=FALSE,add.on="")

unlink("test2.bed") # remove the file

calculateDiffMeth Calculate differential methylation statistics

Description

The function calculates differential methylation statistics between two groups of samples. The func-
tion uses either logistic regression test or Fisher’s Exact test to calculate differential methylation.
See the rest of the help page and references for detailed explanation on statistics.

calculateDiffMeth 9

Usage

calculateDiffMeth(
.Object,
covariates = NULL,
overdispersion = c("none", "MN", "shrinkMN"),
adjust = c("SLIM", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",

"none", "qvalue"),
effect = c("wmean", "mean", "predicted"),
parShrinkMN = list(),
test = c("F", "Chisq", "fast.fisher", "midPval"),
mc.cores = 1,
slim = TRUE,
weighted.mean = TRUE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylBaseDB'
calculateDiffMeth(
.Object,
covariates = NULL,
overdispersion = c("none", "MN", "shrinkMN"),
adjust = c("SLIM", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",

"none", "qvalue"),
effect = c("wmean", "mean", "predicted"),
parShrinkMN = list(),
test = c("F", "Chisq", "fast.fisher", "midPval"),
mc.cores = 1,
slim = TRUE,
weighted.mean = TRUE,
chunk.size = 1e+06,
save.db = TRUE,
...

)

Arguments

.Object a methylBase or methylBaseDB object to calculate differential methylation

covariates a data.frame containing covariates, which should be included in the test.

overdispersion If set to "none"(default), no overdispersion correction will be attempted. If set
to "MN", basic overdispersion correction, proposed by McCullagh and Nelder
(1989) will be applied.This correction applies a scaling parameter to variance
estimated by the model. EXPERIMENTAL: If set to "shrinkMN", scaling pa-
rameter will be shrunk towards a common value (not thoroughly tested as of
yet).

adjust different methods to correct the p-values for multiple testing. Default is "SLIM"
from methylKit. For "qvalue" please see qvalue and for all other methods see
p.adjust.

effect method to calculate the mean methylation different between groups using read
coverage as weights (default). When set to "mean", the generic mean is applied

10 calculateDiffMeth

and when set to "predicted", predicted means from the logistic regression model
is used for calculating the effect.

parShrinkMN a list for squeezeVar(). (NOT IMPLEMENTED)

test the statistical test used to determine the methylation differences. The Chisq-test
is used by default for more than two groups, while the F-test can be chosen if
overdispersion control is applied. If there is one sample per group the Fisher’s
exact test will be applied using "fast.fisher", while "midPval" can be choosen to
boost calculation speed. See details section for more information.

mc.cores integer denoting how many cores should be used for parallel differential methy-
lation calculations (can only be used in machines with multiple cores).

slim If set to FALSE, adjust will be set to "BH" (default behaviour of earlier ver-
sions)

weighted.mean If set to FALSE, effect will be set to "mean" (default behaviour of earlier
versions)

chunk.size Number of rows to be taken as a chunk for processing the methylBaseDB objects
(default: 1e6)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details section.

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: The default suffix is a 13-character
random string appended to the fixed prefix “methylDiff”, e.g. “methylDiff_16d3047c1a254.txt.bgz”.
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

a methylDiff object containing the differential methylation statistics and locations for regions or
bases

Details

Covariates can be included in the analysis. The function will then try to separate the influence of
the covariates from the treatment effect via a linear model.
The Chisq-test is used per default only when no overdispersion correction is applied. If overdis-
persion correction is applied, the function automatically switches to the F-test. The Chisq-test can
be manually chosen in this case as well, but the F-test only works with overdispersion correction
switched on.
If there is one sample in each group, e.g. after applying the pooling samples, the Fisher’s exact test
will be applied for differential methylation. methyKit offers two implementations to perform this
test, which yield slightly different results but differ much in computation time. "fast.fisher" is a cut
down version ‘fisher.test()‘ that should produce the exact same results as the base implementation,
while "midPval" will produce marginaly different p-values, but offers a large boost in calculation
speed.

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.

calculateDiffMeth 11

Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylBaseDB, while being
per default FALSE for methylBase. If you wish to save the result of an in-memory-calculation as
flat file database or if the size of the database allows the calculation in-memory, then you might
want to change the value of this parameter.

References

Altuna Akalin, Matthias Kormaksson, Sheng Li, Francine E. Garrett-Bakelman, Maria E. Figueroa,
Ari Melnick, Christopher E. Mason. (2012). "methylKit: A comprehensive R package for the
analysis of genome-wide DNA methylation profiles." Genome Biology.

McCullagh and Nelder. (1989). Generalized Linear Models. Chapman and Hall. London New
York.

Barnard. (1989). On alleged gains in power from lower P-values. Statistics in Medicine. Armitage
and Berry. (1994) Statistical Methods in Medical Research (3rd edition). Blackwell.

See Also

pool, reorganize dataSim

Examples

data(methylKit)

The Chisq-test will be applied when no overdispersion control is chosen.
my.diffMeth=calculateDiffMeth(methylBase.obj,covariates=NULL,

overdispersion=c("none"),
adjust=c("SLIM"))

pool samples in each group
pooled.methylBase=pool(methylBase.obj,sample.ids=c("test","control"))

After applying the pool() function, there is one sample in each group.
The Fisher's exact test will be applied for differential methylation.
my.diffMeth2=calculateDiffMeth(pooled.methylBase,covariates=NULL,

overdispersion=c("none"),
adjust=c("SLIM"))

Covariates and overdispersion control:
generate a methylBase object with age as a covariate
covariates=data.frame(age=c(30,80,30,80))
sim.methylBase<-dataSim(replicates=4,sites=1000,treatment=c(1,1,0,0),

covariates=covariates,
sample.ids=c("test1","test2","ctrl1","ctrl2"))

Apply overdispersion correction and include covariates
in differential methylation calculations.
my.diffMeth3<-calculateDiffMeth(sim.methylBase,

covariates=covariates,
overdispersion="MN",test="Chisq",mc.cores=1)

12 calculateDiffMethDSS

calculateDiffMethDSS calculate Differential Methylation with DSS

Description

This function provides an interface to the beta-binomial model from DSS package by Hao Wu. It
calculates the differential methylation statistics using a beta-binomial model with parameter shrink-
age. See the reference for details.

Usage

calculateDiffMethDSS(
meth,
adjust = c("SLIM", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",

"none", "qvalue"),
mc.cores = 1

)

S4 method for signature 'methylBase'
calculateDiffMethDSS(
meth,
adjust = c("SLIM", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",

"none", "qvalue"),
mc.cores = 1

)

Arguments

meth a methylBase object

adjust different methods to correct the p-values for multiple testing. Default is "SLIM"
from methylKit. For "qvalue" please see qvalue and for all other methods see
p.adjust.

mc.cores integer denoting how many cores should be used for parallel differential methy-
lation calculations (can only be used in machines with multiple cores).

Value

a methylDiff object

References

Feng H, Conneely K and Wu H (2014). A bayesian hierarchical model to detect differentially
methylated loci from single nucleotide resolution sequencing data. Nucleic acids research

Examples

data(methylKit)

dssDiffay <- calculateDiffMethDSS(methylBase.obj, adjust="SLIM", mc.cores=1)

clusterSamples 13

clusterSamples Hierarchical Clustering using methylation data The function clusters
samples using hclust function and various distance metrics derived
from percent methylation per base or per region for each sample.

Description

Hierarchical Clustering using methylation data

The function clusters samples using hclust function and various distance metrics derived from
percent methylation per base or per region for each sample.

Usage

clusterSamples(.Object, dist="correlation", method="ward",
sd.filter=TRUE,sd.threshold=0.5,
filterByQuantile=TRUE, plot=TRUE,chunk.size)

S4 method for signature 'methylBase'
clusterSamples(
.Object,
dist,
method,
sd.filter,
sd.threshold,
filterByQuantile,
plot

)

S4 method for signature 'methylBaseDB'
clusterSamples(
.Object,
dist = "correlation",
method = "ward",
sd.filter = TRUE,
sd.threshold = 0.5,
filterByQuantile = TRUE,
plot = TRUE,
chunk.size = 1e+06

)

Arguments

.Object a methylBase or methylBaseDB object

dist the distance measure to be used. This must be one of "correlation", "euclidean",
"maximum", "manhattan", "canberra", "binary" or "minkowski". Any unam-
biguous abbreviation can be given. (default:"correlation")

method the agglomeration method to be used. This should be (an unambiguous ab-
breviation of) one of "ward.D", "ward.D", "single", "complete", "average",
"mcquitty", "median" or "centroid". (default:"ward")

14 dataSim

sd.filter If TRUE, the bases/regions with low variation will be discarded prior to clustering
(default:TRUE)

sd.threshold A numeric value. If filterByQuantile is TRUE, features whose standard de-
viations is less than the quantile denoted by sd.threshold will be removed.
If filterByQuantile is FALSE, then features whose standard deviations is less
than the value of sd.threshold will be removed.(default:0.5)

filterByQuantile

A logical determining if sd.threshold is to be interpreted as a quantile of all
Standard Deviation values from bases/regions (the default), or as an absolute
value

plot a logical value indicating whether to plot hierarchical clustering. (default:TRUE)

chunk.size Number of rows to be taken as a chunk for processing the methylBaseDB ob-
jects, default: 1e6

Value

a tree object of a hierarchical cluster analysis using a set of dissimilarities for the n objects being
clustered.

Details

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

Examples

data(methylKit)

clusterSamples(methylBase.obj, dist="correlation", method="ward", plot=TRUE)

dataSim Simulate DNA methylation data

Description

The function simulates DNA methylation data from multiple samples. See references for detailed
explanation on statistics.

Usage

dataSim(
replicates,
sites,
treatment,
percentage = 10,
effect = 25,

dataSim 15

alpha = 0.4,
beta = 0.5,
theta = 10,
covariates = NULL,
sample.ids = NULL,
assembly = "hg18",
context = "CpG",
add.info = FALSE

)

Arguments

replicates the number of samples that should be simulated.

sites the number of CpG sites per sample.

treatment a vector containing treatment information.

percentage the proportion of sites which should be affected by the treatment.

effect a number between 0 and 100 specifying the effect size of the treatment. This is
essentially describing the average percent methylation difference between dif-
ferentially methylated bases.See ’Examples’ and ’Details’.

alpha shape1 parameter for beta distribution (used for initial sampling of methylation
proportions)

beta shape2 parameter for beta distribution (used for initial sampling of methylation
proportions)

theta dispersion parameter for beta distribution (initial sampling of methylation pro-
portions)

covariates a data.frame containing covariates (optional)

sample.ids will be generated automatically from treatment, but can be overwritten by a
character vector containing sample names.

assembly the assembly description (e.g. "hg18").Only needed for book keeping.

context the experimanteal context of the data (e.g. "CpG"). Only needed for book keep-
ing.

add.info if set to TRUE, the output will be a list with the first element being the methyl-
base object and a vector of indices that indicate which CpGs should be differ-
entially methylated. This vector can be used to subset simulated methylBase or
methylDiff object with differentially methylated bases.

Value

a methylBase object containing simulated methylation data, or if add.info=TRUE a list containing
the methylbase object and the indices of all treated sites (differentially methylated bases or regions)
as the second element.

Details

The function uses a Beta distribution to simulate the methylation proportion background across all
samples. The parameters alpha, beta used in a beta distribution to draw methylation proportions,µ,
from a typical bimodal distribution. For each initial methylation proportion drawn using the param-
eters above, a range of methylation proportions is distributed around the original µ with overdis-
persion parameter θ, this is using an alternative parameterization of Beta distribution: Beta(µ, θ).

16 diffMethPerChr

The parameters percentage and effect determine the proportion of sites that are affected by the
treatment (meaning differential sites) and the strength of this influence, respectively. effect is
added on top of µ for the CpGs that are affected by the treament. The affected group of samples
for that particular CpG will now be distributed by Beta(µ+ effect, θ). The coverage is modeled
with a negative binomial distribution, using rnbinom function with size=1 and prob=0.01. The
additional information needed for a valid methylBase object, such as CpG start, end and strand, is
generated as "dummy values", but can be overwritten as needed.

Examples

data(methylKit)

Simulate data for 4 samples with 20000 sites each.
The methylation in 10% of the sites are elevated by 25%.
my.methylBase=dataSim(replicates=4,sites=2000,treatment=c(1,1,0,0),
percentage=10,effect=25)

diffMethPerChr Get and plot the number of hyper/hypo methylated regions/bases per
chromosome

Description

This function gets number of hyper/hypo methylated regions/bases from methylDiff object. It can
also plot percentages of differentially methylated bases per chromosome.

Usage

diffMethPerChr(
x,
plot = TRUE,
qvalue.cutoff = 0.01,
meth.cutoff = 25,
exclude = NULL,
keep.empty.chrom = FALSE,
...

)

S4 method for signature 'methylDiff'
diffMethPerChr(
x,
plot = TRUE,
qvalue.cutoff = 0.01,
meth.cutoff = 25,
exclude = NULL,
keep.empty.chrom = FALSE,
...

)

extract 17

S4 method for signature 'methylDiffDB'
diffMethPerChr(
x,
plot = TRUE,
qvalue.cutoff = 0.01,
meth.cutoff = 25,
exclude = NULL,
keep.empty.chrom = FALSE,
...

)

Arguments

x a methylDiff object

plot TRUE|FALSE. If TRUE horizontal barplots for proportion of hypo/hyper methy-
lated bases/regions

qvalue.cutoff cutoff for q-value

meth.cutoff cutoff for percent methylation difference

exclude names of chromosomes to be excluded from plot

keep.empty.chrom

keep chromosome in list / plot, even if it contains no hyper/hypo sites

... extra graphical parameters to be passed to barplot function

Value

plots a piechart or a barplot for percentage of the target features overlapping with annotation

Examples

data(methylKit)

get a list of differentially methylated bases/regions per chromosome and overall
diffMethPerChr(methylDiff.obj, plot=FALSE,qvalue.cutoff=0.01,

meth.cutoff=25,exclude=NULL)

extract extract parts of methylRaw,methylRawDB,methylBase,methylBaseDB
and methylDiff data

Description

The function extracts part of the data and returns a new object.

