Package ‘markeR’

January 20, 2026

Title An R Toolkit for Evaluating Gene Signatures as Phenotypic
Markers
Version 1.0.0

Description markeR is an R package that provides a modular and extensible framework for the sys-
tematic evaluation of gene sets as
phenotypic markers using transcriptomic data. The package is designed to support both quantita-
tive analyses and visual exploration of
gene set behaviour across experimental and clinical phenotypes. It implements multiple meth-
ods, including score-based and enrichment
approaches, and also allows the exploration of expression behaviour of individual genes. In addi-
tion, users can assess the
similarity of their own gene sets against established collections (e.g., those from MSigDB), facil-
itating biological interpretation.

License Artistic-2.0

biocViews GeneExpression, Transcriptomics, Visualization, Software,
GeneSetEnrichment, Classification

Encoding UTF-8

Language en-GB

LazyData false

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Additional_repositories https://bioconductor.org/packages/release/bioc

Imports circlize, edgeR, ComplexHeatmap, ggh4x, ggplot2, ggpubr, grid,
gridExtra, pROC, RColorBrewer, reshape?2, rstatix, scales,
stats, utils, fgsea, limma, ggrepel, effectsize, msigdbr,
tibble

Suggests devtools, markdown, renv, testthat, BiocManager, knitr,
rmarkdown, roxygen2, mockery, covr, magick, BiocStyle

Config/testthat/edition 3
Depends R (>=4.5.0)

URL https://diseasetranscriptomicslab.github.io/markeR/,

https://github.com/DiseaseTranscriptomicsLab/markeR

BugReports https://github.com/DiseaseTranscriptomicsLab/markeR/issues

VignetteBuilder knitr

https://bioconductor.org/packages/release/bioc
https://diseasetranscriptomicslab.github.io/markeR/
https://github.com/DiseaseTranscriptomicsLab/markeR
https://github.com/DiseaseTranscriptomicsLab/markeR/issues

Config/Needs/website rmarkdown

git_url https://git.bioconductor.org/packages/markeR
git_branch RELEASE_3_22

git_last_commit defebad

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Rita Martins-Silva [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1067-7993>),
Alexandre Kaizeler [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-9117-6073>),
Nuno Luis Barbosa-Morais [aut, led, ths] (ORCID:
<https://orcid.org/0000-0002-1215-0538>)

Maintainer Rita Martins-Silva <rita.silva@medicina.ulisboa.pt>

Contents

AUC_Scores o o v v i e
calculateDE
CalculateScores
CalculateScores_logmedian
CalculateScores_Ranking
CalculateScores_ssGSEA
CalculateScores_ssGSEA_bidirectional
CalculateScores_ssGSEA_unidirectional
calculateScore_logmedian_bidirectional
calculateScore_logmedian_unidirectional
CohenD allConditions v
CohenD_IndividualGenes
CohenF_allConditions
cohen_d
colRanking
compute_cohens_f pval oL
compute_cohen_d
compute_stat_tests Lo
CorrelationHeatmap
counts_example
create_contrast_column
ExpressionHeatmap
flatten_results
FPR_Simulation.
generate_all_contrasts Lo
genesets_example Lo
geneset_similarity oL
getRanking
GSEA_VariableAssociation
Heatmap_Cohen
identify_variable_type
IndividualGenes_Violins

Contents

https://orcid.org/0000-0002-1067-7993
https://orcid.org/0000-0002-9117-6073
https://orcid.org/0000-0002-1215-0538

AUC_Scores 3

markeR e 44
metadata_example e 44
plotCombinedGSEA e 45
plotGSEAenrichment 46
PIONESIOIlipop o o e e e e e 48
PIOtPCA e e e e 50
PlotScores e e e e e e 52
PlotScores_Categorical e 56
PlotScores_Numeric e e 59
plotVolcano L e e 61
remove_diviSiOn L e e e e 64
ROCandAUCDIot e 64
ROCAUC _Scores_Calculate it 67
ROC_Scores e e 68
runGSEA e 69
Score_Variable Association e e e 71
sSGSEA_alternative e e, 73
VariableAssociation e 74
VisualiseIndividualGenes e 77
Volcano_Cohen e 80
wrap_title 81
Index 82
AUC_Scores Generate Heatmaps for AUC Scores using ggplot2
Description

This function computes AUC scores for multiple gene signatures and scoring methods, and gener-
ates a heatmap for each gene signature. The heatmap displays the AUC scores, with the contrasts

as rows and methods as columns. The heatmaps are then arranged in a grid layout.

Usage

AUC_Scores(
data,
metadata,
gene_sets,
method = c("logmedian”, "ssGSEA", "ranking”, "all"),
mode = c("simple”, "medium”, "extensive"),

variable,
nrow = NULL,
ncol = NULL,

limits = NULL,

widthTitle = 22,

titlesize = 12,

ColorValues = c("#F9F4AE", "#B44141"),
title = NULL

4 AUC_Scores

Arguments
data A data frame of gene expression data with genes as rows and samples as columns.
Row names should contain gene names and column names sample identifiers.
metadata A data frame of sample metadata. The first column must contain sample identi-
fiers matching those in data.
gene_sets A named list of gene sets.
method A character string specifying the scoring method(s) ("logmedian”, "ssGSEA",
"ranking"”, or "all").
mode A string specifying the level of detail for contrasts. Options are:
e "simple": Pairwise comparisons (e.g., A - B).
e "medium”: Pairwise comparisons plus comparisons against the mean of
other groups.
* "extensive”: All possible groupwise contrasts, ensuring balance in the
number of terms on each side.
variable A string specifying the grouping variable in metadata used for computing AUC
comparisons.
nrow Optional. An integer specifying the number of rows in the heatmap grid. If
NULL, the number of rows is computed automatically.
ncol Optional. An integer specifying the number of columns in the heatmap grid. If
NULL, the number of columns is computed automatically.
limits Optional. A numeric vector of length 2 specifying the color scale limits (e.g.,
c(min, max)). If NULL, the limits are determined from the data.
widthTitle An integer specifying the width used for wrapping gene set signature names in
the heatmap titles. Default is 22.
titlesize An integer specifying the text size for each of the heatmap titles. Default is 12.
ColorValues A character vector specifying the colors for the gradient fill in the heatmaps.
Default is c("#F9F4AE", "#B44141").
title Title for the grid of plots.
Details

The function first calculates AUC scores for each gene signature using ROCAUC_Scores_Calculate.
The resulting matrices are converted to a long format so that each cell in the heatmap can display
the AUC value. A title for each heatmap is dynamically created. The heatmaps are then adjusted
to display axis text and ticks only for the left-most column and bottom row, and combined into a
grid layout. If neither nrow nor ncol are specified, the layout is automatically determined to best
approximate a square grid.

Value

A list with two elements:

plt A combined heatmap arranged in a grid using ggpubr: : ggarrange.

data A list containing the AUC scores for each gene signature, as computed by ROCAUC_Scores_Calculate.

calculateDE 5

Examples

Example data

data <- as.data.frame(abs(matrix(rnorm(1000), ncol = 10)))

rownames(data) <- paste@("Gene”, 1:100) # Name columns as Genel, Gene2, ..., Genel®
colnames(data) <- paste@("Sample”, 1:10) # Name rows as Samplel, Sample2, ..., Samplel100

Metadata with sample ID and condition

metadata <- data.frame(
SampleID = colnames(data), # Sample ID matches the colnames of the data
Condition = rep(c("A", "B"), each = 5) # Two conditions (A and B)

Example gene set
gene_sets <- list(Signaturel = c("Genel”, "Gene2", "Gene3"),
Signature2 = c("Gene2","Gene4","Genel0"),
Signature3 = c("Gene6"”,"Gene46","Genel13")) # Example gene sets

AUC_Scores(
data = data,
metadata = metadata,
gene_sets = gene_sets,
method = "ssGSEA",

variable = "Condition”,
nrow = 1,
ncol = NULL,

limits = c(o, 1),

widthTitle = 30,

titlesize = 14,

ColorValues = c("#F9F4AE”, "#B44141")

AUC_Scores(
data = data,
metadata = metadata,
gene_sets = gene_sets,
method = "all",

variable = "Condition”,
nrow = 1,
ncol = NULL,

limits = c(0, 1),

widthTitle = 30,

titlesize = 14,

ColorValues = c("#F9F4AE", "#B44141")

calculateDE Calculate Differential Gene Expression Statistics using limma

Description

This function computes differential gene expression statistics for each gene using a linear model via
the limma package. Users may supply a custom design matrix directly via the design argument, or

6 calculateDE

specify a model formula (Imexpression) (e.g., ~@ + X or ~X) or variables from metadata to build
the design matrix. When contrasts are supplied, they are applied using Limma: :makeContrasts and
limma::contrasts.fit. Alternatively, when using Imexpression or a supplied design, specific
coefficient indices may be provided via coef's to extract the corresponding gene-level statistics.

Usage

calculateDE(
data,
metadata = NULL,
variables = NULL,
modelmat = NULL,
contrasts = NULL,
ignore_NAs = FALSE

)
Arguments

data A numeric matrix of gene expression values with genes as rows and samples as
columns. Row names must correspond to gene identifiers. Data should not be
transformed (i.e., not log2 transformed).

metadata A data frame containing sample metadata used to build the design matrix (unless
a design is provided directly).

variables A character vector specifying the variable(s) from metadata to use in the default
linear model. Ignored if Imexpression or design is provided.

modelmat (Optional) A user-supplied design matrix. If provided, this design is used di-
rectly and 1mexpression and variables are ignored. The order of samples in
the design matrix should match the order in data.

contrasts A character vector specifying contrasts to be applied (e.g., c("A-B")). If mul-

tiple contrasts are provided, the function returns a list of DE results (one per
contrast). Required if Imexpression is NULL, optional otherwise. If not pro-
vided, the average expression profile of each condition will be returned instead
of differential gene expression.

ignore_NAs Boolean (default: FALSE). Whether to ignore NAs in the metadata. If TRUE,
rows with any NAs will be removed before analysis, leading to a loss of data to
be fitted in the model. Only applicable if variables is provided.

Details

The function fits a linear model with 1imma: : ImFit and applies empirical Bayes moderation with
limma: :eBayes. Depending on the input:
* If a design matrix is provided via design, that design is used directly.
* Otherwise, a design matrix is constructed using the variables argument (with no intercept).
* If contrasts are provided, they are applied using 1imma: :makeContrasts and limma: : contrasts.fit.

* If no contrasts are provided, the function returns all possible coefficients fitted in the linear
model.

Value

A list of data-frames of differential expression statistics

CalculateScores 7

Examples

Simulate non-negative gene expression data (counts)
set.seed(123)

expr <- matrix(rpois(1000, lambda = 20), nrow = 100, ncol = 10)
rownames(expr) <- paste@("gene”, 1:100)

colnames(expr) <- paste@("sample”, 1:10)

Simulate metadata with a group variable
metadata <- data.frame(

sample = colnames(expr),

Group = rep(c("A", "B"), each = 5)

)

Differential expression for Group A vs Group B using variables
de_var <- calculateDE(

data = expr,

metadata = metadata,

variables = "Group”,

contrasts = "A-B"

)
head(de_var[["A-B"]1])

Build equivalent design matrix manually
design <- model.matrix(~@ + Group, data = metadata)
colnames(design) <- c("A","B")

Differential expression using the design matrix directly
de_mat <- calculateDE(
data = expr,
metadata = metadata,
modelmat = design,
contrasts = "A-B"
)
head(de_mat[["A-B"]11)

CalculateScores Calculate Gene Signature Scores using Score-Based Approaches

Description

This function calculates a gene signature score for each sample based on one or more predefined
gene sets (signatures).

Usage

CalculateScores(
data,
metadata,
gene_sets,
method = c(”"ssGSEA", "logmedian”, "ranking”, "all")

Arguments

data

metadata

gene_sets

method

Details

CalculateScores

A data frame of normalized (non-transformed) counts where each row is a gene
and each column is a sample. The row names should contain gene names, and
the column names should contain sample identifiers. (Required)

A data frame describing the attributes of each sample. Each row corresponds to
a sample and each column to an attribute. The first column of metadata should
be the sample identifiers (i.e., the column names of data). Defaults to NULL if
no metadata is provided.

Gene set input. (Required)

If using unidirectional gene sets, provide a named list where each element is
a vector of gene names representing a gene signature. The names of the list
elements should correspond to the labels for each signature.

If using bidirectional gene sets, provide a named list where each element is a
data frame. The names of the list elements should correspond to the labels for
each signature, and each data frame should contain the following structure:

* The first column should contain gene names.

* The second column should indicate the expected direction of enrichment
(1 for upregulated genes, -1 for downregulated genes).
A character string indicating the scoring method to use. Options are "ssGSEA",

"logmedian”, "ranking”, or "all” (to compute scores using all methods). De-
faults to "logmedian”.

This function calculates a gene signature score for each sample based on one or more prede-
fined gene sets (signatures). Four methods are available:

Uses the single-sample Gene Set Enrichment Analysis (ssSGSEA) method to compute an en-
richment score for each signature in each sample. This method uses an adaptation from the
the gsva() function from the GSVA package to compute an enrichment score, representing the
absolute enrichment of each gene set in each sample.

ss@tgmedian Computes, for each sample, the score as the sum of the normalized (log2-median-
centered) expression values of the signature genes divided by the number of genes in the

signature.

ranking Computes gene signature scores for each sample by ranking the expression of signature
genes in the dataset and normalizing the score based on the total number of genes.

all Computes gene signature scores using all three methods (ssGSEA, logmedian, and ranking).
The function returns a list containing the results of each method.

Value

If a single method is chosen, a data frame containing the calculated scores for each gene signature,
including metadata if provided. If method = "all", a list is returned where each element corre-
sponds to a scoring method and contains the respective data frame of scores.

sample The sample identifier (matching the column names of the input data).

score The calculated gene signature score for the corresponding sample.

(metadata) Any additional columns from the metadata data frame provided by the user, if avail-

able.

CalculateScores_logmedian 9

Examples

Simulate positive gene expression data (genes as rows, samples as columns)
set.seed(42)

expr <- as.data.frame(matrix(rexp(6@, rate = 0.2), nrow = 6, ncol = 10))
rownames(expr) <- paste@("Gene"”, 1:6)

colnames(expr) <- paste@("Sample”, 1:10)

Simulate metadata for samples
metadata <- data.frame(

sample = colnames(expr),

Group = rep(c("A", "B"), each = 5)
)

Define two simple gene sets

gene_sets <- list(
Signaturel = c("Genel”, "Gene2", "Gene3"),
Signature2 = c("Gene4", "Gene5", "Gene6")

)

Calculate logmedian scores
scores_logmedian <- CalculateScores(
data = expr,
metadata = metadata,
gene_sets = gene_sets,
method = "logmedian”
)

head(scores_logmedian)

Calculate all score types
scores_all <- CalculateScores(
data = expr,
metadata = metadata,
gene_sets = gene_sets,
method = "all”

)
lapply(scores_all, head)

CalculateScores_logmedian
Calculate Gene Signature Scores using Log-Median Approach

Description

Computes log2-median-centered scores for each sample based on gene signature expression.

Usage

CalculateScores_logmedian(data, metadata = NULL, gene_sets)

Arguments

data A data frame of normalized counts where each row is a gene and each column
is a sample.

10 CalculateScores_Ranking

metadata A data frame containing sample metadata (optional). If provided, the resulting
scores will be merged with metadata.

gene_sets A named list representing gene sets. (Required)

 Unidirectional gene sets: Each element should be a vector of gene names
representing a signature. The names of the list elements serve as labels for
the signatures.

* Bidirectional gene sets: Each element should be a data frame with two
columns:
— First column: gene names.

— Second column: expected direction of enrichment (1 for upregulated,
-1 for downregulated).

Value

A list of data frames containing log-median scores for each signature. If metadata is provided, it is
merged with the scores.

Examples

Not run:

data <- matrix(rnorm(1000), nrow = 100, ncol = 10)

colnames(data) <- paste@("Sample_", 1:10)

rownames(data) <- paste@("Gene_", 1:100)

gene_sets <- list(
Signature_A = sample(rownames(data), 10),
Signature_B = data.frame(Gene = sample(rownames(data), 10), Direction =
sample(c(1, -1), 10, replace = TRUE))

)

scores <- CalculateScores_logmedian(data, gene_sets = gene_sets)

End(Not run)

CalculateScores_Ranking
Calculate Gene Signature Scores using Ranking Approach

Description

Computes gene signature scores for each sample by ranking the expression of signature genes in
the dataset and normalizing the score based on the total number of genes.

Usage

CalculateScores_Ranking(data, metadata = NULL, gene_sets)

Arguments
data A data frame where rows represent genes, columns represent samples, and val-
ues correspond to gene expression levels. (Required)
metadata A data frame containing sample metadata. The first column must contain sample

names. (Optional)

CalculateScores_Ranking 11

gene_sets A named list of gene sets. (Required) For unidirectional gene sets, provide a
named list where each element is a vector of gene names. For bidirectional gene
sets, provide a named list where each element is a data frame with two columns:

* The first column: gene names.

* The second column: expected direction (1 for upregulated, -1 for downreg-
ulated).

Details

 The function first validates inputs and extracts relevant genes from the dataset.
* For unidirectional signatures, it computes rankings based on gene expression levels.

* For bidirectional signatures, it computes separate rankings for upregulated and downregu-
lated genes, then calculates a final score by subtracting downregulated rankings from upregu-
lated rankings.

* The final scores are normalized by dividing by the total number of genes.

