
Package ‘metaMS’
January 20, 2026

Type Package

Title MS-based metabolomics annotation pipeline

Version 1.46.0

Depends R (>= 4.0), methods, CAMERA, xcms (>= 1.35)

Imports Matrix, tools, robustbase, BiocGenerics, graphics, stats,
utils

Suggests metaMSdata, RUnit

Description MS-based metabolomics data processing and compound
annotation pipeline.

URL https://github.com/yguitton/metaMS

License GPL (>= 2)

biocViews ImmunoOncology, MassSpectrometry, Metabolomics

Encoding UTF-8

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/metaMS

git_branch RELEASE_3_22

git_last_commit d4799db

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Ron Wehrens [aut] (author of GC-MS part, Initial Maintainer),
Pietro Franceschi [aut] (author of LC-MS part),
Nir Shahaf [ctb],
Matthias Scholz [ctb],
Georg Weingart [ctb] (development of GC-MS approach),
Elisabete Carvalho [ctb] (testing and feedback of GC-MS pipeline),
Yann Guitton [ctb, cre] (ORCID:
<https://orcid.org/0000-0002-4479-0636>),

Julien Saint-Vanne [ctb]

Maintainer Yann Guitton <yann.guitton@gmail.com>

1

https://github.com/yguitton/metaMS
https://orcid.org/0000-0002-4479-0636

2 metaMS-package

Contents
metaMS-package . 2
addRI . 4
alignmentLC . 5
AnnotateTable . 6
annotations2tab . 8
constructExpPseudoSpectra . 8
createSTDdbGC . 9
createSTDdbLC . 11
errf . 13
exptable . 14
FEMsettings . 15
GCresults . 18
getAnnotationLC . 19
getAnnotationMat . 20
getFeatureInfo . 21
getPeakTable . 21
LCDBtest . 22
LCresults . 23
match2ExtDB . 24
matchExpSpec . 24
matchSamples2DB . 25
matchSamples2Samples . 26
metaMSsettings-class . 27
metaSetting-methods . 30
msp . 31
peakDetection . 33
plotPseudoSpectrum . 34
printString . 34
processStandards . 35
readStdInfo . 36
removeDoubleMasses . 37
runCAMERA . 37
runGC . 38
runLC . 40
threeStdsDB . 42
treat.DB . 43

Index 45

metaMS-package Analysis pipeline for MS-based metabolomics data

Description

Analysis pipeline for MS-based metabolomics data: basic peak picking and grouping is done using
functions from packages xcms and CAMERA. The main output is a table of feature intensities in all
samples, which can immediately be analysed with multivariate methdos. The package supports the
creation of in-house databases of mass spectra (including retention information) of pure chemical
compounds. Such databases can then be used for annotation purposes.

metaMS-package 3

Details

Index:

AnnotateFeature Feature Wise Annotation
AnnotateTable AnnotateTable
FEMsettings FEM Settings for 'metaMS'
LCDBtest Sample DB for LC-MS annotation
alignmentLC LC alignment
construct.msp Functions to handle msp-type objects (GC-MS)
constructExpPseudoSpectra

Create a list of all pseudospectra found in a
GC-MS experiment of several samples.

createSTDdbGC Create an in-house database for GC-MS
annotation

createSTDdbLC Create an in-house database for LC-MS
annotation

exptable Sample table for DB generation (LC)
generateStdDBGC Convert an msp object into a GC database object
getAnnotationLC get LC annotation
getAnnotationMat Subfunction GC-MS processing
getFeatureInfo Construct an object containing all

meta-information of the annotated pseudospectra
(GC-MS).

getPeakTable get peak table
matchExpSpec Match a GC-MS pseudospectrum to a database with

a weighted crossproduct criterion.
matchSamples2DB Match pseudospectra from several samples to an

in-house DB (GC-MS)
matchSamples2Samples Compare pseudospectra across samples (GC-MS)
peakDetection Wrapper for XCMS peak detection, to be used for

both GC-MS and LC-MS data.
plotPseudoSpectrum Plot a pseudospectrum.
processStandards Process input files containing raw data for

pure standards.
readStdInfo Read information of injections of standards

from a csv file.
runCAMERA Run CAMERA
runGC Wrapper for processing of GC-MS data files
runLC Wrapper for processing of LC-MS data files
treat.DB Scaling of pseudospectra in an msp object.

The most important functions for running the pipeline are runGC and runLC - in-house databases
are created by functions createSTDdbGC and createSTDdbLC.

Author(s)

Ron Wehrens [aut, cre] (author of GC-MS part), Pietro Franceschi [aut] (author of LC-MS part),
Nir Shahaf [ctb], Matthias Scholz [ctb], Georg Weingart [ctb] (development of GC-MS approach),
Elisabete Carvalho [ctb] (testing and feedback of GC-MS pipeline)

Maintainer: Ron Wehrens <ron.wehrens@fmach.it>

4 addRI

addRI Add retention index information to an msp object

Description

Given an msp object and the retention times and indices of a series of reference compounds, the
function adds an RI field to every entry of the msp object. This will only be done if there is not
already an RI field: existing information will not be overwritten.

Usage

addRI(mspobj, RIstandards, isMSP = TRUE)

Arguments

mspobj An msp object.

RIstandards A two-column matrix containing for the standards defining the RI scale both
retention times and retention indices.

isMSP Logical: if TRUE, then the spectra are stored in slot pspectrum; otherwise the
spectra are simply the list elements of DB - matrices with three columns.

Value

An msp object, now also containing an RI slot.

Note

If the retention time of a compound is outside the range of the RI standards, NA will be used as RI
value.

Author(s)

Ron Wehrens

Examples

if (require(metaMSdata)) {
manual.fname <- list.files(system.file("extdata", package = "metaMSdata"),

pattern = "msp", full.names = TRUE)
manual <- read.msp(manual.fname)
RIstandards <- cbind("rt" = c(1.54, 1.68, 1.99, 2.7, 4.36, 6.81, 9.43,

11.88, 14.17, 16.34, 18.39, 20.33, 22.18,
23.93, 25.5, 27.18, 28.72, 30.26, 31.75,
33.19, 34.58, 35.95),

"RI" = (6:27)*100)

manualRI <- addRI(manual, RIstandards)
}

alignmentLC 5

alignmentLC LC alignment

Description

Performs grouping and retention time correction via xcms. The settings are specified as a list with a
form similar to the one discussed in the help of FEMsettings. The sequence of actions depends on
the type of retention time correction, which is specified inside the Retcor list inside the Alignment
slot (see details). Integration of areas of missing peaks is performed depending on the fillPeaks
setting.

Usage

alignmentLC(xset, settings)

Arguments

xset The xcmsSet object resulting from peak detection
settings The subset of settings contained into the "Alignment" element of the XCMSset-

tings list.

Details

The sequence of actions depends on the algorithm used by xcms for retention time correction. For
the density-based approach the sequence is: 1) across sample grouping, 2) retention time correc-
tion, 3) second across sample grouping, 4) optional fill-peaks. For "obiwarp", instead, the se-
quence of actions is: 1) retention time correction, 2) across sample grouping, 3) optional fill-peaks.
For across-sample grouping in xcms, the minsamp parameter can be specified in the settings ei-
ther as a minimum number of samples (min.class.size) or as the fraction of samples per class
(min.class.fraction). If both are given the smallest number is used. If the retention time correc-
tion is performed by the density-based approach, the settings allow to express the xcms parameters
missing and extra as fractions. When "obiwarp" is used for retention time correction, the sam-
ple with the bigger number of features is automatically selected as the "reference" sample. The
xcms parameters for the retcor xcms function can be specified in the Retcor list included in the
Alignment slot of FEMsettings.

Value

A grouped and rt-aligned xcmsSet object.

Author(s)

Ron Wehrens and Pietro Franceschi

See Also

FEMsettings

Examples

Example of results
data(LCresults) ## pre-compiled results
LCresults$PeakTable

6 AnnotateTable

AnnotateTable Annotate a Peaktable

Description

Functions which annotate a peaktable on the bases af a database of standards. Not meant to be
called directly by the user.

Usage

Annotate one feature
AnnotateFeature(input, DB, settings, errf)

Annotate a full table of features
AnnotateTable(peaktable, errf, DB, settings)

Arguments

input A vector with three elements in the form (mz,rt,I).

peaktable A peaktable (matrix) with three column corresponding to mz,rt and I values for
a series of features.

errf The file containing the error function used to predict the tolerance on the m/z
value used for the matching against the DB.

DB A dataframe used for the annotation. See the help of LCDBtest for a description
of the DB.

settings The subset of settings contained into the "match2DB" element of the XCMSset-
tings list.

Details

The annotation of each feature is performed by comparing its m/z value and its retention time to a
database provided by the user. To account for shifts in retention time and mass occurring during
data acquisition, the matching of a specific feature against the DB is done with a specific tolerance
in mass and in retention time.

