
Package ‘lpsymphony’
January 20, 2026

Title Symphony integer linear programming solver in R

Version 1.38.0

Description
This package was derived from Rsymphony_0.1-17 from CRAN. These packages provide an R in-
terface to SYMPHONY, an open-source linear programming solver written in C++. The main dif-
ference between this package and Rsymphony is that it includes the solver source code (SYM-
PHONY version 5.6), while Rsymphony expects to find header and library files on the users' sys-
tem. Thus the intention of lpsymphony is to provide an easy to install interface to SYM-
PHONY. For Windows, precompiled DLLs are included in this package.

Maintainer Vladislav Kim <Vladislav.Kim@embl.de>

License EPL

Depends R (>= 3.0.0)

Enhances slam

Suggests BiocStyle, knitr, testthat

URL http://R-Forge.R-project.org/projects/rsymphony,

https://projects.coin-or.org/SYMPHONY,

http://www.coin-or.org/download/source/SYMPHONY/

BugReports https://github.com/Huber-group-EMBL/lpsymphony/issues

biocViews Infrastructure, ThirdPartyClient

VignetteBuilder knitr

NeedsCompilation yes

SystemRequirements GNU make

git_url https://git.bioconductor.org/packages/lpsymphony

git_branch RELEASE_3_22

git_last_commit 68cefe9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Vladislav Kim [aut, cre],
Ted Ralphs [ctb],
Menal Guzelsoy [ctb],
Ashutosh Mahajan [ctb],

1

http://R-Forge.R-project.org/projects/rsymphony
https://projects.coin-or.org/SYMPHONY
http://www.coin-or.org/download/source/SYMPHONY/
https://github.com/Huber-group-EMBL/lpsymphony/issues

2 lpsymphony_solve_LP

Reinhard Harter [ctb],
Kurt Hornik [ctb],
Cyrille Szymanski [ctb],
Stefan Theussl [ctb],
Mike Smith [ctb] (ORCID: <https://orcid.org/0000-0002-7800-3848>)

Contents
lpsymphony_solve_LP . 2

Index 5

lpsymphony_solve_LP COIN-OR SYMPHONY Linear and Mixed Integer Programming
Solver

Description

High level R interface to the COIN-OR SYMPHONY solver for linear as well as mixed integer
linear programming problems (MILPs).

Usage

lpsymphony_solve_LP(obj, mat, dir, rhs, bounds = NULL, types = NULL,
max = FALSE, verbosity = -2, time_limit = -1,
node_limit = -1, gap_limit = -1, first_feasible = FALSE,
write_lp = FALSE, write_mps = FALSE)

Arguments

obj a vector with the objective coefficients

mat a vector or a matrix of the constraint coefficients

dir a character vector with the directions of the constraints. Each element must be
one of "<", "<=", ">", ">=", "==" or "!=".

rhs the right hand side of the constraints

bounds NULL (default) or a list with elements upper and lower containing the indices
and corresponding bounds of the objective variables. The default for each vari-
able is a bound between 0 and Inf.

types a character vector giving the types of the objective variables, with "C", "I",
and "B" corresponding to continuous, integer, and binary, respectively, or NULL
(default), taken as all-continuous. Recycled as needed.

max a logical giving the direction of the optimization. TRUE means that the objective
is to maximize the objective function, FALSE (default) means to minimize it.

verbosity an integer defining the level of verbosity, -2 (default) means no output.

time_limit an integer defining the time limit in seconds, -1 (default) means no time limit.

node_limit an integer defining the limit in number of iterations, -1 (default) means no node
limit.

https://orcid.org/0000-0002-7800-3848

lpsymphony_solve_LP 3

gap_limit when the gap between the lower and the upper bound reaches this point, the so-
lution process will stop and the best solution found to that point will be returned,
-1 (default) means no gap limit.

first_feasible a logical defining if the solution process should stop after the first feasible so-
lution has been found, FALSE (default) means that the solution process does not
stop after the first feasible solution has been found.

write_lp a logical value indicating if an LP representation of the problem should be writ-
ten for debugging purposes, FALSE (default) means no LP file is written.

write_mps a logical value indicating if an MPS representation of the problem should be
written for debugging purposes, FALSE (default) means no MPS file is written.

Details

SYMPHONY is an open source solver for solving mixed integer linear programs (MILPs). The cur-
rent version can be found at https://projects.coin-or.org/SYMPHONY. Package lpsymphony
uses the C interface of the callable library provided by SYMPHONY, and supplies a high level
solver function in R using the low level C interface.

Value

A list containing the optimal solution, with the following components.

solution the vector of optimal coefficients

objval the value of the objective function at the optimum

status an integer with status information about the solution returned: 0 if the optimal
solution was found, a non-zero value otherwise.

Author(s)

Reinhard Harter, Kurt Hornik and Stefan Theussl

References

SYMPHONY development home page (https://projects.coin-or.org/SYMPHONY/wiki).

See Also

lp in package lpSolve; Rglpk_solve_LP in package Rglpk.

Examples

Simple linear program.
maximize: 2 x_1 + 4 x_2 + 3 x_3
subject to: 3 x_1 + 4 x_2 + 2 x_3 <= 60
2 x_1 + x_2 + x_3 <= 40
x_1 + 3 x_2 + 2 x_3 <= 80
x_1, x_2, x_3 are non-negative real numbers

obj <- c(2, 4, 3)
mat <- matrix(c(3, 2, 1, 4, 1, 3, 2, 2, 2), nrow = 3)
dir <- c("<=", "<=", "<=")
rhs <- c(60, 40, 80)
max <- TRUE

https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY/wiki

4 lpsymphony_solve_LP

lpsymphony_solve_LP(obj, mat, dir, rhs, max = max)

Simple mixed integer linear program.
maximize: 3 x_1 + 1 x_2 + 3 x_3
subject to: -1 x_1 + 2 x_2 + x_3 <= 4
4 x_2 - 3 x_3 <= 2
x_1 - 3 x_2 + 2 x_3 <= 3
x_1, x_3 are non-negative integers
x_2 is a non-negative real number

obj <- c(3, 1, 3)
mat <- matrix(c(-1, 0, 1, 2, 4, -3, 1, -3, 2), nrow = 3)
dir <- c("<=", "<=", "<=")
rhs <- c(4, 2, 3)
max <- TRUE
types <- c("I", "C", "I")

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max)

Same as before but with bounds replaced by
-Inf < x_1 <= 4
0 <= x_2 <= 100
2 <= x_3 < Inf

bounds <- list(lower = list(ind = c(1L, 3L), val = c(-Inf, 2)),
upper = list(ind = c(1L, 2L), val = c(4, 100)))

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max,
bounds = bounds)

Index

∗ optimize
lpsymphony_solve_LP, 2

lp, 3
lpsymphony_solve_LP, 2

Rglpk_solve_LP, 3

5

	lpsymphony_solve_LP
	Index

