
Package ‘immApex’
January 20, 2026

Title Tools for Adaptive Immune Receptor Sequence-Based Machine and
Deep Learning

Version 1.4.3

Description A set of tools to for machine and deep learning in R from amino acid and nucleotide se-
quences focusing on adaptive immune receptors. The package includes pre-processing of se-
quences, unifying gene nomenclature usage, encoding sequences, and combining mod-
els. This package will serve as the basis of future immune receptor sequence func-
tions/packages/models compatible with the scRepertoire ecosystem.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

biocViews Software, ImmunoOncology, SingleCell, Classification,
Annotation, Sequencing, MotifAnnotation

Depends R (>= 4.3.0)

Imports hash, httr, Matrix, matrixStats, methods, Rcpp, rvest,
SingleCellExperiment, stats, stringr, utils

Suggests BiocStyle, dplyr, ggraph, ggplot2, igraph, knitr, markdown,
Peptides, randomForest, rmarkdown, scRepertoire, spelling,
testthat, tidygraph, viridis

LinkingTo Rcpp

VignetteBuilder knitr

Language en-US

URL https://github.com/BorchLab/immApex/

BugReports https://github.com/BorchLab/immApex/issues

git_url https://git.bioconductor.org/packages/immApex

git_branch RELEASE_3_22

git_last_commit 935529b

git_last_commit_date 2025-12-05

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Nick Borcherding [aut, cre]

Maintainer Nick Borcherding <ncborch@gmail.com>

1

https://github.com/BorchLab/immApex/
https://github.com/BorchLab/immApex/issues

2 immApex-package

Contents

immApex-package . 2
ace_richness . 3
adjacencyMatrix . 4
amino.acids . 5
buildNetwork . 5
calculateEntropy . 7
calculateFrequency . 8
calculateGeneUsage . 10
calculateMotif . 11
calculateProperty . 12
chao1_richness . 13
d50_dom . 14
dxx_dom . 14
formatGenes . 15
generateSequences . 16
getIMGT . 17
getIR . 18
get_substitution_matrix . 18
gini_coef . 19
gini_simpson . 20
hill_q . 20
immapex_blosum.pam.matrices . 21
immapex_example.data . 22
immapex_gene.list . 22
inferCDR . 23
inv_simpson . 24
make_identity_matrix . 24
mutateSequences . 25
norm_entropy . 26
pielou_evenness . 26
positionalEncoder . 27
probabilityMatrix . 28
scaleMatrix . 29
sequenceDecoder . 30
sequenceEncoder . 31
shannon_entropy . 33
summaryMatrix . 34
tokenizeSequences . 35
variationalSequences . 36

Index 37

immApex-package immApex: Tools for Adaptive Immune Receptor Sequence-Based Ma-
chine and Deep Learning

ace_richness 3

Description

A set of tools to for machine and deep learning in R from amino acid and nucleotide sequences
focusing on adaptive immune receptors. The package includes pre-processing of sequences, unify-
ing gene nomenclature usage, encoding sequences, and combining models. This package will serve
as the basis of future immune receptor sequence functions/packages/models compatible with the
scRepertoire ecosystem.

Author(s)

Maintainer: Nick Borcherding <ncborch@gmail.com>

See Also

Useful links:

• https://github.com/BorchLab/immApex/

• Report bugs at https://github.com/BorchLab/immApex/issues

ace_richness ACE Richness Estimator

Description

Calculates the Abundance-based Coverage Estimator (ACE) of species richness. This metric is
particularly useful for datasets with a large number of rare species.

Usage

ace_richness(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

Sace = Sabund +
Srare

Cace
+

F1

Cace
γ2
ace

where the classification of rare and abundant species is based on a threshold of 10 individuals, *F*1
is the count of singletons, *S*rare is the number of rare species, and *C*ace is the sample coverage
for rare species.

Value

A single numeric value representing the estimated total number of species. The estimate is con-
strained to be at least the number of observed species.

https://github.com/BorchLab/immApex/
https://github.com/BorchLab/immApex/issues

4 adjacencyMatrix

References

Chao, A., & Lee, S.-M. (1992). *Estimating the number of classes via sample coverage*. Journal
of the American Statistical Association, 87(417), 210-217.

Examples

counts <- rpois(50, lambda=1.5)
ace_richness(counts)

adjacencyMatrix Adjacency Matrix From Amino Acid or Nucleotide Sequences

Description

Calculate frequency of adjacency between residues along a set of biological sequences.

Usage

adjacencyMatrix(
input.sequences,
normalize = TRUE,
sequence.dictionary = amino.acids,
directed = FALSE

)

Arguments

input.sequences

Character vector of sequences (amino acid or nucleotide)

normalize Return the values as a normalized frequency (TRUE) or raw counts (FALSE).
sequence.dictionary

The letters to use in the matrix (defaults to a standard 20 amino acids).

directed Logical; if FALSE (default) the matrix is symmetrised.

Value

An adjacency matrix.

Examples

new.sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)
#
adj.matrix <- adjacencyMatrix(new.sequences,
normalize = TRUE)

amino.acids 5

amino.acids Standard 20 amino acids

Description

Vector of one-letter codes for the 20 standard amino acids.

Usage

amino.acids

Format

An object of class character of length 20.

buildNetwork Build Edit Distance Network

Description

Build a sequence similarity network using various distance metrics and normalization options. Sup-
ports Levenshtein, Hamming, Damerau-Levenshtein, Needleman-Wunsch, and Smith-Waterman
distances.

Usage

buildNetwork(
input.data = NULL,
input.sequences = NULL,
seq_col = NULL,
v_col = NULL,
j_col = NULL,
threshold = 2,
dist_type = "levenshtein",
dist_mat = NULL,
normalize = c("none", "length", "maxlen"),
gap_open = -10,
gap_extend = -1,
filter.v = FALSE,
filter.j = FALSE,
ids = NULL,
output = c("edges", "sparse"),
weight = c("dist", "binary")

)

6 buildNetwork

Arguments

input.data ‘data.frame‘/‘tibble‘ with sequence & metadata (optional - omit if you supply
‘sequences‘ directly).

input.sequences

Character vector of sequences **or** column name inside ‘input.data‘. Ignored
when ‘NULL‘ and ‘seq_col‘ is non-‘NULL‘.

seq_col, v_col, j_col
Column names to use when ‘input.data‘ is given. By default the function looks
for common AIRR names (‘junction_aa‘, ‘cdr3‘, ‘v_call‘, ‘j_call‘).