Retention time tolerance
The retention time tolerance is specified (in minutes) in the settings list (field rttol). This value is
instrument- and chromatography-dependent.

m/z tolerance
The tolerance on the mass scale mainly depends on the characteristics of the spectrometer used for
the acquisition. For Q-TOF instruments it has been recently shown (see references) that the optimal
mass tolerance can be expressed as a function of the m/z value and of the logarithm of the ion
intensity log10(I). As a trend, the mass drift will be bigger for smaller ions and for low intensity
signals.
In the present implementation the tolerance in mass can be either fixed over the complete mass
range or calculated as a function of the mz and I values of each feature. In the simplest case, the
fixed mass tolerance is provided in the mzwindow (in Dalton!) element of the list of settings.
Alternatively, one can provide (supplying the errf argument) a function used to calculate the mz
tolerance (in ppm!) as a function of the fields of the input vector ((mz,rt,I)).
As discussed in the publication, for a Waters Synapt Q-TOF the function is a linear model taking

AnnotateTable 7

as inputs M = input["mz"], logI = log10(input["I"]). This error function can be calculated by
analyzing the results of the injections of the chemical standards. To avoid unreasonable small errors
where data for mz and I are not available, the minimum value for the mass tolerance is explicitly
set in the settings (ppm). This value should match the technical characteristics of the spectrometer.

To reduce the number of false positives and make the annotation more reliable, a match is retained
only if more than one feature associated to a specific compound is found in the list of features. How
many "validation" features are required is defined in the list of settings in the minfeat element. At
this validation level, another retention time tolerance is introduced: two or more features validate
one specific annotation if their retention time are not very much different. This rt tolerance is also
defined in the settings (the rtval field). As a general suggestion, rtval should be kept smaller
than rttol. The latter, indeed, refers to the matching of a peaktable with a database which has been
created from the injections of the chemical standards during different instrumental runs (maybe
also with different columns). On the other hand, rtval accounts for smaller retention time shifts,
occurring within the same LC run.

For the description of the structure of the DB, refer to the help of the LCDBtest dataset.

Value

A list with the following elements

annotation.table

A data.frame withe the results of the annotation and the reference to the DB

compounds The names of the annotated compounds

IDs The IDs of the annotated compounds

multiple.annotations

The features with multiple annotations

ann.features The features with annotation

Author(s)

Pietro Franceschi

References

N. Shahaf, P. Franceschi, P. Arapitsas, I. Rogachev, U. Vrhovsek and R. Wehrens: "Constructing a
mass measurement error surface to improve automatic annotations in liquid chromatography/mass
spectrometry based metabolomics". Rapid Communications in Mass Spectrometry, 27(21), 2425
(2013).

Examples

Example of results
data(GCresults) ## pre-compiled results
GCresults$PeakTable

8 constructExpPseudoSpectra

annotations2tab Conversion of a list of annotation results into a table

Description

Function annotations2tab converts the output of matchSamples2DB into a table, in the case of
multiple DB hits for one pseudospectrum distinguishing the “best” hit from the “alternative” hits.
Function makeAnnotation prepares a data.frame object with the correct number of rows. Both
functions are not meant to be called directly by the user.

Usage

annotations2tab(annlist, matches)
makeAnnotation(n)

Arguments

annlist Annotation list, output of matchSamples2DB.

matches Object containing all match factors - needed to distinguish the best match from
the rest in the case of a double annotation.

n Number of rows in the annotation data.frame (possibly zero).

Value

A three-column data.frame, containing the numbers of the pseudospectrum in the experimental
data, the numbers of the best hits in the DB, and finally the alternative hits ain the DB

Author(s)

Ron Wehrens

constructExpPseudoSpectra

Create a list of all pseudospectra found in a GC-MS experiment of
several samples.

Description

Function constructExpPseudoSpectra creates an msp object containing all the patterns referenced to
in the annotation. The first argument is the output of function matchSamples2Samples and contains
the full annotation matrix and the pseudospectra of the known unknowns; the second is the msp
object containing the standards that are actually found. Not meant to be called directly by the user.

Usage

constructExpPseudoSpectra(allMatches, standardsDB)

createSTDdbGC 9

Arguments

allMatches Result of a call to matchSamples2DB or matchSamples2Samples: a list contain-
ing the element annotation.

standardsDB Database of standard spectra, in msp format.

Value

A list of spectra. All spectra from the database that are referenced to in the annotation slot will
be present, and will be followed by all unknown spectra. In order to be able to see which patterns
in the experimental data are pointing to which spectra, an extra slot DB.id is added, containing
the position of the reference spectrum in the original database (which is what the numbers of the
annotation object are referring to). Renumbering this is impractical since some patterns may be
seen as alternative annotations, but may have no hits of their own - including them would lead to
rows containing only zeros.

Author(s)

Ron Wehrens

See Also

matchSamples2DB, matchSamples2Samples

Examples

Example of results
data(GCresults) ## pre-compiled results
GCresults$PseudoSpectra

createSTDdbGC Create an in-house database for GC-MS annotation

Description

For creating an in-house instrument-specific annotation database, injections of pure standards need
to be processed. All patterns in the vicinity of the retention time of the standard (to be provided
by the user) will be compared to an external database - in case of a sufficient match, they will be
retained in the database. The generateStdDBGC is not meant to be called directly by the user.

Usage

createSTDdbGC(stdInfo, settings, extDB = NULL, manualDB = NULL,
RIstandards = NULL, nSlaves = 0)

generateStdDBGC(totalXset, settings, extDB = NULL, manualDB = NULL,
RIstandards = NULL)

10 createSTDdbGC

Arguments

stdInfo Information of the standards, given in the form of a data.frame. Minimal infor-
mation: stdFile, Name, CAS, monoisotopic mass (monoMW), and retention time
(rt). The filenames in slot stdFile should include path information. If this
argument is NULL, this function can be used to process a manually curated DB.
Arguments stdInfo and manualDB cannot be both NULL.

settings A list of settings, to be used in peak picking and pattern comparison.

extDB The external database containing spectra, with which to compare the patterns
found in the standards files.

manualDB A database of manually curated spectra, that will be incorporated in the final DB
without any further checks.

totalXset A list of xset objects, as generated by peakDetection.

RIstandards A two-column matrix containing for the standards defining the RI scale both re-
tention times and retention indices. If not given, no RI values will be calculated
and retention times will be used instead.

nSlaves Number of cores to be used in peak picking.

Details

Function createSTDdbGC creates a database object containing validated pseudospectra for a number
of compounds. The injections of the standards, described in the input object stdInfo, are processed
using function processStandards; comparison with the external database, inclusion of manual
compounds and final formatting are done in function generateStdDBGC. Several situations can be
envisaged:

A: a series of injections of standards needs to be compared with a standard library, such as the NIST.
In this case, both stdInfo and extDB need to be non-null, and the result will be a database in which
the entries have a sufficient match with the external DB. If manualDB is also non-null, these entries
will be added too (without checking).

B: for a series of injections no standard library information is available (extDB is NULL, and
stdInfo is not), and the function simply returns all patterns eluting around the indicated reten-
tion time. This allows for subsequent manual validation and pruning. If manualDB is non-null,
these entries will be added, but since this is a somewhat unusual thing to do, a warning will be
given.

C: a manual database needs to be processed to be useable as a real database. This basically entails
renaming the rt and rt.sd fields into std.rt and std.rt.sd, and a similar action for any RI field.

Value

The output of createSTDdbGC (and generateStdDBGC, which is the last function called in createSTDdbGC)
is a list, where every entry describes one compound/spectrum combination. For use in annotation,
the following fields are mandatory: Name, std.rt, pspectrum and monoMW.

Author(s)

Ron Wehrens

See Also

processStandards, generateStdDBGC

createSTDdbLC 11

Examples

data(threeStdsNIST) ## provides object smallDB, excerpt from NIST DB
Not run:

if (require(metaMSdata)) {
Sitation A: create a DB of standards.
first tell the system where to look
data(threeStdsInfo)
all.files <- list.files(system.file("extdata", package = "metaMSdata"),

pattern = "_GC_", full.names = TRUE)
stdInfo[,"stdFile"] <- rep(all.files[3], 3)

data(FEMsettings) ## provides a.o. TSQXLS.GC, the GC settings file
data(threeStdsNIST) ## provides object smallDB, excerpt from NIST DB

DB <- createSTDdbGC(stdInfo, TSQXLS.GC, extDB = smallDB)
}
saved in "threeStdsDB.RData" in the data directory of the metaMS
package

Situation B: do not check the data with an external database. Now
the fields bestDBmatch and validation will be absent.
DB <- createSTDdbGC(stdInfo, TSQXLS.GC, extDB = NULL)

Situation C: create a DB directly from an msp file (manual DB)
manual.fname <- list.files(system.file("extdata", package = "metaMSdata"),

pattern = "msp", full.names = TRUE)
manual <- read.msp(manual.fname)
DB <- createSTDdbGC(stdInfo = NULL, settings = TSQXLS.GC,

manualDB = manual)

End(Not run)

createSTDdbLC Create an in-house database for LC-MS annotation

Description

For creating an in-house instrument-specific annotation database, injections of pure standards need
to be processed. For each standard the analyst provides a validated reference value for retention
time and m/z, generally corresponding to the major ionic signal for this compound. On the bases
of this data, the database is constructed by automatically extracting the features identified in the
vicinity of the retention time of the standard.
The function generateSTDdbLC is not meant to be called directly - use createSTDdbLC instead.