18 extract

Usage

S4 method for signature 'methylRaw,ANY,ANY,ANY'
x[i, j]

S4 method for signature 'methylBase,ANY,ANY,ANY'
x[i, j]

S4 method for signature 'methylDiff,ANY,ANY,ANY'
x[i, j]

S4 method for signature 'methylRawDB,ANY,ANY,ANY'
x[i, j]

S4 method for signature 'methylBaseDB,ANY,ANY,ANY'
x[i, j]

S4 method for signature 'methylDiffDB,ANY,ANY,ANY'
x[i, j]

Arguments

x an methylBase,methylBaseDB, methylRaw,methylRawDB or methylDiff ob-
ject

i a numeric or logical vector. This vector corresponds to bases or regions con-
tained in methylKit objects.The vector is used to subset the data.

j This argument can not be used for the extraction of columns. As unintentional
extraction of the columns will cause an error in the downstream analysis. Using
this argument will cause an error. Use getData to access the data part of the
objects.

Examples

data(methylKit)

selects first hundred rows, returns a methylRaw object
subset1=methylRawList.obj[[1]][1:100]

selects first hundred rows, returns a methylBase object
subset2=methylBase.obj[1:100,]

selects first hundred rows, returns a methylDiff object
subset3=methylDiff.obj[1:100,]

This will get chromomsomes, will return a factor
That means the resulting object will ceases to be a methylKit object
chrs=methylDiff.obj[[2]]

filterByCoverage 19

filterByCoverage Filter methylRaw, methylRawDB, methylRawList and methyl-
RawListDB object based on read coverage

Description

This function filters methylRaw, methylRawDB, methylRawList and methylRawListDB objects.
You can filter based on lower read cutoff or high read cutoff. Higher read cutoff is usefull to
eliminate PCR effects Lower read cutoff is usefull for doing better statistical tests.

Usage

filterByCoverage(
methylObj,
lo.count = NULL,
lo.perc = NULL,
hi.count = NULL,
hi.perc = NULL,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRaw'
filterByCoverage(
methylObj,
lo.count = NULL,
lo.perc = NULL,
hi.count = NULL,
hi.perc = NULL,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRawList'
filterByCoverage(
methylObj,
lo.count = NULL,
lo.perc = NULL,
hi.count = NULL,
hi.perc = NULL,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRawDB'
filterByCoverage(
methylObj,
lo.count = NULL,

20 filterByCoverage

lo.perc = NULL,
hi.count = NULL,
hi.perc = NULL,
chunk.size = 1e+06,
save.db = TRUE,
...

)

S4 method for signature 'methylRawListDB'
filterByCoverage(
methylObj,
lo.count = NULL,
lo.perc = NULL,
hi.count = NULL,
hi.perc = NULL,
chunk.size = 1e+06,
save.db = TRUE,
...

)

Arguments

methylObj a methylRaw, methylRawDB, methylRawList or methylRawListDB object

lo.count An integer for read counts.Bases/regions having lower coverage than this count
is discarded

lo.perc A double [0-100] for percentile of read counts. Bases/regions having lower
coverage than this percentile is discarded

hi.count An integer for read counts. Bases/regions having higher coverage than this is
count discarded

hi.perc A double [0-100] for percentile of read counts. Bases/regions having higher
coverage than this percentile is discarded

chunk.size Number of rows to be taken as a chunk for processing the methylRawDB or
methylRawListDB objects, default: 1e6

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_filtered” to current file-
name if database already exists or generate new file with filename “sampleID_filtered”
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to original directory
for already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

methylRaw, methylRawDB, methylRawList or methylRawListDB object depending on input object

getAssembly 21

Details

The parameter chunk.size is only used when working with methylRawDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are
stored as flat file database. Per default the chunk.size is set to 1M rows, which should work for most
systems. If you encounter memory problems or have a high amount of memory available feel free
to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylRawDB and methylRawListDB,
while being per default FALSE for methylRaw and methylRawList. If you wish to save the result
of an in-memory-calculation as flat file database or if the size of the database allows the calculation
in-memory, then you might change the value of this parameter.

Examples

data(methylKit)

filter out bases with covereage above 500 reads
filtered1=filterByCoverage(methylRawList.obj,lo.count=NULL,lo.perc=NULL,
hi.count=500,hi.perc=NULL)

filter out bases with cread coverage above 99.9th percentile of coverage
distribution
filtered2=filterByCoverage(methylRawList.obj,lo.count=NULL,lo.perc=NULL,
hi.count=NULL,hi.perc=99.9)

filter out bases with covereage above 500 reads and save to database
"test1_max500.txt.bgz"
in directory "methylDB", filtered3 now becomes a \code{methylRawDB} object
filtered3=filterByCoverage(methylRawList.obj[[1]], lo.count=NULL,lo.perc=NULL,

hi.count=500, hi.perc=NULL, save.db=TRUE,
suffix="max500", dbdir="methylDB")

tidy up
rm(filtered3)
unlink("methylDB",recursive=TRUE)

getAssembly get assembly of the genome

Description

The function returns the genome assembly stored in any of the methylBase,methylBaseDB,methylRaw,
methylRawDB,methylDiff objects

Usage

getAssembly(x)

S4 method for signature 'methylBase'
getAssembly(x)

S4 method for signature 'methylRaw'

22 getContext

getAssembly(x)

S4 method for signature 'methylDiff'
getAssembly(x)

S4 method for signature 'methylRawDB'
getAssembly(x)

S4 method for signature 'methylBaseDB'
getAssembly(x)

S4 method for signature 'methylDiffDB'
getAssembly(x)

Arguments

x an methylBase,methylBaseDB, methylRaw,methylRawDB or methylDiff ob-
ject

Value

the assembly string for the object

Examples

data(methylKit)

getAssembly(methylBase.obj)
getAssembly(methylDiff.obj)
getAssembly(methylRawList.obj[[1]])

getContext get the context of methylation

Description

The function returns the context of methylation. For example: "CpG","CHH" or "CHG"

Usage

getContext(x)

S4 method for signature 'methylBase'
getContext(x)

S4 method for signature 'methylRaw'
getContext(x)

S4 method for signature 'methylDiff'
getContext(x)

getCorrelation 23

S4 method for signature 'methylRawDB'
getContext(x)

S4 method for signature 'methylBaseDB'
getContext(x)

S4 method for signature 'methylDiffDB'
getContext(x)

Arguments

x an methylBase,methylBaseDB, methylRaw,methylRawDB or an methylDiff ob-
ject

Value

a string for the context methylation

Examples

data(methylKit)

getContext(methylBase.obj)
getContext(methylDiff.obj)
getContext(methylRawList.obj[[1]])

getCorrelation get correlation between samples in methylBase or methylBaseDB ob-
ject

Description

The functions returns a matrix of correlation coefficients and/or a set of scatterplots showing the
relationship between samples. The scatterplots will contain also fitted lines using lm() for linear
regression and lowess for polynomial regression.

Usage

getCorrelation(object,method="pearson",plot=FALSE,nrow)

S4 method for signature 'methylBase'
getCorrelation(object, method = c("pearson", "kendall", "spearman"), plot)

S4 method for signature 'methylBaseDB'
getCorrelation(object, method = "pearson", plot = FALSE, nrow = 2e+06)

24 getCoverageStats

Arguments

object a methylBase or methylBaseDB object

method a character string indicating which correlation coefficient (or covariance) is to
be computed (default:"pearson", other options are "kendall" and "spearman")

plot scatterPlot if TRUE (default:FALSE)

nrow a numeric giving the number of lines to read in of methylBaseDB object, de-
faults to 2e6

Value

a correlation matrix object and plot scatterPlot

Details

The argument ’nrow’ is only evaluated if the input is a methylBaseDB object. If ’nrow’ is not
specified getCorrelation will read the first 2M records of the given object, but if you want to read
all records ’nrow’ has to be NULL. You should change ’nrow’ if using getCorrelation with all
records of the methylBaseDB object would take too long.

If the scatter plot is plotted, the red line in the plot is from linear regression fit and the green line is
from polynomial regression fit with stats::lowess.

Examples

data(methylKit)

getCorrelation(methylBase.obj,method="pearson",plot=FALSE)

create methylBaseDB
methylBaseDB.obj <- unite(methylRawList.obj,save.db=TRUE,dbdir="methylDB")

getCorrelation(methylBaseDB.obj,method="pearson",plot=FALSE,nrow=10000)

remove Database again
rm(methylBaseDB.obj)
unlink("methylDB",recursive=TRUE)

getCoverageStats get coverage stats from methylRaw object

Description

The function returns basic statistics about read coverage per base. It can also plot a histogram of
read coverage values.

getCoverageStats 25

Usage

getCoverageStats(
object,
plot = FALSE,
both.strands = FALSE,
labels = TRUE,
...,
chunk.size = 1e+06

)

S4 method for signature 'methylRaw'
getCoverageStats(
object,
plot = FALSE,
both.strands = FALSE,
labels = TRUE,
...,
chunk.size = 1e+06

)

S4 method for signature 'methylRawDB'
getCoverageStats(
object,
plot = FALSE,
both.strands = FALSE,
labels = TRUE,
...,
chunk.size = 1e+06

)

Arguments

object a methylRaw or methylRawDB object
plot plot a histogram of coverage if TRUE (default:FALSE)
both.strands do stats and plot for both strands if TRUE (default:FALSE)
labels should the bars of the histrogram have labels showing the percentage of values

in each bin (default:TRUE)
... options to be passed to hist function
chunk.size Number of rows to be taken as a chunk for processing the methylRawDB objects

(default: 1e6)

Value

a summary of coverage statistics or plot a histogram of coverage

Details

The parameter chunk.size is only used when working with methylRawDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are
stored as flat file database. Per default the chunk.size is set to 1M rows, which should work for most
systems. If you encounter memory problems or have a high amount of memory available feel free
to adjust the chunk.size.

26 getData

Examples

data(methylKit)

gets coverage stats for the first sample in methylRawList.obj object
getCoverageStats(methylRawList.obj[[1]],plot=TRUE,
both.strands=FALSE,labels=TRUE)

getData get the data slot from the methylKit objects

Description

The functions retrieves the table containing methylation information from methylKit Objects. The
data retrived from this function is of a data.frame. This is basically containing all relevant methy-
lation information per genomic region or base.

Usage

getData(x)

S4 method for signature 'methylBase'
getData(x)

S4 method for signature 'methylRaw'
getData(x)

S4 method for signature 'methylDiff'
getData(x)

S4 method for signature 'methylRawDB'
getData(x)

S4 method for signature 'methylBaseDB'
getData(x)

S4 method for signature 'methylDiffDB'
getData(x)

Arguments

x an methylBase,methylBaseDB, methylRaw,methylRawDB or methylDiff ob-
ject

Value

data frame for methylation events

getDBPath 27

Examples

data(methylKit)

following commands show first lines of returned
data.frames from getData() function
head(
getData(methylBase.obj)
)

head(getData(methylDiff.obj))

head(getData(methylRawList.obj[[1]]))

getDBPath Get path to database of the methylDB objects

Description

The function returns the path to the flat file database that stores the data of the methylRawDB,
methylRawListDB, methylBaseDB or methylDiffDB objects.

Usage

getDBPath(x)

S4 method for signature 'methylRawListDB'
getDBPath(x)

S4 method for signature 'methylBaseDB'
getDBPath(x)

S4 method for signature 'methylRawDB'
getDBPath(x)

S4 method for signature 'methylDiffDB'
getDBPath(x)

Arguments

x an methylBaseDB,methylRawDB, methylRawListDB or methylDiffDB object

Examples

data(methylKit)

methylBaseDB.obj <- unite(methylRawList.obj,save.db=TRUE,dbdir="methylDB")

#The path to the database is returned
getDBPath(methylBaseDB.obj)

28 getMethylationStats

remove Database again
rm(methylBaseDB.obj)
unlink("methylDB",recursive=TRUE)

getMethylationStats get Methylation stats from methylRaw or methylRawDB object

Description

The function returns basic statistics about It can also plot a histogram of

Usage

getMethylationStats(
object,
plot = FALSE,
both.strands = FALSE,
labels = TRUE,
...,
chunk.size = 1e+06

)

S4 method for signature 'methylRaw'
getMethylationStats(
object,
plot = FALSE,
both.strands = FALSE,
labels = TRUE,
...,
chunk.size = 1e+06

)

S4 method for signature 'methylRawDB'
getMethylationStats(
object,
plot = FALSE,
both.strands = FALSE,
labels = TRUE,
...,
chunk.size = 1e+06

)

Arguments

object a methylRaw or methylRawDB object

plot plot a histogram of Methylation if TRUE (deafult:FALSE)

both.strands do plots and stats for both strands seperately if TRUE (deafult:FALSE)

labels should the bars of the histrogram have labels showing the percentage of values
in each bin (default:TRUE)

getMethylDiff 29

... options to be passed to hist function.

chunk.size Number of rows to be taken as a chunk for processing the methylRawDB objects
(default: 1e6)

Value

a summary of Methylation statistics or plot a histogram of coverage

Details

The parameter chunk.size is only used when working with methylRawDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are
stored as flat file database. Per default the chunk.size is set to 1M rows, which should work for most
systems. If you encounter memory problems or have a high amount of memory available feel free
to adjust the chunk.size.

Examples

data(methylKit)

gets Methylation stats for the first sample in methylRawList.obj object
getMethylationStats(methylRawList.obj[[1]],plot=TRUE,
both.strands=FALSE,labels=TRUE)

getMethylDiff get differentially methylated regions/bases based on cutoffs

Description

The function subsets a methylDiff or methylDiffDB object in order to get differentially methylated
bases/regions satisfying thresholds.

Usage

getMethylDiff(
.Object,
difference = 25,
qvalue = 0.01,
type = "all",
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylDiff'
getMethylDiff(
.Object,
difference = 25,
qvalue = 0.01,
type = "all",
chunk.size = 1e+06,

30 getMethylDiff

save.db = FALSE,
...