threshold >= 1 for absolute distance **or** 0 < x <= 1 for relative. When using normal-
ized distances (‘normalize != "none"‘), this typically should be a value between
0 and 1 (e.g., 0.9 for 10 percent dissimilarity).

dist_type Character string specifying the distance metric to use:

• ‘"levenshtein"‘ - Standard edit distance (default, backward compatible)
• ‘"hamming"‘ - Hamming distance (requires equal-length sequences)
• ‘"damerau"‘ - Damerau-Levenshtein (allows transpositions)
• ‘"nw"‘ - Needleman-Wunsch global alignment score
• ‘"sw"‘ - Smith-Waterman local alignment score

dist_mat Character string specifying which substitution matrix to use for alignment-based
metrics (‘"nw"‘, ‘"sw"‘). Options include:

• ‘"BLOSUM45"‘ - BLOSUM45 matrix (distantly related)
• ‘"BLOSUM50"‘ - BLOSUM50 matrix
• ‘"BLOSUM62"‘ - BLOSUM62 matrix (default, good for proteins)
• ‘"BLOSUM80"‘ - BLOSUM80 matrix (closely related)
• ‘"BLOSUM100"‘ - BLOSUM100 matrix (very closely related)
• ‘"PAM30"‘ - PAM30 matrix (closely related sequences)
• ‘"PAM40"‘ - PAM40 matrix
• ‘"PAM70"‘ - PAM70 matrix
• ‘"PAM120"‘ - PAM120 matrix
• ‘"PAM250"‘ - PAM250 matrix (distantly related)

normalize Character string specifying how to normalize distances:

• ‘"none"‘ - Raw distance values (default, backward compatible)
• ‘"maxlen"‘ - Normalize by max(length(seq1), length(seq2))
• ‘"length"‘ - Normalize by mean sequence length

gap_open Gap opening penalty for alignment-based metrics (default: -10). Only used
when ‘metric‘ is "nw" or "sw".

gap_extend Gap extension penalty for alignment-based metrics (default: -1). Only used
when ‘metric‘ is "nw" or "sw".

filter.v Logical; require identical V when ‘TRUE‘.

filter.j Logical; require identical J when ‘TRUE‘.

ids Optional character labels; recycled from row-names if missing.

output ‘"edges"‘ (default) or ‘"sparse"‘ - return an edge-list ‘data.frame‘ **or** a sym-
metric ‘Matrix::dgCMatrix‘ adjacency matrix.

weight ‘"dist"‘ (store the edit distance) **or** ‘"binary"‘ (all edges get weight 1). Ig-
nored when ‘output = "edges"‘.

calculateEntropy 7

Value

edge-list ‘data.frame‘ **or** sparse adjacency ‘dgCMatrix‘

Examples

data(immapex_example.data)

Levenshtein distance
edges <- buildNetwork(input.data = immapex_example.data[["AIRR"]],

seq_col = "junction_aa",
threshold = 0.9,
filter.v = TRUE)

Using Hamming distance with normalization
edges <- buildNetwork(input.data = immapex_example.data[["AIRR"]],

seq_col = "junction_aa",
threshold = 0.1,
dist_type = "hamming",
normalize = "maxlen",
filter.v = TRUE)

Using Needleman-Wunsch with BLOSUM62
edges <- buildNetwork(input.data = immapex_example.data[["AIRR"]],

seq_col = "junction_aa",
threshold = 0.2,
dist_type = "nw",
normalize = "maxlen",
dist_mat = "BLOSUM62",
filter.v = TRUE)

Using PAM30 for closely related sequences
edges <- buildNetwork(input.data = immapex_example.data[["AIRR"]],

seq_col = "junction_aa",
threshold = 0.15,
dist_type = "nw",
normalize = "maxlen",
dist_mat = "PAM30",
filter.v = TRUE)

Damerau-Levenshtein (allows transpositions)
edges <- buildNetwork(input.data = immapex_example.data[["AIRR"]],

seq_col = "junction_aa",
threshold = 2,
dist_type = "damerau",
filter.v = TRUE)

calculateEntropy Positional Entropy / Diversity Biological Sequences

Description

Computes residue-wise diversity for a set of aligned (right-padded) CDR3 amino-acid sequences
using *any* supported diversity estimator in **immApex**. The following metrics are recognized:

8 calculateFrequency

* **Shannon entropy:** shannon_entropy * **Inverse Simpson:** inv_simpson * **Gini–Simpson
index:** gini_simpson * **Normalized entropy:** norm_entropy * **Pielou evenness:** pielou_evenness
* * **Hill numbers** (orders 0, 1, 2): hill_q(0), hill_q(1), hill_q(2)

You may also supply a **custom function** to ‘method‘; it must take a numeric vector of clone
counts and return a single numeric value.

Usage

calculateEntropy(
input.sequences,
max.length = NULL,
method = c("shannon", "inv.simpson", "gini.simpson", "norm.entropy", "pielou", "hill0",

"hill1", "hill2"),
padding.symbol = "."

)

Arguments

input.sequences

‘character()‘. Vector of CDR3 AA strings.

max.length ‘integer(1)‘. Target length to align / pad to. *Default* = ‘max(nchar(sequences))‘.

method Either the name of a built-in metric (‘"shannon"‘, ‘"inv.simpson"‘, ‘"gini.simpson"‘,
‘"norm.entropy"‘, ‘"pielou"‘, ‘"hill0"‘, ‘"hill1"‘, ‘"hill2"‘) **or** a custom func-
tion as described above.

padding.symbol Symbol to use for padding at the end of sequences.

Value

Named ‘numeric()‘ vector of diversity scores, one value per position (Pos1 . . . Pos*L*).