* This metric is not suitable to compare absolute values between different gene sets, i.e. should
be used only for relative comparisons between samples when using the same gene set.

Value

A named list of data frames, where each data frame contains:

* sample: Sample name.
* score: Normalized ranking score for the given gene signature.

* Additional metadata columns (if metadata is provided).

Examples

Not run:

Example dataset with 5 genes (rows) and 3 samples (columns)
set.seed(123)

data <- as.data.frame(matrix(runif(15, 1, 100), nrow = 5, ncol = 3))
rownames (data) <- paste@("Gene_", 1:5)

colnames(data) <- paste@("Sample_", 1:3)

Unidirectional gene set example
gene_sets <- list(Signaturel = c("Gene_1", "Gene_3", "Gene_5"))

Compute scores
scores <- CalculateScores_Ranking(data, gene_sets = gene_sets)

print(scores)

End(Not run)

12 CalculateScores_ssGSEA_ bidirectional

CalculateScores_ssGSEA
Calculate Gene Signature Scores using ssGSEA

Description

Computes an enrichment score for each gene signature in each sample using the single-sample Gene
Set Enrichment Analysis (ssGSEA).

Usage

CalculateScores_ssGSEA(data, metadata = NULL, gene_sets)

Arguments

data A data frame of normalized (non-transformed) counts where each row is a gene
and each column is a sample.

metadata A data frame containing sample metadata (optional).

gene_sets Gene set input. (Required)

If using unidirectional gene sets, provide a named list where each element is
a vector of gene names representing a gene signature. The names of the list
elements should correspond to the labels for each signature.

If using bidirectional gene sets, provide a named list where each element is a
data frame. The names of the list elements should correspond to the labels for
each signature, and each data frame should contain the following structure:

* The first column should contain gene names.

* The second column should indicate the expected direction of enrichment
(1 for upregulated genes, -1 for downregulated genes).

Value

A list of data frames containing sSGSEA scores for each signature.

CalculateScores_ssGSEA_bidirectional
Calculate ssGSEA Scores for Bidirectional Gene Signatures

Description
Computes single-sample Gene Set Enrichment Analysis (ssSGSEA) scores for each sample using a
bidirectional gene signature (separating upregulated and downregulated genes).

Usage

CalculateScores_ssGSEA_bidirectional(data, signature)

CalculateScores_ssGSEA_ bidirectional 13

Arguments
data A data frame of normalized (non-transformed) counts where rows are genes and
columns are samples.
signature A data frame with:
* The first column containing gene names.
* The second column (Signal) indicating the expected direction of enrich-
ment (1 for upregulated genes, -1 for downregulated genes).
Details

* The input gene expression matrix (data) is log2-transformed before applying ssGSEA.
» Upregulated and downregulated genes are analyzed separately.

* As both upregulated and downregulated genes are present, the final score is computed as:

|up_genes|

|down_genes|
SCOT€yp————— bt
[total_genes|

score = () - (Scoredown

[total_genes]|

* If no downregulated genes are present, only the upregulated score is used.

* The results are reshaped into a long-format data frame with one score per sample.

Value

A data frame containing:

* sample: Sample name.

* score: Final ssGSEA enrichment score (computed as the difference between upregulated and
downregulated scores).

Examples

Not run:

Example dataset with 5 genes (rows) and 3 samples (columns)
set.seed(123)

data <- matrix(runif(15, 1, 100), nrow = 5, ncol = 3)
rownames(data) <- paste@("Gene_", 1:5)

colnames(data) <- paste@("Sample_", 1:3)

Define a bidirectional gene signature
signature <- data.frame(Gene = c("Gene_1", "Gene_3", "Gene_5"),
Signal = c(1, -1, 1))

Compute scores
scores <- CalculateScores_ssGSEA_bidirectional(data, signature = signature)

print(scores)

End(Not run)

14 CalculateScores_ssGSEA_unidirectional

CalculateScores_ssGSEA_unidirectional
Calculate ssGSEA Scores for Unidirectional Gene Signatures

Description

Computes single-sample Gene Set Enrichment Analysis (ssSGSEA) scores for each sample using a
unidirectional gene signature.

Usage

CalculateScores_ssGSEA_unidirectional (data, signature)

Arguments
data A data frame of normalized (non-transformed) counts where rows are genes and
columns are samples.
signature A vector of gene names representing a unidirectional gene signature.
Value

A data frame containing:

* sample: Sample name.

* score: ssGSEA enrichment score for the gene signature.

Examples

Not run:

Example dataset with 5 genes (rows) and 3 samples (columns)
set.seed(123)

data <- matrix(runif(15, 1, 100), nrow = 5, ncol = 3)
rownames(data) <- paste@("Gene_", 1:5)

colnames(data) <- paste@("Sample_", 1:3)

Define a unidirectional gene signature
signature <- c("Gene_1", "Gene_3", "Gene_5")

Compute scores
scores <- CalculateScores_ssGSEA_unidirectional(data, signature = signature)

print(scores)

End(Not run)

calculateScore_logmedian_bidirectional 15

calculateScore_logmedian_bidirectional
Calculate Log-Median Scores for Bidirectional Gene Sets

Description

Computes gene signature scores considering both upregulated and downregulated genes separately,
then calculates a differential score by subtracting downregulated from upregulated scores.

Usage

calculateScore_logmedian_bidirectional(data, signature)

Arguments
data A data frame of normalized counts (genes as rows, samples as columns).
signature A data frame with:
* The first column containing gene names.
* The second column specifying enrichment direction (1 for upregulated, -1
for downregulated).
Value

A named vector with log-median-centered scores per sample.

calculateScore_logmedian_unidirectional

Calculate Log-Median Scores for Unidirectional Gene Sets

Description

Computes log-median-centered scores for gene signatures where all genes are expected to be en-
riched in the same direction, or when direction is not known.

Usage

calculateScore_logmedian_unidirectional(data, signature)

Arguments
data A data frame of normalized counts (genes as rows, samples as columns).
signature A vector of gene names or a data frame where the first column contains gene
names.
Value

A named vector with log-median-centered scores per sample.

16 CohenD_allConditions

CohenD_allConditions Compute Cohen\’s d for All Gene Signatures Across Conditions

Description

Computes Cohen\’s d effect sizes and corresponding p-values for all gene signatures using scores
calculated by various methods. The function first computes gene signature scores using CalculateScores
with the "all" option, flattens the results, and then computes pairwise comparisons for a specified
grouping variable.

Usage
CohenD_allConditions(
data,
metadata,
gene_sets,
variable,
mode = c("simple”, "medium”, "extensive")
)
Arguments
data A data frame of gene expression data, with genes as rows and samples as columns.
metadata A data frame containing sample metadata. The first column should contain sam-
ple identifiers matching the column names of data.
gene_sets A named list of gene sets. For unidirectional gene sets, each element is a vector
of gene names; for bidirectional gene sets, each element is a data frame where
the first column contains gene names and the second column indicates the ex-
pected direction (1 for upregulated, -1 for downregulated).
variable A string specifying the grouping variable in metadata used to compare scores
between conditions.
mode A string specifying the level of detail for contrasts. Options are:
e "simple”: Pairwise comparisons (e.g., A - B).
* "medium”: Pairwise comparisons plus comparisons against the mean of
other groups.
* "extensive": All possible groupwise contrasts, ensuring balance in the
number of terms on each side.
Value

A named list where each element corresponds to a gene signature. Each signature element is a list
with three components:

CohenD A data frame where rows are methods and columns are group contrasts (formatted as
\"Group1:Group2\"), containing the computed Cohen\’s d effect sizes.
PValue A data frame with the same structure as CohenD containing the corresponding p-values.

padj A data frame with the same structure as PValue containing the corresponding p-values cor-
rected using the BH method, for all signatures and contrasts, and by method.

CohenD_IndividualGenes 17

Examples

Not run:
Assume gene_data is your gene expression data frame, sample_metadata is your metadata, and
gene_sets is a named list of gene sets.
results <- CohenD_allConditions(data = gene_data, metadata = sample_metadata,
gene_sets = gene_sets, variable = "Condition")
Access Cohen's d for a specific signature:
results$Signature_A$CohenD

End(Not run)

CohenD_IndividualGenes
Cohen’s d Heatmap Function

Description

This function computes Cohen’s d for each gene based on gene expression data and sample meta-
data. For each gene, it compares the expression values between samples where condition_var
equals class (the positive class) versus the remaining samples. The resulting effect sizes are then
visualized as a heatmap.

Usage

CohenD_IndividualGenes(
data,
metadata,
genes = NULL,
condition_var,
class,
group_var = NULL,
title = NULL,
titlesize = 16,
params = list()

)
Arguments
data A data frame or matrix containing gene expression data, with genes as rows and
samples as columns.
metadata A data frame containing sample metadata. The first column should contain sam-
ple identifiers that match the column names of data.
genes A character vector specifying which genes to include. If NULL (default), all genes

in data are used. A warning is issued if more than 30 genes are selected.

condition_var A character string specifying the column name in metadata representing the
condition of interest. (Mandatory; no default.)

class A character string or vector specifying the positive class label for the condition.
(Mandatory; no default.)

18

group_var

title

titlesize

params

Details

CohenD_IndividualGenes

An optional character string specifying the column name in metadata used for
grouping samples. If not provided (NULL), all samples are treated as a single

group.

An optional character string specifying a custom title for the heatmap. If not
provided, a default title is generated.

A numeric value specifying the size of the title. Default is 14.

A list of additional parameters for customizing the heatmap. Possible elements

include:

cluster_rows Logical; if TRUE (default), rows are clustered.

cluster_columns Logical; if TRUE (default), columns are clustered.

colors A vector of length 2 of colors to be used for the minimum and maxi-
mum values of the color scale. Defaults to c("#FFFFFF", "#21975C"), but
note that the default mapping for Cohen’s d is set to a divergent scale.

limits A numeric vector of length 2 specifying the minimum and maximum
values for the color scale. If not provided, defaults to c(-2, 2).

name A character string for the legend title of the color scale. Defaultis "Cohen's
d".

row_names_gp Optional graphical parameters for row names (passed to Com-
plexHeatmap).

column_names_gp Optional graphical parameters for column names (passed to
ComplexHeatmap).

This function computes Cohen’s d for each gene by comparing the expression values between sam-
ples with condition_var == class and those that do not. The effect sizes are then visualized as a
heatmap using ComplexHeatmap. When group_var is not provided, all samples are treated as a

single group.

Value

Invisibly returns a list containing:

plot The ComplexHeatmap object of the Cohen’s d heatmap.

data A data frame with the calculated Cohen’s d values for each gene and group.

Examples

Simulate gene expression data (genes as rows, samples as columns)

set.seed(101)

expr <- matrix(abs(rnorm(40)), nrow = 4, ncol = 10) # 4 genes, 10 samples,

positive values

rownames(expr) <- paste@("Gene"”, 1:4)
colnames(expr) <- paste@("Sample”, 1:10)

Simulate sample metadata with a binary condition and a group variable
metadata <- data.frame(

Sample =

Condition

colnames(expr),
rep(c("Case”, "Control”), each = 5),

Group = rep(c("A", "B"), times = 5),
stringsAsFactors = FALSE

)

CohenF _allConditions 19

1. Cohen's d heatmap for all genes across groups
CohenD_IndividualGenes(

data = expr,

metadata = metadata,

genes = rownames(expr),

condition_var = "Condition”,
class = "Case"”,
group_var = "Group”,

title = "Cohen's d Heatmap (Case vs Control)"”,
params = list(limits = c(@, 2))
)

2. Cohen's d barplot (single group across all samples)
CohenD_IndividualGenes(

data = expr,

metadata = metadata,

genes = rownames(expr),

condition_var = "Condition"”,

class = "Case”,

group_var = NULL,

title = "Cohen's d Barplot (All Samples)”,

params = list(colors = c("#CCCCCC"))

CohenF_allConditions Compute Cohen’s ffor All Gene Signatures Across a Categorical Vari-
able

Description

Computes Cohen’s f effect sizes and corresponding p-values for all gene signatures using scores cal-
culated by multiple methods. The function first computes gene signature scores using CalculateScores
with the "all" option, flattens the results, and fits linear models using the specified variable to esti-
mate effect sizes.

Usage

CohenF_allConditions(data, metadata, gene_sets, variable)

Arguments

data A data frame of gene expression data, with genes as rows and samples as columns.

metadata A data frame containing sample metadata. The first column should contain sam-
ple identifiers matching the column names of data.

gene_sets A named list of gene sets. For unidirectional gene sets, each element is a vector
of gene names; for bidirectional gene sets, each element is a data frame where
the first column contains gene names and the second column indicates the ex-
pected direction (1 for upregulated, -1 for downregulated).

variable A string specifying the categorical variable in metadata used to model the gene

signature scores.

20 colRanking

Details

This function is designed for use with categorical variables, where the goal is to evaluate the overall
group effect (e.g., using ANOVA) across multiple levels.

Value

A named list where each element corresponds to a gene signature. Each signature element is a list
with three components:

CohenF A data frame where rows are scoring methods and columns are the variable used in the
linear model (usually one column), containing the computed Cohen’s f effect size.
PValue A data frame of the corresponding raw p-values from the linear model for each method.

padj A data frame of adjusted p-values (Benjamini-Hochberg method) across signatures and con-
trasts, per method.

cohen_d Compute Cohen\’s d Effect Size

Description
Computes the absolute Cohen\’s d effect size between two numeric vectors. This function returns
the absolute value of the difference in means divided by the pooled standard deviation.

Usage

cohen_d(x, y)

Arguments
X A numeric vector representing the values for group 1.
y A numeric vector representing the values for group 2.
Value

A numeric value representing Cohen\’s d. Returns NA if either group has fewer than two observa-
tions or if the pooled standard deviation is zero.

colRanking Compute Independent Column-wise Ranks of Matrix Elements

Description

This function computes the rank of each element in every column of a numeric matrix indepen-
dently. For each column, the smallest element receives a rank of 1, the second smallest a rank of 2,
and so on.

Usage

colRanking(x, ties.method = "average")

compute_cohens_{_pval 21

Arguments
X A numeric matrix.
ties.method A character string specifying the method used for tie-breaking. Options include
"average", "first”, "random”, "max", or "min”. The default is "average".
Value

A numeric matrix of the same dimensions as x where each column contains the ranks of the corre-
sponding column’s elements.

compute_cohens_f_pval Compute Cohen’s f and p-value for a given model and predictor

Description
This function calculates the Cohen’s f effect size and the corresponding p-value for a given linear
model or ANOVA model based on the predictor variable type (numeric or categorical).

Usage

compute_cohens_f_pval(model, type)

Arguments
model A linear model (1m) or ANOVA model (aov) fitted to the data.
type A string indicating whether the predictor is numeric or categorical. Options are
"Numeric" or "Categorical".
Details

Cohen’s f effect size is computed from the eta-squared (n?) value. For numeric predictors (con-

tinuous variables), the p-value is obtained from the t-test in summary(1m(...)). For categorical

predictors (binary or multi-level), the p-value is obtained from the F-test in anova(1m(...)).
Value

A named vector with two elements:

¢ Cohen_f: The Cohen’s f effect size value.

* P_Value: The p-value from the statistical test.

22 compute_stat_tests

compute_cohen_d Compute Pairwise Cohen\’s d and P-Values

Description

Computes Cohen\’s d effect sizes and corresponding p-values for all pairwise comparisons of a
grouping variable in a data frame.

Usage
compute_cohen_d(
dfScore,
variable,
quantitative_var = "score",
mode = c("simple”, "medium”, "extensive")
)
Arguments
dfScore A data frame containing at least one numeric column and a grouping variable.
Output from flatten_results.
variable A string specifying the name of the categorical grouping column in df Score.

quantitative_var
A string specifying the name of the numeric column (default is "score”).

Value

A data frame with the following columns:

Groupl The first group in the pair.
Group2 The second group in the pair.
CohenD The computed Cohen\’s d effect size for the comparison.

PValue The p-value from a t-test comparing the two groups.

compute_stat_tests Compute Statistical Tests for Variable Associations with a Target Vari-
able

Description

Performs statistical tests to assess the relationship between predictor variables and a target variable,

selecting appropriate methods based on variable types. Returns a list of data frames containing
metric values and p-values.

compute_stat_tests 23

Usage
compute_stat_tests(
df,
target_var,
cols = NULL,
numeric = "pearson”,
categorical_bin = "t.test"”,
categorical_multi = "anova”
)
Arguments
df A data frame containing the target variable and predictors.
target_var A string specifying the dependent variable.
cols Optional. A character vector of predictor variables. If NULL, all variables except
target_var are used.
numeric The correlation method for numeric predictors. Options: "pearson” (default),

"spearman”, "kendall”.
categorical_bin
The statistical test for binary categorical variables. Options: "t.test"” (default)

or "wilcoxon".
categorical_multi

The statistical test for multi-level categorical variables. Options: "anova” (de-
fault) or "kruskal-wallis".

Details

Variable Classification:
¢ Numeric: Continuous numeric or integer variables with more than 10 unique values.
» Categorical Bin: Binary categorical variables (factors, characters, or integers with exactly 2
unique values).
» Categorical Multi: Categorical variables with more than 2 unique values (up to 10 levels
recommended). A warning is issued for categorical variables with more than 10 unique
values.

Statistical Tests Applied:
* Numeric Predictors: Pearson, Spearman, or Kendall correlation.
» Categorical Bin Predictors: T-test or Wilcoxon rank-sum test.

¢ Categorical Multi Predictors: ANOVA (default) or Kruskal-Wallis test. If ANOVA is used,
Tukey’s HSD post-hoc test is performed for multiple comparisons.