Usage

createSTDdbLC(stdInfo, settings, polarity, Ithr = 10, nSlaves = 0)
generateStdDBLC(stdxsets, settings, Ithr)

Arguments

stdInfo Information of the standards, given in the form of a data.frame. Minimal infor-
mation: stdFile, compound, ChemSpiderID, observed m/z (mz.observed), and

12 createSTDdbLC

retention time in miutes (RTman). The filenames in slot stdFile should include
path information.

settings A list of settings, to be used in peak picking and pattern comparison (see details).

polarity The polarity of the injection: "positive" or "negative"

Ithr The intensity threshold used to decide weather or not a feature should be in-
cluded in the DB. Typically acting on the maxo value.

stdxsets A list of CAMERA objects resulting from the analysis (performed by processStandards)
of the standard injections listed in the stdInfo table.

nSlaves Number of cores to be used in peak picking.

Details

The DB is created with the following workflow. Peak picking is performed on each standard file
by using the settings specified in the settings list. CAMERA is used to group together the different
features by considering their retention time and the correlation among the extracted ion traces. The
list of features is searched looking for the values for mz and Rt included in the stdInfo table (see
the help of exptable for more details), with the mass and retention time tolerances specified in
the "DBconstruction" element of the settings list. In presence of positive match for the feature f, a
spectral fingerprint is constructed by using all the features with an intensity bigger than Ithr which
are in the same pcgroup of f. A match is retained only if the spectral fingerprint is composed of
more than minfeat elements. This parameter is also included in the list of settings.

Value

A list with three elements.

Reftable the original table used for the creation of the DB.

Info a list with the settings used for the DB generation and the date.

DB the DB which can be used in runLC for annotation.

Author(s)

Pietro Franceschi

Examples

if (require(metaMSdata)) {
load the manually curated table for the standards
data(exptable)
add location of cdf file from which the standards DB is going to be
built - this depends on your platform and requires the metaMSdata package
cdfpath <- system.file("extdata", package = "metaMSdata")

files
files <- list.files(cdfpath, "_RP_", full.names=TRUE)

get the complete names for the files
exptable$stdFile <-
sapply(exptable$stdFile,

function(x)
files[grep(x,files)])

Not run:

errf 13

load the settings for the analysis
data(FEMsettings)

set the minimum number of features to 2
metaSetting(Synapt.RP, "DBconstruction")$minfeat <- 2

create the DB
LCDBtest <- createSTDdbLC(stdInfo=exptable,

settings = Synapt.RP,
polarity = "positive",
Ithr = 20)

End(Not run)
saved in "LCDBtest.RData" in the data directory of the metaMS
package

}

errf Mass error surface for Waters Synapt Q-TOF spectrometers

Description

This function can be used to calculate the optimal mz tolerance (in ppm) for annotation. The surface
has been developed for a Waters Synapt QTOF spectrometer.

Usage

data(errf)

Format

errf is a linear model of the form M + logI + M * logI:

M The mz of the ion
logI Logarithm of the intensity of the ion.

Details

The function is a linear approaximation of the complete error function (see Reference). The latter
has been calculated by comparing the measured and nominal mass of several hundreds of standards.
The experiments were performed by using a Waters Synapt Q-TOF spectrometer so this specific
surface is valid only for this model of spectrometers.

Author(s)

Pietro Franceschi

References

N. Shahaf, P. Franceschi, P. Arapitsas, I. Rogachev, U. Vrhovsek and R. Wehrens: "Constructing a
mass measurement error surface to improve automatic annotations in liquid chromatography/mass
spectrometry based metabolomics". Rapid Communications in Mass Spectrometry, 27(21), 2425
(2013).

14 exptable

Examples

<-------------- direct use of the error function -------------- >
load the Synapt-QTOF error function
data(errf)

predict the mass error in ppm
newdata <- data.frame(M = c(105, 131, 157), logI = c(1, .5, 1.4))
predict(errf, newdata) ## mass error in ppm

<-------------- create a dummy error function -------------- >
dataset to evaluate it:
"M" is the mz,
"logI" is the log of the intensity
"err" is the mass error in ppm. The error is the difference between the
actual m/z of a known ion, and the one measured with the spectrometer

MErr.data <- data.frame("M" = seq(1,500,2),
"logI" = rnorm(250, mean = 5, sd = 1),
"err" = rnorm(250, mean = 40, sd = 5))

create the linear model
dummy.model <- lm(err~M+logI, data = MErr.data)

Not run:
<-------------- Use this for the annotation -------------- >
load the example xcmsSet
data(LCresults)
data(FEMsettings)

Run the analysis with an adaptive mass tolerance
result.adaptive.dummy <- runLC(xset = LCresults$xset,

settings = Synapt.RP,
DB = LCDBtest$DB,
errf = dummy.model)

<----------- Use the Synapt Q-TOF error function ----------- >
load the Synapt-QTOF error function
data(errf)

result.adaptive <- runLC(xset = LCresults$xset,
settings = Synapt.RP,
DB = LCDBtest$DB,
errf = errf)

End(Not run)

exptable Sample table for the generation of a database of standards (LCMS)

Description

An example of a table used to construct a database of standards. This particular table is used to
obtain object LCDBtest.

FEMsettings 15

Usage

data(exptable)

Format

exptable is a data.frame summarizing information on the chemical standards used for creating a
database.

Column description:

ChemSpiderID The Chemspider ID of a specific compound.

compound A string containing the (human) readable name of the compound.

formula The formula of the compound.

M.ref The theoretical value for the observed m/z reference ion. This can be, for example, the
protonated (de-protonated) molecular ion, a known adduct or a characteristic fragment.

mz.observed The manually validated m/z value of the reference ion.

RTman The manually validated retention time value for the standard.

stdFile The name (including the path) of the raw data file of the standard.

Details

Mandatory fields are: ChemSpiderID, mz.observed, RTman, and stdFile.

In the current implementation the M.ref value is not used in the creation of the DB. The difference
between M.ref and m.observed, however, could be used to construct the mass error surface used
during feature annotation.

The sample table is also an element (Reftable) of the LCDB list generated by createSTDdbLC.

Author(s)

Pietro Franceschi

See Also

createSTDdbLC

FEMsettings Example settings for metaMS

Description

Examples of settings needed for functions runLC and runGC: Synapt.RP, Synapt.NP, TSQXLS.GC
and Orbitrap.RP. These four particular settings are fine-tuned for the analysis of LC-MS runs, both
normal-phase and reverse-phase chromatography (Waters Synapt G1-Thermo Orbitrap)and GC-MS
experiments (ThermoXLS TQQ).

Usage

data(FEMsettings)

16 FEMsettings

Format

Four objects of class metaMSsettings.

Author(s)

Ron Wehrens and Pietro Franceschi

See Also

findPeaks, annotate

Examples

Not run:
The three sets of settings are created as follows:
Synapt.NP <- metaMSsettings(protocolName = "Synapt.QTOF.NP",

chrom = "LC",
PeakPicking = list(

method = "matchedFilter",
step = 0.05,
fwhm = 20,
snthresh = 4,
max = 50),

Alignment = list(
min.class.fraction = .3,
min.class.size = 3,
mzwid = 0.1,
bws = c(130, 10),
missingratio = 0.2,
extraratio = 0.1,
Retcor = list(

method = "linear",
family = "symmetric"),

fillPeaks = TRUE),
CAMERA = list(

perfwhm = 0.6,
cor_eic_th = 0.7,
ppm= 5))

metaSetting(Synapt.NP, "match2DB") <- list(
rtdiff = 1.5,
rtval = .1,
mzdiff = 0.005,
ppm = 5,
minfeat = 2)

metaSetting(Synapt.NP, "DBconstruction") <- list(
minfeat = 3,
rttol = .3,
mztol = .01)

For reverse-phase LC, settings are very similar: the only difference
is in the alignment settings
Synapt.RP <- Synapt.NP
metaSetting(Synapt.RP, "protocolName") <- "Synapt.QTOF.RP"
metaSetting(Synapt.RP, "Alignment") <- list(

min.class.fraction = .3,
min.class.size = 3,

FEMsettings 17

mzwid = 0.1,
bws = c(30, 10),
missingratio = 0.2,
extraratio = 0.1,
Retcor = list(

method = "linear",
family = "symmetric"),

fillPeaks = TRUE)

For the orbitrap.RP
Orbitrap.RP <- metaMSsettings(protocolName = "Orbitrap",

chrom = "LC",
PeakPicking = list(

method = "centWave",
ppm = 5,
prefilter = c(3,10000),
peakwidth = c(15,40)),

Alignment = list(
bws = 30,
min.class.fraction = 0.3,
min.class.size = 3,
mzwid = 0.01,
Retcor = list(
method = "obiwarp",
profStep = 0.2),
fillPeaks = TRUE),

CAMERA = list(
perfwhm = 0.6,
cor_eic_th = 0.7,
ppm = 5))

metaSetting(Orbitrap.RP, "match2DB") <- list(
rtdiff = 1.5,
rtval = .1,
mzdiff = 0.005,
ppm = 5,
minfeat = 2)

metaSetting(Orbitrap.RP, "DBconstruction") <- list(
minfeat = 3,
rttol = .3,
mztol = .01)