)

S4 method for signature 'methylDiffDB'
getMethylDiff(
.Object,
difference = 25,
qvalue = 0.01,
type = "all",
chunk.size = 1e+06,
save.db = TRUE,
...

)

Arguments

.Object a methylDiff or methylDiffDB object

difference cutoff for absolute value of methylation percentage change between test and
control (default:25)

qvalue cutoff for qvalue of differential methylation statistic (default:0.01)

type one of the "hyper","hypo" or "all" strings. Specifies what type of differentially
menthylated bases/regions should be returned. For retrieving Hyper-methylated
regions/bases type="hyper", for hypo-methylated type="hypo" (default:"all")

chunk.size Number of rows to be taken as a chunk for processing the methylDiffDB objects
(default: 1e6)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: see Details

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_type” to current filename
if database already exists or generate new file with filename “methylDiff_type”
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

a methylDiff or methylDiffDB object containing the differential methylated locations satisfying the
criteria

Details

The parameter chunk.size is only used when working with methylDiffDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylDiffDB, while being
per default FALSE for methylDiff. If you wish to save the result of an in-memory-calculation as

getSampleID 31

flat file database or if the size of the database allows the calculation in-memory, then you might
want to change the value of this parameter.

Examples

data(methylKit)

get differentially methylated bases/regions with specific cutoffs
all.diff=getMethylDiff(methylDiff.obj,difference=25,qvalue=0.01,type="all")

get hyper-methylated
hyper=getMethylDiff(methylDiff.obj,difference=25,qvalue=0.01,type="hyper")

get hypo-methylated
hypo=getMethylDiff(methylDiff.obj,difference=25,qvalue=0.01,type="hypo")

getSampleID Get or Set Sample-IDs of the methylKit objects

Description

The function returns or replaces the sample-ids stored in any of the following methylKit objects:
methylRaw, methylRawDB, methylBase, methylBaseDB, methylRawList, methylRawListDB, methylDiff,
methylDiffDB.

Usage

getSampleID(x)
getSampleID(x) <- value

getSampleID(x) <- value

S4 method for signature 'methylRawList'
getSampleID(x)

S4 replacement method for signature 'methylRawList'
getSampleID(x) <- value

S4 method for signature 'methylBase'
getSampleID(x)

S4 replacement method for signature 'methylBase'
getSampleID(x) <- value

S4 method for signature 'methylRaw'
getSampleID(x)

S4 replacement method for signature 'methylRaw'
getSampleID(x) <- value

S4 method for signature 'methylDiff'

32 getTreatment

getSampleID(x)

S4 replacement method for signature 'methylDiff'
getSampleID(x) <- value

S4 method for signature 'methylRawListDB'
getSampleID(x)

S4 replacement method for signature 'methylRawListDB'
getSampleID(x) <- value

S4 method for signature 'methylBaseDB'
getSampleID(x)

S4 replacement method for signature 'methylBaseDB'
getSampleID(x) <- value

S4 method for signature 'methylRawDB'
getSampleID(x)

S4 replacement method for signature 'methylRawDB'
getSampleID(x) <- value

S4 method for signature 'methylDiffDB'
getSampleID(x)

S4 replacement method for signature 'methylDiffDB'
getSampleID(x) <- value

Arguments

x an methylBaseDB,methylRawListDB or methylDiffDB object

value a valid replacement vector for the sample-ids of the object

Examples

data(methylKit)

#The Sample-Ids can be printed ..
getSampleID(methylBase.obj)

.. or replaced.
newObj <- methylBase.obj
getSampleID(newObj) <- c("sample1","sample2","sample3","sample4")
getSampleID(newObj)

getTreatment Get or Set treatment vector of methylKit object

getTreatment 33

Description

The function returns or replaces the treatment vector stored in any of the following methylKit ob-
jects: methylBase,methylRawList,methylBaseDB, methylRawListDB,methylDiff,methylDiffDB.

Usage

getTreatment(x)
getTreatment(x) <- value

getTreatment(x) <- value

S4 method for signature 'methylRawList'
getTreatment(x)

S4 replacement method for signature 'methylRawList'
getTreatment(x) <- value

S4 method for signature 'methylBase'
getTreatment(x)

S4 replacement method for signature 'methylBase'
getTreatment(x) <- value

S4 method for signature 'methylDiff'
getTreatment(x)

S4 replacement method for signature 'methylDiff'
getTreatment(x) <- value

S4 method for signature 'methylRawListDB'
getTreatment(x)

S4 replacement method for signature 'methylRawListDB'
getTreatment(x) <- value

S4 method for signature 'methylBaseDB'
getTreatment(x)

S4 replacement method for signature 'methylBaseDB'
getTreatment(x) <- value

S4 method for signature 'methylDiffDB'
getTreatment(x)

S4 replacement method for signature 'methylDiffDB'
getTreatment(x) <- value

Arguments

x a methylKit object

value a valid replacement for the treatment vector of the object

34 makeMethylDB

Examples

data(methylKit)

The treatment vector can be printed ..
getTreatment(methylBase.obj)

.. or replaced with a new one
newObj <- methylBase.obj
getTreatment(newObj) <- c(1,2,3,4)
getTreatment(newObj)

joinSegmentNeighbours Join directly neighbouring segments produced by methSeg

Description

Segmentation and clustering are two distinct steps in methSeg(), leading to adjacent segments of
the same class. This leads to a bias segment length distributions, which is removed by joining those
neighbours.

Usage

joinSegmentNeighbours(res)

Arguments

res A GRanges object with segment classification and information prudoced by
methSeg

Value

A GRanges object with segment classification and information.

See Also

methSeg

makeMethylDB coerce methylKit objects from memory to flat file database objects

Description

The function converts in-memory methylKit objects to methylDB objects

methRead 35

Usage

makeMethylDB(obj, dbdir = getwd())

S4 method for signature 'methylBase'
makeMethylDB(obj, dbdir = getwd())

S4 method for signature 'methylRaw'
makeMethylDB(obj, dbdir = getwd())

S4 method for signature 'methylDiff'
makeMethylDB(obj, dbdir = getwd())

S4 method for signature 'methylRawList'
makeMethylDB(obj, dbdir = getwd())

Arguments

obj an methylBase, methylRaw, methylRawList or an methylDiff object

dbdir directory where flat file database(s) should be stored, defaults to getwd(), work-
ing directory.

Value

an methylBaseDB,methylRawDB, methylRawListDB or an methylDiffDB object

Examples

Not run:
data(methylKit)

makeMethylDB(methylBase.obj,"my/path")

End(Not run)

methRead read file(s) to methylRaw or methylRawList objects

Description

The function reads a list of files or single files with methylation information for bases/region in the
genome and creates a methylrawList or methylraw object. The information can be stored as flat file
database by creating a methylrawlistDB or methylrawDB object.

Usage

methRead(
location,
sample.id,
assembly,

36 methRead

dbtype = NA,
pipeline = "amp",
header = TRUE,
skip = 0,
sep = "\t",
context = "CpG",
resolution = "base",
treatment = NA,
dbdir = getwd(),
mincov = 10

)

S4 method for signature 'character,character,character'
methRead(
location,
sample.id,
assembly,
dbtype,
pipeline,
header,
skip,
sep,
context,
resolution,
dbdir,
mincov

)

S4 method for signature 'character,ANY,ANY'
methRead(
location,
sample.id,
assembly,
dbtype,
pipeline,
header,
skip,
sep,
context,
resolution,
dbdir,
mincov

)

S4 method for signature 'list,list,character'
methRead(
location,
sample.id,
assembly,
dbtype = NA,
pipeline = "amp",
header = TRUE,

methRead 37

skip = 0,
sep = "\t",
context = "CpG",
resolution = "base",
treatment = NA,
dbdir = getwd(),
mincov = 10

)

S4 method for signature 'list,ANY,ANY'
methRead(
location,
sample.id,
assembly,
dbtype = NA,
pipeline = "amp",
header = TRUE,
skip = 0,
sep = "\t",
context = "CpG",
resolution = "base",
treatment = NA,
dbdir = getwd(),
mincov = 10

)

Arguments

location file location(s), either a list of locations (each a character string) or one location
string

sample.id sample.id(s)

assembly a string that defines the genome assembly such as hg18, mm9. this is just a
string for book keeping. It can be any string. Although, when using multiple
files from the same assembly, this string should be consistent in each object.

dbtype type of the flat file database, currently only option other than NA is "tabix".
When "tabix" is given the objects are stored in tabix files, which are compressed
and indexed. The default value is NA, in which case the objects are stored in
memory.

pipeline name of the alignment pipeline, it can be either "amp", "bismark","bismarkCoverage",
"bismarkCytosineReport" or a list (default:’amp’). The methylation text files
generated from other pipelines can be read as generic methylation text files by
supplying a named list argument as "pipeline" argument. The named list
should containt column numbers which denotes which column of the text file
corresponds to values and genomic location of the methylation events. See De-
tails for more on possible values for this argument.

header if the input file has a header or not (default: TRUE)

skip number of lines to skip when reading. Can be set to 1 for bed files with track
line (default: 0)

sep seperator between fields, same as read.table argument (default: "\t")

context methylation context string, ex: CpG,CHG,CHH, etc. (default:CpG)

38 methRead

resolution designates whether methylation information is base-pair resolution or regional
resolution. allowed values ’base’ or ’region’. Default ’base’

treatment a vector contatining 0 and 1 denoting which samples are control which samples
are test

dbdir directory where flat file database(s) should be stored, defaults to getwd(), work-
ing directory.

mincov minimum read coverage to be included in the methylKit objects. defaults to
10. Any methylated base/region in the text files below the mincov value will be
ignored.

Value

returns methylRaw, methylRawList, methylRawDB, methylRawListDB object

Details

The output of methRead is determined by specific input arguments,as there are location, sample.id,
assembly and dbtype. The first three are obligatory, while if the last argument is given database
features are enabled. If then location refers to an uncompressed file the function will create a flat
file database and the associated methylRawDB object will link to this database. If then location
refers to an earlier created database file then the object will directly link to this database, skipping
the preprocessing steps.

When pipeline argument is a list, it is exptected to provide a named list with following names.
’fraction’ is a logical value, denoting if the column frequency of Cs has a range from [0-1] or [0-
100]. If true it assumes range is [0-1]. ’chr.col" is the number of the column that has chrosome
string. ’start.col’ is the number of the column that has start coordinate of the base/region of the
methylation event. ’end.col’ is the number of the column that has end coordinate of the base/region
of the methylation event. ’coverage.col’ is the number of the column that has read coverage values.
’strand.col’ is the number of the column that has strand information, the strand information in the
file has to be in the form of ’+’ or ’-’, ’freqC.col’ is the number of the column that has the frequency
of Cs. See examples to see how to read a generic methylation text file.

Other possible values for pipeline argument are ’amp’,’bismark’, ’bismarkCoverage’ and ’bis-
markCytosineReport’. For ’amp’ and ’bismark’ the function expects a tabular format shown in the
webpage (http://github.com/al2na/methylKit). "amp" and "bismark" expect identical input and are
kept for historical reasons. ’amp’ was a pipeline used in Akalin et al. 2012 Plos Genetics paper,
publicly available in googlecode.

Bismark aligner can output methylation information per base in multiple formats. With pipeline='bismarkCoverage',
the function reads bismark coverage files, which have chr,start,end, number of cytosines (methylated
bases) and number of thymines (unmethylated bases) format. If bismark coverage files are used the
function will not have the strand information,so beware of that fact. With pipeline='bismarkCytosineReport',
the function expects cytosine report files from Bismark, which have chr,start, strand, number of
cytosines (methylated bases) , number of thymines (unmethylated bases),context and trinucletide
context format.

The function can also read gzipped files. On unix systems, this is achieved by using zcat filename
and feeding that into data.table::fread . On Windows, the file is first uncompressed then read
into R using data.table::fread.

Examples

this is a list of example files, ships with the package
for your own analysis you will just need to provide set of paths to files

methRead 39

you will not need the "system.file(..." part
file.list=list(

system.file("extdata", "test1.myCpG.txt", package = "methylKit"),
system.file("extdata", "test2.myCpG.txt", package = "methylKit"),
system.file("extdata", "control1.myCpG.txt", package = "methylKit"),
system.file("extdata", "control2.myCpG.txt", package = "methylKit")
)

read the files to a methylRawList object: myobj
myobj=methRead(file.list,

sample.id=list("test1","test2","ctrl1","ctrl2"),
assembly="hg18",treatment=c(1,1,0,0))

read one file as methylRaw object
myobj=methRead(file.list[[1]],

sample.id="test1",assembly="hg18")

read a generic text file containing CpG methylation values
let's first look at the content of the file
generic.file=system.file("extdata", "generic1.CpG.txt",package = "methylKit")
read.table(generic.file,header=TRUE)

And this is how you can read that generic file as a methylKit object
myobj=methRead(generic.file,

pipeline=list(fraction=FALSE,chr.col=1,start.col=2,end.col=2,
coverage.col=4,strand.col=3,freqC.col=5),

sample.id="test1",assembly="hg18")

This creates tabix files that save methylation data
Without specified dbdir first creates a folder named the following
in working directory:
paste("methylDB",Sys.Date(),paste(sample(c(0:9, letters, LETTERS),3,
replace=TRUE),collapse=""))
#
Then, saves tabix files from methylKit objects there
myobj=methRead(file.list,

sample.id=list("test1","test2","ctrl1","ctrl2"),
assembly="hg18",treatment=c(1,1,0,0),
dbtype="tabix")

This creates a single tabix files that saves methylation data
first creates a "methylDB_objects" directory
Then, saves tabix file from methylKit objects there
myobj=methRead(file.list[[1]],

sample.id="test1",
assembly="hg18",
dbtype="tabix",dbdir="methylDB_objects")

tidy up
rm(myobj)
unlink(list.files(pattern = "methylDB",full.names = TRUE),recursive = TRUE)

40 methSeg

methSeg Segment methylation or differential methylation profile

Description

The function uses a segmentation algorithm (fastseg) to segment the methylation profiles. Fol-
lowing that, it uses gaussian mixture modelling to cluster the segments into k components. This
process uses mean methylation value of each segment in the modeling phase. Each component
ideally indicates quantitative classification of segments, such as high or low methylated regions.