Examples

seqs <- c("CASSLGQDTQYF", "CASSIRSSYNEQFF", "CASSTGELFF")
calculateEntropy (seqs, method = "shannon")

calculateFrequency Relative Residue Frequencies at Every Position

Description

Quickly computes the per-position relative frequency of each symbol (amino-acid or nucleotide)
in a set of biological sequences. Variable-length strings are padded to a common width so the
calculation is entirely vectorized (one logical comparison + one ‘colSums()‘ per residue).

calculateFrequency 9

Usage

calculateFrequency(
input.sequences,
max.length = NULL,
sequence.dictionary = amino.acids,
padding.symbol = ".",
summary.fun = c("proportion", "count", "percent"),
tidy = FALSE

)

Arguments

input.sequences

Character vector of sequences (amino acid or nucleotide)

max.length Integer. Pad/trim to this length. Defaults to ‘max(nchar(sequences))‘.

sequence.dictionary

Vector of valid residue symbols that should be tracked (defaults to the 20 canon-
ical amino acids; supply ‘c("A","C","G","T","N")‘ etc. for nucleotides).

padding.symbol Single character used for right-padding. **Must not** be present in ‘sequence.dictionary‘.

summary.fun Character string choosing the summary statistic: * ‘"proportion"‘ (default) –
each cell sums to 1 over the table. * ‘"count"‘ – raw counts. * ‘"percent"‘ –
proportion × 100.

tidy Logical; if ‘TRUE‘ a long-format ‘data.frame‘ is returned instead of a matrix
(useful for plotting with *ggplot2*).

Value

Either

• A numeric matrix of dimension ‘length(sequence.dictionary)‘ × ‘max.length‘, whose columns
sum to 1, **or**

• A ‘data.frame‘ with columns *position*, *residue*, *frequency* when ‘tidy = TRUE‘.

Examples

Amino Acid example
seqs <- c("CASSLGQGAETQYF", "CASSPGQGDYEQYF", "CASSQETQYF")
rel.freq <- calculateFrequency(seqs)
head(rel.freq[, 1:5])

Nucleotide example
dna <- c("ATGCC", "ATGAC", "ATGGC")
calculateFrequency(dna,

sequence.dictionary = c("A","C","G","T"),
padding.symbol = "-",
tidy = TRUE)

10 calculateGeneUsage

calculateGeneUsage Quantifcation of Gene-Locus Usage

Description

Computes either the **counts**, **proportions** (default), or **percentages** of one locus *or*
a locus pair that are already present as columns in ‘input.data‘. No external dependencies.

Usage

calculateGeneUsage(
input.data,
loci,
levels = NULL,
summary.fun = c("proportion", "count", "percent")

)

Arguments

input.data A data.frame whose rows are sequences / clones and whose columns named in
‘loci‘ contain gene identifiers.

loci Character vector of length 1 or 2 giving the column names.

levels Optional list of length 1 or 2 with the full set of factor levels to include. Missing
levels are filled with zeros. If ‘NULL‘ (default) only observed levels appear.

summary.fun Character string choosing the summary statistic: * ‘"proportion"‘ (default) –
each cell sums to 1 over the table. * ‘"count"‘ – raw counts. * ‘"percent"‘ –
proportion × 100.

Value

Named numeric **vector** (single locus) or numeric **matrix** (paired loci). For ‘"proportion"‘
and ‘"percent"‘ results sum to 1 or 100.

Examples

df <- data.frame(V = c("TRBV7-2","TRBV7-2","TRBV5-1"),
J = c("TRBJ2-3","TRBJ2-5","TRBJ2-3"))

calculateGeneUsage(df, "V", summary = "count")
calculateGeneUsage(df, c("V","J"), summary = "percent")

calculateMotif 11

calculateMotif Motif Enumeration and Counting

Description

Rapidly enumerates and quantifies **contiguous** (and, optionally, single-gap discontinuous) amino-
acid motifs across a set of sequences.

Usage

calculateMotif(
input.sequences,
motif.lengths = 2:5,
min.depth = 3,
discontinuous = FALSE,
discontinuous.symbol = ".",
nthreads = 1

)

Arguments

input.sequences

Character vector of sequences (amino acid or nucleotide)

motif.lengths Integer vector of motif sizes (>= 1). **Default:** ‘2:5‘.

min.depth Minimum count a motif must reach to be retained in the output (‘>= 1‘). **De-
fault:** ‘3‘.

discontinuous Logical; include single-gap motifs as well? **Default:** ‘FALSE‘.

discontinuous.symbol

Single character representing the gap when ‘discontinuous = TRUE‘. **De-
fault:** ‘"."‘.

nthreads Integer number of OpenMP threads to use. ‘1‘ forces serial execution. **De-
fault:** ‘1‘.

Details

For every input sequence the algorithm slides windows of length *k* (‘motif.lengths‘) and incre-
ments a motif counter (‘unordered_map‘). If ‘discontinuous = TRUE‘, each window is additionally
copied *k* times, substituting one position at a time with ‘discontinuous.symbol‘ (default ‘"."‘),
yielding gapped motif patterns such as ‘"C.S"‘.

Value

A ‘data.frame‘ with two columns:

motif Motif string (contiguous or gapped).

frequency Integer occurrence count across all sequences.

12 calculateProperty

Examples

seqs <- c("CASSLGQDTQYF", "CASSAGQDTQYF", "CASSLGEDTQYF")
calculateMotif(seqs, motif.lengths = 3, min.depth = 2)

calculateProperty Position-wise Amino-Acid Property Profiles

Description

Computes a range of summary statistics for property values of one or more AA property scales
at every residue position of a set of protein (or peptide) sequences. The function is entirely vec-
torized: it first calls [‘calculateFrequency()‘] to obtain a residue-by-position **frequency** matrix
F (each column sums to 1) and then performs a single matrix product.

Usage

calculateProperty(
input.sequences,
property.set = "atchleyFactors",
summary.fun = "mean",
transform = "none",
max.length = NULL,
padding.symbol = ".",
tidy = FALSE

)

Arguments

input.sequences

Character vector of amino-acid strings.

property.set Character string (one of the supported names) Defaults to ‘"atchleyFactors"‘, but
includes: ‘"crucianiProperties"‘, ‘"FASGAI"‘, ‘"kideraFactors"‘, ‘"MSWHIM"‘,
‘"ProtFP"‘, ‘"stScales"‘, ‘"tScales"‘, ‘"VHSE"‘, ‘"zScales"‘

summary.fun Character string (‘"mean"‘, ‘"median"‘, ‘"sum"‘, ‘"min"‘, ‘"max"‘), **or** a
function accepting a numeric vector and returning length-1 numeric. Defaults to
‘"mean"‘.

transform Character string controlling a *post-summary* transformation. One of ‘"none"‘
(default), ‘"sqrt"‘, ‘"log1p"‘, ‘"zscore"‘ (row-wise), or ‘"minmax"‘ (row-wise).

max.length Integer. Pad/trim to this length (‘max(nchar(sequences))‘ by default).

padding.symbol Single character used for right-padding. Must not be one of the 20 canonical
residues.

tidy Logical; if ‘TRUE‘, return a long-format ‘data.frame‘

Value

A numeric matrix (*k* × *L*) **or** a tidy data.frame with columns scale, position, value.

chao1_richness 13

Examples

set.seed(1)
seqs <- c("CASSLGQGAETQYF", "CASSPGQGDYEQYF", "CASSQETQYF")
aa.Atchley <- calculateProperty(seqs, property.set = "atchleyFactors")

chao1_richness Chao1 Richness Estimator

Description

Calculates the Chao1 non-parametric estimator of species richness.