For the thermo TQ

TSQXLS.GC <- metaMSsettings("protocolName" = "TSQXLS.QQQ.GC",
"chrom" = "GC",
PeakPicking = list(

method = "matchedFilter",
step = 0.5,
steps = 2,
mzdiff = .5,
fwhm = 5,
snthresh = 2,
max = 500),

CAMERA = list(perfwhm = 1))
metaSetting(TSQXLS.GC, "DBconstruction") <- list(

minintens = 0.0,

18 GCresults

rttol = .1,
intensityMeasure = "maxo",
DBthreshold = .80,
minfeat = 5)

metaSetting(TSQXLS.GC, "match2DB") <- list(
simthresh = 0.80,
timeComparison = "rt",
rtdiff = .5,
RIdiff = 5,
minfeat = 2)

metaSetting(TSQXLS.GC, "matchIrrelevants") <- list(
irrelevantClasses = c("Bleeding", "Plasticizers"),
timeComparison = "rt",
RIdiff = 2,
rtdiff = .05,
simthresh = 0.70)

metaSetting(TSQXLS.GC, "betweenSamples") <- list(
min.class.fraction = .5,
min.class.size = 5,
timeComparison = "rt",
rtdiff = .05,
RIdiff = 2,
simthresh = .95)

End(Not run)

GCresults Results of metaMS for a small GC-MS data set

Description

This data file contains the results of applying the metaMS pipeline to a small GC-MS data set con-
sisting of repeated injections of a set of chemical standards. Its aim is to demonstrate the structure
of the (intermediate) outcomes without having to do the slightly time-consuming calculations.

Usage

data(GCresults)

Details

Data object GCresults is the result of a complete execution of runGC, using the example database
for annotation purposes.

See Also

runGC

getAnnotationLC 19

getAnnotationLC Get LC annotation

Description

Main function for the annotation of an xcmsSet or CAMERA object. This function is not meant to
be called directly. Use runLC instead.

Usage

getAnnotationLC(xs, settings, DB, errf)

Arguments

xs The xcmsSet (or CAMERA) object to be annotated.

settings The subset of settings contained into the match2DB elements of the settings list.
See the help of FEMsettings for details.

DB The database used within AnnotateTable for the annotation of the peaklist. See
the help of FLCDBtest for details.

errf The file containing the error function used to predict the m/z tolerance. See the
help of AnnotateTable for details.

Details

The function extracts from the xs object a Peaktable with the intensities of the features across all
the samples. Since this Peaktable is meant to be used only for annotation (and not for subsequent
statistical analysis), the intensities are expressed asmaxo - the absolute maximum of the signal over
the detected chromatographic peak (see the documentation of xcms for more details). Within the
function the peaktable is converted into a matrix in the form (mz,rt,I) used by AnnotateTable.
If xs contains more than one sample, the intensity is the maximum intensity of each feature across
all the samples.

Value

A list with two elements. raw is the complete output of AnnotateTable. for_table is a data.frame
which summarizes the outputs of the annotation (see AnnotateTable) and it is included in the out-
put of the runLC main function.

Author(s)

Pietro Franceschi

References

N. Shahaf, P. Franceschi, P. Arapitsas, I. Rogachev, U. Vrhovsek and R. Wehrens: "Constructing a
mass measurement error surface to improve automatic annotations in liquid chromatography/mass
spectrometry based metabolomics". Rapid Communications in Mass Spectrometry, 27(21), 2425
(2013).

See Also

AnnotateTable, LCDBtest, FEMsettings

20 getAnnotationMat

Examples

Example of results
data(LCresults) ## pre-compiled results
LCresults$PeakTable

getAnnotationMat Obtain relative quantitative annotation results for GC-MS

Description

Function getAnnotationMat obtains relative intensities for features in individual samples. A robust
linear regression is performed when the number of common features is five or larger; for 2-4 peaks
a weighted linear regression is used, and if only one peak is in common the intensity ratio for this
peak is used. Reference patterns are the patterns in the database of standards or the patterns in the
“unknowns” element of the allMatches object. Not meant to be called directly by the user.

Usage

getAnnotationMat(exp.msp, pspectra, allMatches)
relInt(pat, refpat)

Arguments

exp.msp List of experimental pseudospectra.

pspectra Spectra from the in-house database.

allMatches Match information in the form of a list.

pat, refpat Both pseudospectra.

Value

Function getAnnotationMat returns a matrix containing all patterns (standards as well as un-
knowns) in the rows, and numeric values signifying relative intensities in all samples in the columns.
These relative intensities are the quantities calculated by relInt, which simply returns one number.

Author(s)

Ron Wehrens

Examples

Example of results
data(GCresults) ## pre-compiled results
GCresults$PeakTable

getFeatureInfo 21

getFeatureInfo Construct an object containing all meta-information of the annotated
pseudospectra (GC-MS).

Description

Function getFeatureInfo yields a data.frame with meta-information on all features detected in the
samples. Features are rows; information is in the columns. Not meant to be called directly by the
user.

Usage

getFeatureInfo(stdDB, allMatches, sampleList)

Arguments

stdDB In-house database of standards.

allMatches Object containing annotation information, generated by functions like matchSamples2DB
and matchSamples2Samples.

sampleList Object containing pseudospectra of samples.

Value

A data.frame summarizing all meta-information of the pseudospectra found in the samples. Ex-
actly what columns are included depends on the information contained in the in-house database.
The last column is always "rt".

Author(s)

Ron Wehrens

Examples

Example of results
data(GCresults) ## pre-compiled results
GCresults$PeakTable

getPeakTable Extract a peak table from an xcms or CAMERA object

Description

Extracts the peak table (a data.frame) from an xcms (or CAMERA) object (without compound
annotation). The peak table contains the mass and retention time for all the features and their
intensities across the samples. This function is not meant to be called directly, but it is internally
used by runLC, getAnnotationLC, createSTDdbLC.

Usage

getPeakTable(xs, intval = "into")

22 LCDBtest

Arguments

xs The xcmsSet (or CAMERA) object

intval The intensity measure extracted form xs.

Details

The function process an xs object and returns for it a PeakTable which associates intensities to
features and samples. The default measure for the intensity is into (the chromatographic peak
area for a feature), but in the case of annotation, maxo (value for the intensity of the ion over the
chromatographic peak) is used to measure the intensity. For a more detailed description of the
possible intensity measures refer to the documentation of xcms].

Value

A data frame with the intensity for each feature (rows) in all the samples (columns). Each feature
is identified by its m/z value and retention time (in minutes). If the xs object is of class CAMERA,
the results of the camera annotation (isotope, adduct, pcgroup) are included in the table.

Author(s)

Pietro Franceschi

Examples

Example of results
data(LCresults) ## pre-compiled results
LCresults$PeakTable

LCDBtest Sample DB for LC-MS annotation

Description

This database has been generated using the exptable dataset to process the data included in the
metaMSdata package.

Usage

data(LCDBtest)

Format

LCDBtest is a list with three elements:

The initial table used to generate the DB.

ReftableInfo Some info on the DB: date of creation, and settings used.

DB A data.frame containing the actual information. See the details section.

LCresults 23

Details

The DB data.frame contains the following fields:

ChemSpiderID The Chem spider identifier for the compound.

compound A human-readable name for the compound.

adduct The output of the CAMERA annotation of the standard file.

isotopes The output of the CAMERA annotation of the standard file.

mz, rt the mz and rt values.

maxo the maxo intensity value for a given feature in the injection.

validated a string which defines the origin of a specific feature.

Author(s)

Pietro Franceschi

See Also

createSTDdbLC, exptable, FEMsettings

LCresults Result metaMS for a small LC-MS data set

Description

This data file contains the result of applying the metaMS pipeline to a small LC-MS data set con-
sisting of repeated injections of a set of chemical standards. Its aim is to demonstrate the structure
of the outcomes without having to do the slightly time-consuming calculations.

Usage

data(LCresults)

Details

Data object LCresult contains the output list of runLC.

24 matchExpSpec

match2ExtDB Match GC-MS spectra to an external reference DB

Description

When building an in-house database, it is imperative that pseudospectra are validated. This function
provides the possibility of automatic validation by comparing the spectra to an external reference
database, such as the NIST. Not meant to be called directly by the user.

Usage

match2ExtDB(xsetList, extDB, settings)

Arguments

xsetList A list of xcmsSet objects.

extDB External database in msp format.

settings Settings for the comparison, including as the most important the minimal num-
ber of features required in a valid pseudospectrum (minfeat), and the minimal
agreement to speak of a match (DBthreshold).

Value

An msp object containing validated pseudospectra.

Author(s)

Ron Wehrens

matchExpSpec Match a GC-MS pseudospectrum to a database with a weighted
crossproduct criterion.

Description

Function matchExpSpec calculates match factors for a pseudospectrum with all entries in the database.
A plot of the best match can be provided.