Usage

methSeg(
obj,
diagnostic.plot = TRUE,
join.neighbours = FALSE,
initialize.on.subset = 1,
...

)

Arguments

obj GRanges, methylDiff, methylDiffDB, methylRaw or methylRawDB . If the ob-
ject is a GRanges it should have one meta column with methylation scores and
has to be sorted by position, i.e. ignoring the strand information.

diagnostic.plot

if TRUE a diagnostic plot is plotted. The plot shows methylation and length
statistics per segment group. In addition, it shows diagnostics from mixture
modeling: the density function estimated and BIC criterion used to decide the
optimum number of components in mixture modeling.

join.neighbours

if TRUE neighbouring segments that cluster to the same seg.group are joined by
extending the ranges, summing up num.marks and averaging over seg.means.

initialize.on.subset

a numeric value indicating either percentage or absolute value of regions to sub-
sample from segments before performing the mixture modeling. The value can
be either between 0 and 1, e.g. 0.1 means that 10 integer higher than 1 to define
the number of regions to sample. By default uses the whole dataset, which can
be time consuming on large datasets. (Default: 1)

... arguments to fastseg function in fastseg package, or to densityMclust in
Mclust package, could be used to fine tune the segmentation algorithm. E.g.
Increasing "alpha" will give more segments. Increasing "cyberWeight" will give
also more segments."maxInt" controls the segment extension around a break-
point. "minSeg" controls the minimum segment length. "G" argument denotes
number of components used in BIC selection in mixture modeling. For more
details see fastseg and Mclust documentation.

methSeg2bed 41

Details

To be sure that the algorithm will work on your data, the object should have at least 5000 records

After initial segmentation with fastseg(), segments are clustered into self-similar groups based on
their mean methylation profile using mixture modeling. Mixture modeling estimates the initial
parameters of the distributions by using the whole dataset. If "initialize.on.subset" argument set
as described, the function will use a subset of the data to initialize the parameters of the mixture
modeling prior to the Expectation-maximization (EM) algorithm used by Mclust package.

Value

A GRanges object with segment classification and information. ’seg.mean’ column shows the mean
methylation per segment. ’seg.group’ column shows the segment groups obtained by mixture mod-
eling

Author(s)

Altuna Akalin, contributions by Arsene Wabo and Katarzyna Wreczycka

See Also

methSeg2bed, joinSegmentNeighbours

Examples

download.file(
"https://raw.githubusercontent.com/BIMSBbioinfo/compgen2018/master/day3_diffMeth/data/H1.chr21.chr22.rds",
destfile="H1.chr21.chr22.rds",method="curl")

mbw=readRDS("H1.chr21.chr22.rds")

it finds the optimal number of componets as 6
res=methSeg(mbw,diagnostic.plot=TRUE,maxInt=100,minSeg=10)

however the BIC stabilizes after 4, we can also try 4 componets
res=methSeg(mbw,diagnostic.plot=TRUE,maxInt=100,minSeg=10,G=1:4)

get segments to BED file
methSeg2bed(res,filename="H1.chr21.chr22.trial.seg.bed")

unlink(list.files(pattern="H1.chr21.chr22",full.names=TRUE))

methSeg2bed Export segments to BED files

Description

The segments are color coded based on their score (methylation or differential methylation value).
They are named by segment group (components in mixture modeling) and the score in the BED file
is obtained from ’seg.mean’ column of segments object.

42 methylBase-class

Usage

methSeg2bed(
segments,
filename,
trackLine = "track name='meth segments' description='meth segments' itemRgb=On",
colramp = colorRamp(c("gray", "green", "darkgreen"))

)

Arguments

segments GRanges object with segment classification and information. This should be the
result of methSeg function

filename name of the output data

trackLine UCSC browser trackline

colramp color scale to be used in the BED display defaults to gray,green, darkgreen scale.

Value

A BED files with the segmented data which can be visualized in the UCSC browser

See Also

methSeg

methylBase-class An S4 class for methylation events sampled in multiple experiments

Description

This class is designed to contain methylation information such as coverage, number of methylated
bases, etc.. The methylation events contained in the class must be sampled in multiple experiments
(ex: only CpG bases covered in multiple experiments are stored in the object of this class). The
class extends data.frame and creates an object that holds methylation information and genomic
location. The object belonging to this class is produced by unite function.

Slots

sample.ids: character vector for ids of samples in the object

assembly: name of the genome assembly

context: context of methylation. Ex: CpG,CpH,CHH, etc

treatment: treatment vector denoting which samples are test and control

coverage.index: vector denoting which columns in the data correspons to coverage values

numCs.index: vector denoting which columns in the data correspons to number of methylatedCs
values

numTs.index: vector denoting which columns in the data correspons to number of unmethylated
Cs values

destranded: logical value. If TRUE object is destranded, if FALSE it is not.

resolution: resolution of methylation information, allowed values: ’base’ or ’region’

methylBase.obj 43

Details

methylBase class extends data.frame class therefore providing novice and experienced R users
with a data structure that is well known and ubiquitous in many R packages.

Subsetting

In the following code snippets, x is a methylBase. Subsetting by x[i,] will produce a new object
if subsetting is done on rows. Column subsetting is not directly allowed to prevent errors in the
downstream analysis. see ?methylKit[.

Accessors

The following functions provides access to data slots of methylDiffDB: - getData: get the data slot
from the methylKit objects, - getAssembly: get assembly of the genome, - getContext: get the
context of methylation

Coercion

methylBase object can be coerced to GRanges object via as function.

Examples

data(methylKit)
library(GenomicRanges)
my.gr=as(methylBase.obj,"GRanges")

methylBase.obj Example methylBase object.

Description

methylBase, methylDiff and methylRawList. You can load the data using data(methylKit)

Format

methylBase.obj object stores the location and methylation information for bases that are covered in
all samples. methylBase partially extends data.frame S3 class.

44 methylBaseDB-class

methylBaseDB-class An S4 class for storing methylation events sampled in multiple experi-
ments as flat file database

Description

This class is designed to contain methylation information such as coverage, number of methylated
bases, etc... The class creates an object that holds methylation information and genomic location as
flat file database. The object belonging to this class is produced by unite function.

Slots

dbpath: path to flat file database(s)

num.records: number of records (lines) in the object

sample.ids: character vector for ids of samples in the object

assembly: name of the genome assembly

context: context of methylation. Ex: CpG,CpH,CHH, etc

treatment: treatment vector denoting which samples are test and control

coverage.index: vector denoting which columns in the data correspond to coverage values

numCs.index: vector denoting which columns in the data correspond to number of methylatedCs
values

numTs.index: vector denoting which columns in the data correspond to number of unmethylated
Cs values

destranded: logical value. If TRUE object is destranded, if FALSE it is not.

resolution: resolution of methylation information, allowed values: ’base’ or ’region’

dbtype: string for type of the flat file database, ex: tabix

Details

methylBaseDB class has the same functionality as methylBase class, but the data is saved in a flat
database file and therefore allocates less space in memory.

Subsetting

In the following code snippets, x is a methylBaseDB. Subsetting by x[i,] will produce a new
methylBase object if subsetting is done on rows. Column subsetting is not directly allowed to
prevent errors in the downstream analysis. see ?methylKit[.

Accessors

The following functions provides access to data slots of methylDiffDB: - getData: get the data slot
from the methylKit objects, - getAssembly: get assembly of the genome, - getContext: get the
context of methylation

Coercion

methylBaseDB object can be coerced to: GRanges object via as function. methylBase object via
as function.

methylDiff-class 45

Examples

data(methylKit)
methylBaseDB.obj <- unite(methylRawList.obj,save.db=TRUE,dbdir="methylDB")
library(GenomicRanges)
my.gr=as(methylBaseDB.obj,"GRanges")

remove Database again
rm(methylBaseDB.obj)
unlink("methylDB",recursive=TRUE)

methylDiff-class An S4 class that holds differential methylation information

Description

This class is designed to hold statistics and locations for differentially methylated regions/bases. It
extends data.frame class. calculateDiffMeth function returns an object with methylDiff class.

Slots

sample.ids ids/names of samples in a vector

assembly a name of genome assembly, such as :hg18,mm9, etc

context numeric vector identifying which samples are which group

treatment numeric vector identifying which samples are which group

destranded logical denoting if methylation inormation is destranded or not

resolution string either ’base’ or ’region’ defining the resolution of methylation information

.Data data.frame holding the locations and statistics

Details

methylDiff class extends data.frame class therefore providing novice and experienced R users
with a data structure that is well known and ubiquitous in many R packages.

Subsetting

In the following code snippets, x is a methylDiff object. Subsetting by x[i,] will produce a new
object if subsetting is done on rows. Column subsetting is not directly allowed to prevent errors in
the downstream analysis. see ?methylKit[.

Coercion

methylDiff object can be coerced to GRanges object via as function.

Accessors

The following functions provides access to data slots of methylDiffDB: - getData: get the data slot
from the methylKit objects, - getAssembly: get assembly of the genome, - getContext: get the
context of methylation

46 methylDiffDB-class

Examples

data(methylKit)
library(GenomicRanges)
my.gr=as(methylDiff.obj,"GRanges")

methylDiff.obj Example methylKit objects.

Description

methylBase, methylDiff and methylRawList. You can load the data using data(methylKit)

Format

The Differential methylation information is stored in methylDiff.obj object. methylBase partially
extends data.frame S3 class.

methylDiffDB-class An S4 class that holds differential methylation information as flat file
database

Description

This class is designed to hold statistics and locations for differentially methylated regions/bases as
flat file database. calculateDiffMeth function returns an object with methylDiffDB class.

Slots

dbpath: path to flat file database(s)

num.records: number of records (lines) in the object

sample.ids ids/names of samples in a vector

assembly a name of genome assembly, such as :hg18,mm9, etc

context numeric vector identifying which samples are which group

treatment numeric vector identifying which samples are which group

destranded logical denoting if methylation inormation is destranded or not

resolution string either ’base’ or ’region’ defining the resolution of methylation information

dbtype: string for type of the flat file database, ex: tabix

Details

methylDiffDB class has the same functionality as methylDiff class, but the data is saved in a flat
database file and therefore allocates less space in memory.

Subsetting

In the following code snippets, x is a methylDiffDB. Subsetting by x[i,] will produce a new
object if subsetting is done on rows. Column subsetting is not directly allowed to prevent errors in
the downstream analysis. see ?methylKit[.

methylKit-defunct 47

Coercion

methylDiffDB object can be coerced to: GRanges object via as function. methylDiff object via
as function.

Accessors

The following functions provides access to data slots of methylDiffDB: - getData: get the data slot
from the methylKit objects, - getAssembly: get assembly of the genome, - getContext: get the
context of methylation

Examples

data(methylKit)

methylDiffDB.obj <- calculateDiffMeth(methylBase.obj,save.db=TRUE,dbdir="methylDB")

library(GenomicRanges)
my.gr=as(methylDiffDB.obj,"GRanges")

remove Database again
rm(methylDiffDB.obj)
unlink("methylDB",recursive=TRUE)

methylKit-defunct Deprecated/Defunct functions

Description

These are deprecated or defunct functions. Most of them are replaced by genomation functions.
See the vignette for examples on how to use genomation functions for annotation purposes.

Usage

annotate.WithFeature()

annotate.WithFeature.Flank()

annotate.WithGenicParts()

read.bed()

read.feature.flank()

read.transcript.features()

getFeatsWithTargetsStats()

getFlanks()

getMembers()

48 methylRaw-class

getTargetAnnotationStats()

plotTargetAnnotation()

read()

read.bismark()

adjust.methylC()

get.methylDiff()

methylRaw-class An S4 class for holding raw methylation data from an alignment
pipeline.

Description

This object stores the raw mehylation data that is read in through read function and extends data.frame.The
raw methylation data is basically percent methylation values and read coverage values per genomic
base/region.

Slots

sample.id: string for an identifier of the sample

assembly: string for genome assembly, ex: hg18,hg19,mm9

context: methylation context string, ex: CpG,CpH,CHH, etc.

resolution: resolution of methylation information, ’base’ or ’region’

Details

methylRaw class extends data.frame class therefore providing novice and experienced R users
with a data structure that is well known and ubiquitous in many R packages.

Subsetting

In the following code snippets, x is a methylRaw. Subsetting by x[i,] will produce a new object
if subsetting is done on rows. Column subsetting is not directly allowed to prevent errors in the
downstream analysis. see ?methylKit[.

Accessors

The following functions provides access to data slots of methylDiffDB: - getData: get the data slot
from the methylKit objects, - getAssembly: get assembly of the genome, - getContext: get the
context of methylation

Coercion

methylRaw object can be coerced to GRanges object via as function.

methylRawDB-class 49

Examples

example of a raw methylation data as a text file
read.table(system.file("extdata", "control1.myCpG.txt",

package = "methylKit"),
header=TRUE,nrows=5)

data(methylKit)

example of a methylRaw object
head(methylRawList.obj[[1]])
str(head(methylRawList.obj[[1]]))

library(GenomicRanges)

#coercing methylRaw object to GRanges object
my.gr=as(methylRawList.obj[[1]],"GRanges")

methylRawDB-class An S4 class for storing raw methylation data as flat file database.

Description

This object stores the raw mehylation data that is read in through read function as flat file database.The
raw methylation data is basically percent methylation values and read coverage values per genomic
base/region.

Slots

dbpath: path to flat file database

num.records: number of records (lines) in the object

sample.id: string for an identifier of the sample

assembly: string for genome assembly, ex: hg18,hg19,mm9

context: methylation context string, ex: CpG,CpH,CHH, etc.

resolution: resolution of methylation information, ’base’ or ’region’

dbtype: string for type of the flat file database, ex: tabix

Details

methylRawDB is created via read function and has the same functionality as methylRaw class, but
the data is saved in a flat database file and therefore allocates less space in memory.