The function automatically detects variable types and applies the appropriate test. If a categor-
ical variable has more than 10 unique levels, a warning is issued. If an invalid statistical test is
requested, the function stops with an error message.

Value
A named list (one entry per variable being analysed) where each element is a data frame with:

e Metric: The test statistic (correlation coefficient, t-statistic, ANOVA F-value, etc.).
 p-value: The significance value of the test.

» For Categorical Multi, multiple rows are included for pairwise comparisons (Tukey HSD
results).

24 CorrelationHeatmap

Examples

Not run:

df <- data.frame(
score = c(80, 85, 90, 95, 100),
age = c(25, 30, 35, 40, 45),

gender = c("Male”, "Female"”, "Male"”, "Female"”, "Male"),
group = ‘FaCtOr(C(”A", HBH’ HA"’ "BH’ HCH))
)
results <- compute_stat_tests(df, target_var = "score")
print(results)

End(Not run)

CorrelationHeatmap CorrelationHeatmap: Generate correlation heatmaps with optional
grouping

Description

This function generates correlation heatmaps using the ComplexHeatmap package. It allows users to
compute correlation matrices for a set of genes and visualize them in a heatmap. If a grouping vari-
able is provided (separate.by), multiple heatmaps are created, each corresponding to a different
level of the grouping variable.

Usage

CorrelationHeatmap(
data,
metadata = NULL,
genes,
separate.by = NULL,
method = c("pearson”, "spearman”, "kendall"),
colorlist = list(low = "blue”, mid = "white"”, high = "red"),
limits_colorscale = NULL,
widthTitle = 16,
title = NULL,
cluster_rows = TRUE,
cluster_columns = TRUE,
detailedresults = FALSE,
legend_position = c("right”, "top"),
titlesize = 20,
show_row_names = TRUE,
show_column_names = TRUE

)
Arguments
data A numeric counts data frame where rows correspond to genes and columns to
samples.
metadata A data frame containing metadata. Required if separate.by is specified. The

first column should be the sample ID.

CorrelationHeatmap 25

genes A character vector of gene names to be included in the correlation analysis.

separate.by A character string specifying a column in metadata to separate heatmaps by
(e.g., "Condition").

method Correlation method: "pearson” (default), "spearman”, or "kendall”.

colorlist A named list specifying the colors for the heatmap (low, mid, high), correspond-
ing to the limits of the colorscale.

limits_colorscale
A numeric vector of length 3 defining the limits for the color scale (default: min,

0, max).
widthTitle Numeric value controlling the width of the plot title. Default is 16.
title A string specifying the main title of the heatmap(s).

cluster_rows Logical; whether to cluster rows (default = TRUE).

cluster_columns
Logical; whether to cluster columns (default = TRUE).
detailedresults

Logical; if TRUE, additional analysis results are stored in the output list (default
= FALSE).

legend_position
Character; position of the legend ("right” - default

e or "top").
titlesize Numeric; font size of the heatmap title (default = 20).

show_row_names A character string specifying whether row names (genes) should be displayed.
show_column_names

A character string specifying whether column names (samples) should be dis-
played.

Value
A list containing:
data Correlation matrices for each condition (or a single matrix if separate.by = NULL).

plot The generated heatmap object(s).

aux A list containing additional analysis results if detailedresults = TRUE.

If separate.by is specified, the aux list contains one element per condition. Each element is a list
with:

* method: The correlation method used.

e corrmatrix: The computed correlation matrix for that condition.

* metadata: The subset of metadata corresponding to the condition.

* heatmap: The ComplexHeatmap object before being drawn.
If separate.by = NULL (single heatmap case), the aux list contains:

e method: The correlation method.

e corrmatrix: The computed correlation matrix.

26

Examples

counts_example

Simulate gene expression data (genes as rows, samples as columns)

set.seed(1)

expr <- as.data.frame(matrix(runif (60, min
rownames(expr) <- paste@("Gene"”, 1:6)
colnames(expr) <- paste@("”Sample”, 1:10)

Simulate metadata with a group variable
metadata <- data.frame(

SampleID = colnames(expr),

Condition = rep(c("A", "B"), each = 5)
)

Basic heatmap for selected genes
res <- CorrelationHeatmap(

data = expr,

genes = rownames(expr)

)

Heatmap separated by condition
res_sep <- CorrelationHeatmap(
data = expr,

metadata = metadata,

genes = rownames(expr),
separate.by = "Condition”

)

=0, max = 10), nrow = 6, ncol = 10))

counts_example

Gene Expression Counts for Marthandan et al. (2016) RNA-Seq Data

Description

A numeric matrix containing filtered and normalized (non log-transformed) gene expression data
from the Marthandan et al. (2016) study (GEO accession GSE63577).

Usage

data(counts_example)

Format

A numeric matrix with rows as genes (gene symbols) and columns as samples (sample IDs).

Details

Raw FASTAQ files were downloaded using fasterq-dump (v2.11.0) and processed in a reproducible
conda environment (Python v3.11.5). Quality control was conducted using FastQC (v0.12.1) and

create_contrast_column 27

summarised with MultiQC (v1.14). Pseudo-alignment to the RefSeq transcriptome (NCBI release
109) was performed using kallisto (v0.44.0). Genes with low expression (mean count < 70 in all
conditions) were filtered out. Count normalization factors were calculated with edgeR: : calcNormFactors.

Intermediate time points for HFF and MRCS5 cell lines were excluded, resulting in a final dataset
with 45 high-quality samples across proliferative, quiescent, and senescent conditions.

For illustration and package size reduction, genes with variance in the bottom 10% across samples
were removed, retaining the 90% most variable genes in the dataset.

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63577

References

Marthandan S, Priebe S, Baumgart M, Groth M et al. Similarities in Gene Expression Profiles
during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts. Biomed Res
Int 2015;2015:731938. PMID: 26339636

Marthandan S, Baumgart M, Priebe S, Groth M et al. Conserved Senescence Associated Genes and
Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One 2016;11(5):e0154531.
PMID: 27140416

create_contrast_column
Create Contrast Column in Metadata

Description

This function extracts and processes contrast groups from a given contrast string, then assigns con-
trast labels to a metadata subset based on the variable of interest.

Usage

create_contrast_column(metadata, variable_name, contrast)

Arguments

metadata A data frame containing sample metadata.

variable_name A character string specifying the column name in metadata that represents the
variable of interest.

contrast A character string representing the contrast in the form "(A + B) - (C + D)"
(e.g.).

Value

A subset of metadata with an added cohentest column, indicating group membership based on
the contrast.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63577

28 ExpressionHeatmap

ExpressionHeatmap ExpressionHeatmap: Generate an expression heatmap with customiz-
able sample annotations and separate legend positions

Description

This function creates a heatmap of Z-score scaled gene expression using the ComplexHeatmap pack-
age. Genes are displayed as rows and samples as columns. A color annotation bar is added on top
based on specified metadata columns. The user can control the position of the heatmap color scale
(scale_position) and the annotation legend (legend_position) independently.

Usage
ExpressionHeatmap(
data,
metadata = NULL,
genes,

annotate.by = NULL,

annotation_colors = NULL,

colorlist = list(low = "blue”, mid = "white"”, high = "red"),
cluster_rows = TRUE,

cluster_columns = TRUE,

title = NULL,

titlesize = 20,

scale_position = c("right"”, "top”, "bottom"),
legend_position = c("top”, "right"”, "bottom"),
show_row_names = TRUE,

show_column_names = FALSE

)
Arguments

data A numeric expression matrix where rows correspond to genes and columns to
samples.

metadata A data frame containing metadata for the samples. It must contain a column
named "Sample” with sample IDs matching the column names of data.

genes A character vector of gene names to include in the heatmap.

annotate.by A character vector of metadata column names to be used for sample annotations

(e.g., c("Condition”, "Batch™)). If provided, a color bar is added on top.
annotation_colors

Optional. A named list where each element corresponds to an annotation vari-

able and provides a named vector mapping each unique level to a color. If not

provided, default Brewer palettes are used.

colorlist A named list specifying the colors for the heatmap (for scaled expression) with
elements low, mid, and high. Default is 1ist(low = "blue"”, mid = "white",
high="red").

cluster_rows Logical; whether to cluster rows (default = TRUE).

cluster_columns
Logical; whether to cluster columns (default = TRUE). If FALSE, the columns are
reordered based on the values in annotate. by.

ExpressionHeatmap 29

title A string specifying the main title of the heatmap.
titlesize Numeric; font size of the heatmap title (default = 20).

scale_position A character string specifying the position of the heatmap color scale. Options are
"right"” (default), "top"”, or "bottom”. The scale legend will adopt a vertical
orientation if on the right and horizontal if on top or bottom.

legend_position
A character string specifying the position of the annotation legend. Options are
"top” (default), "right”, or "bottom”.

show_row_names A character string specifying whether row names (genes) should be displayed.
show_column_names

A character string specifying whether column names (samples) should be dis-
played.

Value

Invisibly returns a list with:

data Scaled expression matrix (Z-scores).

plot Generated ComplexHeatmap object.

Examples

Simulate gene expression data (genes as rows, samples as columns)
set.seed(1)

expr <- matrix(rnorm(25), nrow = 5, ncol = 5)

rownames(expr) <- paste@("Gene"”, 1:5)

colnames(expr) <- paste@("Sample", 1:5)

Simulate metadata for samples

metadata <- data.frame(
Sample = colnames(expr),
Condition = rep(c("A", "B"), length.out = 5),
Batch = rep(c("X", "Y"), length.out = 5),
stringsAsFactors = FALSE

)

Define annotation colors for the metadata variables
annotation_colors <- list(

Condition = c(A = "orange", B = "purple”),

Batch = c¢(X = "green”, Y = "blue")
)

Generate the expression heatmap
ExpressionHeatmap(
data = expr,
metadata = metadata,
genes = rownames(expr),
annotate.by = c("Condition”, "Batch"),
annotation_colors = annotation_colors,
cluster_columns = FALSE,

title = "Demo Expression Heatmap”,
scale_position = "right",
legend_position = "top",

titlesize = 14

30

FPR_Simulation

flatten_results Flatten a Nested List of Results into a Data Frame

Description

Converts a nested list (where the first level is a method, the second level is a gene signature, and the
third level is a data frame) into a single data frame. Additional columns for method and signature

are added to the data frame.

Usage

flatten_results(nested_list)

Arguments

nested_list A nested list with structure: 1list(method = list(signature = data.frame(...

Value

A data frame combining all the nested data frames, with added columns method and signature.

FPR_Simulation FPR Simulation Plot

Description

This function simulates false positive rates (FPR) by generating simulated gene signatures and
comparing the observed effect size values (Cohen’s d or f) of the original signatures to those from
simulated signatures. The effect size is computed using three scoring methods (ssGSEA, logmedian,
and ranking), and the results are visualized as violin plots with overlaid observed values.

Usage

FPR_Simulation(
data,
metadata,
original_signatures,
Variable,
gene_list = NULL,
number_of_sims = 100,
title = NULL,
widthTitle = 30,
titlesize = 12,
pointSize = 2,
labsize = 10,

mode = c("none"”, "simple”, "medium”, "extensive"),

ColorValues = NULL,
ncol = NULL,
nrow = NULL

FPR_Simulation 31

Arguments
data A data frame or matrix of gene expression values (genes as rows, samples as
columns).
metadata A data frame containing metadata for the samples (columns of data).

original_signatures
A named list of gene signatures. Each element can be either:
* A vector of gene names (unidirectional), or

* A data frame with columns "Gene" and "Signal” for bidirectional signa-
tures.

Variable A column in metadata indicating the variable of interest for grouping or regres-
sion. This can be categorical or numeric.

gene_list A character vector of gene names from which simulated signatures are generated
by sampling. Default is all genes in data.

number_of_sims Integer. Number of simulated gene signatures to generate per original signature.

title Optional title for the overall plot.

widthTitle Integer. Max width for wrapping the title text (default: 30).
titlesize Numeric. Font size for the title text (default: 12).

pointSize Numeric. Size of the points representing simulations (default: 2).
labsize Numeric. Font size for axis labels (default: 10).

mode A string specifying the level of detail for contrasts. Options are:

* "simple”: Performs the minimal number of pairwise comparisons between
individual group levels (e.g., A - B, A - C). Default.

* "medium”: Includes comparisons between one group and the union of all
other groups (e.g., A - (B + C + D)), enabling broader contrasts beyond
simple pairs.

* "extensive": Allows for all possible algebraic combinations of group lev-
els (e.g., (A + B) - (C + D)), supporting flexible and complex contrast defi-
nitions.

* "none”: Comparing all levels of Variable (default)

ColorValues Named vector of colors for plot points, typically Original and Simulated. If
NULL, default colors are used.

ncol Integer. Number of columns for arranging signature plots in a grid layout. If
NULL, layout is auto-calculated.

nrow Integer. Number of rows for arranging signature plots in a grid layout. If NULL,
layout is auto-calculated.

Details

The function supports both categorical and numeric variables:

* For categorical variables, Cohen’s d is used and contrasts are defined by the mode parameter,
if mode!=none.

* For numeric variables, Cohen’s f is used to quantify associations through linear modeling.
For each original gene signature, a number of simulated signatures are created by sampling genes

from gene_list. Each simulated signature is scored using three methods, and its effect size is com-
puted relative to the variable of interest. The resulting distributions are shown as violins, overlaid

32 generate_all_contrasts

with the observed value from the original signature. A red dashed line marks the 95th percentile of
the simulated distribution per method.

The function internally uses CohenD_allConditions() and CohenF_allConditions() depending
on variable type.

Value

Invisibly returns a list containing:

plot A combined ggplotusing ggarrange; one violin plot is generated per signature and contrast.
Observed values are highlighted and compared to the simulated distribution. Significance
(adjusted p-value <= 0.05) is indicated by point shape.

data A list of data frames, one for each signature, containing the original and simulated effect
sizes.

Examples

Simulate gene expression matrix (genes as rows, samples as columns)
set.seed(444)

expr <- as.data.frame(matrix(abs(rnorm(60)), nrow = 6, ncol = 10))
rownames (expr) <- paste@("Gene”, 1:6)

colnames(expr) <- paste@("”Sample”, 1:10)

Simulate sample metadata with a categorical variable
metadata <- data.frame(
sample = colnames(expr),
Condition = rep(c("A", "B"), each = 5),
stringsAsFactors = FALSE
)

Define two gene signatures (as character vectors)
signatures <- list(

Sigl = c("Genel"”, "Gene2", "Gene3"),

Sig2 = c("Gene4", "Geneb5")
)

Run FPR simulation (with fewer sims for speed in example)
FPR_Simulation(

data = expr,

metadata = metadata,

original_signatures = signatures,

Variable = "Condition”,

number_of_sims = 20,

title = "FPR Simulation Example”,

pointSize = 3

generate_all_contrasts
Generate All Possible Unique Contrasts Between Groups

genesets_example 33

Description

This function creates statistical contrasts between levels of a categorical variable. Users can choose
the level of complexity:

e "simple": Pairwise comparisons (e.g., A - B).

* "medium”: Pairwise comparisons plus comparisons against the mean of other groups.

* "extensive"”: All possible groupwise contrasts, ensuring balance in the number of terms on

each side.
Usage
generate_all_contrasts(levels, mode = "simple")
Arguments
levels A character vector of unique group levels.
mode A string specifying the level of detail for contrasts. Options are "simple” (pair-
wise only), "medium” (pairwise + vs. mean of others), or "extensive” (all
possible balanced groupwise contrasts). Default is "extensive”.
Value

A character vector of unique contrast expressions.

Examples
Not run:
levels <- c("A”, "B", "C", "D")
generate_all_contrasts(levels, mode = "simple") # Pairwise only
generate_all_contrasts(levels, mode = "medium") # Pairwise + mean comparisons
generate_all_contrasts(levels, mode = "extensive"”) # All balanced contrasts
End(Not run)
genesets_example Example Gene Sets for Cellular Senescence

Description

Example Gene Sets for Cellular Senescence

Usage

data(genesets_example)

34 geneset_similarity

Format

A named list of length 3:
Literature_Senescence Character vector of gene symbols. A small, curated gene set of commonly
reported senescence markers, with directionality (+1 or -1).

REACTOME_Senescence Character vector of gene symbols. The REACTOME_CELLULAR_SENESCENCE
from MSigDB database No directionality.

HernandezSegura A data frame with columns gene and direction. A gene set from Hernandez-
Segura et al. (2017), with directionality (+1 or -1).

References

Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking Tran-
scriptional Heterogeneity in Senescent Cells. Curr Biol. 2017 Sep 11;27(17):2652-2660.e4. doi:
10.1016/j.cub.2017.07.033. Epub 2017 Aug 30. PMID: 28844647; PMCID: PMC5788810.

geneset_similarity Plot Signature Similarity via Jaccard Index or Fisher’s Odds Ratio

Description

Visualizes similarity between user-defined gene signatures and either other user-defined signatures
or MSigDB gene sets, using either the Jaccard index or Fisher’s Odds Ratio. Produces a heatmap
of pairwise similarity metrics.