Usage

matchExpSpec(pspec, DB, DB.treated, plotIt = FALSE,
scale.p = c("sqrt", "none"), mass.weight = TRUE, ...)

matchSamples2DB 25

Arguments

pspec The pseudospectrum, a two- or three-column matrix where the third column (the
retention time) will be ignored.

DB Database of standards.

DB.treated Logical, indicating whether the database has already been scaled (TRUE) or not.

plotIt Logical: show best match?

scale.p indicates whether "sqrt" scaling or no scaling ("none") is to be applied. This
should usually be "sqrt".

mass.weight Logical, indicating whether heavier masses receive higher weight. Should usu-
ally be TRUE.

... Further arguments for the pseudospectrum plot (if shown).

Value

A vector of match factors.

Author(s)

Ron Wehrens

Examples

data(threeStdsNIST) ## gives smallDB, containing 78 patterns
data(threeStdsDB) ## gives DB, containing 3 patterns :-D

matchExpSpec(DB[[1]]$pspectrum, smallDB, DB.treated = FALSE, plotIt = TRUE)

matchSamples2DB Match pseudospectra from several samples to an in-house DB (GC-
MS)

Description

Compare experimental results to a database of pseudospectra. The result is a nested list, containing
for every pseudospectrum in every sample either an index of a corresponding pattern in the DB (if
a hit is found) or nothing (if no hit is found). Not meant to be called directly by the user.

Usage

matchSamples2DB(xset.msp, DB, settings, quick)

Arguments

xset.msp An object containing a list of pseudospectra.

DB The in-house database.

settings The settings, in the form of a list.

26 matchSamples2Samples

quick Logical. If TRUE, scaling of the pseudospectra (which is necessary for compar-
ing to the database) will be done once using all masses in the pseudospectrum.
This mode is routinely applied when comparing with a database of artefacts such
as bleeding patterns or plasticizers. When comparing with a database of chem-
ical standards, however, only peaks smaller than the molecular weight (+ 4, to
allow for isotopes) should be taken into account in the scaling, and hence the
scaling needs to be re-done for every comparison. This is _not_ so quick...

Value

A list object, with one element for each experimental sample. Every element again is a list with
an entry for each pseudospectrum from that sample: if the element is empty, there is no match
with the DB - a number points to the DB entry that gives a hit. Elements can contain more than
one number; these will be split into one “best” annotation and “alternative” annotations in function
annotations2tab.

Author(s)

Ron Wehrens

Examples

Example of settings
data(FEMsettings)
metaSetting(object = TSQXLS.GC, field= "match2DB")

matchSamples2Samples Compare pseudospectra across samples (GC-MS)

Description

Function matchSamples2Samples matches pseudospectra across all samples - if a pseudospec-
trum is present at more or less the same retention time in several samples, it can get the status of
“unknown”. Exactly how much difference there may be between the pseudospectra and retention
times, and how often it should be present, is determined by the settings. The auxiliary function
match.unannot.patterns compares two msp objects, representing experimental samples. Both
are not meant to be called directly by the user.

Usage

matchSamples2Samples(xset.msp.scaled, xset.msp, annotations, settings)
match.unannot.patterns(msp1, msp2, settings)

Arguments

xset.msp.scaled

Scaled version of all pseudospectra in the experimental patterns - a nested list,
with one entry for each sample, and within every entry an element for each
pseudospectrum.

xset.msp Unscaled version of the first argument: both arguments are provided for effi-
ciency reasons.

metaMSsettings-class 27

annotations Annotations of all pseudospectra: only patterns without annotations will be con-
sidered.

settings Settings determining what a valid “unknown” is. For an example, see the man
page of FEMsettings, field matchIrrelevants.

msp1, msp2 lists of pseudospectra

Value

Function matchSamples2Samples returns an updated annotation object such as the one returned
by matchSamples2DB, but now with an additional unknowns element, containing the pseudospectra
that are recognized as “unknowns”.

Function match.unannot.patterns returns a list of combinations of pseudospectra IDs, retention
times (or retention indices) and match factors (only for those combinations that satisfy the criteria
on retention time (index) and match factor).

Author(s)

Ron Wehrens

Examples

Example of settings
data(FEMsettings)
metaSetting(object = TSQXLS.GC, field= "betweenSamples")

metaMSsettings-class Class "metaMSsettings"

Description

This class contains all settings needed to run the metaMS pipelines for LC-MS (runLC) and GC-
MS (runGC). Slots PeakPicking, Alignment and CAMERA are simply handed over to the appropriate
xcms and CAMERA functions; all other slots contain settings for metaMS functions.

Objects from the Class

Objects can be created by calls of the form metaMSsettings(...). See the example below.

Slots

Note: all slots describing retention times or retention time differences use minutes and not seconds.
If a slot is only relevant for either GCMS or LCMS, this is indicated explicitly.

protocolName: Object of class "character": the name of the instrumental protocol, a unique
identifier.

chrom: Object of class "character": chromatography. Either "LC" or "GC".

PeakPicking: Object of class "list": The parameters used for xcms peakpicking. See the argu-
ments of findPeaks.

28 metaMSsettings-class

Alignment: Object of class "list": The parameters used for grouping and alignment. min.class.fraction
and min.class.size are used to calculate the minsample xcms parameter. bws is a vector of
the two bandwidths used for grouping before and after retention time alignent. missingratio
and extraratio are used to set the values for missing and extra as a function of the number
of samples. LC only.

CAMERA: Object of class "list": The parameters for CAMERA.

match2DB.rtdiff: Object of class "numeric": the maximal difference in retention time to match
each feature with the entry in the DB.

match2DB.minfeat: Object of class "numeric": for LC, the minimal number of matching features
within a retention time interval of width rtval before we speak of a hit. For GC, the minimal
number of common masses for calculating a match factor.

match2DB.rtval: Object of class "numeric": the tolerance in retention time for features used in
annotation. LC only.

match2DB.mzdiff: Object of class "numeric": the mass accuracy which is used if no error surface
is provided. LC only.

match2DB.ppm: Object of class "numeric": the minimum mass tolerance allowed when the error
surface is used. LC only.

match2DB.simthresh: Object of class "numeric": the minimal match factor to speak of a hit. GC
only.

match2DB.timeComparison: Object of class "character": either "rt" or "RI". GC only.

match2DB.RIdiff: Object of class "numeric": maximal retention index difference with DB entry
(GC only).

DBconstruction.minfeat: Object of class "numeric": the minimum number of features neces-
sary to include a compound in the DB.

DBconstruction.rttol: Object of class "numeric": the tolerance in retention time to match ex-
perimental features with the reference table.

DBconstruction.mztol: Object of class "numeric": the tolerance in m/z (in dalton) to match
experimental features with the reference table. LC only.

DBconstruction.minintens: Object of class "numeric": the minimum intensity for a feature to
be included in the list. GC only.

DBconstruction.intensityMeasure: Object of class "character": either "into" or "maxo".
GC only.

DBconstruction.DBthreshold: Object of class "numeric": minimal match factor with an exter-
nal DB for a pseudospectrum to be included in the DB of standards. GC only.

matchIrrelevants.irrelevantClasses: Object of class "character": classes of compounds
are considered as irrelevant (a vector of string constants, which should exactly match the
Class element in the DB entries). GC only.

matchIrrelevants.simthresh: Object of class "numeric": the minimal match factor to speak
of a hit. GC only.

matchIrrelevants.timeComparison: Object of class "character": either "rt" or "RI". GC only.

matchIrrelevants.rtdiff: Object of class "numeric": maximal retention time difference be-
tween two unknowns - this can be set to a very high value if a pattern is to be removed
whatever the retention time. GC only.

matchIrrelevants.RIdiff: Object of class "numeric": maximal retention index difference be-
tween two unknowns - this can be set to a very high value if a pattern is to be removed whatever
the Retention Index. GC only.

metaMSsettings-class 29

betweenSamples.min.class.fraction: Object of class "numeric": fraction of samples in which
a pseudospectrum is present before it is regarded as an unknown. GC only.

betweenSamples.min.class.size: Object of class "numeric": absolute number of samples in
which a pseudospectrum is present before it is regarded as an unknown. GC only.

betweenSamples.timeComparison: Object of class "character": either "rt" or "RI". GC only.

betweenSamples.rtdiff: Object of class "numeric": max retention time difference between
pseudospectra in different samples. GC only.

betweenSamples.RIdiff: Object of class "numeric": max retention index difference between
pseudospectra in different samples. GC only.

betweenSamples.simthresh: Object of class "numeric": similarity threshold fo comparing pseu-
dospectra in different samples. GC only.

Methods

metaSetting<- signature(object = "metaMSsettings"): change values in a metaMSsettings
object.

metaSetting signature(object = "metaMSsettings"): get values from a metaMSsettings ob-
ject.

show signature(object = "metaMSsettings"): show a metaMSsettings object.