Subsetting

In the following code snippets, x is a methylRawDB. Subsetting by x[i,] will produce a new
methylRaw object if subsetting is done on rows. Column subsetting is not directly allowed to pre-
vent errors in the downstream analysis. see ?methylKit[. x[] will return the methylRawDB object
as new methylRaw object

50 methylRawList-class

Accessors

The following functions provides access to data slots of methylDiffDB: - getData: get the data slot
from the methylKit objects, - getAssembly: get assembly of the genome, - getContext: get the
context of methylation

Coercion

methylRawDB object can be coerced to: GRanges object via as function. methylRaw object via as
function.

Examples

example of a raw methylation data contained as a text file
read.table(system.file("extdata", "control1.myCpG.txt", package = "methylKit"),
header=TRUE,nrows=5)

methylRawDB.obj <- methRead(
system.file("extdata", "control1.myCpG.txt", package = "methylKit"),

sample.id = "ctrl1", assembly = "hg18",
dbtype = "tabix", dbdir = "methylDB")

example of a methylRawDB object
methylRawDB.obj
str(methylRawDB.obj)

library(GenomicRanges)

#coercing methylRawDB object to GRanges object
my.gr=as(methylRawDB.obj,"GRanges")

#coercing methylRawDB object to methylRaw object
myRaw=as(methylRawDB.obj,"methylRaw")

remove Database again
rm(methylRawDB.obj)
unlink("methylDB",recursive=TRUE)

methylRawList-class An S4 class for holding a list of methylRaw objects.

Description

This class stores the list of methylRaw objects. Functions such as lapply can be used on this list.
It extends list class. This object is primarily produced by methRead function.

Usage

methylRawList(..., treatment)

methylRawList.obj 51

Arguments

... vector of methylRaw objects

treatment vector of treatment values

Slots

treatment numeric vector denoting control and test samples

.Data a list of methylRaw objects

Constructor

methylRawList(...) combine multiple methylRaw objects supplied in ... into a methylRawList
object.

Examples

data(methylKit)

#applying functions designed for methylRaw on methylRawList object
lapply(methylRawList.obj,"getAssembly")

methylRawList.obj Example methylRawList object.

Description

methylBase, methylDiff and methylRawList. You can load the data using data(methylKit)

Format

Methylation data from multiple the samples regardless of common coverage are stored in methyl-
RawList.obj object. methylRawList extends list S3 class

methylRawListDB-class An S4 class for holding a list of methylRawDB objects.

Description

This class stores the list of methylRawDB objects. Functions such as lapply can be used on this list.
It extends list class. This object is primarily produced by methRead function.

Usage

methylRawListDB(..., treatment)

Arguments

... vector of methylRawDB files

treatment vector of treatment values

52 normalizeCoverage

Slots

treatment numeric vector denoting control and test samples

.Data a list of methylRawDB objects

Constructor

methylRawListDB(...) combine multiple methylRawDB objects supplied in ... into a methyl-
RawListDB object.

Examples

file.list=list(system.file("extdata", "test1.myCpG.txt",
package = "methylKit"),

system.file("extdata", "test2.myCpG.txt",
package = "methylKit"),
system.file("extdata", "control1.myCpG.txt",
package = "methylKit"),
system.file("extdata", "control2.myCpG.txt",
package = "methylKit"))

methylRawListDB.obj <- methRead(file.list,
sample.id = list("test1","test2","ctrl1","ctrl2"),

assembly = "hg18",treatment = c(1,1,0,0),
dbtype = "tabix",dbdir = "methylDB")

#applying functions designed for methylRawDB on methylRawListDB object
lapply(methylRawListDB.obj,"getAssembly")

remove Database again
rm(methylRawListDB.obj)
unlink("methylDB",recursive=TRUE)

normalizeCoverage normalize read coverage between samples

Description

The function normalizes coverage values between samples using a scaling factor derived from dif-
ferences between mean or median of coverage distributions

Usage

normalizeCoverage(obj,method="median",chunk.size,save.db,...)

S4 method for signature 'methylRawList'
normalizeCoverage(
obj,
method = "median",
chunk.size = 1e+06,
save.db = FALSE,

normalizeCoverage 53

...
)

S4 method for signature 'methylRawListDB'
normalizeCoverage(
obj,
method = "median",
chunk.size = 1e+06,
save.db = TRUE,
...

)

Arguments

obj methylRawList or methylRawListDB object

method a string "mean" or "median" which denotes median or mean should be used to
calculate scaling factor. (Default:median)

chunk.size Number of rows to be taken as a chunk for processing the methylRawListDB
objects. (Default: 1e6)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE

suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_filtered” to current file-
name if database already exists or generate new file with filename “sampleID_filtered”

dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database

Value

a methylRawList or methylRawList object depending on class of input object

Details

The parameter chunk.size is only used when working with methylRawListDB objects, as they
are read in chunk by chunk to enable processing large-sized objects which are stored as flat file
database. Per default the chunk.size is set to 1M rows, which should work for most systems. If
you encounter memory problems or have a high amount of memory available feel free to adjust the
chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylRawListDB, while
being per default FALSE for methylRawList. If you wish to save the result of an in-memory-
calculation as flat file database or if the size of the database allows the calculation in-memory, then
you might want to change the value of this parameter.

Author(s)

Altuna Akalin

54 PCASamples

Examples

data(methylKit)
normalize by the median coverage
newObj = normalizeCoverage(methylRawList.obj,method="median")

normalize by mean coverage and save to database in folder methylDB
newDBObj = normalizeCoverage(methylRawList.obj,method="mean",
save.db=TRUE,dbdir="methylDB")

PCASamples Principal Components Analysis of Methylation data

Description

The function does a PCA analysis using prcomp function using percent methylation matrix as an
input.

Usage

PCASamples(.Object, screeplot=FALSE, adj.lim=c(0.0004,0.1), scale=TRUE,
center=TRUE,comp=c(1,2),transpose=TRUE,sd.filter=TRUE,

sd.threshold=0.5,filterByQuantile=TRUE,obj.return=FALSE,chunk.size)

S4 method for signature 'methylBase'
PCASamples(
.Object,
screeplot,
adj.lim,
scale,
center,
comp,
transpose,
sd.filter,
sd.threshold,
filterByQuantile,
obj.return

)

S4 method for signature 'methylBaseDB'
PCASamples(
.Object,
screeplot = FALSE,
adj.lim = c(4e-04, 0.1),
scale = TRUE,
center = TRUE,
comp = c(1, 2),
transpose = TRUE,
sd.filter = TRUE,
sd.threshold = 0.5,
filterByQuantile = TRUE,

PCASamples 55

obj.return = FALSE,
chunk.size = 1e+06

)

Arguments

.Object a methylBase or methylBaseDB object

screeplot a logical value indicating whether to plot the variances against the number of
the principal component. (default: FALSE)

adj.lim a vector indicating the propotional adjustment of xlim (adj.lim[1]) and ylim
(adj.lim[2]). This is primarily used for adjusting the visibility of sample labels
on the on the PCA plot. (default: c(0.0004,0.1))

scale logical indicating if prcomp should scale the data to have unit variance or not
(default: TRUE)

center logical indicating if prcomp should center the data or not (default: TRUE)

comp vector of integers with 2 elements specifying which components to be plotted.

transpose if TRUE (default) percent methylation matrix will be transposed, this is equiv-
alent to doing PCA on variables that are regions/bases. The resulting plot will
location of samples in the new coordinate system if FALSE the variables for
the matrix will be samples and the resulting plot whill show how each sam-
ple (variable) contributes to the principle component.the samples that are highly
correlated should have similar contributions to the principal components.

sd.filter If TRUE, the bases/regions with low variation will be discarded prior to PCA
(default:TRUE)

sd.threshold A numeric value. If filterByQuantile is TRUE, the value should be between
0 and 1 and the features whose standard deviations is less than the quantile
denoted by sd.threshold will be removed. If filterByQuantile is FALSE,
then features whose standard deviations is less than the value of sd.threshold
will be removed.(default:0.5)

filterByQuantile

A logical determining if sd.threshold is to be interpreted as a quantile of all
standard deviation values from bases/regions (the default), or as an absolute
value

obj.return if the result of prcomp function should be returned or not. (Default:FALSE)

chunk.size Number of rows to be taken as a chunk for processing the methylRawListDB
objects, default: 1e6

Value

The form of the value returned by PCASamples is the summary of principal component analysis by
prcomp.

Details

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

56 percMethylation

Note

cor option is not in use anymore, since prcomp is used for PCA analysis instead of princomp

Examples

data(methylKit)

do PCA with filtering rows with low variation, filter rows with standard
deviation lower than the 50th percentile of Standard deviation distribution
PCASamples(methylBase.obj,screeplot=FALSE, adj.lim=c(0.0004,0.1),

scale=TRUE,center=TRUE,comp=c(1,2),transpose=TRUE,sd.filter=TRUE,
sd.threshold=0.5,filterByQuantile=TRUE,obj.return=FALSE)

percMethylation get percent methylation scores from methylBase or methylBaseDB ob-
ject

Description

get percent methylation scores from methylBase or methylBaseDB object

Usage

percMethylation(
methylBase.obj,
rowids = FALSE,
save.txt = FALSE,
chunk.size = 1e+06

)

S4 method for signature 'methylBase'
percMethylation(methylBase.obj, rowids = FALSE)

S4 method for signature 'methylBaseDB'
percMethylation(
methylBase.obj,
rowids = FALSE,
save.txt = FALSE,
chunk.size = 1e+06

)

Arguments

methylBase.obj a methylBase or methylBaseDB object

rowids if TRUE, matrix rownames have identifiers as base/region location (default:FALSE)

save.txt if TRUE, the matrix will be written to a text file, but only for methylBaseDB
objects (default: FALSE)

chunk.size Number of rows to be taken as a chunk for processing the methylBaseDB objects
(default: 1e6)

pool 57

Value

matrix with percent methylation values per base/region across all samples, row names would be
base/region identifiers

Details

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

Examples

data(methylKit)
mat=percMethylation(methylBase.obj)
head(mat)

pool Pool replicates within groups to a single sample per group

Description

The function sums up coverage, numCs and numTs values within each group so one representative
sample for each group will be created in a new methylBase object

Usage

pool(obj, sample.ids, chunk.size = 1e+06, save.db = FALSE, ...)

S4 method for signature 'methylBase'
pool(obj, sample.ids, chunk.size = 1e+06, save.db = FALSE, ...)

S4 method for signature 'methylBaseDB'
pool(obj, sample.ids, chunk.size = 1e+06, save.db = TRUE, ...)

Arguments

obj methylBase or methylBaseDB object with two groups or more and each group
should have multiple samples

sample.ids a character vector of new sample.ids ex:c("test","control"), should follow the
same order as unique treatment vector, and should be equal to the length of the
unique treatment vector

chunk.size Number of rows to be taken as a chunk for processing the methylRawListDB
objects, default: 1e6

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

58 processBismarkAln

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: The default suffix is a 13-character
random string appended to the fixed prefix “methylBase”, e.g. “methylBase_16d3047c1a254.txt.bgz”.
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

a methylBase or methylBaseDB object depending on class of input object

Details

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylBaseDB, while being
per default FALSE for methylBase. If you wish to save the result of an in-memory-calculation as
flat file database or if the size of the database allows the calculation in-memory, then you might
want to change the value of this parameter.

Author(s)

Altuna Akalin

Examples

data(methylKit)

methylBase.obj has two groups, each group has two samples,
the following function will pool the samples in each group
so that each group will be represented by one pooled sample
pooled.methylBase=pool(methylBase.obj,sample.ids=c("test","control"))

processBismarkAln Get methylation percentage from sorted Bismark alignments

Description

The function calls methylation percentage per base from sorted Bismark SAM or BAM files and
reads methylation information as methylKit objects. Bismark is a popular aligner for high-throughput
bisulfite sequencing experiments and it outputs its results in SAM format by default, and can be
converted to BAM. Bismark SAM/BAM format contains aligner specific tags which are absolutely
necessary for methylation percentage calling using processBismarkAln. SAM/BAM files from
other aligners will not work with this function.

processBismarkAln 59

Usage

processBismarkAln(
location,
sample.id,
assembly,
save.folder = NULL,
save.context = c("CpG"),
read.context = "CpG",
nolap = FALSE,
mincov = 10,
minqual = 20,
phred64 = FALSE,
treatment = NULL,
save.db = FALSE,
verbose = 1

)

S4 method for signature 'character,character,character'
processBismarkAln(
location,
sample.id,
assembly,
save.folder = NULL,
save.context = c("CpG"),
read.context = "CpG",
nolap = FALSE,
mincov = 10,
minqual = 20,
phred64 = FALSE,
treatment = NULL,
save.db = FALSE,
verbose = 1

)

S4 method for signature 'list,list,character'
processBismarkAln(
location,
sample.id,
assembly,
save.folder = NULL,
save.context = c("CpG"),
read.context = "CpG",
nolap = FALSE,
mincov = 10,
minqual = 20,
phred64 = FALSE,
treatment = NULL,
save.db = FALSE,
verbose = 1

)

60 processBismarkAln

Arguments

location location of sam or bam file(s). If multiple files are given this argument must be
a list.

sample.id the id(s) of samples in the same order as file. If multiple sam files are given this
arugment must be a list.

assembly string that determines the genome assembly. Ex: mm9,hg18 etc. This is just a
string for book keeping. It can be any string. Although, when using multiple
files from the same assembly, this string should be consistent in each object.

save.folder The folder which will be used to save methylation call files, if set to NULL no
methylation call file will be saved as a text file. The files saved can be read into
R in less time using methRead function in methylKit

save.context A character vector consisting following strings: "CpG","CHG","CHH". The
methylation percentages for these methylation contexts will be saved to save.folder

read.context One of the ’CpG’,’CHG’,’CHH’ or ’none’ strings. Determines what type of
methylation context will be read-in to the memory which can be immediately
used for analysis. If given as ’none’, processBismarkAln will not return any ob-
ject, but if a save.folder argument given it will save the methylation percentage
call files.

nolap if set to TRUE and the SAM/BAM file has paired-end reads, the one read of the
overlapping paired-end read pair will be ignored for methylation calling.

mincov minimum read coverage to call a methylation status for a base.

minqual minimum phred quality score to call a methylation status for a base.

phred64 logical (default: FALSE) you will not need to set this TRUE, Currently bismark
gives only phred33 scale

treatment treatment vector only to be used when location and sample.id parameters are
lists and you are trying to read-in multiple samples that are related to eachother
in down-stream analysis.