Usage

chao1_richness(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

The bias-corrected formula is used:

Schao1 = Sobs +
F1(F1 − 1)

2(F2 + 1)

where *S*obs is the number of observed species, *F*1 is the count of singletons, and *F*2 is the
count of doubletons.

If the conditions for the formula are not met (*F*1 <= 1 or *F*2 = 0), the function returns the
observed richness (*S*obs).

Value

A single numeric value representing the estimated total number of species.

References

Chao, A. (1984). *Nonparametric estimation of the number of classes in a population*. Scandina-
vian Journal of Statistics, 11(4), 265-270.

Examples

Sample with singletons and doubletons
counts <- c(rep(1, 10), rep(2, 5), 5, 8, 12)
chao1_richness(counts)

Sample without doubletons returns observed richness
chao1_richness(c(rep(1, 5), 3, 4, 5))

14 dxx_dom

d50_dom D50 Dominance Index

Description

A convenience wrapper for ‘dxx_dom(cnt, 50)‘. Calculates the minimum number of top clones
required to constitute 50

Usage

d50_dom(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Value

The smallest number of categories whose cumulative abundance is at least 50

Examples

d50_dom(c(100, 50, 20, 10, 5, rep(1, 5)))

dxx_dom Dxx Dominance Index

Description

Calculates the minimum number of top clones/sequences (ranked by abundance) that constitute a
specified percentage of the total dataset. This function allows the user to designate the percentage.

Usage

dxx_dom(cnt, pct)

Arguments

cnt Numeric vector of non-negative counts.

pct A numeric value (0-100) for the target percentage.

Value

The smallest number of categories whose cumulative abundance is at least ‘pct‘ percent of the total
abundance.

See Also

[d50_dom()]

formatGenes 15

Examples

counts <- c(100, 50, 20, 10, 5, rep(1, 5))
dxx_dom(counts, 80)

formatGenes Ensure clean gene nomenclature using IMGT annotations

Description

This function will format the genes into a clean nomenclature using the IMGT conventions.

Usage

formatGenes(
input.data,
region = "v",
technology = NULL,
species = "human",
simplify.format = TRUE

)

Arguments

input.data Data frame of sequencing data or scRepertoire outputs

region Sequence gene loci to access - "v", "d", "j", or "c" or a combination using c("v",
"d", "j")

technology The sequencing technology employed - ’TenX’, "Adaptive’, or ’AIRR’

species One or two word designation of species. Currently supporting: "human", "mouse",
"rat", "rabbit", "rhesus monkey", "sheep", "pig", "platypus", "alpaca", "dog",
"chicken", and "ferret"

simplify.format

If applicable, remove the allelic designation (TRUE) or retain all information
(FALSE)

Value

A data frame with the new columns of formatted genes added.

Examples

data(immapex_example.data)
formatGenes(immapex_example.data[["TenX"]],

region = "v",
technology = "TenX")

16 generateSequences

generateSequences Randomly Generate Amino Acid Sequences

Description

Use this to make synthetic amino acid sequences for purposes of testing code, training models, or
providing noise.

Usage

generateSequences(
prefix.motif = NULL,
suffix.motif = NULL,
number.of.sequences = 100,
min.length = 1,
max.length = 10,
verbose = TRUE,
sequence.dictionary = amino.acids

)

Arguments

prefix.motif A defined amino acid/nucleotide sequence to add to the start of the generated
sequences.

suffix.motif A defined amino acid/nucleotide sequence to add to the end of the generated
sequences.

number.of.sequences

The number of sequences to generate.

min.length The minimum length of the final sequence. If this value is too short to fit the
motifs, it will be automatically increased.

max.length The maximum length of the final sequence. If it is less than the final ‘min.length‘,
it will also be adjusted.

verbose Logical. If TRUE, prints messages when arguments like ‘min.length‘ or ‘max.length‘
are automatically adjusted.

sequence.dictionary

A character vector of the letters to use in random sequence generation.

Value

A character vector of generated sequences.

Examples

generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

getIMGT 17

getIMGT Get IMGT Sequences for Specific Loci

Description

Use this to access the ImMunoGeneTics (IMGT) sequences for a specific species and gene loci.
More information on IMGT can be found at imgt.org.

Usage

getIMGT(
species = "human",
chain = "TRB",
sequence.type = "aa",
frame = "inframe",
region = "v",
max.retries = 3,
verbose = TRUE

)

Arguments

species One or two-word common designation of species.

chain Sequence chain to access, e.g., TRB or IGH.

sequence.type Type of sequence - aa (amino acid) or nt (nucleotide).

frame Designation for all, inframe, or inframe+gap.

region Gene loci to access.

max.retries Number of attempts to fetch data in case of failure.

verbose Print messages corresponding to the processing step.

Value

A list of allele sequences.

Examples

Not run:
TRBV_aa <- getIMGT(species = "human",

chain = "TRB",
frame = "inframe",
region = "v",
sequence.type = "aa",
max.retries = 3)

End(Not run)

https://www.imgt.org/

18 get_substitution_matrix

getIR Extract Immune Receptor Sequences

Description

Use this to extract immune receptor sequences from a Single-Cell Object or the output of combi-
neTCR and combineBCR.

Usage

getIR(
input.data,
chains,
sequence.type = c("aa", "nt"),
group.by = NULL,
as.list = FALSE

)

Arguments

input.data Single-cell object or the output of combineTCR and combineBCR from scReper-
toire

chains Immune Receptor chain to use - TRA, TRB, IGH, or IGL

sequence.type Extract amino acid (aa) or nucleotide (nt) sequences

group.by Optional metadata column (e.g., "sample.id") to group and return results as a
named list by that variable.

as.list Logical; if TRUE, returns a list split by chain. If group.by is also provided,
returns a nested list Default is FALSE.