Author(s)

Ron Wehrens

See Also

FEMsettings

Examples

showClass("metaMSsettings")

Not run:
The three sets of settings are created as follows:
Synapt.NP <- metaMSsettings(protocolName = "Synapt.QTOF.NP",

chrom = "LC",
PeakPicking = list(

method = "matchedFilter",
step = 0.05,
fwhm = 20,
snthresh = 4,
max = 50),

Alignment = list(
min.class.fraction = .3,
min.class.size = 3,
mzwid = 0.1,
bws = c(130, 10),
missingratio = 0.2,
extraratio = 0.1,
retcormethod = "linear",
retcorfamily = "symmetric",
fillPeaks = TRUE),

CAMERA = list(

30 metaSetting-methods

perfwhm = 0.6,
cor_eic_th = 0.7,
ppm= 5))

metaSetting(Synapt.NP, "match2DB") <- list(
rtdiff = 1.5,
rtval = .1,
mzdiff = 0.005,
ppm = 5,
minfeat = 2)

metaSetting(Synapt.NP, "DBconstruction") <- list(
minfeat = 3,
rttol = .3,
mztol = .01)

End(Not run)

metaSetting-methods Get or set values in metaMSsettings objects

Description

Accessor function for metaMSsettings objects, allowing to get or set values from individual slots.

Methods

signature(object = "metaMSsettings") Get or set values from individual slots in a metaMSsettings
objects.

See Also

FEMsettings

Examples

Not run:
The three sets of settings are created as follows:
Synapt.NP <- metaMSsettings(protocolName = "Synapt.QTOF.NP",

chrom = "LC",
PeakPicking = list(

method = "matchedFilter",
step = 0.05,
fwhm = 20,
snthresh = 4,
max = 50),

Alignment = list(
min.class.fraction = .3,
min.class.size = 3,
mzwid = 0.1,
bws = c(130, 10),
missingratio = 0.2,
extraratio = 0.1,
retcormethod = "linear",
retcorfamily = "symmetric",
fillPeaks = TRUE),

msp 31

CAMERA = list(
perfwhm = 0.6,
cor_eic_th = 0.7,
ppm= 5))

metaSetting(Synapt.NP, "match2DB") <- list(
rtdiff = 1.5,
rtval = .1,
mzdiff = 0.005,
ppm = 5,
minfeat = 2)

metaSetting(Synapt.NP, "DBconstruction") <- list(
minfeat = 3,
rttol = .3,
mztol = .01)

End(Not run)

msp Functions to handle msp-type objects (GC-MS)

Description

Functions to construct, read, write and filter so-called msp objects, collections of spectra with ad-
ditional information. This other information is of free format, but typically contains fields like
“Name”, “CAS”, “ChemspiderID”, and “rt”.

Usage

construct.msp(spectra, extra.info)
read.msp(file, only.org = FALSE,

org.set = c("C", "H", "D", "N", "O", "P", "S"), noNumbers = NULL)
filter.msp(msp, rtrange = NULL, mzrange = NULL, minintens = 0, minPeaks = 0)
write.msp(msp, file, newFile = TRUE)
xset2msp(xsetList, settings)
to.msp(object, file = NULL, settings = NULL, ndigit = 0,

minfeat, minintens, intensity = c("maxo", "into"),
secs2mins = TRUE)

SearchNIST(mspfile=NULL, savepath=NULL)

Arguments

spectra a list of two-column or three-column numerical matrices. Two-column matrices
only contain mz and intensity information, three-column matrices have a third
column that gives retention times for the individual peaks.

extra.info a nested list containing all other slots that should be included in the msp ob-
ject. The length of this list should be equal to the number of spectra in the first
argument.

file name of input or output file containing data in msp format. If NULL in function
to.msp, the input object is returned as an msp object. If non-null, the informa-
tion will be written to the file with this name.

only.org logical: if TRUE this will skip all entries that have non-organical elements in
the “Formula” field.

32 msp

org.set List of elements to be considered as organic.

noNumbers Optional argument, indicating which fields are not to be converted into numeric
entries. If not given, this currently defaults to the following fields: Name, CAS,
stdFile, date, validated, ChemspiderID, SMILES, InChI, Class, comment,
csLinks.

msp msp object.

rtrange, mzrange, minfeat, minintens, minPeaks
restrictions to what constitutes genuine pseudospectra in terms of minimal num-
bers of features, minimum feature intensity, and the intensity measure used
(peak area or peak height).

intensity the measure to use for the intensity of a peak: either the peak height ("maxo")
or area ("into").

ndigit number of digits for the mz values - use 0 for nominal mass data.

newFile logical: if TRUE starts a new file, otherwise appends.

xsetList a list of xcmsSet objects.

settings list containing settings.

object either an object of class "xsAnnotate" or a peaktable containing mz, rt and I
information. Function to.msp will convert this object into a list that can be
written as an msp file.

secs2mins logical: if TRUE converts retention times to minutes (otherwise seconds).

mspfile a msp file generated by to.msp function

savepath Path to the directory were NIST MSsearch program results will be saved

Details

Even though the msp format handled by these functions is quite flexible, there are a couple of
requirements that are not always satisfied by msp files generated by other software, the most impor-
tant one being that one line may only contain one keyword. If more than one keyword is present,
the second will likely not be read. Furthermore, the current implementation assumes that peaks in
pseudospectra are represented in the form mz1, I1; mz2, I2;, etcetera - in other cases these are in
brackets. To solve such issues, the most easy fix for the moment is to edit the msp file and change
things globally.

Other issues may arise with the keywords. While read.msp will be able to read msp files with
non-standard keywords, the metaMS package expects at least the following list to be present (case-
sensitive): “Name”, “validated”, “CAS”, “rt”, “monoMW”, and “Class”. The final keyword is
always “Num Peaks”, and should be followed by the list of mz-I combinations.

Value

Most of the functions here create msp files.

Author(s)

Ron Wehrens

peakDetection 33

Examples

data("threeStdsDB")
Not run:
write.msp(DB, file = "huhn.msp")
DB2 <- read.msp("huhn.msp")

End(Not run)

peakDetection Wrapper for XCMS peak detection, to be used for both GC-MS and
LC-MS data.

Description

XCMS peak detection using settings, defined for individual laboratories and depending on the chro-
matographic and mass-spectrometric characteristics of the instruments at hand.

Usage

peakDetection(files, settings, rtrange = NULL, mzrange= NULL,
convert2list = FALSE, nSlaves = 0)

Arguments

files input files (including path names) that will be processed by xcms.

settings a list of settings that will be passed on to the xcmsSet function. See the help of
FEMsettings for a detailed description of the fields in this list.

rtrange If non-NULL, a vector to subset the region of the chromatography retained for
further analysis (given in minutes).

mzrange If non-NULL, a vector indicating the subset of the mass spectrum retained for
the analysis.

convert2list logical. If TRUE, the xcmsSet object will be split into a list of one-sample objects
which will be treated separately. This is useful not only in GC-MS data, where
peak alignment is avoided, but also in setting up databases of standards, where
no common peaks between injections are expected to occur.

nSlaves Number of cores to be used in the peak picking.

Value

Either an xcmsSet object, or a list of one-sample xcmsSet objects.

Author(s)

Ron Wehrens and Pietro Franceschi

Examples

Example of settings
data(FEMsettings)
metaSetting(object = TSQXLS.GC, field= "PeakPicking")

34 printString

plotPseudoSpectrum Plot a pseudospectrum.

Description

Auxiliary function for plotting a particular pseudospectrum. M/z values are in the first column of
the matrix, and an intensity measure (either maxo, into or something else) in the second. The third
column is disregarded, usually contains retention time information

Usage

plotPseudoSpectrum(psspc, ...)

Arguments

psspc Pseudospectrum, consisting of a two- or three-column matrix. The first column
contains the m/z values, the second the intensities. A third column containing
retention time information may be present, but is not used in this function.

... Additional graphical parameters.

Details

A stick spectrum is shown on the graphical device.

Value

A three column matrix m/z and Intensity and Retention time.

Author(s)

Ron Wehrens

Examples

data("threeStdsDB")
plotPseudoSpectrum(DB[[1]]$pspectrum)

printString Functions for metaMS-formatted text output

Description

Functions to present progress output, warnings or information, in a consistent way in the console
window. Not meant to be called by the user.

Usage

printString(..., screenwidth = 72)
printWarning(...)
printInfo(...)

processStandards 35

Arguments

... Text strings. These will be concatenated inside the function.
screenwidth Width of the text field.

Value

A string to print.

Author(s)

Ron Wehrens and Pietro Franceschi

processStandards Process input files containing raw data for pure standards.

Description

Peak picking and further processing for raw data of pure standards, including CAMERA processing.
This function is not meant to be called directly - use createSTDdbLC or createSTDdbGC instead.

Usage

processStandards(stdInfo, settings, polarity = NULL, nSlaves)

Arguments

stdInfo Object describing the pure standards: a data.frame containing, e.g., the name
of the file, the name of the standard, descriptors like CAS or Chemspider IDs,
etcetera.

settings Settings list, containing sublists for peak picking and CAMERA grouping (GC-
MS) or annotation (LC-MS).

polarity Polarity of the analysis (used for CAMERA). Possible values are “positive” or
“negative”. Ignored for GC-MS.

nSlaves Number of cores to be used in peak picking.

Value

A list of CAMERA objects resulting from the analysis of the standard injections listed in the
stdInfo table.