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not (default: FALSE). With the default value, a text file containing
methylation values will be saved. If TRUE, database will either be saved to lo-
cation save.folder or if this is NULL, to a new folder in the current working
directory named after this scheme: "methylDB <Date> <3randomlettersornum-
bers>"

verbose logical set verbosity of methCall (default: TRUE)

Value

methylRaw or methylRawList object

Note

SAM files should be sorted with samtools sort or unix sort. Other sorting methods can alter the order
of fields(columns) in the SAM file and that will result in an error when using processBismarkAln().

Examples

reading one bismark file:
my.file=system.file("extdata", "test.fastq_bismark.sorted.min.sam",

package = "methylKit")

readMethylDB 61

obj=processBismarkAln(my.file,"test",assembly="hg18",save.folder=NULL,
save.context="CpG",read.context="CpG")

reading multiple files
file.list2=list(system.file("extdata", "test.fastq_bismark.sorted.min.sam",
package = "methylKit"),

system.file("extdata", "test.fastq_bismark.sorted.min.sam",
package = "methylKit"),
system.file("extdata", "test.fastq_bismark.sorted.min.sam",
package = "methylKit"),
system.file("extdata", "test.fastq_bismark.sorted.min.sam",
package = "methylKit"))

objs=processBismarkAln(location=file.list2
,sample.id=list("test1","test2","ctrl1","ctrl1"),assembly="hg18",
save.folder=NULL,save.context=NULL,read.context="CpG",
nolap=FALSE,mincov=10,minqual=20,phred64=FALSE,
treatment=c(1,1,0,0))

readMethylDB load tabix file with header to methylDB

Description

The function reads the header from a given tabix file and loads it into corresponding methylDB
object.

Usage

readMethylDB(dbpath)

Arguments

dbpath path to a tabix file with header

Value

an methylBaseDB,methylRawDB, methylRawListDB or an methylDiffDB object

Examples

Not run:
data(methylKit)

baseDB.obj <- makeMethylDB(methylBase.obj,"my/path")
mydbpath <- getDBPath(baseDB.obj)
rm(baseDB.obj)
readMethylDB(mydbpath)

End(Not run)

62 reconstruct

reconstruct Reconstruct methylBase or methylBaseDB object based on a new
methylation percentage matrix

Description

The function reconstructs a new methylBase object from an input methylBase object and percent
methylation matrix. Basically, it uses the read coverages in the input methylBase object and de-
duces new number of methylated Cs and unmethylated Cs based on the input percent methylation
matrix. It is ideally to be used to reconstruct methylBase objects after batch correction on percent
methylation values. The percent methylation matrix rows must match methylBase object rows in
order ,and in addition column order (the order of samples) in input methylBase must match the
order in percent methylation matrix.

Usage

reconstruct(methMat, mBase, chunk.size = 1e+06, save.db = FALSE, ...)

S4 method for signature 'ANY,methylBase'
reconstruct(methMat, mBase, chunk.size = 1e+06, save.db = FALSE, ...)

S4 method for signature 'ANY,methylBaseDB'
reconstruct(methMat, mBase, chunk.size = 1e+06, save.db = TRUE, ...)

Arguments

methMat percent methylation matrix, row order and order of the samples same as the
methylBase object

mBase methylBase or methylBaseDB object to be reconstructed

chunk.size Number of rows to be taken as a chunk for processing the methylBaseDB objects
(default: 1e6)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_reconstructed” to current
filename if database already exists or generate new file with filename “methyl-
Base_reconstructed”
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

new methylBase or methylBase object where methylation percentage matches input methMat and
coverages matches input mBase

regionCounts 63

Details

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylBaseDB, while being
per default FALSE for methylBase. If you wish to save the result of an in-memory-calculation as
flat file database or if the size of the database allows the calculation in-memory, then you might
want to change the value of this parameter.

Note

Batch effect correction (if any batch effect exists) is a tricky issue. We provide some simple ways to
deal with it (see assocComp and removeComp), But if you can find other ways to correct for batch
effects and want to create a methylBase object with the corrected percent methylation values, you
can use this function.

Author(s)

Altuna Akalin

Examples

data(methylKit)

get percent methylation
mat=percMethylation(methylBase.obj)

do some changes in the matrix
this is just a toy example
ideally you want to correct the matrix
for batch effects
mat[mat==100]=80

reconstruct the methylBase from the corrected matrix
newobj=reconstruct(mat,methylBase.obj)

regionCounts Get regional counts for given GRanges or GRangesList object

Description

Convert methylRaw, methylRawDB, methylRawList, methylRawListDB, methylBase or methylBaseDB
object into regional counts for a given GRanges or GRangesList object.

Usage

regionCounts(object,regions,cov.bases=0,strand.aware=FALSE,chunk.size,save.db,...)

S4 method for signature 'methylRaw,GRanges'
regionCounts(

64 regionCounts

object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylBase,GRanges'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRaw,GRangesList'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylBase,GRangesList'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRawList,GRanges'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

regionCounts 65

S4 method for signature 'methylRawList,GRangesList'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRawDB,GRanges'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = TRUE,
...

)

S4 method for signature 'methylRawDB,GRangesList'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = TRUE,
...

)

S4 method for signature 'methylRawListDB,GRanges'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = TRUE,
...

)

S4 method for signature 'methylRawListDB,GRangesList'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,

66 regionCounts

save.db = TRUE,
...

)

S4 method for signature 'methylBaseDB,GRanges'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = TRUE,
...

)

S4 method for signature 'methylBaseDB,GRangesList'
regionCounts(
object,
regions,
cov.bases = 0,
strand.aware = FALSE,
chunk.size = 1e+06,
save.db = TRUE,
...

)

Arguments

object a methylRaw, methylRawDB, methylRawList, methylRawListDB, methylBase
or methylBaseDB object
NOTE: The given regions (Granges/GrangesList object) will be orderd based
on chromosome and position before searching for overlaps, so the resulting
methylKit object might have a different ording than expected. See details sec-
tion for the reasoning of this choice and ways to still get custom ordering of
regions.

regions a GRanges or GRangesList object. Make sure that the GRanges objects are
unique in chr,start,end and strand columns.You can make them unique by using
unique() function.

cov.bases number minimum bases covered per region (Default:0). Only regions with base
coverage above this threshold are returned.

strand.aware if set to TRUE only CpGs that match the strand of the region will be summa-
rized. (default:FALSE)

chunk.size Number of rows to be taken as a chunk for processing the methylDB objects
(default: 1e6)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_regions” to current file-
name if database already exists or generate new file with filename “sampleID_regions”
or “methylBase_filtered” dependent on input object

regionCounts 67

dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database

dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

a new methylRaw,methylBase or methylRawList object. If strand.aware is set to FALSE (default).
Even though the resulting object will have the strand information of regions it will still contain
methylation information from both strands.

Details

The given regions (Granges/GrangesList object) will be orderd based on chromosome and position
before searching for overlaps, so the resulting methylKit object might have a different ording than
expected. We are doing this is to ensure that resulting output is consistent for in-memory and
database based objects, as database based objects always have to be sorted to enable tabix indexing
and providing fast random access.

If you to still want get a custom ordering of the output regions you can access the single regions in
any object providing your indices to the select or extract functions.

The parameter chunk.size is only used when working with methylRawDB, methylBaseDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are stored
as flat file database. Per default the chunk.size is set to 1M rows, which should work for most sys-
tems. If you encounter memory problems or have a high amount of memory available feel free to
adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylRawDB, methylBaseDB
or methylRawListDB, while being per default FALSE for methylRaw, methylBase or methylRawList.
If you wish to save the result of an in-memory-calculation as flat file database or if the size of the
database allows the calculation in-memory, then you might want to change the value of this param-
eter.

Examples

data(methylKit)

get the windows of interest as a GRanges object, this can be any set
of genomic locations
library(GenomicRanges)
my.win=GRanges(seqnames="chr21",
ranges=IRanges(start=seq(from=9764513,by=10000,length.out=20),width=5000))

getting counts per region
regional.methylRaw=regionCounts(object=methylRawList.obj, regions=my.win,
cov.bases=0,strand.aware=FALSE)

68 removeComp

removeComp Remove principal components from a methylBase object

Description

This function can remove a given principal componet from a given methylBase object. First, it
calculates principal components from percent methylation matrix and removes the given compo-
nent(s), reconstructs the methylation matrix then reconstructs number of methylated and unmethy-
lated Cs per position based on the reconstructed percent methylation matrix, and finally returns a
new methylBase object.

Usage

removeComp(mBase, comp = NULL, chunk.size = 1e+06, save.db = FALSE, ...)

S4 method for signature 'methylBase'
removeComp(mBase, comp = NULL, chunk.size = 1e+06, save.db = FALSE, ...)

S4 method for signature 'methylBaseDB'
removeComp(mBase, comp = NULL, chunk.size = 1e+06, save.db = TRUE, ...)

Arguments

mBase methylBase or methylBaseDB object with no NA values, that means all bases
should be covered in all samples.

comp vector of component numbers to be removed

chunk.size Number of rows to be taken as a chunk for processing the methylBaseDB objects
(default: 1e6)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_reconstructed” to current
filename if database already exists or generate new file with filename “methyl-
Base_reconstructed”
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option "tabix"

Value

new methylBase or methylBaseDB object

Details

The parameter chunk.size is only used when working with methylBaseDB objects, as they are read
in chunk by chunk to enable processing large-sized objects which are stored as flat file database.
Per default the chunk.size is set to 1M rows, which should work for most systems. If you encounter
memory problems or have a high amount of memory available feel free to adjust the chunk.size.

reorganize 69

The parameter save.db is per default TRUE for methylDB objects as methylBaseDB, while being
per default FALSE for methylBase. If you wish to save the result of an in-memory-calculation as
flat file database or if the size of the database allows the calculation in-memory, then you might
want to change the value of this parameter.

Examples

data(methylKit)

remove 1st principal component
newObj=removeComp(methylBase.obj,comp=1)

remove 3rd and 4th principal components
newObj=removeComp(methylBase.obj,comp=c(3,4))

reorganize Reorganize methylKit objects by creating new objects from subset of
samples

Description

The function creates a new methylRawList, methylRawListDB, methylBase or methylBaseDB ob-
ject by selecting a subset of samples from the input object, which is a methylRawList or methylBase
object. You can use the function to partition a large methylRawList or methylBase object to smaller
object based on sample ids or when you want to reorder samples and/or give a new treatmet vector.

Usage

reorganize(
methylObj,
sample.ids,
treatment,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylBase'
reorganize(
methylObj,
sample.ids,
treatment,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRawList'
reorganize(
methylObj,
sample.ids,

70 reorganize

treatment,
chunk.size = 1e+06,
save.db = FALSE,
...

)

S4 method for signature 'methylRawListDB'
reorganize(
methylObj,
sample.ids,
treatment,
chunk.size = 1e+06,
save.db = TRUE,
...

)

S4 method for signature 'methylBaseDB'
reorganize(
methylObj,
sample.ids,
treatment,
chunk.size = 1e+06,
save.db = TRUE,
...

)

Arguments

methylObj a methylRawList, methylRawListDB, methylBase or methylBaseDB object

sample.ids a vector for sample.ids to be subset. Order is important and the order should
be similar to treatment. sample.ids should be a subset or reordered version of
sample ids in the input object.

treatment treatment vector, should be same length as sample.ids vector

chunk.size Number of rows to be taken as a chunk for processing the methylBaseDB or
methylRawListDB objects, default: 1e6

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: For “methylBase”: The default
suffix is a 13-character random string appended to the fixed prefix “methylBase”,
e.g. “methylBase_16d3047c1a254.txt.bgz”. For “methylRawList”: ignored.
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option "tabix"

Value

returns a methylRawList, methylRawListDB, methylBase or methylBaseDB object depending on
the input object

select 71

Details

The parameter chunk.size is only used when working with methylBaseDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are
stored as flat file database. Per default the chunk.size is set to 1M rows, which should work for most
systems. If you encounter memory problems or have a high amount of memory available feel free
to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylBaseDB and methylRawListDB,
while being per default FALSE for methylBase and methylRawList. If you wish to save the result
of an in-memory-calculation as flat file database or if the size of the database allows the calculation
in-memory, then you might want to change the value of this parameter.

Examples

this is a list of example files, ships with the package
file.list=list(system.file("extdata", "test1.myCpG.txt", package = "methylKit"),

system.file("extdata", "test2.myCpG.txt", package = "methylKit"),
system.file("extdata", "control1.myCpG.txt", package = "methylKit"),
system.file("extdata", "control2.myCpG.txt", package = "methylKit"))

read the files to a methylRawList object: myobj
myobj=methRead(file.list,

sample.id=list("test1","test2","ctrl1","ctrl2"),
assembly="hg18",pipeline="amp",treatment=c(1,1,0,0))

meth=unite(myobj,destrand=TRUE)

get samples named "test1" and "ctrl2" from myobj and create a new methylRawList object
myobj2=reorganize(myobj,sample.ids=c("test1","ctrl2"),treatment=c(1,0))

get samples named "test1" and "ctrl2" from meth and create a new methylBase object
meth2 =reorganize(meth,sample.ids=c("test1","ctrl2"),treatment=c(1,0))

select selects rows from of methylKit objects

Description

The function returns a subset of data contained in the methylKit objects.