Value

A data frame, list of data frames, or nested list of immune receptor sequences depending on as.list
and group.by. Each entry includes CDR3 sequence, V(D)J gene segments, and associated bar-
codes.

get_substitution_matrix

Get substitution matrix from package data or custom input

Description

Get substitution matrix from package data or custom input

Usage

get_substitution_matrix(matrix_name)

gini_coef 19

Arguments

matrix_name Character string or numeric matrix

Value

Numeric matrix with amino acid row/column names

gini_coef Gini Coefficient of Abundance Inequality

Description

Calculates the Gini coefficient, a measure of inequality, for a vector of clone/sequence counts. It
ranges from 0 (perfect equality) to nearly 1 (maximal inequality).

Usage

gini_coef(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

G =

∑S
i=1(2i− S − 1)ni

S
∑S

i=1 ni

where *n*i are the counts of each of the *S* categories, sorted in non-decreasing order.

Value

A numeric value in [0, 1]. Returns ‘0‘ if there is only one category.

See Also

[gini_simpson()]

Examples

High inequality
gini_coef(c(100, 1, 1, 1))
Perfect equality
gini_coef(c(10, 10, 10, 10))

20 hill_q

gini_simpson Gini–Simpson Diversity

Description

Computes the complement of Simpson’s index (also called the Gini–Simpson index or probability
of interspecific encounter):

Usage

gini_simpson(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

1− λ = 1−
∑
i

p 2
i

Value

Value in the interval [0, 1]. Higher numbers indicate greater heterogeneity.

Examples

gini_simpson(c(10, 5, 5))

hill_q Hill-Number Generator

Description

Returns a *function* that computes the Hill diversity of order *q* (also called the “effective number
of species”):

Usage

hill_q(q)

Arguments

q Numeric order of diversity. Common values: *0* (richness), *1* (exp(*H*)),
2 (inverse Simpson).

immapex_blosum.pam.matrices 21

Details

qD =

(∑
i

p q
i

)1/(1−q)

, q ̸= 1

For *q = 1* the formula is undefined; the limit is

1D = eH
′

.

Value

A **closure**: ‘hill_q(q)‘ returns a function that takes a vector of counts and yields the corre-
sponding ^qD. The returned function is vectorised over its input.

References

Hill, M. O. (1973) *Diversity and Evenness: A Unifying Notation and its Consequences.* Ecology
54 (2), 427–432.

Examples

hill1 <- hill_q(1) # q = 1
hill1(c(5, 1, 1, 1))

hill2 <- hill_q(2) # q = 2, inverse-Simpson
hill2(c(5, 1, 1, 1))

immapex_blosum.pam.matrices

List of amino acid substitution matrices

Description

A list of amino acid substitution matrices, using the Point Accepted Matrix (PAM) and BLOck
SUbstitution Matrix (BLOSUM) approaches. A discussion and comparison of these matrices are
available at PMID: 21356840.

• BLOSUM45

• BLOSUM50

• BLOSUM62

• BLOSUM80

• BLOSUM100

• PAM30

• PAM40

• PAM70

• PAM120

• PAM250

https://pubmed.ncbi.nlm.nih.gov/21356840/

22 immapex_gene.list

Usage

data("immapex_blosum.pam.matrices")

Value

List of 10 substitution matrices

immapex_example.data Example contig data for Apex

Description

Contains a collection of bulk or paired TCR sequences in the respective formats in the form of a list
from the following sources:

• TenX: 10k_Human_DTC_Melanoma_5p_nextgem_Multiplex from 10x Website.

• AIRR: Human_colon_16S8157851 from PMID: 37055623.

• Adaptive: Adaptive_2283_D0 from PMID: 36220826.

More information on the data formats are available: AIRR, Adaptive, and TenX.

Usage

data("immapex_example.data")

Value

List of 3 example data sets for 10x, AIRR and Adaptive contigs.

immapex_gene.list A list of IMGT gene names by genes, loci, and species

Description

A list of regularized gene nomenclature to use for converting for data for uniformity. Data is orga-
nize by gene region, loci and species. Not all species are represented in the data and pseudogenes
have not been removed.

Usage

data("immapex_gene.list")

Value

List of gene nomenclature by region, loci, and species.

https://www.10xgenomics.com/datasets/10k-human-dtc-melanoma-NextGEM-5p
https://pubmed.ncbi.nlm.nih.gov/37055623/
https://pubmed.ncbi.nlm.nih.gov/36220826/
https://docs.airr-community.org/en/stable/
https://clients.adaptivebiotech.com/assets/downloads/immunoSEQ_AnalyzerManual.pdf
https://www.10xgenomics.com/support/single-cell-immune-profiling

inferCDR 23

inferCDR Infer CDR-loop segments from V-gene calls

Description

Use this isolate sequences from the CDR loop using the V gene annotation. When there are multiple
V gene matches for a single gene, the first allelic sequence is used.

Usage

inferCDR(
input.data,
reference,
chain = "TRB",
technology = c("TenX", "AIRR", "Adaptive", "Omniscope"),
sequence.type = c("aa", "nt"),
sequences = c("CDR1", "CDR2"),
verbose = TRUE

)

Arguments

input.data Data frame output of formatGenes

reference IMGT reference sequences from getIMGT

chain Sequence chain to access, like TRB or IGH
technology The sequencing technology employed - TenX, Adaptive, or AIRR
sequence.type Type of sequence - aa for amino acid or nt for nucleotide

sequences The specific regions of the CDR loop to get from the data, such as CDR1.

verbose Logical. If ‘TRUE‘ (default), prints a progress message.

Value

A data frame with the new columns of CDR sequences added.

Examples

Not run:
Getting the Sequence Reference
data(immapex_example.data)
TRBV_aa <- getIMGT(species = "human",

chain = "TRB",
frame = "inframe",
region = "v",
sequence.type = "aa")

Ensuring sequences are formatted to IMGT
TenX_formatted <- formatGenes(immapex_example.data[["TenX"]],

region = "v",
technology = "TenX")

Inferring CDR loop elements

24 make_identity_matrix

TenX_formatted <- inferCDR(TenX_formatted,
chain = "TRB",
reference = TRBV_aa,
technology = "TenX",
sequence.type = "aa",
sequences = c("CDR1", "CDR2"))

End(Not run)

inv_simpson Inverse Simpson Diversity

Description

Computes the inverse of Simpson’s concentration index, sometimes written as *1/D*. This metric
emphasizes dominant categories.

Usage

inv_simpson(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

1/D =
1∑
i p

2
i

Value

Numeric value >= 1. Equals 1 when all observations belong to a single category.