Usage

geneset_similarity(
signatures,
other_user_signatures = NULL,
collection = NULL,
subcollection = NULL,
metric = c("jaccard”, "odds_ratio"),
universe = NULL,
or_threshold = 1,
pval_threshold = 0.05,
limits = NULL,
title_size = 12,
color = "#B44141",

neutral_color = "white",
cold_color = "#4173B4",
title = NULL,

jaccard_threshold = 0,
msig_subset = NULL,
width_text = 20,
na_color = "grey90"

geneset_similarity 35

Arguments

signatures A named list of character vectors representing reference gene signatures.
other_user_signatures
Optional. A named list of character vectors representing other user-defined sig-
natures to compare against.
collection Optional. MSigDB collection name (e.g., "H" for hallmark, "C2" for curated
gene sets). Use msigdbr::msigdbr_collections() for the available options.
subcollection Optional. Subcategory within an MSigDB collection (e.g., "CP:REACTOME").
Use msigdbr::msigdbr_collections() for the available options.

metric Character. Either "jaccard" or "odds_ratio".

universe Character vector. Background gene universe. Required for odds ratio.

or_threshold (only if method == "odds_ratio" only) Numeric. Minimum Odds Ratio required
for a gene set to be included in the plot. Default is 1.

pval_threshold (only if method == "odds_ratio" only) Numeric. Maximum adjusted p-value
required for a gene set to be included in the plot. Default is 0.05.

limits Numeric vector of length 2. Limits for color scale. If NULL, is automatically set
to ¢(0,1) for Jaccard or the range of OR for odds ratio.

title_size Integer specifying the font size for the plot title. Default is 12.

color Character. The color for the maximum of the scale. Default is red.

* If method = "jaccard”, the scale goes from neutral_color to color.

» If method = "odds_ratio” and any OR >= 1, the scale ends at color.

e If method = "odds_ratio” and all OR <= 1, color is not used; instead,
the scale runs from cold_color (minimum) to neutral_color (OR =1, if
present; otherwise neutral_color is the maximum).

neutral_color Character. The neutral reference color. Default is white.

e If method = "jaccard”, this is the minimum of the scale.

* If method = "odds_ratio” and any OR >= 1, this corresponds to OR =1 if
such values exist; otherwise it is the minimum of the scale.

 If method = "odds_ratio” and all OR <= 1, this corresponds to OR =
1 if such values exist; otherwise it is the maximum of the scale (with
cold_color as the minimum).

cold_color Character. The color for values below OR = 1 (only used when method =
"odds_ratio”). Default is blue.

e Ifmethod = "odds_ratio"” and any OR < 1, the scale runs from cold_color
(minimum) to neutral_color (OR =1 if present; otherwise neutral_color
is the maximum).

* Ignored if method = "jaccard” or if all OR >= 1.

title Optional. Custom title for the plot. If NULL, the title defaults to "Signature

Overlap”.

jaccard_threshold
(only if method == "jaccard" only) Numeric. Minimum Jaccard index required
for a gene set to be included in the plot. Default is @.

msig_subset Optional. Character vector of MSigDB gene set names to subset from the spec-
ified collection. Useful to restrict analysis to a specific set of pathways. If
supplied, other filters will apply only to this subset. Use "collection = "all" to
mix gene sets from different collections.

width_text Integer. Character wrap width for labels.

na_color Character. Color for NA values in the heatmap. Default is "grey90".

36 getRanking

Value

Invisibly returns a list containing:

plot The ggplot2 object of the similarity heatmap.

data The data frame object containing the similarity scores per pair of gene sets.

Examples

Create two simple gene signatures

sigl <- c("TP53", "BRCA1", "MYC", "EGFR", "CDK2")

sig2 <- c("ATXN2", "FUS", "MTOR", "CASP3")

signatures <- list(SignatureA = sigl, SignatureB = sig2)

Compare the signatures using the Jaccard index
plt <- geneset_similarity(

signatures = signatures,

metric = "jaccard”,

collection = "H",

jaccard_threshold = 0.01
)

Print the plot (will show a small heatmap)
print(plt)

0dds ratio example (requires universe)
gene_universe <- unique(c(
sigl, sig2,
msigdbr::msigdbr(species = "Homo sapiens”, category = "C2")$gene_symbol

))

plt_or <- geneset_similarity(
signatures = signatures,

metric = "odds_ratio”,
universe = gene_universe,
collection = "H"

)
print(plt_or)

getRanking Get Gene Expression Ranking

Description

Computes the rank sum of a given gene set within a sample based on its expression level.

Usage

getRanking(data, sample, geneset)

GSEA_ VariableAssociation 37

Arguments
data A data frame where rows represent genes, columns represent samples, and val-
ues correspond to expression levels.
sample A character string specifying the sample name (column in data).
geneset A vector of gene names to be ranked.
Details

 The function orders gene expression levels from lowest to highest.
* It then determines the rank of each gene in geneset and returns the sum of these ranks.

* If some genes are missing, they are omitted from the ranking calculation.

Value

The sum of the ranks of the genes found in the sample.

Examples

Not run:

Example dataset with 5 genes and 3 samples

set.seed(123)

data <- as.data.frame(matrix(runif(15, 1, 100), nrow = 5, ncol = 3))
rownames (data) <- paste@("Gene_", 1:5)

colnames(data) <- paste@("”Sample_", 1:3)

Define gene set
geneset <- c("Gene_1", "Gene_3", "Gene_5")

Compute ranking for Sample_1
rank_score <- getRanking(data, "Sample_1", geneset)

print(rank_score)

End(Not run)

GSEA_VariableAssociation
GSEA Variable Association

Description

This function assesses the association between gene expression (or another molecular score) and
metadata variables using differential expression (DE) analysis and Gene Set Enrichment Analysis
(GSEA). It generates all possible contrasts for categorical variables and uses linear modeling for
continuous variables.

38

Usage

GSEA_ VariableAssociation

GSEA_VariableAssociation(

data,

metadata,

cols,

stat = NULL,

mode = c("simple”, "medium”, "extensive"),
gene_set,

nonsignif_color = "grey”,
signif_color = "red",
saturation_value = NULL,
sig_threshold = 0.05,
widthlabels = 18,

labsize = 10,

titlesize = 14,

pointSize = 5,

ignore_NAs = FALSE,
printplt = TRUE

Arguments

data
metadata

cols
stat

mode

gene_set

A matrix or data frame containing gene expression data, where rows represent
genes and columns represent samples.

A data frame containing sample metadata with at least one column correspond-
ing to the variables of interest.

A character vector specifying the metadata columns (variables) to analyse.

Optional. The statistic to use for ranking genes before GSEA. If NULL, it is
automatically determined based on the gene set:

» "B" for gene sets with no known direction (vectors).

e "t" for unidirectional or bidirectional gene sets (data frames).

* If provided, this argument overrides the automatic selection.

A string specifying the level of detail for contrasts. Options are:

e "simple”: Performs the minimal number of pairwise comparisons between
individual group levels (e.g., A - B, A - C). Default.

* "medium”: Includes comparisons between one group and the union of all
other groups (e.g., A - (B + C + D)), enabling broader contrasts beyond
simple pairs.

* "extensive": Allows for all possible algebraic combinations of group lev-

els (e.g., (A + B) - (C + D)), supporting flexible and complex contrast defi-
nitions.

A named list defining the gene sets for GSEA. (Required)
* If using unidirectional gene sets, provide a list where each element is a
vector of gene names representing a signature.

* If using bidirectional gene sets, provide a list where each element is a data
frame:

¢ The first column should contain gene names.

* The second column should indicate the expected direction of enrichment
(1 for upregulated, -1 for downregulated).

Heatmap_Cohen 39

nonsignif_color
A string specifying the color for the middle of the adjusted p-value gradient.
Default is "white". Lower limit correspond to the value of sig_threshold.
signif_color A string specifying the color for the low end of the adjusted p-value gradient
until the value chosen for significance (sig_threshold). Default is "red”.
saturation_value
A numeric value specifying the lower limit of the adjusted p-value gradient,
below which the color will correspond to signif_color. Default is the results’
minimum, unless that value is above the sig_threshold; in that case, it is 0.001.
sig_threshold A numeric value specifying the threshold for significance visualization in the
plot. Default: 0. 05.

widthlabels An integer controlling the maximum width of contrast labels before text wrap-
ping. Default: 18.

labsize An integer controlling the axis text size in the plot. Default: 10.

titlesize An integer specifying the plot title size. Default: 14.

pointSize Numeric. The size of points in the lollipop plot (default is 5).

ignore_NAs Boolean (default: FALSE). Whether to ignore NAs in the metadata when fitting

the linear model. If TRUE, rows with any NAs will be removed before analysis,
leading to a loss of data to be fitted in the model.

printplt Boolean specifying if plot is to be printed. Default: TRUE.

Value
A list with two elements:

* data: A data frame containing the GSEA results, including normalized enrichment scores
(NES), adjusted p-values, and contrasts.

* plot: A ggplot2 object visualizing the GSEA results as a lollipop plot.

Heatmap_Cohen Generate Heatmaps for Cohen’s d Effect Sizes using ggplot2

Description

This function computes Cohen’s d effect sizes and corresponding p-values for multiple gene sig-
natures and produces individual heatmaps. Each heatmap displays cell text showing the Cohen’s d
value along with its p-value. The heatmaps are then arranged in a grid layout.

Usage

Heatmap_Cohen(
cohenlist,
nrow = NULL,
ncol = NULL,
limits = NULL,
widthTitle = 22,
titlesize = 12,
ColorValues = NULL,
title = NULL

40

Arguments

cohenlist

nrow

ncol

limits

widthTitle

titlesize

ColorValues

title

Details

Heatmap_Cohen

A named list where each element corresponds to a gene signature. Output of
CohenD_allConditions. Each signature element is a list with three compo-
nents:

CohenD A data frame where rows are methods and columns are group con-
trasts (formatted as "Groupl:Group2"), containing the computed Cohen\’s
d effect sizes.

PValue A data frame with the same structure as CohenD containing the corre-
sponding p-values.

padj A data frame with the same structure as PValue containing the corre-
sponding p-values corrected using the BH method, for all signatures and
contrasts, and by method.

Optional. An integer specifying the number of rows in the heatmap grid. If
NULL, the number of rows is computed automatically.

Optional. An integer specifying the number of columns in the heatmap grid. If
NULL, the number of columns is computed automatically.

Optional. A numeric vector of length 2 specifying the color scale limits (e.g.,
c(min, max)). If NULL, the limits are determined from the data.

An integer specifying the width used for wrapping gene set signature names in
the heatmap titles. Default is 22.

An integer specifying the text size for each of the heatmap titles. Default is 12.

A character vector specifying the colors for the gradient fill in the heatmaps.
Default is c("#F9F4AE", "#B44141").

Title for the grid of plots.

The function first calculates Cohen\’s d effect sizes and corresponding p-values for each gene signa-
ture using CohenD_allConditions (assumed to be defined elsewhere in the package). The resulting
matrices are converted to a long format so that each cell in the heatmap can display the Cohen\’s d
value and its associated p-value (formatted as Cohen\'s d (p-value)).

The heatmaps are then adjusted to display axis text and ticks only for the left-most column and
bottom row, and combined into a grid layout. If neither nrow nor ncol are specified, the layout is
automatically determined to best approximate a square grid.

Value

A list with two elements:

plt A combined heatmap arranged in a grid using ggpubr: : ggarrange.

data A list containing the Cohen\’s d effect sizes and p-values for each gene signature, as computed
by CohenD_allConditions.

See Also

CohenD_allConditions, CohenF_allConditions

identify_variable_type 41

identify_variable_type
Identify Variable Types

Description

Determines the type of each variable in a given data frame. Variables are classified as "Numeric",
"Categorical Bin" (binary categorical), or "Categorical Multi" (multi-level categorical). Warnings
are issued if categorical variables have more than 10 unique values.

Usage

identify_variable_type(df, cols = NULL)

Arguments
df A data frame containing the variables to classify.
cols A character vector of column names to consider.
Value

A named character vector where names correspond to column names and values indicate the vari-
able type: "Numeric", "Categorical Bin", or "Categorical Multi".

Examples

Not run:

df <- data.frame(
age = c(25, 30, 35, 40),
gender = c("Male”, "Female"”, "Female”, "Male"),
score = c(80, 85, 90, 95)

)

identify_variable_type(df)

End(Not run)

IndividualGenes_Violins
Generate Violin Plots for Individual Genes

Description

This function creates violin plots of gene expression data with jittered points and optional faceting.
It allows visualization of individual gene expression distributions across sample groups.

42 IndividualGenes_ Violins

Usage
IndividualGenes_Violins(

data,

metadata = NULL,
genes,
GroupingVariable,

plot = TRUE,

ncol = NULL,

nrow = NULL,

divide = NULL,
invert_divide = FALSE,
ColorValues = NULL,
pointSize = 2,
ColorVariable = NULL,
title = NULL,
widthTitle = 16,
y_limits = NULL,
legend_nrow = NULL,

xlab = NULL,
colorlab = NULL
)
Arguments

data A data frame containing gene expression values with row names as gene names
and column names as sample IDs. (Required)

metadata An optional data frame containing sample metadata. The first column must
match the sample IDs from data. (Optional)

genes A character vector of gene names to be plotted. (Required)

GroupingVariable
A character string specifying the column in metadata used for grouping samples
on the x-axis. (Required)

plot A logical value indicating whether to print the plot. If FALSE, only the output
list is returned. Default is TRUE. (Optional)

ncol An optional numeric value specifying the number of columns in the facet grid.
If not provided, it is computed automatically. Only applicable if divide is NULL.
(Optional)

nrow An optional numeric value specifying the number of rows in the facet grid. If
not provided, it is computed automatically. Only applicable if divide is NULL.
(Optional)

divide An optional character string specifying a column in metadata to be used for

facetting, besides faceting by genes. (Optional)

invert_divide A logical value indicating whether to invert the facet layout, when divide is
being used. Default is FALSE, corresponding to genes in the rows. (Optional)

ColorValues An optional named vector mapping unique values of ColorVariable to specific
colors. If NULL, a default Brewer palette ("Paired") is used. (Optional)

pointSize A numeric value specifying the size of the points in the plot. Default is 2. (Op-
tional)

IndividualGenes_ Violins 43

ColorVariable A character string specifying a metadata column used for coloring points. De-
fault is NULL. (Optional)

title A character string specifying the title of the plot. Default is NULL. (Optional)

widthTitle A numeric value specifying the maximum width of the title before inserting line
breaks. (Optional)

y_limits A numeric vector of length 2 specifying the limits of the y-axis. If NULL (de-
fault), the y-axis is adjusted automatically. (Optional)

legend_nrow A numeric value specifying the number of rows in the legend. Default is NULL.
(Optional)

x1lab A character string specifying the x-axis label. If NULL, it defaults to GroupingVariable.
(Optional)

colorlab A character string specifying the legend title for colors. Default is an empty

string. (Optional)

Details

The function processes the gene expression data, filters for the specified genes, and transforms ex-

pression values using log2(). A violin plot with jittered points is generated using ggplot2. A me-

dian summary is added as a crossbar. If divide is provided, facets are created using ggh4x: : facet_grid2().
Color customization is available via ColorVariable and ColorValues.

Value

A list containing:

plot A ggplot2 object representing the facetted violin plots.

data A data frame used for plotting, including transformed expression values (log2)
and metadata.

Examples

Example dataset
data <- data.frame(
A = c(10, 20, 30),

B = c(5, 15, 25),
C=c(2, 12, 22)
)
rownames(data) <- c("Genel”, "Gene2", "Gene3")

metadata <- data.frame(
Sample = C(“A”, IIBII’ "C")’
Group = c("Control”, "Treatment”, "Control")

)

genes <- c("Genel”, "Gene2")

IndividualGenes_Violins(data, metadata, genes, "Group")

44 metadata_example

markeR markeR: An R Toolkit for Evaluating Gene Signatures as Phenotypic
Markers

Description

The markeR package provides tools for evaluating gene signatures across phenotypes in transcrip-
tomics datasets (especially bulk RNA-seq). It implements scoring and enrichment approaches,
alongside intuitive visualizations and performance metrics.

Key features:

* Score-based signature quantification (e.g., median-centered, sSGSEA, ranking)
¢ Enrichment analysis using GSEA
* Visualization of gene expression, scores, and enrichment results

* Assessment of gene set similarity

Author(s)
Maintainer: Rita Martins-Silva <rita.silva@medicina.ulisboa.pt> (ORCID)

Authors:

¢ Alexandre Kaizeler (ORCID) [contributor]
¢ Nuno Luis Barbosa-Morais (ORCID) [lead, thesis advisor]

See Also

For more information on using the markeR package, check out the markeR Documentation. You
can also visit the GitHub Repository for the latest updates and source code.

metadata_example Metadata for Marthandan et al. (2016) RNA-Seq Study

Description

A data frame containing metadata for samples from the Marthandan et al. (2016) study (GEO code
GSE63577).

Usage

data(metadata_example)

https://orcid.org/0000-0002-1067-7993
https://orcid.org/0000-0002-9117-6073
https://orcid.org/0000-0002-1215-0538
https://diseasetranscriptomicslab.github.io/markeR/
https://github.com/DiseaseTranscriptomicsLab/markeR

plotCombinedGSEA 45

Format

A data frame with 45 rows and 6 columns:

sampleID Unique sample identifier.

DatasetID Identifier for the dataset (e.g., "Marthandan2016").
CellType Cell type, e.g. "Fibroblast".

Condition Experimental condition ("Senescent" or "Proliferative").

SenescentType Mechanism of senescence (e.g., "Telomere shortening" for senescent samples,
"none" for proliferative).

Treatment Treatment or age descriptor (e.g., "PD72 (Replicative senescence)" for senescent sam-
ples, "young" for proliferative).