Usage

select(x,i)

S4 method for signature 'methylBase'
select(x, i)

S4 method for signature 'methylRaw'
select(x, i)

S4 method for signature 'methylDiff'

72 select

select(x, i)

S4 method for signature 'methylRawDB'
select(x, i)

S4 method for signature 'methylBaseDB'
select(x, i)

S4 method for signature 'methylDiffDB'
select(x, i)

Arguments

x an methylBase,methylBaseDB, methylRaw,methylRawDB or methylDiff ob-
ject

i a numeric or logical vector. This vector corresponds to bases or regions con-
tained in methylKit objects.The vector is used to subset the data.

Value

a methylBase,methylRaw or methylDiff object depending on the input object.

Examples

data(methylKit)

methylRawDB.obj=methRead(system.file("extdata","test1.txt.bgz",package="methylKit"),
sample.id="test1", assembly="hg18",
dbtype = "tabix",dbdir = "methylDB")

methylBaseDB.obj=unite(methylRawList.obj,save.db=TRUE,dbdir="methylDB")

selects first hundred rows, returns a methylRaw object
subset1=select(methylRawList.obj[[1]],1:100)
subset1=select(methylRawDB.obj,1:100)

selects first hundred rows, returns a methylBase object
subset2=select(methylBase.obj,1:100)
subset2=select(methylBaseDB.obj,1:100)

selects first hundred rows, returns a methylDiff object
subset3=select(methylDiff.obj,1:100)

remove Database again
rm(methylBaseDB.obj)
rm(methylRawDB.obj)
unlink("methylDB",recursive=TRUE)

selectByOverlap 73

selectByOverlap selects records of methylDB objects lying inside a GRanges range

Description

The function selects records from any methylKit object that lie inside the regions given by ranges
of class GRanges and returns an in-memory equivalent of this object

Usage

selectByOverlap(object,ranges)

S4 method for signature 'methylRaw,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylRawList,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylBase,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylDiff,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylRawDB,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylRawListDB,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylBaseDB,GRanges'
selectByOverlap(object, ranges)

S4 method for signature 'methylDiffDB,GRanges'
selectByOverlap(object, ranges)

Arguments

object an methylRaw,methylRawDB, methylRawList, methylRawListDB, methylBase,
methylBaseDB, methylDiff or methylDiffDB object

ranges a GRanges object specifying the regions of interest

Value

a methylBase,methylRaw, methylRawList or methylDiff object depending on the input object.

Author(s)

Alexander Gosdschan

74 show,methylBase-method

Examples

data(methylKit)

file.list=list(system.file("extdata", "test1.myCpG.txt", package = "methylKit"),
system.file("extdata", "test2.myCpG.txt", package = "methylKit"),
system.file("extdata", "control1.myCpG.txt", package = "methylKit"),
system.file("extdata", "control2.myCpG.txt", package = "methylKit"))

methylRawListDB.obj=methRead(file.list,
sample.id=list("test1","test2","ctrl1","ctrl2"),
assembly="hg18",treatment=c(1,1,0,0),
dbtype = "tabix",dbdir = "methylDB")

methylBaseDB.obj=unite(methylRawListDB.obj)

methylDiffDB.obj = calculateDiffMeth(methylBaseDB.obj)

define the windows of interest as a GRanges object, this can be any set
of genomic locations
library(GenomicRanges)
my.win=GRanges(seqnames="chr21",
ranges=IRanges(start=seq(from=9764513,by=10000,length.out=20),width=5000))

selects the records that lie inside the regions
myRaw <- selectByOverlap(methylRawListDB.obj[[1]],my.win)

selects the records that lie inside the regions
myBase <- selectByOverlap(methylBaseDB.obj,my.win)

selects the records that lie inside the regions
myDiff <- selectByOverlap(methylDiffDB.obj,my.win)

selects the records that lie inside the regions
myRaw2 <- selectByOverlap(methylRawList.obj[[1]],my.win)

selects the records that lie inside the regions
myRawList2 <- selectByOverlap(methylRawList.obj,my.win)

selects the records that lie inside the regions
myBase2 <- selectByOverlap(methylBase.obj,my.win)

selects the records that lie inside the regions
myDiff2 <- selectByOverlap(methylDiff.obj,my.win)

rm(methylRawListDB.obj)
rm(methylBaseDB.obj)
rm(methylDiffDB.obj)
unlink("methylDB",recursive=TRUE)

show,methylBase-method

show method for methylKit classes

tileMethylCounts 75

Description

The show method works for methylRaw,methylRawDB, methylRawList,methylRawListDB, methylBase,methylBaseDB
and methylDiff objects

Usage

S4 method for signature 'methylBase'
show(object)

S4 method for signature 'methylRaw'
show(object)

S4 method for signature 'methylRawList'
show(object)

S4 method for signature 'methylDiff'
show(object)

S4 method for signature 'methylRawDB'
show(object)

S4 method for signature 'methylRawListDB'
show(object)

S4 method for signature 'methylBaseDB'
show(object)

S4 method for signature 'methylDiffDB'
show(object)

Arguments

object any methylKit object

Examples

data(methylKit)
methylDiff.obj
show(methylDiff.obj)

tileMethylCounts Get methylated/unmethylated base counts for tilling windows

Description

The function summarizes methylated/unmethylated base counts over tilling windows accross genome.
This function can be used when differential methylation analysis is preferable to tilling windows
instead of base pairs.

76 tileMethylCounts

Usage

tileMethylCounts(object,win.size=1000,step.size=1000,cov.bases=0,mc.cores=1,save.db,...)

S4 method for signature 'methylRaw'
tileMethylCounts(
object,
win.size = 1000,
step.size = 1000,
cov.bases = 0,
mc.cores = 1,
save.db = FALSE,
...

)

S4 method for signature 'methylRawList'
tileMethylCounts(
object,
win.size = 1000,
step.size = 1000,
cov.bases = 0,
mc.cores = 1,
save.db = FALSE,
...

)

S4 method for signature 'methylBase'
tileMethylCounts(
object,
win.size = 1000,
step.size = 1000,
cov.bases = 0,
mc.cores = 1,
save.db = FALSE,
...

)

S4 method for signature 'methylRawDB'
tileMethylCounts(
object,
win.size = 1000,
step.size = 1000,
cov.bases = 0,
mc.cores = 1,
save.db = TRUE,
...

)

S4 method for signature 'methylRawListDB'
tileMethylCounts(
object,
win.size = 1000,
step.size = 1000,

tileMethylCounts 77

cov.bases = 0,
mc.cores = 1,
save.db = TRUE,
...

)

S4 method for signature 'methylBaseDB'
tileMethylCounts(
object,
win.size = 1000,
step.size = 1000,
cov.bases = 0,
mc.cores = 1,
save.db = TRUE,
...

)

Arguments

object methylRaw, methylRawDB, methylRawList, methylRawListDB, methylBase
or methylBaseDB object containing base pair resolution methylation informa-
tion

win.size an integer for the size of the tiling windows

step.size an integer for the step size of tiling windows

cov.bases minimum number of bases to be covered in a given window

mc.cores number of cores to use when processing methylDB objects, default: 1, but al-
ways 1 for Windows)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: append “_tiled” to current filename
if database already exists or generate new file with filename “sampleID_tiled”
or “methylBase_tiled” dependent on input object
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database

Value

methylRaw,methylBase or methylRawList object

Details

The parameter chunk.size is only used when working with methylRawDB, methylBaseDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are stored
as flat file database. Per default the chunk.size is set to 1M rows, which should work for most sys-
tems. If you encounter memory problems or have a high amount of memory available feel free to
adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylRawDB, methylBaseDB
or methylRawListDB, while being per default FALSE for methylRaw, methylBase or methylRawList.

78 unite

If you wish to save the result of an in-memory-calculation as flat file database or if the size of the
database allows the calculation in-memory, then you might want to change the value of this param-
eter.

Examples

data(methylKit)

tiled.methylRaw=tileMethylCounts(object=methylRawList.obj,win.size=1000,
step.size=1000,cov.bases=0)

unite unite methylRawList to a single table

Description

This functions unites methylRawList and methylRawListDB objects that only bases with coverage
from all samples are retained. The resulting object is either of class methylBase or methylBaseDB
depending on input.

Usage

unite(
object,
destrand = FALSE,
min.per.group = NULL,
chunk.size = 1e+06,
mc.cores = 1,
save.db = FALSE,
...

)

S4 method for signature 'methylRawList'
unite(
object,
destrand = FALSE,
min.per.group = NULL,
chunk.size = 1e+06,
mc.cores = 1,
save.db = FALSE,
...

)

S4 method for signature 'methylRawListDB'
unite(
object,
destrand = FALSE,
min.per.group = NULL,
chunk.size = 1e+06,
mc.cores = 1,

unite 79

save.db = TRUE,
...

)

Arguments

object a methylRawList or methylRawListDB object to be merged by common loca-
tions covered by reads

destrand if TRUE, reads covering both strands of a CpG dinucleotide will be merged, do
not set to TRUE if not only interested in CpGs (default: FALSE). If the methyl-
RawList object contains regions rather than bases setting destrand to TRUE will
have no effect.

min.per.group an integer denoting minimum number of samples per replicate needed to cover
a region/base. By default only regions/bases that are covered in all samples are
united as methylBase object, however by supplying an integer for this argument
users can control how many samples needed to cover region/base to be united
as methylBase object. For example, if min.per.group set to 2 and there are 3
replicates per condition, the bases/regions that are covered in at least 2 replicates
will be united and missing data for uncovered bases/regions will appear as NAs.

chunk.size Number of rows to be taken as a chunk for processing the methylRawListDB
objects, default: 1e6

mc.cores number of cores to use when processing methylRawListDB objects, default: 1,
but always 1 for Windows)

save.db A Logical to decide whether the resulting object should be saved as flat file
database or not, default: explained in Details sections

... optional Arguments used when save.db is TRUE
suffix A character string to append to the name of the output flat file database,
only used if save.db is true, default actions: The default suffix is a 13-character
random string appended to the fixed prefix “methylBase”, e.g. “methylBase_16d3047c1a254.txt.bgz”.
dbdir The directory where flat file database(s) should be stored, defaults to
getwd(), working directory for newly stored databases and to same directory for
already existing database
dbtype The type of the flat file database, currently only option is "tabix" (only
used for newly stored databases)

Value

a methylBase or methylBaseDB object depending on input

Details

The parameter chunk.size is only used when working with methylRawDB or methylRawListDB
objects, as they are read in chunk by chunk to enable processing large-sized objects which are
stored as flat file database. Per default the chunk.size is set to 1M rows, which should work for most
systems. If you encounter memory problems or have a high amount of memory available feel free
to adjust the chunk.size.

The parameter save.db is per default TRUE for methylDB objects as methylRawListDB, while
being per default FALSE for methylRawList. If you wish to save the result of an in-memory-
calculation as flat file database or if the size of the database allows the calculation in-memory, then
you might change the value of this parameter.

80 updateMethObject

Examples

data(methylKit)
Following
my.methylBase=unite(methylRawList.obj)
my.methylBase=unite(methylRawList.obj,destrand=TRUE)

updateMethObject update methylKit objects The method updates object from earlier ver-
sions (<v0.9.1) to latest object.

Description

update methylKit objects

The method updates object from earlier versions (<v0.9.1) to latest object.

Usage

updateMethObject(object)

Arguments

object a methylKit object: methylRaw, methylRawList, methylBase or methylDiff

Value

methylRaw,methylDiff,methylBase or methylRawList object

@export @docType methods @rdname updateMethObject

Index

[,methylBase,ANY,ANY,ANY-method
(extract), 17

[,methylBaseDB,ANY,ANY,ANY-method
(extract), 17

[,methylDiff,ANY,ANY,ANY-method
(extract), 17

[,methylDiffDB,ANY,ANY,ANY-method
(extract), 17

[,methylRaw,ANY,ANY,ANY-method
(extract), 17

[,methylRawDB,ANY,ANY,ANY-method
(extract), 17

adjust.methylC (methylKit-defunct), 47
adjustMethylC, 3
adjustMethylC,methylRaw,methylRaw-method

(adjustMethylC), 3
adjustMethylC,methylRawDB,methylRawDB-method

(adjustMethylC), 3
adjustMethylC,methylRawList,methylRawList-method

(adjustMethylC), 3
adjustMethylC,methylRawListDB,methylRawListDB-method

(adjustMethylC), 3
annotate.WithFeature

(methylKit-defunct), 47
annotate.WithGenicParts

(methylKit-defunct), 47
as, 43–45, 47, 48, 50
assocComp, 5, 63

barplot, 17
bedgraph, 6
bedgraph,methylDiff-method (bedgraph), 6
bedgraph,methylDiffDB-method

(bedgraph), 6
bedgraph,methylRaw-method (bedgraph), 6
bedgraph,methylRawDB-method (bedgraph),

6
bedgraph,methylRawList-method

(bedgraph), 6
bedgraph,methylRawListDB-method

(bedgraph), 6

calculateDiffMeth, 8, 45, 46

calculateDiffMeth,methylBase-method
(calculateDiffMeth), 8

calculateDiffMeth,methylBaseDB-method
(calculateDiffMeth), 8

calculateDiffMethDSS, 12
calculateDiffMethDSS,methylBase-method

(calculateDiffMethDSS), 12
clusterSamples, 13
clusterSamples,methylBase-method

(clusterSamples), 13
clusterSamples,methylBaseDB-method

(clusterSamples), 13

data.frame, 9, 26, 43, 45, 48
dataSim, 11, 14
densityMclust, 40
diffMethPerChr, 16
diffMethPerChr,methylDiff-method

(diffMethPerChr), 16
diffMethPerChr,methylDiffDB-method

(diffMethPerChr), 16

extract, 17, 67
extract,methylBase,ANY-method

(extract), 17
extract,methylBaseDB,ANY-method

(extract), 17
extract,methylDiff,ANY-method

(extract), 17
extract,methylDiffDB,ANY-method

(extract), 17
extract,methylRaw,ANY-method (extract),

17
extract,methylRawDB,ANY-method

(extract), 17

fastseg, 40
filterByCoverage, 19
filterByCoverage,methylRaw-method

(filterByCoverage), 19
filterByCoverage,methylRawDB-method

(filterByCoverage), 19
filterByCoverage,methylRawList-method

(filterByCoverage), 19

81

82 INDEX

filterByCoverage,methylRawListDB-method
(filterByCoverage), 19

get.methylDiff (methylKit-defunct), 47
getAssembly, 21, 43–45, 47, 48, 50
getAssembly,methylBase-method