Examples

inv_simpson(c(10, 5, 1))

make_identity_matrix Create a simple identity substitution matrix

Description

Create a simple identity substitution matrix

Usage

make_identity_matrix()

mutateSequences 25

mutateSequences Randomly Mutate Sequences of Amino Acids

Description

Use this to mutate or mask sequences for purposes of testing code, training models, or noise.

Usage

mutateSequences(
input.sequences,
number.of.sequences = 1,
mutation.rate = 0.01,
position.start = NULL,
position.end = NULL,
sequence.dictionary = amino.acids

)

Arguments

input.sequences

The amino acid or nucleotide sequences to use
number.of.sequences

The number of mutated sequences to return

mutation.rate The rate of mutations to introduce into sequences

position.start The starting position to mutate along the sequence Default = NULL will start
the random mutations at position 1

position.end The ending position to mutate along the sequence Default = NULL will end the
random mutations at the last position

sequence.dictionary

The letters to use in sequence mutation (default are all amino acids)

Value

A vector of mutated sequences

Examples

sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

mutated_sequences <- mutateSequences(sequences,
number.of.sequences = 1,
position.start = 3,
position.end = 8)

26 pielou_evenness

norm_entropy Normalised Shannon Entropy

Description

Shannon entropy scaled to the interval [0, 1] by its maximum possible value given *S* observed
categories:

Usage

norm_entropy(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

H∗ =
H ′

lnS

(also known as “Shannon evenness”).

Value

Numeric value in [0, 1]; ‘0‘ when all observations are in a single category.

Examples

norm_entropy(c(40, 10, 10, 10))

pielou_evenness Pielou’s Evenness

Description

Convenience wrapper for normalized Shannon entropy (*E* = *H* / ln *S*).

Usage

pielou_evenness(cnt)

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Value

Numeric evenness measure in [0, 1].

positionalEncoder 27

Examples

pielou_evenness(c(3, 3, 3))

positionalEncoder Generate Sinusoidal Positional Encodings

Description

Creates a matrix of sinusoidal positional encodings as described in the "Attention Is All You Need"
paper. This provides a way to inject information about the relative or absolute position of tokens in
a sequence.

Usage

positionalEncoder(
max.length = NULL,
d.model = NULL,
input.sequences = NULL,
base = 10000,
position.offset = 1L

)

Arguments

max.length The maximum sequence length (number of positions) to encode. This is the
primary way to specify the output size.

d.model The dimensionality of the embedding. Must be an even number.

input.sequences

Optional. A character vector of sequences. If provided, ‘max.length‘ is au-
tomatically determined from the longest sequence, unless ‘max.length‘ is also
explicitly set to a larger value.

base The base for the geometric progression of frequencies. The default is 10000, as
used in the original paper.

position.offset

An integer offset for position numbering. Defaults to 1 (1-based indexing com-
mon in R). Set to 0 for 0-based indexing.

Value

A matrix of shape ‘max.length‘ x ‘d.model‘ containing the positional encodings.

Details

The implementation uses the standard formulas: ‘PE(pos, 2i) = sin(pos / base^(2i / d.model))‘
‘PE(pos, 2i+1) = cos(pos / base^(2i / d.model))‘ where ‘pos‘ is the position, ‘i‘ is the dimension
pair, ‘d.model‘ is the embedding dimension, and ‘base‘ is a user-definable base, typically 10000.

28 probabilityMatrix

Examples

pos_encoding <- positionalEncoder(max.length = 50,
d.model = 64)

my_sequences <- c("SEQVENCE", "ANOTHERSEQ")
pos_enc_auto <- positionalEncoder(input.sequences = my_sequences,

d.model = 32)

probabilityMatrix Position Probability Matrix for Amino Acid or Nucleotide Sequences

Description

Generates a position-probability (PPM) or position-weight (PWM) matrix from a set of biological
sequences.

Usage

probabilityMatrix(
input.sequences,
max.length = NULL,
convert.PWM = FALSE,
background.frequencies = NULL,
sequence.dictionary = amino.acids,
pseudocount = 1,
padding.symbol = "."

)

Arguments

input.sequences

Character vector of sequences.

max.length Integer; sequences will be right-padded to this length. If NULL (default), pads
to the length of the longest sequence in the input.

convert.PWM Logical; if TRUE, converts the matrix into a PWM.
background.frequencies

Named vector of background frequencies for PWM calculation. If NULL, a
uniform distribution is assumed. Names must correspond to characters in ‘se-
quence.dictionary‘.

sequence.dictionary

Character vector of residues to include in the matrix.

pseudocount A small number added to raw counts for PWM calculation to avoid zero proba-
bilities. Defaults to 1.

padding.symbol Single character for right-padding. Must not be in ‘sequence.dictionary‘.

Value

A matrix with position-specific probabilities (PPM) or weights (PWM).

scaleMatrix 29

Examples

new.sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

PPM.matrix <- probabilityMatrix(new.sequences)

scaleMatrix Fast Matrix Scaling or Transformation

Description

Applies a chosen transformation to every row *or* column of a numeric matrix without altering its
dimensions. Designed for lightweight pre-processing pipelines ahead of machine-learning models.

Usage

scaleMatrix(
x,
method = c("minmax", "z", "robust_z", "unit_var", "l2", "l1", "sqrt", "log1p", "log2",

"log10", "arcsinh", "none"),
margin = 2,
range = c(0, 1),
offset = 1e-08,
cofactor = 5,
na.rm = TRUE

)

Arguments

x Numeric matrix (coerced with as.matrix()).
method Character scalar. One of:

• "minmax" – rescale linearly to [range].
• "z" – mean 0 / sd 1 (per margin).
• "robust_z" – median 0 / MAD 1 (outlier-resistant).
• "unit_var" – divide by sd (keep mean shifts).
• "l2", "l1" – divide by Euclidean / L1 norm.
• "sqrt" – element-wise square-root.
• "log1p" – element-wise log1p(x + offset).
• "log2", "log10" – logs with small offset.
• "arcsinh" – asinh(x / cofactor) (Flow/CyTOF).
• "none" – return unchanged.

margin 1 = operate row-wise, 2 = column-wise (default 2).
range Numeric length-2 vector for method = "minmax".
offset Non-negative scalar added before logs / sqrt (ignored otherwise). Default 1e-8.
cofactor Numeric > 0 for method = "arcsinh" (default 5).
na.rm Logical; drop NAs when computing summaries.