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63577

References

Marthandan S, Priebe S, Baumgart M, Groth M et al. Similarities in Gene Expression Profiles
during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts. Biomed Res
Int 2015;2015:731938. PMID: 26339636

Marthandan S, Baumgart M, Priebe S, Groth M et al. Conserved Senescence Associated Genes and
Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One 2016;11(5):e0154531.
PMID: 27140416

plotCombinedGSEA Plot Combined GSEA Results

Description

This function creates a scatter plot visualizing multiple GSEA (Gene Set Enrichment Analysis)
results across different contrasts. Each point represents a pathway, where:

* The x-axis corresponds to the Normalized Enrichment Score (NES).

* The y-axis corresponds to the significance level (-log10 adjusted p-value).

* The color represents different pathways.

* The shape represents different contrasts.

* A dashed horizontal line marks the chosen significance threshold.

Usage

plotCombinedGSEA(
GSEA_results,
sig_threshold = 0.05,
PointSize = 4,
widthlegend = 16

)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63577

46 plotGSEAenrichment

Arguments

GSEA_results A named list of data frames, where each data frame contains GSEA results for
a contrast. Each data frame should have the columns: NES (Normalized Enrich-
ment Score), padj (adjusted p-value), and pathway (pathway name). Output
from runGSEA.

sig_threshold Numeric, default = 0.05. Adjusted p-value threshold for significance. A dashed
horizontal line is drawn at this threshold.

PointSize Numeric, default = 4. Size of the plotted points.
widthlegend Numeric, default = 16. Controls the width of pathway labels in the legend.

Value

A ggplot2 object displaying the combined GSEA results.

Examples

Example GSEA results (mock data)
GSEA_results <- list(
"Contrast1” = data.frame(
NES = rnorm(3),
padj = runif(3),
pathway = paste(”"Pathway”, 1:3),
stat_used = c("t", "B", "B")
),
"Contrast2"” = data.frame(
NES = rnorm(3),
padj = runif(3),
pathway = paste(”"Pathway”, 4:6),
stat_used = c("t", "B", "B")
)
)

Generate the plot
plotCombinedGSEA(GSEA_results, sig_threshold = 0.05, PointSize = 4)

plotGSEAenrichment Plot GSEA Enrichment Results

Description

This function generates enrichment plots for gene sets using the fgsea: :plotEnrichment () func-
tion. It supports both individual plots (returned as a list) and a grid layout using ggpubr: : ggarrange().

Usage

plotGSEAenrichment(
GSEA_results,
DEGList,
gene_sets,
widthTitle = 24,

plotGSEAenrichment 47

grid = FALSE,
nrow = NULL,
ncol = NULL,
titlesize = 12
)
Arguments

GSEA_results A named list of data frames containing GSEA results for each contrast. Each
data frame should have a column named pathway specifying the gene set, and
columns NES and padj for results. Output from runGSEA.

DEGList A named list of data frames containing differentially expressed genes (DEGs)
for each contrast. Each data frame must include a column named t with t-
statistics for ranking genes. Output from calculateDE.

gene_sets A named list of gene sets, where each entry is either:

* A vector of gene names (unidirectional gene set)

* A data frame with two columns: gene names and direction (+1 for enriched
and -1 for depleted).

widthTitle Integer. The maximum width (in characters) for wrapping plot titles. Default is
24.

grid Logical. If TRUE, plots are arranged in a grid using ggpubr::ggarrange().
Default is FALSE.

nrow Integer. Number of rows for the grid layout (used only if grid = TRUE). If NULL,
it is auto-calculated.

ncol Integer. Number of columns for the grid layout (used only if grid = TRUE). If
NULL, it is auto-calculated.

titlesize Integer. Font size for plot titles. Default is 12.

Value

If grid = FALSE, returns a named list of ggplot objects (each plot corresponding to a contrast-
signature pair). If grid = TRUE, returns a single ggplot object with all enrichment plots arranged
in a grid.

Examples

Example GSEA results (mock data, missing columns if running by runGSEA)

GSEA_results <- list(
"Contrast1” = data.frame(
NES = rnorm(3),
padj = runif(3),
pathway = paste("Pathway”, 1:3),
stat_used = c("t", "B", "B")
),
"Contrast2"” = data.frame(
NES = rnorm(3),
padj = runif(3),
pathway = paste("Pathway”, 4:6),
stat_used = c("t", "B", "B")
)
)

48 plotNESIollipop

Generate the plot
plot <- plotCombinedGSEA(GSEA_results, sig_threshold = .05, PointSize = 7)
print(plot)

plotNESlollipop Create a Lollipop Plot for GSEA Results

Description

This function generates a lollipop plot to visualize Gene Set Enrichment Analysis (GSEA) results.
Pathways are shown on the y-axis, while the Normalized Enrichment Score (NES) is shown on
the x-axis. The color of the lollipops represents the adjusted p-values (padj), with a custom color
gradient. It supports multiple contrasts and can combine individual plots into a grid layout.

Usage

plotNESlollipop(
GSEA_results,
signif_color = "red",
nonsignif_color = "white"”,
sig_threshold = 0.05,
saturation_value = NULL,
pointSize = 5,

grid = FALSE,
nrow = NULL,

ncol = NULL,
widthlabels = 18,
title = NULL,
titlesize = 12

)
Arguments

GSEA_results A named list of data frames, each containing the GSEA results for a specific
contrast. Output from runGSEA. Each data frame must include the following
columns:
pathway A character vector of pathway names.

NES A numeric vector of Normalized Enrichment Scores for the pathways.
padj A numeric vector of adjusted p-values for the pathways.

signif_color A string specifying the color for the low end of the adjusted p-value gradient
until the value chosen for significance (sig_threshold). Default is "red"”.

nonsignif_color
A string specifying the color for the middle of the adjusted p-value gradient.
Default is "white". Lower limit correspond to the value of sig_threshold.

sig_threshold A numeric value that sets the midpoint for the color scale. Typically used for
the significance threshold. Default is 0. 05.

plotNESIollipop

49

saturation_value

pointSize

grid

nrow

ncol

widthlabels

title

titlesize

Details

A numeric value specifying the lower limit of the adjusted p-value gradient,
below which the color will correspond to signif_color. Default is the results’
minimum, unless that value is above the sig_threshold; in that case, it is 0.001.

Numeric. The size of points in the lollipop plot (default is 5).

A logical value indicating whether to arrange individual plots into a grid layout.
If TRUE, the function combines all plots into a grid. Default is FALSE.

A numeric value specifying the number of rows to arrange the plots into if grid
= TRUE. If NULL, the function calculates this automatically. Default is NULL.

A numeric value specifying the number of columns to arrange the plots into if
grid = TRUE. If NULL, the function calculates this automatically. Default is NULL.

A numeric value specifying the maximum width for pathway names. If a path-
way name exceeds this width, it will be wrapped to fit. Default is 18.

A character string for the title of the combined plot (used only when grid =
TRUE). Default is NULL.

A numeric value specifying the font size for the title (used only when grid =
TRUE). Default is 12.

The function creates a lollipop plot for each contrast in the GSEA_results list. Each plot includes:

* A vertical segment for each pathway, where the x-coordinate represents the NES and the y-
coordinate represents the pathway.

* A colored point at the end of each segment, where the color represents the adjusted p-value
(padj), mapped using a custom color gradient.

If a pathway’s padj value exceeds the maximum value in padj_limit, the corresponding path-
way is colored using the high_color. Additionally, missing values (NA) for padj are assigned the
high_color by setting na.value = high_color. Pathway names are wrapped using the wrap_title
function to fit within the specified width (widthlabels).

Value

If grid = FALSE, a list of ggplot objects is returned, each corresponding to a contrast. If grid =
TRUE, a single ggplot object is returned, representing the combined grid of plots.

Examples

Example GSEA results (mock data, missing columns if running by runGSEA)

GSEA_results <- list(
"Contrast1” = data.frame(

NES = rnorm(3),

padj = runif(3),
pathway = paste(”"Pathway”, 1:3),
stat_used = c("t", "B", "B")

)’

"Contrast2” = data.frame(

NES = rnorm(3),

padj = runif(3),
pathway = paste("Pathway”, 4:6),
Stat_used = C(”t”, IIBIV’ erN)

50 plotPCA

Generate individual plots without grid
plot_list <- plotNESlollipop(GSEA_results)
plot_list

Generate combined grid of plots with custom title
combined_plot <- plotNESlollipop(GSEA_results, grid = TRUE,
title = "GSEA Results Overview”, titlesize = 14)
combined_plot

plotPCA Principal Component Analysis (PCA) Plot

Description

This function performs PCA on a given dataset and visualizes the results using ggplot2. It allows
users to specify genes of interest, customize scaling and centering, and color points based on a
metadata variable.

Usage
plotPCA(
data,
metadata = NULL,
genes = NULL,

scale = FALSE,

center = TRUE,

PCs = list(c(1, 2)),

ColorVariable = NULL,

ColorValues = NULL,

pointSize = 5,

legend_nrow = 2,

legend_position = c("bottom”, "top”, "right”, "left"),

ncol = NULL,
nrow = NULL
)
Arguments
data A numeric matrix or data frame where rows represent genes and columns repre-
sent samples.
metadata A data frame containing sample metadata. The first column should contain sam-
ple names. Default is NULL.
genes A character vector specifying genes to be included in the PCA. Default is NULL
(uses all genes).
scale Logical; if TRUE, variables are scaled before PCA. Default is FALSE.

center Logical; if TRUE, variables are centered before PCA. Default is TRUE.

plotPCA 51

PCs A list specifying which principal components (PCs) to plot. Defaultis 1ist(c(1,2)).

ColorVariable A character string specifying the metadata column used for coloring points. De-
fault is NULL.

ColorValues A vector specifying custom colors for groups in ColorVariable. Default is
NULL.

pointSize Numeric; sets the size of points in the plot. Default is 5.

legend_nrow Integer; number of rows in the legend. Default is 2.

legend_position
Character; position of the legend ("bottom", "top", "right", "left"). Default is

"bottom".

ncol Integer; number of columns in the arranged PCA plots. Default is determined
automatically.

nrow Integer; number of rows in the arranged PCA plots. Default is determined auto-
matically.

Details

The function performs PCA using prcomp () and visualizes the results using ggplot2. If a metadata
data frame is provided, it ensures the sample order matches between data and metadata.

Value

A list with two elements:

* plt: A ggplot2 or ggarrange object displaying the PCA plot.

* data: A data frame containing PCA-transformed values and sample metadata (if available).

Examples

Example dataset

set.seed(123)

data <- abs(matrix(rnorm(1000), nrow=50, ncol=20))
colnames(data) <- paste@("”Sample”, 1:20)
rownames(data) <- paste@("Gene"”, 1:50)

metadata <- data.frame(Sample = colnames(data),
Group = rep(c("A", "B"), each = 10))

Basic PCA plot
plotPCA(data, metadata, ColorVariable = "Group”, pointSize = 10)

set.seed(42)
n_genes <- 100
n_samples <- 10

Group A: samples 1-5, lower mean
group_A <- matrix(rlnorm(n_genes * 5, meanlog

|
(S

1, sdlog = ©0.3), nrow = n_genes)

Group B: samples 6-10@, higher mean
group_B <- matrix(rlnorm(n_genes * 5, meanlog = 2, sdlog

1
[S]

.3), nrow = n_genes)

Combine
data <- cbind(group_A, group_B)

52 PlotScores

colnames(data) <- paste@("Sample”, 1:n_samples)
rownames (data) <- paste@("”Gene”, 1:n_genes)

Metadata
metadata <- data.frame(Sample = colnames(data),
Group = rep(c("A", "B"), each = 5))

Plot PCA
plotPCA(data, metadata, ColorVariable = "Group”, pointSize = 10)

PlotScores Plot gene signature scores using various methods.

Description

Computes and visualizes gene signature scores using one or more methods, returning plots such as
scatter plots, violin plots, heatmaps, or volcano plots depending on inputs.

Usage

PlotScores(
data,
metadata,
gene_sets,
method = c("ssGSEA", "logmedian”, "ranking”, "all"),
ColorVariable = NULL,
Variable = NULL,
ColorValues = NULL,
ConnectGroups = FALSE,

ncol = NULL,
nrow = NULL,
title = NULL,

widthTitle = 20,

titlesize = 12,

limits = NULL,

legend_nrow = NULL,

pointSize = 4,

xlab = NULL,

labsize = 10,

compute_cohen = TRUE,

cond_cohend = NULL,

pvalcalc = FALSE,

mode = c("simple”, "medium”, "extensive"),
widthlegend = 22,

sig_threshold = 0.05,

cohen_threshold = 0.5,

colorPalette = "Set3"”,

cor = c("pearson”, "spearman”, "kendall")

PlotScores

Arguments

data

metadata

gene_sets

method

ColorVariable

Variable

ColorValues

ConnectGroups

ncol

nrow

title
widthTitle

53

A data frame of Normalised (non-transformed) counts where each row is a gene
and each column is a sample. Row names should contain gene names, and
column names should contain sample identifiers. (Required)

A data frame with sample-level attributes. Each row corresponds to a sam-
ple, with the first column containing sample IDs that match colnames(data).
Required if method = "all” or if metadata-derived groupings or colors are
used.

A named list of gene sets to score. For unidirectional gene sets, provide a list of
character vectors. For bidirectional gene sets, provide a list of data frames with
two columns: gene names and direction (1 = up, -1 = down). (Required)

n on

Scoring method to use. One of "ssGSEA”, "logmedian”, "ranking”, or "all”
(default = "logmedian”). The "all"” option triggers a full analysis returning
both heatmap and volcano plots. Other values return single-score plots depend-
ing on Variable type.

Name of a metadata column to color points by. Used in single-method mode
("ssGSEA", etc.). Ignored in "all” mode.

Metadata column to define groups or numeric comparisons. This is required
if method = "all” (used to compute and compare effect sizes). If NULL and
method !="all", density plots of each signature score across samples are shown
(no grouping or comparison).

Optional. A named vector or list of colors used to control the coloring of plot
elements across different methods and variable types. Behavior depends on the
combination of method and Variable.

If method !'="all", then:
 If Variable is NULL, a single color will be applied in density plots (default:
"#ECBD78").

 IfVariable is categorical, a named vector should map each level of Variable
(or ColorVariable) to a specific color. This overrides the palette specified
by colorPalette.

 If Variable is numeric, a single color is applied to all points in the scatter
plot (default: "#5264B6").

If method == "all”, then:
e ColorValues can be a named list with two elements:

— heatmap: a vector of two colors used as a diverging scale for the
heatmap of effect sizes (default: c("#FIF4AE", "#B44141")).

— volcano: a named vector of colors used for labeling or grouping gene
signatures (e.g., in the volcano plot).

If not provided, defaults will be used for both components.

In all cases, ColorValues takes precedence over the default colorPalette set-
ting if specified.

Logical. If TRUE, connects points by sample ID across conditions (used for
categorical variables and method != "all").

Number of columns for facet layout (used in both heatmaps and score plots).
Number of rows for facet layout (used in both heatmaps and score plots).
Plot title (optional).

Width allocated for title (affects alignment).

54

titlesize
limits
legend_nrow

pointSize

x1lab
labsize

compute_cohen

cond_cohend

pvalcalc

mode

widthlegend

sig_threshold

cohen_threshold

colorPalette

cor

Details

PlotScores

Font size for plot title.
Y-axis limits (numeric vector of length 2).
Number of rows for plot legend (used in single-method plots).

Numeric. Size of points in score plots (violin or scatter), used when plotting
individual sample scores for both categorical and numeric variables, including
when method = "all”.

Label for x-axis (optional; defaults to Variable).
Font size for axis and facet labels.

Logical. Whether to compute Cohen’s effect sizes in score plots (method !=
"all"). This only applies when method !="all"; ignored otherwise. If the
variable is categorical and cond_cohend is specified, computes Cohen’s d for
the specified comparison. If the variable is categorical and cond_cohend is not
specified, it computes Cohen’s d if there are exactly two groups, or Cohen’s f
if there are more than two groups. If the variable is numeric, computes Cohen’s
f regardless of cond_cohend.

Optional. List of length 2 with the two groups being used to compute ef-
fect size. The values in each entry should be levels of Variable. Used with
compute_cohen = TRUE.

Logical. If TRUE, computes p-values between groups.

A string specifying the contrast mode when method = "all”. Determines the
complexity and breadth of comparisons performed between group levels. Op-
tions are:

"simple” performs the minimal number of pairwise comparisons between indi-
vidual group levels (e.g., A - B, A - C). This is the default.

"medium” includes comparisons between one group and the union of all other
groups (e.g., A - (B + C + D)), enabling broader contrasts beyond simple pairs.
"extensive"” allows for all possible algebraic combinations of group levels
(e.g., (A + B) - (C + D)), supporting flexible and complex contrast definitions.

Width of the legend in volcano plots (used only if method = "all") and violin
score plots.

P-value cutoff shown as a guide line in volcano plots.
method = "all”.

Only applies when

Effect size threshold shown as a guide line in volcano plots. Used only when
method = "all".

Name of an RColorBrewer palette used to assign colors in plots. Applies to
all methods. Default is "Set3". If ColorValues is provided, it overrides this
palette. If Variable is NULL and method !="all" (i.e., for density plots), a
default color "#ECBD78" is used. If method = "all"” (i.e., for heatmaps and vol-
cano plots), a default diverging color scale is used: c("#F9F4AE", "#B44141"),
unless ColorValues is manually specified.

Correlation method for numeric variables. One of "pearson” (default), "spearman”,

or "kendall”. Only applies when the variable is numeric and method != "all".