(getAssembly), 21
getAssembly,methylBaseDB-method

(getAssembly), 21
getAssembly,methylDiff-method

(getAssembly), 21
getAssembly,methylDiffDB-method

(getAssembly), 21
getAssembly,methylRaw-method

(getAssembly), 21
getAssembly,methylRawDB-method

(getAssembly), 21
getContext, 22, 43–45, 47, 48, 50
getContext,methylBase-method

(getContext), 22
getContext,methylBaseDB-method

(getContext), 22
getContext,methylDiff-method

(getContext), 22
getContext,methylDiffDB-method

(getContext), 22
getContext,methylRaw-method

(getContext), 22
getContext,methylRawDB-method

(getContext), 22
getCorrelation, 23
getCorrelation,methylBase-method

(getCorrelation), 23
getCorrelation,methylBaseDB-method

(getCorrelation), 23
getCoverageStats, 24
getCoverageStats,methylRaw-method

(getCoverageStats), 24
getCoverageStats,methylRawDB-method

(getCoverageStats), 24
getData, 18, 26, 43–45, 47, 48, 50
getData,methylBase-method (getData), 26
getData,methylBaseDB-method (getData),

26
getData,methylDiff-method (getData), 26
getData,methylDiffDB-method (getData),

26
getData,methylRaw-method (getData), 26
getData,methylRawDB-method (getData), 26
getDBPath, 27
getDBPath,methylBaseDB-method

(getDBPath), 27

getDBPath,methylDiffDB-method
(getDBPath), 27

getDBPath,methylRawDB-method
(getDBPath), 27

getDBPath,methylRawListDB-method
(getDBPath), 27

getFeatsWithTargetsStats
(methylKit-defunct), 47

getFlanks (methylKit-defunct), 47
getMembers (methylKit-defunct), 47
getMethylationStats, 28
getMethylationStats,methylRaw-method

(getMethylationStats), 28
getMethylationStats,methylRawDB-method

(getMethylationStats), 28
getMethylDiff, 29
getMethylDiff,methylDiff-method

(getMethylDiff), 29
getMethylDiff,methylDiffDB-method

(getMethylDiff), 29
getSampleID, 31
getSampleID,methylBase-method

(getSampleID), 31
getSampleID,methylBaseDB-method

(getSampleID), 31
getSampleID,methylDiff-method

(getSampleID), 31
getSampleID,methylDiffDB-method

(getSampleID), 31
getSampleID,methylRaw-method

(getSampleID), 31
getSampleID,methylRawDB-method

(getSampleID), 31
getSampleID,methylRawList-method

(getSampleID), 31
getSampleID,methylRawListDB-method

(getSampleID), 31
getSampleID<- (getSampleID), 31
getSampleID<-,methylBase-method

(getSampleID), 31
getSampleID<-,methylBaseDB-method

(getSampleID), 31
getSampleID<-,methylDiff-method

(getSampleID), 31
getSampleID<-,methylDiffDB-method

(getSampleID), 31
getSampleID<-,methylRaw-method

(getSampleID), 31
getSampleID<-,methylRawDB-method

(getSampleID), 31
getSampleID<-,methylRawList-method

(getSampleID), 31

INDEX 83

getSampleID<-,methylRawListDB-method
(getSampleID), 31

getTargetAnnotationStats
(methylKit-defunct), 47

getTreatment, 32
getTreatment,getTreatment,methylDiffDB-method

(getTreatment), 32
getTreatment,methylBase-method

(getTreatment), 32
getTreatment,methylBaseDB-method

(getTreatment), 32
getTreatment,methylDiff-method

(getTreatment), 32
getTreatment,methylDiffDB-method

(getTreatment), 32
getTreatment,methylRawList-method

(getTreatment), 32
getTreatment,methylRawListDB-method

(getTreatment), 32
getTreatment<- (getTreatment), 32
getTreatment<-,methylBase-method

(getTreatment), 32
getTreatment<-,methylBaseDB-method

(getTreatment), 32
getTreatment<-,methylDiff-method

(getTreatment), 32
getTreatment<-,methylDiffDB-method

(getTreatment), 32
getTreatment<-,methylRawList-method

(getTreatment), 32
getTreatment<-,methylRawListDB-method

(getTreatment), 32
GRanges, 34, 40–45, 47, 48, 50, 63, 73
GRangesList, 63

hclust, 13
hist, 25, 29

joinSegmentNeighbours, 34, 41

list, 37, 50, 51

makeMethylDB, 34
makeMethylDB,methylBase-method

(makeMethylDB), 34
makeMethylDB,methylBase-methods

(makeMethylDB), 34
makeMethylDB,methylDiff-method

(makeMethylDB), 34
makeMethylDB,methylDiff-methods

(makeMethylDB), 34
makeMethylDB,methylRaw-method

(makeMethylDB), 34

makeMethylDB,methylRaw-methods
(makeMethylDB), 34

makeMethylDB,methylRawList-method
(makeMethylDB), 34

makeMethylDB,methylRawList-methods
(makeMethylDB), 34

Mclust, 41
methRead, 35, 50, 51
methRead,character,ANY,ANY-method

(methRead), 35
methRead,character,character,character-method

(methRead), 35
methRead,character-method (methRead), 35
methRead,list,ANY,ANY-method

(methRead), 35
methRead,list,list,character-method

(methRead), 35
methSeg, 34, 40, 42
methSeg2bed, 41, 41
methylBase, 5, 9, 18, 21–23, 26, 31, 33, 35,

44, 57, 58, 62, 63, 66, 68, 72, 73, 77,
80

methylBase (methylBase-class), 42
methylBase-class, 42
methylBase.obj, 43
methylBaseDB, 5, 9, 18, 21–23, 26, 27, 31–33,

35, 57, 58, 61–63, 66, 68, 72, 73, 77
methylBaseDB (methylBaseDB-class), 44
methylBaseDB-class, 44
methylDiff, 6, 7, 10, 16–18, 21–23, 26,

29–31, 33, 35, 40, 46, 47, 72, 73, 80
methylDiff (methylDiff-class), 45
methylDiff-class, 45
methylDiff.obj, 46
methylDiffDB, 6, 7, 27, 29–33, 35, 40, 61, 73
methylDiffDB (methylDiffDB-class), 46
methylDiffDB-class, 46
methylKit-defunct, 47
methylRaw, 6, 7, 18, 21–23, 26, 31, 35, 40,

49–51, 63, 66, 72, 73, 77, 80
methylRaw (methylRaw-class), 48
methylRaw-class, 48
methylRawDB, 6, 7, 18, 21–23, 26, 27, 31, 35,

40, 51, 52, 61, 63, 66, 72, 73, 77
methylRawDB (methylRawDB-class), 49
methylRawDB-class, 49
methylRawList, 6, 7, 31, 33, 35, 63, 66, 73,

77, 80
methylRawList (methylRawList-class), 50
methylRawList-class, 50
methylRawList.obj, 51
methylRawListDB, 6, 7, 27, 31–33, 35, 61, 63,

84 INDEX

66, 73, 77
methylRawListDB

(methylRawListDB-class), 51
methylRawListDB-class, 51

normalizeCoverage, 52
normalizeCoverage,methylRawList-method

(normalizeCoverage), 52
normalizeCoverage,methylRawListDB-method

(normalizeCoverage), 52

p.adjust, 9, 12
PCASamples, 54
PCASamples,methylBase-method

(PCASamples), 54
PCASamples,methylBaseDB-method

(PCASamples), 54
percMethylation, 56
percMethylation,methylBase-method

(percMethylation), 56
percMethylation,methylBaseDB-method

(percMethylation), 56
plotTargetAnnotation

(methylKit-defunct), 47
pool, 11, 57
pool,methylBase-method (pool), 57
pool,methylBaseDB-method (pool), 57
prcomp, 54
processBismarkAln, 58
processBismarkAln,character,character,character-method

(processBismarkAln), 58
processBismarkAln,list,list,character-method

(processBismarkAln), 58

qvalue, 9, 12

read, 49
read (methylKit-defunct), 47
read.table, 37
readMethylDB, 61
reconstruct, 62
reconstruct,ANY,methylBase-method

(reconstruct), 62
reconstruct,ANY,methylBaseDB-method

(reconstruct), 62
reconstruct,methylBase-method

(reconstruct), 62
reconstruct,methylBaseDB-method

(reconstruct), 62
regionCounts, 63
regionCounts,methylBase,GRanges-method

(regionCounts), 63
regionCounts,methylBase,GRangesList-method

(regionCounts), 63

regionCounts,methylBaseDB,GRanges-method
(regionCounts), 63

regionCounts,methylBaseDB,GRangesList-method
(regionCounts), 63

regionCounts,methylRaw,GRanges-method
(regionCounts), 63

regionCounts,methylRaw,GRangesList-method
(regionCounts), 63

regionCounts,methylRawDB,GRanges-method
(regionCounts), 63

regionCounts,methylRawDB,GRangesList-method
(regionCounts), 63

regionCounts,methylRawList,GRanges-method
(regionCounts), 63

regionCounts,methylRawList,GRangesList-method
(regionCounts), 63

regionCounts,methylRawListDB,GRanges-method
(regionCounts), 63

regionCounts,methylRawListDB,GRangesList-method
(regionCounts), 63

removeComp, 63, 68
removeComp,methylBase-method

(removeComp), 68
removeComp,methylBaseDB-method

(removeComp), 68
reorganize, 11, 69
reorganize,methylBase-method

(reorganize), 69
reorganize,methylBaseDB-method

(reorganize), 69
reorganize,methylRawList-method

(reorganize), 69
reorganize,methylRawListDB-method

(reorganize), 69

select, 67, 71
select,methylBase-method (select), 71
select,methylBaseDB-method (select), 71
select,methylDiff-method (select), 71
select,methylDiffDB-method (select), 71
select,methylRaw-method (select), 71
select,methylRawDB-method (select), 71
selectByOverlap, 73
selectByOverlap,methylBase,GRanges-method

(selectByOverlap), 73
selectByOverlap,methylBase-method

(selectByOverlap), 73
selectByOverlap,methylBaseDB,GRanges-method

(selectByOverlap), 73
selectByOverlap,methylBaseDB-method

(selectByOverlap), 73
selectByOverlap,methylDiff,GRanges-method

(selectByOverlap), 73

INDEX 85

selectByOverlap,methylDiff-method
(selectByOverlap), 73

selectByOverlap,methylDiffDB,GRanges-method
(selectByOverlap), 73

selectByOverlap,methylDiffDB-method
(selectByOverlap), 73

selectByOverlap,methylRaw,GRanges-method
(selectByOverlap), 73

selectByOverlap,methylRaw-method
(selectByOverlap), 73

selectByOverlap,methylRawDB,GRanges-method
(selectByOverlap), 73

selectByOverlap,methylRawDB-method
(selectByOverlap), 73

selectByOverlap,methylRawList,GRanges-method
(selectByOverlap), 73

selectByOverlap,methylRawList-method
(selectByOverlap), 73

selectByOverlap,methylRawListDB,GRanges-method
(selectByOverlap), 73

selectByOverlap,methylRawListDB-method
(selectByOverlap), 73

show,methylBase
(show,methylBase-method), 74

show,methylBase-method, 74
show,methylBaseDB

(show,methylBase-method), 74
show,methylBaseDB-method

(show,methylBase-method), 74
show,methylDiff

(show,methylBase-method), 74
show,methylDiff-method

(show,methylBase-method), 74
show,methylDiffDB

(show,methylBase-method), 74
show,methylDiffDB-method

(show,methylBase-method), 74
show,methylRaw

(show,methylBase-method), 74
show,methylRaw-method

(show,methylBase-method), 74
show,methylRawDB

(show,methylBase-method), 74
show,methylRawDB-method

(show,methylBase-method), 74
show,methylRawList

(show,methylBase-method), 74
show,methylRawList-method

(show,methylBase-method), 74
show,methylRawListDB

(show,methylBase-method), 74
show,methylRawListDB-method

(show,methylBase-method), 74

tileMethylCounts, 75
tileMethylCounts,methylBase-method

(tileMethylCounts), 75
tileMethylCounts,methylBaseDB-method

(tileMethylCounts), 75
tileMethylCounts,methylRaw-method

(tileMethylCounts), 75
tileMethylCounts,methylRawDB-method

(tileMethylCounts), 75
tileMethylCounts,methylRawList-method

(tileMethylCounts), 75
tileMethylCounts,methylRawListDB-method

(tileMethylCounts), 75

unite, 42, 44, 78
unite,methylRawList-method (unite), 78
unite,methylRawListDB-method (unite), 78
updateMethObject, 80

	adjustMethylC
	assocComp
	bedgraph
	calculateDiffMeth
	calculateDiffMethDSS
	clusterSamples
	dataSim
	diffMethPerChr
	extract
	filterByCoverage
	getAssembly
	getContext
	getCorrelation
	getCoverageStats
	getData
	getDBPath
	getMethylationStats
	getMethylDiff
	getSampleID
	getTreatment
	joinSegmentNeighbours
	makeMethylDB
	methRead
	methSeg
	methSeg2bed
	methylBase-class
	methylBase.obj
	methylBaseDB-class
	methylDiff-class
	methylDiff.obj
	methylDiffDB-class
	methylKit-defunct
	methylRaw-class
	methylRawDB-class
	methylRawList-class
	methylRawList.obj
	methylRawListDB-class
	normalizeCoverage
	PCASamples
	percMethylation
	pool
	processBismarkAln
	readMethylDB
	reconstruct
	regionCounts
	removeComp
	reorganize
	select
	selectByOverlap
	show,methylBase-method
	tileMethylCounts
	unite
	updateMethObject
	Index