30 sequenceDecoder

Value

Matrix of identical dimension (dimnames preserved).

Examples

m <- matrix(rnorm(20), 4, 5,
dimnames = list(paste0("g", 1:4), paste0("s", 1:5)))

scaleMatrix(m, "minmax")
scaleMatrix(m, "robust_z", margin = 1)
scaleMatrix(m, "l2")
scaleMatrix(abs(m), "arcsinh", cofactor = 150)

sequenceDecoder Decode Amino Acid or Nucleotide Sequences

Description

Transforms one-hot or property-encoded sequences back into their original character representation.
This function serves as the inverse to ‘sequenceEncoder‘.

Usage

sequenceDecoder(
encoded.object,
mode = c("onehot", "property"),
property.set = NULL,
property.matrix = NULL,
call.threshold = 0.5,
sequence.dictionary = amino.acids,
padding.symbol = ".",
remove.padding = TRUE

)

Arguments

encoded.object A ‘list‘ object produced by ‘sequenceEncoder‘, or a numeric ‘matrix‘ (flattened
2D) or ‘array‘ (3D cube) from it.

mode The encoding mode used for decoding: ‘"onehot"‘ or ‘"property"‘. This is typi-
cally inferred if ‘encoded.object‘ is a list from ‘sequenceEncoder‘.

property.set For ‘mode = "property"‘, a character vector of property names (e.g., ‘"atchley-
Factors"‘) that were used for the original encoding. See ‘?sequenceEncoder‘.
This is ignored if ‘property.matrix‘ is supplied.

property.matrix

For ‘mode = "property"‘, the exact numeric matrix (with dimensions ‘20 x P‘)
that was used for encoding. This overrides ‘property.set‘.

call.threshold A numeric confidence threshold for making a call. - In ‘"onehot"‘ mode, this is
the minimum required value in the vector (e.g., ‘0.9‘). - In ‘"property"‘ mode,
this is the maximum allowable Euclidean distance. Positions with scores not
meeting the threshold are assigned the ‘padding.symbol‘.

sequenceEncoder 31

sequence.dictionary

A character vector of the alphabet (e.g., amino acids). Must match the one used
during encoding.

padding.symbol The single character used to represent padding or low-confidence positions.

remove.padding Logical. If ‘TRUE‘, trailing padding symbols are removed from the end of the
decoded sequences.

Value

A character vector of the decoded sequences.

Examples

Example sequences
aa.sequences <- c("CAR", "YMD", "ACAC")

Encode the sequences
encoded.onehot <- sequenceEncoder(aa.sequences,

mode = "onehot")
encoded.prop <- sequenceEncoder(aa.sequences,

mode = "property",
property.set = "atchleyFactors")

Decode the sequences
1. Decode from the full list object
decoded.1 <- sequenceDecoder(encoded.onehot,

mode = "onehot")

2. Decode from just the 3D cube array
decoded.2 <- sequenceDecoder(encoded.prop$cube,

mode = "property",
property.set = "atchleyFactors")

sequenceEncoder Universal Amino-acid Sequence Encoder

Description

‘sequenceEncoder()‘ is a high-level function that converts a character vector of amino-acid se-
quences into one of three representations: 1. **one-hot**: A binary representation for each amino
acid position. 2. **property-based**: A numerical representation based on amino acid properties
(e.g., atchleyFactors, kideraFactors, etc). 3. **geometric**: A fixed-length 20-dimensional vector
for each sequence, derived from a substitution matrix and geometric rotation.

Usage

sequenceEncoder(
input.sequences,
mode = c("onehot", "property", "geometric"),
property.set = NULL,
property.matrix = NULL,

32 sequenceEncoder

method = "BLOSUM62",
theta = pi/3,
sequence.dictionary = amino.acids,
padding.symbol = ".",
summary.fun = "",
max.length = NULL,
nthreads = parallel::detectCores(),
verbose = TRUE,
...

)

onehotEncoder(..., mode = "onehot")

propertyEncoder(..., mode = "property")

geometricEncoder(..., mode = "geometric")

Arguments

input.sequences

‘character‘ vector. Sequences (uppercase single-letter code).

mode Either ‘"onehot"‘, ‘"property"‘, or ‘"geometric"‘.

property.set Character string (one of the supported names) Defaults to ‘"atchleyFactors"‘, but
includes: ‘"crucianiProperties"‘, ‘"FASGAI"‘, ‘"kideraFactors"‘, ‘"MSWHIM"‘,
‘"ProtFP"‘, ‘"stScales"‘, ‘"tScales"‘, ‘"VHSE"‘, ‘"zScales"‘ Ignored if ‘prop-
erty.matrix‘ is supplied.

property.matrix

Optional numeric matrix (‘20 × P‘). Overrides ‘property.set‘ in ‘"property"‘
mode.

method *(For geometric mode)* Character key for a built-in substitution matrix (e.g.,
"BLOSUM62"), or a 20x20 numeric matrix itself.

theta *(For geometric mode)* Rotation angle in radians (default ‘pi/3‘).

sequence.dictionary

Character vector of the alphabet (default = 20 standard amino acids).

padding.symbol Single character for right-padding (non-geometric modes).

summary.fun For property mode only: ‘"mean"‘ or ‘""‘ (none).

max.length Integer for truncation/padding. If ‘NULL‘ (default), the longest sequence sets
the maximum. Not used in geometric mode.

nthreads Number of threads for C++ backend. Not used in geometric mode.

verbose Logical. If ‘TRUE‘ (default), prints a progress message.

... Additional arguments passed to ‘sequenceEncoder()‘ when using wrapper func-
tions (‘onehotEncoder‘, ‘propertyEncoder‘, ‘geometricEncoder‘).

Details

The function acts as a wrapper for either the C++ backend (for one-hot and property modes) or the
R-based geometric transformation.

shannon_entropy 33

Value

A named ‘list‘ containing the encoded data and metadata.

‘cube‘ 3D Numeric array. ‘NULL‘ in geometric mode.

‘flattened‘ 2D Numeric matrix. ‘NULL‘ in geometric mode.

‘summary‘ 2D Numeric matrix containing sequence-level representations. This is the primary
output for geometric mode.

... Other metadata related to the encoding process.

Property Mode

If you supply ‘property.matrix‘ directly, it **must** be a numeric matrix whose **rows correspond
to the 20 canonical amino acids in the order of ‘sequence.dictionary‘** and whose columns are the
property scales.