Behavior based on method:

PlotScores 55

For "all", the function requires metadata and Variable. It computes scores using all available
methods and returns a heatmap of Cohen’s effect sizes and a volcano plot showing effect size vs p-
value across gene signatures. Additional parameters include mode to define how contrasts between
groups are constructed, sig_threshold and cohend_threshold which add guide dashed lines to
the volcano plot (do not affect point coloring), widthlegend controlling width of the volcano plot
legend, and pointSize controlling dot size for signature points in the volcano plot. ColorValues
can be a named list with heatmap (two-color gradient for effect sizes) and signatures (named
vector of colors for gene signatures in the volcano plot).

For "ssGSEA", "logmedian”, or "ranking”, the type of Variable determines the plot. If cate-
gorical, violin plots with optional group comparisons are produced. If numeric, scatter plots with
correlation are produced. If Variable is NULL, density plots for each signature across all samples
are produced. Additional arguments include ColorVariable and ColorValues for coloring con-
trol, colorPalette (overridden by ColorValues if present), ConnectGroups to link samples by ID
for categorical Variable, cor to specify correlation method for numeric Variable, pvalcalc to
enable group-wise p-value calculations for categorical variables, compute_cohen to calculate effect
sizes when applicable, and cond_cohend to focus Cohen’s d calculation on a specific comparison.

Behavior based on Variable type:

If Variable is numeric, scatter plots are output (in single-method mode) with computed correla-
tion (cor). Parameters compute_cohen, cond_cohend, and pvalcalc are ignored. Color is uni-
form (default: "#5264B6") unless overridden via ColorValues. Cohen’s f effect size estimation
(compute_cohen = TRUE) and significance if pvalcalc is TRUE.

If Variable is categorical, violin plots are output (in single-method mode) supporting p-value com-
parisons (pvalcalc = TRUE), optional connection lines (ConnectGroups = TRUE), and Cohen’s ef-
fect size estimation (compute_cohen = TRUE) with significance (pvalcalcis TRUE). If cond_cohend
is specified, computes Cohen’s d for that comparison. If not specified, computes Cohen’s d if 2
groups or Cohen’s f if more than 2 groups. Colors are matched to factor levels using ColorValues
or colorPalette.

If Variable is NULL and method != "all", density plots of signature scores are produced. A single
fill color is used (default "#ECBD78" or from ColorValues).

Value

Depending on method:
If method = "all”, returns a list with heatmap and volcano ggplot objects.

If method is a single method, returns a single ggplot object (scatter or violin plot depending on
variable type).

Examples

Simulate positive gene expression data (genes as rows, samples as columns)
set.seed(42)

expr <- as.data.frame(matrix(rexp(60, rate = 0.2), nrow = 6, ncol = 10)) # values > @
rownames (expr) <- paste@("Gene”, 1:6)

colnames(expr) <- paste@("Sample”, 1:10)

Simulate metadata for samples with categorical and numeric variables
metadata <- data.frame(

sample = colnames(expr),

Group = rep(c("A", "B"), each = 5),

Age = seq(30, 75, length.out = 10)
)

56 PlotScores_Categorical

Define two simple gene sets

gene_sets <- list(
Signaturel = c("Genel”, "Gene2", "Gene3"),
Signature2 = c("Gene4"”, "Gene5", "Gene6")

)

1. Categorical variable: Violin plot (logmedian)
PlotScores(

data = expr,

metadata = metadata,

gene_sets = gene_sets,

method = "logmedian”,

Variable = "Group”

2. Numeric variable: Scatter plot (logmedian)
PlotScores(

data = expr,

metadata = metadata,

gene_sets = gene_sets,

method = "logmedian”,

Variable = "Age"
)

3. No variable: Density plot (logmedian)
PlotScores(

data = expr,

metadata = metadata,

gene_sets = gene_sets,

method = "logmedian”

)

4. All methods, categorical variable: Heatmap and volcano
(Returns a list with $heatmap and $volcano elements)
all_plots <- PlotScores(

data = expr,

metadata = metadata,

gene_sets = gene_sets,

method = "all",

Variable = "Group”
)
Print the heatmap and volcano plot if desired
print(all_plots$heatmap)
print(all_plots$volcano)

PlotScores_Categorical
Plot Gene Set Scores by Group or Continuous Variable

Description

This function computes and visualizes gene set enrichment scores using various methods, optionally
comparing across groups or numeric variables. It supports categorical and numeric comparisons,
statistical testing, Cohen’s d effect sizes, and visualizations such as heatmaps and volcano plots.

PlotScores_Categorical

Usage

PlotScores_Categorical(
data,
metadata,
gene_sets,

method = c("ssGSEA", "logmedian”, "ranking"),

ColorVariable = NULL,
GroupingVariable = NULL,
ColorValues = NULL,
ConnectGroups = FALSE,

ncol = NULL,
nrow = NULL,
title = NULL,

widthTitle = 10,
titlesize = 12,
limits = NULL,
legend_nrow = NULL,
pointSize = 2,

xlab = NULL,

labsize = 10,
compute_cohen = TRUE,
cond_cohend = NULL,
pvalcalc = FALSE,

mode = c("simple”, "medium”, "extensive"),

widthlegend = 22,
cohen_threshold = 0.6,
colorPalette = "Set3”

57

)
Arguments
data A data frame of Normalised (non-transformed) counts where each row is a gene
and each column is a sample. Row names should contain gene names, and
column names should contain sample identifiers. (Required)
metadata A data frame describing the attributes of each sample, where each row corre-
sponds to a sample and each column to an attribute. The first column should con-
tain sample identifiers (i.e., the column names of data). (Required if method
= 'lall'l)
gene_sets Gene set input. (Required)
 Unidirectional gene sets: Provide a named list where each element is a
vector of gene names representing a gene signature.
* Bidirectional gene sets: Provide a named list where each element is a data
frame with two columns:
— The first column contains gene names.
— The second column indicates the expected direction of enrichment (1
for upregulated genes, -1 for downregulated genes).
method A character string indicating the scoring method to use. Options are "ssGSEA",
"logmedian” or "ranking”. Defaults to "logmedian”.
ColorVariable Optional. Name of the metadata column to use for point color in plots.
GroupingVariable

Optional. Name of the metadata column to use for group comparison.

58

ColorValues

ConnectGroups
ncol

nrow

title
widthTitle
titlesize
limits
legend_nrow
pointSize
xlab

labsize
compute_cohen
cond_cohend
pvalcalc

mode

widthlegend

cohen_threshold

colorPalette

Details

PlotScores_Categorical

Optional. Named vector of colors to use for each group in ColorVariable or
GroupingVariable.

Logical. If TRUE, connects points of the same sample across conditions.
Number of columns in the facet layout of the plot.

Number of rows in the facet layout of the plot.

Optional. Main title of the plot.

Numeric. Width of the title area (for alignment purposes).

Numeric. Font size of the title text.

Optional numeric vector of length 2 specifying y-axis limits.

Optional. Number of rows in the plot legend.

Numeric. Size of the points in the plots.

Optional. Label for the x-axis.

Numeric. Font size for axis and facet labels.

Logical. If TRUE, computes Cohen’s d effect sizes between groups.
Optional. Specify a condition or comparison subset for calculating Cohen’s d.
Logical. If TRUE, computes p-values for group comparisons.
Character string indicating comparison complexity. Options: "simple”, "
"extensive”.

Numeric. Width of the legend area in volcano plots.

Numeric. Cohen’s d threshold to highlight effect size in volcano plots (default
=0.6).

Character. Name of RColorBrewer palette for coloring (default = "Set3").

Four methods are available:

* ssGSEA: Uses the single-sample Gene Set Enrichment Analysis (ssGSEA) method to com-
pute an enrichment score for each signature in each sample using an adaptation of the gsva()
function from the GSVA package.

* logmedian: Computes the score as the sum of the Normalised (log2-median-centered) expres-
sion values of the signature genes divided by the number of genes in the signature.

* ranking: Computes gene signature scores for each sample by ranking the expression of sig-
nature genes in the dataset and normalizing the score based on the total number of genes.

« all: Computes gene signature scores using all three methods (ssGSEA, logmedian, and ranking).
Returns a heatmap summarizing Cohen’s d for all metric combinations of the variables of in-

terest.

Depending on the method and the type of variable (categorical, numeric, or NULL), the function
produces different plots:

e If method = "all” and the variable is categorical, a heatmap of Cohen’s d or F statistics and
a volcano plot showing contrasts between all groups of that variable are produced.

e If method = "all"” and the variable is numeric, a heatmap of Cohen’s f and a volcano plot are

produced.

medium”,

PlotScores_Numeric 59

Value

If method !="all"” and the variable is categorical, a violin plot for each signature is gener-
ated.

If method !="all" and the variable is NULL, a density plot of the score distribution is dis-
played.

If method !="all" and the variable is numeric, a scatter plot is created to show the relation-
ship between the scores and the numeric variable.

If method = "all” and the variable is categorical, the function returns a heatmap of Cohen’s
d or F statistics and a volcano plot showing contrasts between all groups of that variable.

If method = "all” and the variable is numeric, a heatmap of Cohen’s f and a volcano plot
will be produced.

If method !="all" and the variable is categorical, a violin plot for each signature will be
displayed.
If method !="all" and the variable is NULL, a density plot of the score distribution will be
displayed.

If method !="all" and the variable is numeric, a scatter plot will be generated to show the
relationship between the scores and the numeric variable.

A ggplot or a ggpubr: : ggarrange object depending on the input and parameters:

* If GroupingVariable is NULL, returns a faceted grid of density plots (one per gene set).

* If GroupingVariable is provided and method != "all", returns a faceted grid of violin plots

overlaid with jittered sample points and median bars, optionally annotated with Cohen’s d or
f and p-values.

* Each individual plot corresponds to one gene set score computed using the selected method.

PlotScores_Numeric Plot Gene Signature Scores with Continuous Variables

Description

This function visualizes gene signature scores using scatter plots and regression lines across a con-
tinuous metadata variable. Signature scores are computed per sample using one of three methods:
"ssGSEA", "logmedian”, or "ranking”. Optionally, the effect size (Cohen’s f) and p-value for the
association between the signature score and the continuous variable can be computed and displayed.

Usage

PlotScores_Numeric(

data,

metadata,

gene_sets,

method = c("ssGSEA", "logmedian”, "ranking"),
Variable = NULL,

ColorValues = NULL,

ncol = NULL,

nrow = NULL,

title = NULL,

60 PlotScores_Numeric
widthTitle = 10,
titlesize = 12,
limits = NULL,
pointSize = 2,
xlab = NULL,
labsize = 10,
compute_cohen = TRUE,
pvalcalc = FALSE,
colorPalette = "Set3",
cor = c("pearson”, "spearman”, "kendall")
)
Arguments
data A data frame of Normalised (non-transformed) gene expression counts. Rows
are genes, columns are samples. Row names should be gene names, and column
names should match sample identifiers in metadata.
metadata A data frame where each row corresponds to a sample and contains sample-
level attributes (e.g., clinical or experimental metadata). Must include a column
matching the sample IDs in data.
gene_sets A list of gene sets (signatures). Each element is either a character vector of
gene names or a data frame with gene names and enrichment direction (1 for
upregulated, -1 for downregulated).
method Scoring method to use. One of "ssGSEA", "logmedian”, or "ranking". Default
is "logmedian”.
Variable Name of the continuous variable in metadata to use on the x-axis for scoring
association.
ColorValues (Optional) A named vector defining the color for the plotted points. If NULL,
defaults to a preset color.
ncol, nrow Number of columns and rows in the facet grid layout. If NULL, computed
automatically.
title Optional string for the overall title of the plot grid.
widthTitle Maximum character width for titles before inserting line breaks. Default is 10.
titlesize Numeric value for the font size of plot titles. Default is 12.
limits Optional numeric vector of length 2 to define y-axis limits.
pointSize Size of the plotted points. Default is 2.
xlab Optional label for the x-axis. If NULL, defaults to the name of Variable.
labsize Font size for axis labels. Default is 10.

compute_cohen

Logical. If TRUE (default), computes Cohen’s f effect size for the association
between signature score and the continuous variable.

pvalcalc Logical. If TRUE, includes the p-value in the plot subtitle. Default is FALSE.

colorPalette Name of the RColorBrewer palette for coloring. Default is "Set3". Currently
unused but kept for consistency.

cor Character string indicating the correlation method to be used in ggpubr: : stat_cor ().

Options are "pearson" (default), "kendall", or "spearman".

plotVolcano 61

Details
For each gene signature, the function:

» Computes a signature score per sample using the selected method.
* Plots the score against a continuous metadata variable (Variable).
* Adds aregression line and optionally computes and displays Cohen’s f effect size and p-value.

* Returns a faceted grid of ggplots, arranged by ncol and nrow.

This version of the function is specifically tailored for use with continuous variables.

Value

A ggplot2 object or a multi-plot figure showing scatter plots for each gene signature, with linear
regression lines and optional statistical annotations.

plotVolcano Volcano Plots from Differential Expression Results

Description

This function creates a composite volcano plot grid from a list of differential expression results.,
or a single volcano if no genes to highlight are provided and no more than one contrast is used.
For each contrast (provided in DEResultsList) and gene signature (from the genes argument), a
volcano plot is generated using the specified x and y statistics. By default, if invert = FALSE and
more than one gene signature is provided (i.e. the names in genes are not "ALL" or "genes"), the
plots are arranged with gene signatures in rows and contrasts in columns. When invert = TRUE, the
arrangement is reversed (signatures in columns and contrasts in rows). If only one gene signature is
provided, an automatic grid is computed.

Usage

plotVolcano(
DEResultslList,
genes = NULL,
N = NULL,
x = "logFC",
y = "-logl@(adj.P.val)",
pointSize = 2,
color = "#6489B4",
highlightcolor = "#05254A",
highlightcolor_upreg = "#038C65",
highlightcolor_downreg = "#8C0303",
nointerestcolor = "#B7B7B7",
threshold_y = NULL,
threshold_x = NULL,

xlab = NULL,
ylab = NULL,
ncol = NULL,
nrow = NULL,

title = NULL,

62 plotVolcano

labsize = 10,
widthlabs = 20,
invert = FALSE

Arguments

DEResultsList A named list of data frames containing differential expression results for each
contrast. Each data frame should have row names corresponding to gene names
and include columns for the x and y statistics. Output from calculateDE.

genes Optional. A list of gene signatures to highlight. Each element may be a data
frame (in which case its first column is extracted) or a vector of gene names. If
NULL, no genes will be highlighted.

N Optional. An integer specifying the number of top (and bottom) genes to anno-
tate with text labels.

X Character. The column name in the differential expression results to use for the
x-axis (default is "1ogFC").

y Character. The column name to use for the y-axis (defaultis "-log10(adj.P.Val)").
When using this default, threshold values for threshold_y should be provided
in non-log scale (e.g., 0.05).

pointSize Numeric. The size of points in the volcano plots (default is 2).

color Character. The color used to highlight interesting genes based on thresholds
(default is "#6489B4").

highlightcolor Character. The color used to highlight genes belonging to the specified gene
signatures (default is "#05254A"), if direction is not known or not specified.
highlightcolor_upreg
Character. The color used to highlight upregulated genes belonging to the spec-
ified gene signatures (default is "#038C65").
highlightcolor_downreg
Character. The color used to highlight downregulated genes belonging to the
specified gene signatures (default is "#8C0303").
nointerestcolor
Character. The color for non-interesting genes (default is "#B7B7B7").

threshold_y Numeric. A threshold value for the y-axis statistic. If y is "-1log1@(adj.P.Val)",
the value should be provided as a non-log value (e.g., 0.05) and will be trans-
formed internally.

threshold_x Numeric. A threshold value for the x-axis statistic.

x1lab Optional. A label for the x-axis; if NULL, the value of x is used.

ylab Optional. A label for the y-axis; if NULL, the value of y is used.

ncol Optional. The number of columns for arranging plots in the grid. Only applica-
ble if genes is NULL.

nrow Optional. The number of rows for arranging plots in the grid.

title Optional. A main title for the entire composite plot.

labsize Numeric. The font size for label annotations (default is 10). The title size will

be this value + 4.

widthlabs Numeric. The width parameter to pass to the wrap_title() function for wrap-
ping long labels (default is 20).

invert Logical. If FALSE (default), the grid is arranged with gene signatures in rows
and contrasts in columns. If TRUE, the arrangement is inverted (gene signatures
in columns and contrasts in rows).

plotVolcano 63

Details

This function generates a volcano plot for each combination of gene signature (from genes) and
contrast (from DEResultsList). It uses the specified x and y statistics to plot points via ggplot2.
Non-interesting genes are plotted using nointerestcolor, while genes in the specified gene signa-

ture (if not "ALL") are highlighted using highlightcolor. Optionally, the top and bottom N genes

can be annotated with text labels (using ggrepel: :geom_text_repel). Threshold lines for the x
and/or y axes are added if threshold_x or threshold_y are provided. The individual plots are ar-
ranged into a grid using ggpubr: : ggarrange and annotated with labels using ggpubr: :annotate_figure
and grid: : textGrob. The custom wrap_title() function is used to wrap long labels.

Additionally, the function allows:

Plotting of differentially expressed genes based on provided statistics (e.g., x = "1ogFC" and
y="-logl@(adj.P.vVal)").

» Coloring of non-interesting genes and highlighting genes belonging to specific gene signa-
tures.

* Annotation of the top N genes with text labels (using ggrepel: : geom_text_repel).

Addition of threshold lines for the x and/or y axes.

Value

A composite plot (a ggplot object) arranged as a grid of volcano plots with annotated labels.