Author(s)

Ron Wehrens and Pietro Franceschi

See Also

xcmsSet, runCAMERA

Examples

Example of results
data(GCresults) ## pre-compiled results
GCresults$PeakTable

36 readStdInfo

readStdInfo Read information of GC injections of standards from a csv file

Description

The csv contains all information necessary to process a series of injections of standards (GC-MS).
Required fields: Name, RTman, monoMW, stdFile, and an identifier such as CAS or ChemspiderID.
At the moment, the system is completely based on CAS, although this may change in the future.

Usage

readStdInfo(stdInfo, InputDir, sep = "", dec = ".", ...)

Arguments

stdInfo Input file in csv format, containing information on standards.

InputDir Location of input files.

sep, dec, ... optional arguments to read.table.

Details

In addition to reading all information on the chemical standards (whcih will eventually be trans-
ferred into an in-house database), the function checks whether some input files are unavailable, and
whether some data files are not used. In the first case, an error is returned, in the second case a
warning.

Value

A data.frame

Author(s)

Ron Wehrens

Examples

if (require(metaMSdata)) {
this will lead to the completed version of the R object that is also
available by typing "data(threeStdsInfo)", now containing the
directory information that is not available in the RData object.

input.file <- list.files(system.file("extdata", package = "metaMSdata"),
pattern = "csv", full.names = TRUE)

threeStdsInfo <- readStdInfo(input.file,
system.file("extdata", package = "metaMSdata"),
sep = ";", dec = ",")

only one of the files is used to set up the database, the others
are for testing annotation

}

removeDoubleMasses 37

removeDoubleMasses Remove double m/z entries in a pseudospectrum

Description

Since in nominal-mass GC data m/z values are rounded to whole numbers, in some cases an m/z
value may occur multiple times - in that case the mean of the intensities is kept (and the retention
times are averaged). removeDoubleMasses takes a list of spectra in the form of a three-column
matrix, (mz, I, rt), summing the intensities and averaging the retention times for multiple identical
masses. Not meant to be called directly by the user.

Usage

removeDoubleMasses(spclist)

Arguments

spclist A list of spectra, each one consisting of a three-column matrix (mz, I, rt).

Value

The function returns a list of spectra, where all "double" peaks have been averaged.

Author(s)

Ron Wehrens

runCAMERA The CAMERA element in the metaMS pipeline

Description

Run CAMERA package with settings from the settings list (see FEMsettings). Works both for LC
and GC. Not meant to be called directly by the user.

Usage

runCAMERA(xset, chrom = c("LC", "GC"), settings, polarity, quick = TRUE)

Arguments

xset For LC, an xcmsSet object; for GC, a list of xcmsSet objects.

chrom The type of chromatography. Either "LC" or "GC".

settings The subset of settigs contained into the "CAMERA" element of the settings list.

polarity The polarity of the injection, used by CAMERA to look for common adducts.

quick Only relevant for LC data. If TRUE, CAMERA runs only groupFWHM and findIsotopes.
If FALSE, correlations between EICs are calculated and used for grouping (which
can take some time).

38 runGC

Details

In the case of LC the function is used in data analysis and DB creation. In the first case, it increases
the level of the annotation and it it, by default, run with quick = TRUE. For DB creation, the grouping
of the features into "pcgroups" (features with similar retention time) is used to choose the features
to be included into the database. In this case camera is run with quick = FALSE: quick determines
whether or not the correlation among the extracted ion chromatograms should be used to "validate"
the pcgroups.

For GC data, only the grouping done by groupFWHM is performed: basically this clusters peaks with
a similar retention time.

Value

An annotated xcmsSet object (an object of class CAMERA).

Author(s)

Ron Wehrens and Pietro Franceschi

See Also

annotate, groupFWHM

Examples

Example of results
data(LCresults) ## pre-compiled results
LCresults$PeakTable

runGC Wrapper for processing of GC-MS data files

Description

Main function of the pipeline for GC-MS data processing. It includes XCMS peak detection, defini-
tion of pseudospectra, and compound identification by comparison to a database of standards. The
function also takes care of removal of artefacts like column bleeding and plasticizers, and definition
of unknowns, consistently present across samples.

Usage

runGC(files, xset, settings, rtrange = NULL, DB = NULL,
removeArtefacts = TRUE, findUnknowns = nexp >= mcs,
returnXset = FALSE, RIstandards = NULL, nSlaves = 0)

runGC 39

Arguments

files input files, given as a vector of strings containing the complete paths. All for-
mats supported by XCMS can be used.

xset alternatively, one can present a list of xcmsSet objects for whom CAMERA
grouping has been done. In this case, only the annotation process will be done.
If both files and xset are given, the former takes precedence.

settings a nested list of settings, to be used at individual steps of the pipeline.
rtrange part of the chromatograms that is to be analysed. If given, it should be a vector

of two numbers indicating minimal and maximal retention time (in minutes).
DB database containing the spectra of the pure standards. At least the following

fields should be present: Name, std.rt, pspectrum and monoMW.
removeArtefacts

logical, whether or not to remove patterns identified as (e.g.) column bleeding.
Only performed if a database containing such patterns is available.

findUnknowns logical, whether to find patterns without identification that are present consis-
tently in several samples. The default is to use TRUE if the number of samples
is larger than the min.class.size setting in the ’betweenSamples’ metaSetting.

returnXset logical: should the XCMS output be returned? If yes, this is a a list of xcmsSet
objects, one element for each input file.

RIstandards A two-column matrix containing for the standards defining the RI scale both re-
tention times and retention indices. If not given, no RI values will be calculated
and retention times will be used instead.

nSlaves Number of cores to be used in peak picking.

Value

A list with the following elements:

PeakTable data.frame containing annotation information. Every line is a feature, i.e. a
pseudospectrum. The first columns are used to give information about these
features, a.o. compound name, CAS and Chemspider IDs, etcetera. The last
of these meta-information columns is always the one giving the retention time:
“rt”. After that, columns correspond to input files, and give measures of intensi-
ties for every single one of the features. If a feature is not detected in a sample,
this is indicated with “0” (zero).

PseudoSpecra A list of pseudospectra in msp format, in the same order as the rows in the
PeakTable.

xset optionally, the xcmsSet object is returned, which can be useful for more detailed
inspection of the results. It can also be used as an input for runGC, e.g., to test
different annotation settings independently of the xcms/CAMERA part.

sessionInfo The output of sessionInfo() to keep track of the sw version used for the pro-
cessing

Author(s)

Ron Wehrens

References

R. Wehrens, G. Weingart and F. Mattivi: "An open-source pipeline for GC-MS-based untargeted
metabolomics". Submitted.

40 runLC

See Also

msp, treat.DB, runCAMERA, peakDetection, matchSamples2DB, matchSamples2Samples, getAnnotationMat,
addRI

Examples

analysis of an xset object
data(threeStdsDB)
data(FEMsettings)

data(GCresults) ## pre-compiled results
names(GCresults)

Not run:
if (require(metaMSdata)) {

object GCresults is created by
cdfdir <- system.file("extdata", package = "metaMSdata")
cdffiles <- list.files(cdfdir, pattern = "_GC_",

full.names = TRUE, ignore.case = TRUE)
GCresults <- runGC(files = cdffiles, settings = TSQXLS.GC, DB = DB,

returnXset = TRUE)

to start directly from the XCMS/CAMERA results and not include
peak picking in the pipeline, simply provide the "xset" argument
rather than the "files" argument.

no annotation database
result.noannot <- runGC(xset = GCresults$xset, settings = TSQXLS.GC)
}

End(Not run)

runLC Wrapper for processing of LC-MS data files

Description

Main function of the pipeline for LC-MS data processing. It includes XCMS peak detection, group-
ing and alignment, CAMERA and feature annotation by comparison to a database of standards. The
function also calculates the mass tolerance on the bases of the ion intensity and ion mass.

Usage

runLC(files, xset, settings, rtrange = NULL, mzrange = NULL, DB = NULL,
polarity = "positive", errf = NULL, returnXset = FALSE,
intensity = "into", nSlaves = 0)

Arguments

files input files, given as a vector of strings containing the complete paths. All for-
mats supported by XCMS can be used.

runLC 41

xset alternatively, one can present an object of class xsAnnotate, instead of the input
files. In that case all of the XCMS and CAMERA tools: peak picking, CAM-
ERA grouping, retention time correction and filling of missing peaks will be
considered already done, and only annotation will be performed. This can be
useful if one wants to compare different settings for annotation. If both files
and xset are given, the former takes precedence.

settings nested list of settings, to be used at individual steps of the pipeline. See the help
of FEMsettings for details.

rtrange An optional vector to slice the retention time range (in minutes).

mzrange An optional vector to slice the mass spectrum

DB database containing the spectra of the pure standards. For the description refer
to the LCDBtest help.

polarity The polarity of the analysis used for CAMERA annotation. Either "positive" or
"negative".

errf A model used to calculate the mass tolerance in ppm for each features on the
bases of its mass, retention time and intensity. For further details refer to the
help of AnnotateTable.

returnXset logical: should the XCMS output be returned? If yes, this is a a list of xcmsSet
objects, one element for each input file.

intensity The intensity measure used in the output peaktable. The available intensities are
the ones provided by xcms. The default one is the total intensity (integral) of the
feature on the detected chromatographic peak.

nSlaves Number of cores to be used in peak picking.