Geometric Mode

This mode projects sequences into a 20D space. It calculates the average vector for each sequence
using a substitution matrix (e.g., "BLOSUM62") and then applies a planar rotation to the resulting
vector.

Examples

aa <- c("CARDRST", "YYYGMD", "ACACACAC")

One-hot encoding
enc_onehot <- sequenceEncoder(aa,

mode = "onehot")

Property-based encoding
enc_prop <- sequenceEncoder(aa,

mode = "property",
property.set = "atchleyFactors")

Geometric encoding
enc_geo <- sequenceEncoder(aa,

mode = "geometric",
method = "BLOSUM62")

shannon_entropy Shannon Diversity Index (Entropy)

Description

Calculates Shannon’s information entropy (often denoted *H*) for a set of clone or sequence counts.

Usage

shannon_entropy(cnt)

34 summaryMatrix

Arguments

cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.

Details

H ′ = −
S∑

i=1

pi ln pi

where *p*_{*i*} = *n*_{*i*} / *N* are the relative frequencies (proportions)
of each of the *S* distinct categories.

Value

A single numeric value (>= 0). When ‘cnt‘ contains exactly one positive entry the function returns
‘0‘.

See Also

[norm_entropy()], [inv_simpson()]

Examples

counts <- c(A = 12, B = 4, C = 4)
shannon_entropy(counts)

summaryMatrix Fast Matrix Summaries

Description

Computes a comprehensive panel of univariate statistics for every **row** *or* **column** of a
numeric matrix. It is designed for lightweight feature-engineering pipelines where many summaries
are required up-front (e.g. before modeling).

Usage

summaryMatrix(x, margin = 2, stats = "all", na.rm = TRUE)

Arguments

x Numeric matrix (will be coerced with as.matrix()).

margin Integer. 1 = operate row-wise; 2 = column-wise (default 2).

stats Character vector naming the statistics to return. Any combination of the follow-
ing (case-insensitive):

• "min"

• "max"

• "mean"

• "median"

tokenizeSequences 35

• "sd"

• "var"

• "mad"

• "sum",
• "iqr"

• "n"

• "na"

• "mode"

• "all"

na.rm Logical; ignore NAs when calculating statistics default TRUE).

Value

A numeric matrix with one **row per object that was summarised** (rows of the input when
margin = 1, otherwise columns) and one **column per requested statistic**. Row-names (if present)
are preserved; column names are the statistic labels.

Examples

m <- matrix(rnorm(20), 4, 5,
dimnames = list(paste0("g", 1:4), paste0("s", 1:5)))

Column-wise summaries (default)
head(summaryMatrix(m))

Row-wise summaries
head(summaryMatrix(m, margin = 1))

tokenizeSequences Generate Tokenized Sequences from Amino Acid String

Description

Use this to transform amino acid sequences into tokens in preparing for deep learning models.

Usage

tokenizeSequences(
input.sequences,
add.startstop = TRUE,
start.token = "!",
stop.token = "^",
max.length = NULL,
convert.to.matrix = TRUE,
padding.symbol = NULL,
verbose = TRUE

)

36 variationalSequences

Arguments

input.sequences

The amino acid or nucleotide sequences to use

add.startstop Add start and stop tokens to the sequence

start.token The character to use for the start token

stop.token The character to use for the stop token

max.length Additional length to pad, NULL will pad sequences to the max length of in-
put.sequences

convert.to.matrix

Return a matrix (TRUE) or a vector (FALSE)

padding.symbol Single character used for right-padding.

verbose Print messages corresponding to the processing step

Value

Integer matrix (rows = sequences, cols = positions) or list of vectors.

Examples

new.sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

sequence.matrix <- tokenizeSequences(new.sequences,
add.startstop = TRUE,
start.token = "!",
stop.token = "^",
convert.to.matrix = TRUE)

variationalSequences Generate Similar Sequences using Variational Autoencoder (Defunct)

Description

This function is defunct and no longer available.

Usage

variationalSequences(...)

Details

This function previously generated synthetic sequences using a variational autoencoder (VAE). It
has been removed for maintenance and clarity.

Value

No return value, called for side effects only.

Index

∗ datasets
amino.acids, 5

∗ internal
get_substitution_matrix, 18
immApex-package, 2
make_identity_matrix, 24
variationalSequences, 36

ace_richness, 3
adjacencyMatrix, 4
amino.acids, 5

buildNetwork, 5

calculateEntropy, 7
calculateFrequency, 8
calculateGeneUsage, 10
calculateMotif, 11
calculateProperty, 12
chao1_richness, 13
combineBCR, 18
combineTCR, 18

d50_dom, 14
dxx_dom, 14

formatGenes, 15, 23

generateSequences, 16
geometricEncoder (sequenceEncoder), 31
get_substitution_matrix, 18
getIMGT, 17, 23
getIR, 18
gini_coef, 19
gini_simpson, 8, 20

hill_q, 20
hill_q(0), 8
hill_q(1), 8
hill_q(2), 8

immApex (immApex-package), 2
immApex-package, 2
immapex_blosum.pam.matrices, 21
immapex_example.data, 22

immapex_gene.list, 22
inferCDR, 23
inv_simpson, 8, 24

make_identity_matrix, 24
mutateSequences, 25

norm_entropy, 8, 26

onehotEncoder (sequenceEncoder), 31

pielou_evenness, 8, 26
positionalEncoder, 27
probabilityMatrix, 28
propertyEncoder (sequenceEncoder), 31

scaleMatrix, 29
sequenceDecoder, 30
sequenceEncoder, 31
shannon_entropy, 8, 33
summaryMatrix, 34

tokenizeSequences, 35

variationalSequences, 36

37

	immApex-package
	ace_richness
	adjacencyMatrix
	amino.acids
	buildNetwork
	calculateEntropy
	calculateFrequency
	calculateGeneUsage
	calculateMotif
	calculateProperty
	chao1_richness
	d50_dom
	dxx_dom
	formatGenes
	generateSequences
	getIMGT
	getIR
	get_substitution_matrix
	gini_coef
	gini_simpson
	hill_q
	immapex_blosum.pam.matrices
	immapex_example.data
	immapex_gene.list
	inferCDR
	inv_simpson
	make_identity_matrix
	mutateSequences
	norm_entropy
	pielou_evenness
	positionalEncoder
	probabilityMatrix
	scaleMatrix
	sequenceDecoder
	sequenceEncoder
	shannon_entropy
	summaryMatrix
	tokenizeSequences
	variationalSequences
	Index