Examples

(Assumes you have already created “expr”, “metadata”,
and run “calculateDE™ as shown above)
For reference, here is the minimal workflow:
set.seed(123)
expr <- matrix(rpois(1000, lambda = 20), nrow = 100, ncol = 10)
rownames (expr) <- paste@("gene”", 1:100)
colnames(expr) <- paste@("sample”, 1:10)
metadata <- data.frame(
sample = colnames(expr),
Group = rep(c("A", "B"), each = 5)
)
de_res <- calculateDE(
data = expr,
metadata = metadata,
variables = "Group”,
contrasts = "A-B"

)

1. Basic volcano plot (all genes)
plotVolcano(
DEResultsList = de_res,
genes = NULL,
x = "logFC",
y = "-logl@(adj.P.val)",
pointSize = 2,
color = "#6489B4",
highlightcolor = "#05254A",
nointerestcolor = "#B7B7B7",
title = "Volcano Plot: A vs B”

64 ROCandAUCplot

2. Volcano plot highlighting a signature (e.g., top 5 upregulated genes)
sig_genes <- rownames(de_res[["A-B”]11)[order(de_res[["A-B"]11$1logFC,
decreasing = TRUE)[1:5]]
plotVolcano(

DEResultslList = de_res,

genes = list(Signature = sig_genes),

x = "logFC",

y = "-logl@(adj.P.vVal)",

pointSize = 2,

color = "#6489B4",

highlightcolor = "#05254A",

nointerestcolor = "#B7B7B7",

title = "Volcano Plot: Highlight Signature”

remove_division Remove Division Notation in Contrast Labels

Description

This function removes division notation (e.g., /2, /3) after closing parentheses in contrast labels.

Usage

remove_division(contrasts)

Arguments

contrasts A character vector containing contrast labels.

Value

A character vector with division notation removed.

ROCandAUCplot ROC and AUC Plot Function

Description

This function computes ROC curves and AUC values for each gene based on gene expression data
and sample metadata. It can generate ROC plots, an AUC heatmap / barplot, or both arranged
side-by-side.

ROCandAUCplot

Usage

ROCandAUCplot(

data,

metadata,

genes =

NULL,

65

condition_var,

class,

group_var = NULL,

plot_type =

title =

n

NULL,

n

roc”,

titlesize = 14,

roc_params = list(),
auc_params = list(),
commomplot_params = list()

Arguments

data

metadata

genes

condition_var

class

group_var

plot_type

title
titlesize

roc_params

auc_params

A data frame or matrix containing gene expression data, with genes as rows and
samples as columns.

A data frame containing sample metadata. The first column should contain sam-
ple identifiers that match the column names of data.

A character vector specifying which genes to plot. If NULL (default), all genes in
data are used. A warning is issued if more than 30 genes are selected.

A character string specifying the column name in metadata representing the
condition of interest. (Mandatory; no default.)

A character string or vector specifying the positive class label for the condition.
(Mandatory; no default.)

An optional character string specifying the column name in metadata used for
grouping samples (e.g., cell types). If not provided (NULL), all samples are
treated as a single group. Should be a categorical variable.

A character string indicating which plot(s) to generate. Accepted values are
"roc” (only ROC curves), "auc” (only the AUC heatmap/barplot), or "all”
(both arranged side-by-side). Default is "roc”.

An optional character string specifying the main title of the plot.
A numeric value specifying the size of the title. Default is 14.

A list of additional parameters for customizing the ROC plot. Possible elements
include:

nrow An integer specifying the number of rows in the ROC plot grid. If NULL
(default), it is calculated automatically.

ncol An integer specifying the number of columns in the ROC plot grid. If
NULL (default), it is calculated automatically.

colors A named vector of colors for the different groups. If NULL (default), a
default color palette is generated.

A list of additional parameters for customizing the AUC heatmap or AUC barplot.
Possible elements include:

cluster_rows Logical; if TRUE (default), rows are clustered.
cluster_columns Logical; if TRUE (default), columns are clustered.

66

ROCandAUCplot

colors If group_var is used, should be a vector of length 2 of colors to be
used for the minimum and maximum values of the color scale. Defaults
to c("#FFFFFF", "#21975C"). If group_var is NULL, then should be a
single color to fill the barplot. If NULL, defaults to "#3B415B". If a vector is
provided, only the first color will be used.

limits A numeric vector of length 2 specifying the minimum and maximum
values for the color scale. If not provided, defaults to c(0.5, 1).

name A character string for the legend title of the color scale. Default is "AUC".

row_names_gp Optional graphical parameters for row names (passed to Com-
plexHeatmap).

column_names_gp Optional graphical parameters for column names (passed to
ComplexHeatmap).

commomplot_params

Details

A list of parameters for customizing the layout of the combined plot when
plot_type = "all”. Possible elements include:

widths A numeric vector specifying the relative widths of the ROC and heatmap
panels.

heights A numeric vector specifying the relative heights of the panels.

The function processes gene expression data and metadata to compute ROC curves and AUC values
for each gene. Depending on the value of plot_type, it produces ROC plots (using ggplot2), an
AUC heatmap (using ComplexHeatmap) or AUC barplot (if group_var is NULL), or both arranged
side-by-side (using gridExtra).

Value

Invisibly returns a list containing:

roc_plot The ggplot2 object of the ROC curves (if generated).

heatmap The ComplexHeatmap object (if generated).

combined The combined grid arrangement (if plot_type = "all").

auc_values A data frame with the calculated AUC values.

Examples

Simulate positive gene expression data (genes as rows, samples as columns)

set.seed(123)

expr <- matrix(rexp(30, rate = @0.5), nrow = 3, ncol = 10) # 3 genes, 10 samples, >0
rownames(expr) <- paste@("Gene", 1:3)
colnames(expr) <- paste@("Sample”, 1:10)

Simulate metadata with a condition (binary class) and a grouping variable
metadata <- data.frame(
SampleID = colnames(expr),

Condition =

rep(c("A", "B"), each = 5),

Group = rep(c("G1", "G2"), times = 5)

)

Run ROCandAUCplot with both ROC and AUC plots for three genes

ROCandAUCplot(
data = expr,

ROCAUC_Scores_Calculate 67

metadata = metadata,
genes = rownames(expr),
condition_var = "Condition”,

class = "A",
plot_type

ualln ,

title = "Example ROC/AUC Plots”,
roc_params = list(nrow=1)

ROCAUC_Scores_Calculate

Compute ROC Curves and AUC Values for Gene Signature Scores

Description

This function calculates Receiver Operating Characteristic (ROC) curves and Area Under the Curve
(AUC) values for gene signature scores across different contrasts of a given categorical variable.

Usage
ROCAUC_Scores_Calculate(
data,
metadata,
gene_sets,
method = c("logmedian”, "ssGSEA"”, "ranking"”, "all"),
variable,
mode = c("simple”, "medium”, "extensive")
)
Arguments
data A matrix or data frame of gene expression data (genes as rows, samples as
columns).
metadata A data frame containing sample metadata, including the grouping variable.
gene_sets A named list of gene sets, where each entry is a character vector of gene names.
method A character string specifying the score calculation method. Options: "logmedian”,
"ssGSEA", "ranking"”, or "all".
variable A character string specifying the categorical variable for group comparisons.#’
mode A string specifying the level of detail for contrasts. Options are:
* "simple": Pairwise comparisons (e.g., A - B).
* "medium”: Pairwise comparisons plus comparisons against the mean of
other groups.
* "extensive": All possible groupwise contrasts, ensuring balance in the
number of terms on each side.
Value

A named list containing ROC curve data and AUC values for each method, signature, and contrast.

68

ROC_Scores

ROC_Scores Plot ROC Curves for Gene Signature Scores

Description

This function generates ROC curve plots for different gene signatures across multiple scoring meth-
ods.

Usage

ROC_Scores(

data,

metadata,

gene_sets,

method = c("logmedian”, "ssGSEA", "ranking"”, "all"),
variable,

colors = c(logmedian = "#3E5587", ssGSEA = "#B65285", ranking = "#B68C52"),

grid = TRUE,
spacing_annotation = 0.3,
ncol = NULL,
nrow = NULL,
mode = c("simple”, "medium”, "extensive"),
widthTitle = 18,
title = NULL,
titlesize = 12
)
Arguments
data A matrix or data frame of gene expression data.
metadata A data frame containing sample metadata.
gene_sets A named list of gene sets.
method A character string specifying the scoring method(s) ("logmedian”, "ssGSEA",
"ranking”, or "all").
variable A character string specifying the categorical variable for group comparisons.
colors A named vector specifying colors for each method. Only one color is allowed,
if method != "all". Default colors are c(logmedian = "#3E5587", ssGSEA =
"#B65285", ranking = "#B68C52").
grid Logical; if TRUE, arranges plots in a grid.

spacing_annotation

numeric value specifying the spacing between labels of AUC values. Default is
0.3.

ncol Optional numeric value specifying the number of columns in the grid layout for
the combined plots. If NULL, there will be as many columns as contrasts. If this
number is 1, then a near-square grid is computed.

nrow Optional numeric value specifying the number of rows in the grid layout. If

NULL, there will be as many columns as gene sets. If this number is 1, then a
near-square grid is computed.

runGSEA 69

mode A string specifying the level of detail for contrasts. Options are:

* "simple”: Performs the minimal number of pairwise comparisons between
individual group levels (e.g., A - B, A - C). Default.

* "medium”: Includes comparisons between one group and the union of all
other groups (e.g., A - (B + C + D)), enabling broader contrasts beyond
simple pairs.

* "extensive": Allows for all possible algebraic combinations of group lev-
els (e.g., (A + B) - (C + D)), supporting flexible and complex contrast defi-

nitions.
widthTitle Optional integer specifying the maximum width of the title before inserting line
breaks. Titles break at _, -, or : where possible, or at the exact width if no such

character is found. Default is 18.

title Title for the grid of plots.
titlesize An integer specifying the text size for each of the heatmap titles. Default is 12.
Value

A ggplot2 or ggarrange object containing the ROC curve plots.

Examples

Example data

data <- as.data.frame(abs(matrix(rnorm(1000), ncol = 10)))

rownames(data) <- paste@("Gene”, 1:100) # Name columns as Genel, Gene2, ..., Genel®
colnames(data) <- paste@("Sample”, 1:10) # Name rows as Samplel, Sample2, ..., Sample100

Metadata with sample ID and condition

metadata <- data.frame(
SampleID = colnames(data), # Sample ID matches the colnames of the data
Condition = rep(c("A", "B"), each = 5) # Two conditions (A and B)

)

Example gene set
gene_sets <- list(Signaturel = c("Genel”, "Gene2", "Gene3")) # Example gene set

Call ROC_Scores function

ROC_Scores(data, metadata, gene_sets, method = "ssGSEA"”, variable = "Condition")
runGSEA Run Gene Set Enrichment Analysis (GSEA) for Multiple Contrasts
Description

This function performs GSEA using fgsea for each contrast in a list of differential expression
results. It automatically determines the appropriate ranking statistic based on the gene set format
unless specified by the user.

70 runGSEA

Usage

runGSEA(
DEGList,
gene_sets,
stat = NULL,
ContrastCorrection = FALSE,
nPermSimple = 10000

)
Arguments
DEGList A named list where each element represents a contrast and contains a data frame
of differential expression results.
» Each data frame must include at least the "t" statistic and the "B" statistic
for each gene.
* Row names should correspond to gene identifiers.
gene_sets A named list where each element represents a gene set. Each gene set can be:
* A vector of gene names (for unidirectional gene sets).
* A data frame with two columns:
— Column 1: Gene names.
— Column 2: Expected direction (1 for upregulated genes, -1 for down-
regulated genes).
stat Optional. The statistic to use for ranking genes before GSEA. If NULL, it is
automatically determined based on the gene set:
* "B" for gene sets with no known direction (vectors).
* "t" for unidirectional or bidirectional gene sets (data frames).
* If provided, this argument overrides the automatic selection.
ContrastCorrection
Logical, default is FALSE. If TRUE, applies an additional multiple testing correc-
tion (Benjamini-Hochberg) across all contrasts returned in the DEGList results
list. This accounts for the number of contrasts tested per signature and provides
more stringent control of false discovery rate across multiple comparisons. If
FALSE, the function only corrects for the number of gene sets.
nPermSimple Number of permutations in the simple fgsea implementation for preliminary
estimation of P-values. Parameter from fgsea.
Value

A named list where each element corresponds to a contrast. Each contrast contains a single data
frame with GSEA results for all gene sets. P-values are corrected for multiple testing based on all
contrasts. The result includes the standard fgsea output plus two additional columns:

* pathway: The name of the gene set.

* stat_used: The statistic used for ranking genes in that analysis ("t" or "B").

Examples

Example input data
DEGList <- list(
Contrastl = data.frame(t = rnorm(100), B = rnorm(100), row.names = pasted("Gene", 1:100)),

Score_ Variable Association 71

Contrast2 = data.frame(t = rnorm(100), B = rnorm(100), row.names = paste@("Gene", 1:100))
)

gene_sets <- list(
UnidirectionalSet = c("Genel1"”, "Gene5", "Gene20"),
BidirectionalSet = data.frame(Gene = c("Gene2", "Genel10", "Genel5"), Direction =c(1, -1, 1))

)

results <- runGSEA(DEGList, gene_sets)
print(results)

Score_VariableAssociation
Score Variable Association

Description

This function evaluates the association between gene expression scores and metadata variables. It
uses linear modeling to get Cohen’s F, and contrast-based comparisons for categorical variables to
compute Cohen’s D. The function generates plots summarizing the results.

Usage

Score_VariableAssociation(
data,
metadata,
cols,
method = c("logmedian”, "ssGSEA", "ranking"),
gene_set,
mode = c("simple”, "medium”, "extensive"),
nonsignif_color = "grey”,
signif_color = "red",

saturation_value = NULL,
sig_threshold = 0.05,
widthlabels = 18,
labsize = 10,

title = NULL,

titlesize = 14,
pointSize = 5,
discrete_colors = NULL,
continuous_color = "#8C6D03",
color_palette = "Set2",
printplt = TRUE

)
Arguments
data A data frame or matrix containing gene expression data.
metadata A data frame containing sample metadata with at least one column correspond-

ing to the variables of interest.

cols A character vector specifying metadata columns to analyse.

72

Score_ Variable Association
method A character string specifying the scoring method ("logmedian”, "ssGSEA", or
"ranking").
gene_set A named list containing one gene set for scoring.
mode A character string specifying the contrast generation method ("simple”, "medium”,

"extensive"). Four methods are available:

* ssGSEA: Uses the single-sample Gene Set Enrichment Analysis (ssGSEA)
method to compute an enrichment score for each signature in each sample
using an adaptation of the gsva() function from the GSVA package.

* logmedian: Computes the score as the sum of the normalized (log2-median-
centered) expression values of the signature genes divided by the number
of genes in the signature.

* ranking: Computes gene signature scores for each sample by ranking the
expression of signature genes in the dataset and normalizing the score based
on the total number of genes.

nonsignif_color

A string specifying the color for non-significant results. Default: "grey”.
signif_color A string specifying the color for significant results. Default: "red”.
saturation_value

A numeric value for color saturation threshold. Default: NULL (auto-determined).

sig_threshold A numeric value specifying the significance threshold. Default: 0. @5.

widthlabels An integer controlling contrast label wrapping. Default: 18.
labsize An integer controlling axis text size. Default: 10.
titlesize An integer specifying the title size. Default: 14.

pointSize A numeric value for point size in plots. Default: 5.

discrete_colors

A named list mapping categorical variable levels to colors. Each element should

be a named vector where names correspond to factor levels. Default: NULL.
continuous_color

A string specifying the color for continuous variables. Default: "#8C6D@3".
color_palette A string specifying the color palette for discrete variables. Default: "Set2".

printplt Boolean specifying if plot is to be printed. Default: TRUE.

Value

A list with:

* Overall: Data frame of effect sizes and p-values for each contrasted phenotypic variable.

* Contrasts: Data frame of Cohen’s d and adjusted p-values for contrasts between levels of
categorical variables, with the resolution of contrasts determined by the mode parameter.

* plot: A combined visualization with three main panels: (1) lollipop plots of Cohen’s f for
each variable of interest, (2) distribution plots of the score by variable (density or scatter
depending on variable type), and (3, if applicable) lollipop plots of Cohen’s d for contrasts in
categorical variables.

* plot_contrasts: Lollipop plots of Cohen’s d effect sizes for contrasts between levels of non
numerical variables (if applicable), colored by adjusted p-value (BH).

* plot_overall: Lollipop plot showing Cohen’s f effect sizes for each variable, colored by
p-value.

* plot_distributions: List of density or scatter plots of the score across variable levels,
depending on variable type.

ssGSEA_ alternative

73

ssGSEA_alternative
Analysis (ssGSEA)

Alternative Implementation of Single-Sample Gene Set Enrichment

Description

This function computes an enrichment score for each sample using an alternative single-sample
Gene Set Enrichment Analysis (ssGSEA) method. It first maps gene sets to the gene indices present
in the expression matrix, then ranks the genes for each sample, and finally calculates a weighted
enrichment score based on the cumulative differences between in-set and out-of-set gene ranks.