Details

The mzrange and rtrange parameters are used to subset the mass and retention times considered
in the analysis, reducing possible alignment problems at the extremes.
The error function calculates the expected m/z tolerance for feature annotation based on the mz and
I values of each feature. To have a more complete description of the process refer to the help of
AnnotateTable and the literature reference. An example is provided as well. Note that the use of
"lm" is only one of the possible choices, but all kind of functional approximations working with the
predict function could be used. If the error function is not provided the mass tolerance will be
fixed to the value defined in the settings list.

Value

A list with three elements:

PeakTable data.frame containing annotation information. Every line is a feature. The first
columns are used to give information about these features, annotation, CAM-
ERA, Chemspider IDs, etcetera. The last of these meta-information columns is
always the one giving the retention time: "rt". After that, columns correspond to
input files, and give measures of intensities for every single one of the features.

Annoation The complete output of the AnnotateTable function.

Settings The settings used in the pipeline.

xset optionally, the xcmsSet/CAMERA object is returned, which can be useful for
more detailed inspection of the results.

sessionInfo The output of sessionInfo() to keep track of the sw version used for the pro-
cessing

42 threeStdsDB

Author(s)

Pietro Franceschi

References

N. Shahaf, P. Franceschi, P. Arapitsas, I. Rogachev, U. Vrhovsek and R. Wehrens: "Constructing a
mass measurement error surface to improve automatic annotations in liquid chromatography/mass
spectrometry based metabolomics". Rapid Communications in Mass Spectrometry, 27(21), 2425
(2013).

Examples

data(LCresults)
names(LCresults)

Not run:
load the settings for the analysis
data(FEMsettings)

load the annotation DB
data(LCDBtest)

load the Synapt Q-TOF error function
data(errf)

results.xset <- runLC(xset = LCresults$xset, settings = Synapt.RP,
DB = LCDBtest$DB)

to start directly from the CDF files and include peak picking in the
pipeline, simply provide the "files" argument rather than the "xset" argument

if (require(metaMSdata)) {
get the path
cdfpath <- system.file("extdata", package = "metaMSdata")

files
files <- list.files(cdfpath, "_RP_", full.names=TRUE)

<------------- Use the Synapt Q-TOF error function -------------- >
result.adaptive <- runLC(files, settings = Synapt.RP,

DB = LCDBtest$DB, errf = errf)

<-------- Run the analysis with a fixed mass tolerance --------- >
result.fixed <- runLC(files, settings = Synapt.RP,

DB = LCDBtest$DB)
}

End(Not run)

threeStdsDB Information on three chemical standards measured in GC-MS (liquid
injection)

treat.DB 43

Description

User information needed to build up an in-house database, the external database for cross-checking
mass spectra, and the final database obtained with createSTDdbGC for three chemical standards.

Usage

data(threeStdsDB)
data(threeStdsInfo)
data(threeStdsNIST)

Details

Raw GC-MS data for the three standards, linalool, methyl salicylate and ethyl hexanoate, are avail-
able in package metaMSdata. Manual information required to build up an in-house database should
be presented in the form of a data.frame, an example of which is stdInfo. Presenting this infor-
mation to createSTDdbGC leads to processing of the raw data, and cross-checking with an external
database containing mass spectra. An excerpt of the NIST database, containing only spectra for
these three compounds, is available in smallDB. The final database that is then obtained can be
inspected in object DB, which is a simple list of tags and values. For use as a reference database,
several of these fields are mandatory. Currently these are Name, monoMW, pspectrum and std.rt.

Source

Georg Weingart

Examples

data(threeStdsNIST)
length(smallDB)

data(threeStdsInfo)
stdInfo

data(threeStdsDB)
par(mfrow = c(3,1))
sapply(DB, function(x) plotPseudoSpectrum(x$pspectrum, main = x$Name))

treat.DB Scaling of pseudospectra in an msp object

Description

This function transforms the “raw” data in an msp DB object into preprocessed data. Even if no
scale and no mass.weight is applied, the intensities are still changed: scaled to unit length.

Usage

treat.DB(DB, scale.p = c("sqrt", "none"), mass.weight = TRUE, isMSP = TRUE)

44 treat.DB

Arguments

DB A database of spectra in the original intensity units.

scale.p scale intensities with a square-root function, or leave them as they are. Default
is to use scaling.

mass.weight Logical: if TRUE, higher masses are given more weight.

isMSP Logical: if TRUE, then the spectra are stored in slot pspectrum; otherwise the
spectra are simply the list elements of DB.

Value

The function returns the database, where intensities are scaled.

Author(s)

Ron Wehrens

Examples

data(threeStdsNIST) ## provides object smallDB, excerpt from NIST DB
smallDB.scaled <- treat.DB(smallDB)

Index

∗ classes
metaMSsettings-class, 27

∗ datasets
errf, 13
exptable, 14
FEMsettings, 15
GCresults, 18
LCDBtest, 22
LCresults, 23
threeStdsDB, 42

∗ manip
addRI, 4
alignmentLC, 5
AnnotateTable, 6
annotations2tab, 8
constructExpPseudoSpectra, 8
createSTDdbGC, 9
createSTDdbLC, 11
getAnnotationLC, 19
getAnnotationMat, 20
getFeatureInfo, 21
getPeakTable, 21
match2ExtDB, 24
matchExpSpec, 24
matchSamples2DB, 25
matchSamples2Samples, 26
msp, 31
peakDetection, 33
plotPseudoSpectrum, 34
processStandards, 35
readStdInfo, 36
removeDoubleMasses, 37
runCAMERA, 37
runGC, 38
runLC, 40
treat.DB, 43

∗ methods
metaSetting-methods, 30

∗ package
metaMS-package, 2

∗ print
printString, 34

addRI, 4, 40

alignmentLC, 5
annotate, 16, 38
AnnotateFeature (AnnotateTable), 6
AnnotateTable, 6, 19
annotations2tab, 8

construct.msp (msp), 31
constructExpPseudoSpectra, 8
createSTDdbGC, 9
createSTDdbLC, 11, 15, 23

DB (threeStdsDB), 42

errf, 13
exptable, 14, 23

FEMsettings, 5, 15, 19, 23, 29, 30
filter.msp (msp), 31
findPeaks, 16, 27

GCresults, 18
generateStdDBGC, 10
generateStdDBGC (createSTDdbGC), 9
generateStdDBLC (createSTDdbLC), 11
getAnnotationLC, 19
getAnnotationMat, 20, 40
getFeatureInfo, 21
getPeakTable, 21
groupFWHM, 38

LCDBtest, 19, 22
LCresults, 23
LCxset (LCresults), 23

makeAnnotation (annotations2tab), 8
match.unannot.patterns

(matchSamples2Samples), 26
match2ExtDB, 24
matchExpSpec, 24
matchSamples2DB, 9, 25, 40
matchSamples2Samples, 9, 26, 40
metaMS (metaMS-package), 2
metaMS-package, 2
metaMSsettings (metaMSsettings-class),

27

45

46 INDEX

metaMSsettings-class, 27
metaSetting (metaSetting-methods), 30
metaSetting,metaMSsettings-method

(metaSetting-methods), 30
metaSetting-methods, 30
metaSetting<- (metaSetting-methods), 30
metaSetting<-,metaMSsettings-method

(metaSetting-methods), 30
msp, 31, 40

Orbitrap.RP (FEMsettings), 15

peakDetection, 33, 40
plotPseudoSpectrum, 34
printInfo (printString), 34
printString, 34
printWarning (printString), 34
processStandards, 10, 35

read.msp (msp), 31
readStdInfo, 36
relInt (getAnnotationMat), 20
removeDoubleMasses, 37
runCAMERA, 35, 37, 40
runGC, 18, 38
runLC, 40

SearchNIST (msp), 31
show,metaMSsettings-method

(metaMSsettings-class), 27
smallDB (threeStdsDB), 42
stdInfo (threeStdsDB), 42
Synapt.NP (FEMsettings), 15
Synapt.RP (FEMsettings), 15

threeStdsDB, 42
threeStdsInfo (threeStdsDB), 42
threeStdsNIST (threeStdsDB), 42
to.msp (msp), 31
treat.DB, 40, 43
TSQXLS.GC (FEMsettings), 15

write.msp (msp), 31

xcmsSet, 35
xset2msp (msp), 31

	metaMS-package
	addRI
	alignmentLC
	AnnotateTable
	annotations2tab
	constructExpPseudoSpectra
	createSTDdbGC
	createSTDdbLC
	errf
	exptable
	FEMsettings
	GCresults
	getAnnotationLC
	getAnnotationMat
	getFeatureInfo
	getPeakTable
	LCDBtest
	LCresults
	match2ExtDB
	matchExpSpec
	matchSamples2DB
	matchSamples2Samples
	metaMSsettings-class
	metaSetting-methods
	msp
	peakDetection
	plotPseudoSpectrum
	printString
	processStandards
	readStdInfo
	removeDoubleMasses
	runCAMERA
	runGC
	runLC
	threeStdsDB
	treat.DB
	Index