Source: https://rpubs.com/pranaliO18/SSGSEA

Usage
ssGSEA_alternative(
X,
gene_sets,
alpha = 0.25,
scale = TRUE,
norm = FALSE,
single = TRUE
)
Arguments
X A numeric matrix of gene expression values with rows representing genes and
columns representing samples. Row names should correspond to gene identi-
fiers.
gene_sets A list of gene sets, where each element is a vector of gene identifiers. The
function will match these identifiers with the row names of X.
alpha A numeric value specifying the exponent used to weight the ranking scores.
Default is 9. 25.
scale Logical; if TRUE, the cumulative difference is normalized by the total number of
genes. Default is TRUE.
norm Logical; if TRUE, the enrichment scores are further normalized by the absolute
difference between the maximum and minimum scores. Default is FALSE.
single Logical; if TRUE, the function returns the sum of the cumulative differences as
the enrichment score. If FALSE, the maximum absolute cumulative difference is
used. Default is TRUE.
Details

The function performs the following steps:

1. Maps each gene set to the indices of genes in X by matching gene identifiers.

2. Computes column-wise rankings for the gene expression matrix using a ranking method (via
the colRanking function) with tie resolution set to 'average'.

3. For each sample, orders the gene ranks in decreasing order.

4. For each gene set in the sample, calculates:

74

VariableAssociation

* The weighted contribution (rank_alpha) for genes in the set raised to the power of alpha.

* The cumulative distribution functions (CDFs) for genes within the gene set (step_cdf_pos)
and those not in the gene set (step_cdf_neg).

 The difference between these CDFs, optionally scaled by the number of genes if scale =
TRUE.

* Depending on the single parameter, either the sum of the differences (if TRUE) or the
maximum absolute difference (if FALSE) is used as the enrichment score for that gene set.

5. Optionally normalizes the final enrichment scores by the range of values if norm = TRUE.

Value

A matrix of enrichment scores with rows corresponding to gene sets and columns corresponding to

samples.

Examples

Not run:
Create a sample gene expression matrix:
X <- matrix(rnorm(1000), nrow = 100, ncol = 10)
rownames (X) <- paste@("gene”, 1:100)

Define example gene sets:
gene_sets <- list(
set1 = sample(rownames(X), 10),
set2 = sample(rownames(X), 15)

)

Compute the ssGSEA enrichment scores:

es <- ssGSEA_alternative(X, gene_sets, alpha = 0.25, scale = TRUE,
norm = FALSE, single = TRUE)

print(es)

End(Not run)

VariableAssociation Variable Association Analysis

Description

This unified function evaluates associations between gene expression and sample metadata using
multiple methods: score-based (logmedian, ssGSEA, ranking) or GSEA-based association. The
function returns statistical results and visualizations summarizing effect sizes and significance.

Usage

VariableAssociation(
method = c("ssGSEA", "logmedian”, "ranking", "GSEA"),
data,
metadata,
cols,
gene_set,

VariableAssociation

75

mode = c("simple”, "medium”, "extensive"),
stat = NULL,

ignore_NAs = FALSE,

signif_color = "red",

nonsignif_color = "grey",

sig_threshold = 0.05,
saturation_value = NULL,

widthlabels

labsize =

titlesize =

pointSize

18,

14,
5,

discrete_colors = NULL,
continuous_color = "#8C6D03",
color_palette = "Set2",
printplt = TRUE

Arguments

method

data

metadata

cols

gene_set

mode

stat

ignore_NAs

signif_color

nonsignif_color

Character string specifying the method to use. One of:

e "logmedian”

e "sSGSEA"
* "ranking”
° IIGSEA"

A data frame with gene expression data (genes as rows, samples as columns).

A data frame containing sample metadata; the first column should be the sam-
plelD.

Character vector of metadata column names to analyze.
A named list of gene sets:

¢ For score-based methods: list of gene vectors.
¢ For GSEA: list of vectors (unidirectional) or data frames (bidirectional).

Contrast mode: "simple” (default), "medium”, or "extensive".

(GSEA only) Optional. Statistic for ranking genes ("B" or "t"). Auto-detected
if NULL.

(GSEA only) Logical. If TRUE, rows with NA metadata are removed. Default:
FALSE.

Color used for significant associations (default: "red").

Color used for non-significant associations (default: "grey").

sig_threshold Numeric significance cutoff (default: @.05).

saturation_value

widthlabels
labsize
titlesize

pointSize

Lower limit for p-value coloring (default: auto).

Integer for contrast label width before wrapping (default: 18).
Axis text size (default: 10).

Plot title size (default: 14).

Size of plot points (default: 5).

76

VariableAssociation

discrete_colors

(Score-based only) Optional named list mapping factor levels to colors.
continuous_color

(Score-based only) Color for continuous variable points (default: "#8C6D0@3").

color_palette (Score-based only) ColorBrewer palette name for categorical variables (default:
"Set2").

printplt Logical. If TRUE, plots are printed. Default: TRUE.

Value

A list with method-specific results and ggplot2-based visualizations:

For score-based methods (logmedian, ssGSEA, ranking):

* Overall: Data frame of effect sizes (Cohen’s f) and p-values for each metadata variable.

* Contrasts: Data frame of Cohen’s d values and adjusted p-values for pairwise comparisons
(based on mode).

* plot: A combined visualization including:

— Lollipop plots of Cohen’s f,
— Distribution plots by variable (density or scatter),
— Lollipop plots of Cohen’s d for contrasts.

* plot_contrasts: Lollipop plots of Cohen’s d effect sizes, colored by adjusted p-values (BH).
* plot_overall: Lollipop plot of Cohen’s f, colored by p-values.

* plot_distributions: List of distribution plots of scores by variable.
For GSEA-based method (GSEA):

* data: A data frame with GSEA results, including normalized enrichment scores (NES), ad-
justed p-values, and contrasts.

* plot: A ggplot2 lollipop plot of GSEA enrichment across contrasts.

Examples

Simulate gene expression data (genes as rows, samples as columns)
set.seed(42)

expr <- as.data.frame(matrix(rnorm(500), nrow = 50, ncol = 10))
rownames(expr) <- paste@("Gene"”, 1:50)

colnames(expr) <- paste@("”Sample”, 1:10)

Simulate metadata (categorical and continuous)
metadata <- data.frame(

sampleID = paste@("Sample”, 1:10),

Group = rep(c("A", "B"), each = 5),

Age = sample(20:60, 10),

row.names = colnames(expr)

)

Define a toy gene set: one gene set only for discovery mode!
gene_set <- list(

Signaturel = paste@("Gene"”, 1:10)
)

Score-based association (e.g., logmedian)

VisualiselndividualGenes 77

res_score <- VariableAssociation(
method = "logmedian”,
data = expr,
metadata = metadata,
cols = c("Group”, "Age"),
gene_set = gene_set

)

print(res_score$Overall)
print(res_score$plot)

GSEA-based association (if GSEA_VariableAssociation is available)
res_gsea <- VariableAssociation(

#

* o

#
#)

method = "GSEA",
data = expr,
metadata = metadata,
cols = "Group”,
gene_set = gene_set

print(res_gsea$data)
print(res_score$plot)

VisualiseIndividualGenes

VisualiselndividualGenes: Wrapper for Visualising Individual Genes
in Gene Sets

Description

This wrapper function helps explore individual gene behavior within a gene set used in markeR. It
dispatches to specific visualisation functions based on plot_type, supporting various plot types:
heatmaps, violin plots, correlation analysis, PCA, ROC/AUC, and effect size heatmaps.

Usage
VisualiseIndividualGenes(type, data, genes, metadata = NULL, ...)
Arguments
type Character. Specifies the type of plot to generate. Must be one of:
e "violin": Violin plots of individual gene expression by group
* "correlation”: Correlation heatmap of selected genes
* "expression”: Expression heatmap of selected genes
* "roc": ROC plots for classification performance of individual genes
* "auc": AUC plots for classification performance of individual genes
* "rocauc”: Combined ROC and AUC plots
* "cohend": Effect size (Cohen’s D) heatmap
e "pca”: PCA plot of selected genes
data Required. Expression data matrix or data frame, with samples as rows and genes

as columns.

78 VisualiselndividualGenes

genes Required. Character vector of gene names to include in the visualisation.

metadata Optional. Data frame with sample metadata, required for some plot types (e.g.,
violin, roc, cohend).

Additional arguments passed to the specific plotting function.

Value

The output of the specific plotting function called, usually a ggplot or ComplexHeatmap object,
often wrapped in a list with additional data.

Additional required arguments (passed via . . .) per plot_type

violin Requires GroupingVariable (column name in metadata for grouping).

roc, auc, rocauc Requires condition_var (metadata column with condition labels) and class
(positive class label).

cohend Requires condition_var and class (same as roc).

correlation, expression, pca No additional mandatory arguments required.

See Also

IndividualGenes_Violins, CorrelationHeatmap, ExpressionHeatmap, CohenD_IndividualGenes,
plotPCA, ROCandAUCplot

Examples

Example data

set.seed(123)

expr_data <- matrix(rexp(1000, rate = 1), nrow = 50, ncol = 20)
rownames (expr_data) <- paste@("Gene"”, 1:50)

colnames(expr_data) <- paste@(”Sample”, 1:20)

sample_info <- data.frame(
SampleID = colnames(expr_data),
Condition = rep(c("A", "B"), each = 10),
Diagnosis = rep(c("Disease”, "Control”), each = 10),
stringsAsFactors = FALSE
)

rownames (sample_info) <- sample_info$SampleID
selected_genes <- row.names(expr_data)[1:5]

Violin plot
VisualiseIndividualGenes(
type = "violin",
data = expr_data,
metadata = sample_info,
genes = selected_genes,
GroupingVariable = "Condition”,
nrow=1
)
VisualiseIndividualGenes(
type = "correlation”,
data = expr_data,
genes = selected_genes

VisualiselndividualGenes

Expression heatmap
VisualiseIndividualGenes(
type = "expression”,

data = expr_data,
genes = selected_genes

)

PCA plot
VisualiseIndividualGenes(
type = "pca”,
data = expr_data,
genes = selected_genes,
metadata = sample_info,
ColorVariable="Condition

'

ROC plot
VisualiseIndividualGenes(

type = !

n

roc”,

data = expr_data,

metadata = sample_info,
genes = selected_genes,
condition_var = "Diagnosis"”,
class = "Disease”

AUC plot
VisualiseIndividualGenes(
type = "auc”,
data = expr_data,
metadata = sample_info,
genes = selected_genes,
condition_var = "Diagnosis”,
class = "Disease”

ROC&AUC plot
VisualiseIndividualGenes(
type = "rocauc”,
data = expr_data,
metadata = sample_info,
genes = selected_genes,
condition_var = "Diagnosis”,
class = "Disease”

Cohen's D plot
VisualiseIndividualGenes(
type = "cohend”,
data = expr_data,
metadata = sample_info,
genes = selected_genes,
condition_var = "Diagnosis”,

79

80 Volcano_Cohen

class = "Disease”
)
Volcano_Cohen Volcano Plot of Cohen’s d Effect Sizes and Adjusted p-values
Description

This function computes Cohen’s d effect sizes and adjusted p-values for multiple gene signatures
across defined contrasts, and generates a volcano plot (Cohen’s d vs -log10(padj)) using ggplot2.
Each point represents a method-signature pair, faceted by contrast.

Usage

Volcano_Cohen(
cohenlist,
titlesize = 12,
ColorValues = NULL,
title = NULL,
widthlegend = 22,
pointSize = 3,
sig_threshold = 0.05,
cohen_threshold = 0.5,
colorPalette = "Set3"”,

nrow = NULL,
ncol = NULL
)
Arguments
cohenlist A named list from CohenD_allConditions. Each element is a list with:

* CohenD: A data frame where rows are methods and columns are group con-
trasts (formatted as "Group1:Group2"), containing the computed Cohen’s d
effect sizes.

* PValue: A data frame with the same structure as CohenD containing the
corresponding p-values.

* padj: A data frame with the same structure as PValue containing the cor-
responding p-values corrected using the BH method, for all signatures and
contrasts, and by method.

titlesize Integer. Size of the facet strip titles. Default is 12.

ColorValues Character vector of colors used to distinguish signatures. If NULL, colors are
automatically generated.

title Optional title for the overall plot.

widthlegend Integer. Width used to wrap long signature names. Default is 22.
pointSize Numeric. Size of the points in the plot. Default is 3.

sig_threshold Numeric. Adjusted p-value threshold for significance. Default is 0.05.

wrap_title 81

cohen_threshold
Numeric. Effect size threshold. Default is 0.5.

colorPalette Character. Name of RColorBrewer palette to use if ColorValues is not pro-
vided. Default is "Set3".

nrow Optional numeric value specifying the number of rows in the grid layout. If
NULL, a near-square grid is computed.

ncol Optional numeric value specifying the number of columns in the ggplot facet. If
NULL, a near-square grid is computed.

Value

A ggplot object showing a faceted volcano plot of Cohen’s d effect sizes across signatures and
methods for each contrast.

See Also

CohenD_allConditions

wrap_title Wrap Long Titles with Capital Letter Prioritization (when no symbols
are nearby)

Description

This function wraps long titles into multiple lines to fit a specified width, prioritizing breaks at
symbols like underscores, hyphens, and colons when they are close to the wrap point. If no special
symbol is found nearby, the function will break the title at the first capital letter. If neither is found,
the title is broken at the specified width.

Usage

wrap_title(title, width = 30)

Arguments
title A character string representing the title to be wrapped. (Required)
width A numeric value specifying the maximum width for each line. The default is 30
characters. (Optional)
Value

A character string with the title wrapped into multiple lines. Each line will not exceed the speci-
fied width, with breaks prioritized by symbols when nearby, and capital letters used only when no
symbols are present.

Index

* datasets calculateScore_logmedian_unidirectional,
counts_example, 26 15
genesets_example, 33 CalculateScores, 7
metadata_example, 44 CalculateScores_logmedian, 9
* internal CalculateScores_Ranking, 10

calculateScore_logmedian_bidirectional, CalculateScores_ssGSEA, 12

15 CalculateScores_ssGSEA_bidirectional,
calculateScore_logmedian_unidirectional, 12

15 CalculateScores_ssGSEA_unidirectional,
CalculateScores_logmedian, 9 14
CalculateScores_Ranking, 10 cohen_d, 20
CalculateScores_ssGSEA, 12 CohenD_allConditions, 16, 40, 81
CalculateScores_ssGSEA_bidirectional, CohenD_IndividualGenes, 17, 78

12 CohenF_allConditions, 19, 40
CalculateScores_ssGSEA_unidirectional, colRanking, 20

14 compute_cohen_d, 22
cohen_d, 20 compute_cohens_f_pval, 21
CohenD_allConditions, 16 compute_stat_tests, 22
CohenF_allConditions, 19 CorrelationHeatmap, 24, 78
colRanking, 20 counts_example, 26
compute_cohen_d, 22 create_contrast_column, 27
compute_cohens_f_pval, 21
compute_stat_tests, 22 ExpressionHeatmap, 28, 78

create_contrast_column, 27
flatten_results, 30
generate_all_contrasts, 32
getRanking, 36
GSEA_VariableAssociation, 37
Heatmap_Cohen, 39
identify_variable_type, 41
PlotScores_Categorical, 56
PlotScores_Numeric, 59
remove_division, 64
ROCAUC_Scores_Calculate, 67

flatten_results, 30
FPR_Simulation, 30

generate_all_contrasts, 32
geneset_similarity, 34
genesets_example, 33
getRanking, 36
GSEA_VariableAssociation, 37

Heatmap_Cohen, 39

Score_VariableAssociation, 71 identify_variable_type, 41

SSGSEA_alternative, 73 IndividualGenes_Violins, 41, 78

Volcano_Cohen, 80

wrap_title, 81 markeR, 44

markeR-package (markeR), 44
AUC_Scores, 3 metadata_example, 44
calculateDE, 5 plotCombinedGSEA, 45
calculateScore_logmedian_bidirectional, plotGSEAenrichment, 46
15 plotNESlollipop, 48

82

INDEX

plotPCA, 50, 78
PlotScores, 52
PlotScores_Categorical, 56
PlotScores_Numeric, 59
plotVolcano, 61

remove_division, 64
ROC_Scores, 68
ROCandAUCplot, 64, 78
ROCAUC_Scores_Calculate, 67
runGSEA, 69

Score_VariableAssociation, 71
ssSGSEA_alternative, 73

VariableAssociation, 74
VisualiseIndividualGenes, 77
Volcano_Cohen, 80

wrap_title, 81

83

	AUC_Scores
	calculateDE
	CalculateScores
	CalculateScores_logmedian
	CalculateScores_Ranking
	CalculateScores_ssGSEA
	CalculateScores_ssGSEA_bidirectional
	CalculateScores_ssGSEA_unidirectional
	calculateScore_logmedian_bidirectional
	calculateScore_logmedian_unidirectional
	CohenD_allConditions
	CohenD_IndividualGenes
	CohenF_allConditions
	cohen_d
	colRanking
	compute_cohens_f_pval
	compute_cohen_d
	compute_stat_tests
	CorrelationHeatmap
	counts_example
	create_contrast_column
	ExpressionHeatmap
	flatten_results
	FPR_Simulation
	generate_all_contrasts
	genesets_example
	geneset_similarity
	getRanking
	GSEA_VariableAssociation
	Heatmap_Cohen
	identify_variable_type
	IndividualGenes_Violins
	markeR
	metadata_example
	plotCombinedGSEA
	plotGSEAenrichment
	plotNESlollipop
	plotPCA
	PlotScores
	PlotScores_Categorical
	PlotScores_Numeric
	plotVolcano
	remove_division
	ROCandAUCplot
	ROCAUC_Scores_Calculate
	ROC_Scores
	runGSEA
	Score_VariableAssociation
	ssGSEA_alternative
	VariableAssociation
	VisualiseIndividualGenes
	Volcano_Cohen
	wrap_title
	Index

