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as.list.glmGamPoi Convert glmGamPoi object to a list
Description

Convert glmGamPoi object to a list

Usage

## S3 method for class 'glmGamPoi'
as.list(x, ...)

Arguments

X

an object with class glmGamPoi

not used
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Value

The method returns a list with the following elements:

Beta a matrix with dimensions nrow(data) x n_coefficients where n_coefficients is based
on the design argument. It contains the estimated coefficients for each gene.

overdispersions a vector with length nrow(data). The overdispersion parameter for each gene.
It describes how much more the counts vary than one would expect according to the Poisson
model.

Mu a matrix with the same dimensions as dim(data). If the calculation happened on disk, than Mu
is a HDF5Matrix. It contains the estimated mean value for each gene and sample.

size_factors a vector with length ncol(data). The size factors are the inferred correction fac-
tors for different sizes of each sample. They are also sometimes called the exposure factor.

model_matrix a matrix with dimensions ncol(data) x n_coefficients. It is build based on
the design argument.

estimate_betas_fisher_scoring
Estimate the Betas for Fixed Dispersions

Description

Estimate the Betas for Fixed Dispersions

Usage

estimate_betas_fisher_scoring(
Y,
model_matrix,
offset_matrix,
dispersions,
beta_mat_init,
ridge_penalty,
try_recovering_convergence_problems = TRUE

Value

a list with two elements

e Beta a matrix with one column for each coefficient

e jterations the number of iterations



4 estimate_betas_roughly

estimate_betas_group_wise
Estimate the Betas for Fixed Dispersions

Description

Estimate the Betas for Fixed Dispersions

Usage
estimate_betas_group_wise(

Y,
offset_matrix,
dispersions,
beta_group_init = NULL,
beta_mat_init = NULL,
groups,
model_matrix

Value
a list with three elements

* Beta a matrix with one column per group and a row for each gene
* iterations the number of iterations from the Newton-Raphson method

 deviances the deviance for each gene (sum of the deviance per group)

estimate_betas_roughly
Make a quick first guess where reasonable beta would be

Description

Make a quick first guess where reasonable beta would be

Usage

estimate_betas_roughly(
Y,
model_matrix,
offset_matrix,
pseudo_count = 1,
ridge_penalty = NULL

Value

a matrix with one column for each coefficient
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estimate_betas_roughly_group_wise
Make a quick first guess where reasonable beta would be for a set of
groups

Description

Make a quick first guess where reasonable beta would be for a set of groups

Usage

estimate_betas_roughly_group_wise(Y, offset_matrix, groups)

Value

a matrix with the mean per group for each gene

estimate_size_factors Estimate the Size Factors

Description

Estimate the Size Factors

Usage

estimate_size_factors(Y, method, verbose = FALSE)

Arguments
Y any matrix-like object (base: :matrix(), DelayedArray, HDF5Matrix, Matrix: :Matrix(),
etc.)
method one of c("normed_sum”, "deconvolution”, "poscounts”)
Value

a vector with one size factor per column of Y
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format_matrix Helper to format a matrix nicely

Description

Helper to format a matrix nicely

Usage

format_matrix(matrix, digits = NULL)

Value

a string

glm_gp Fit a Gamma-Poisson Generalized Linear Model

Description

This function provides a simple to use interface to fit Gamma-Poisson generalized linear models. It
works equally well for small scale (a single model) and large scale data (e.g. thousands of rows and
columns, potentially stored on disk). The function automatically determines the appropriate size
factors for each sample and efficiently finds the best overdispersion parameter for each gene.

Usage

glm_gp(
data,
design = ~1,
col_data = NULL,
reference_level = NULL,
offset = 0,

size_factors = c("normed_sum”, "deconvolution”, "poscounts”, "ratio"),

overdispersion = TRUE,
overdispersion_shrinkage = TRUE,
ridge_penalty = 0,
do_cox_reid_adjustment = TRUE,
subsample = FALSE,

on_disk = NULL,

use_assay = NULL,

verbose = FALSE
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Arguments

data any matrix-like object (e.g. matrix, sparse matrix (dgCMatrix), DelayedArray,
HDF5Matrix) or anything that can be cast to a SummarizedExperiment (e.g.
MSnSet, eSet etc.) with one column per sample and row per gene.

design a specification of the experimental design used to fit the Gamma-Poisson GLM.
It can be a model.matrix() with one row for each sample and one column for
each coefficient.
Alternatively, design can be a formula. The entries in the formula can refer to
global objects, columns in the col_data parameter, or the colData(data) of
dataif it is a SummarizedExperiment.
The third option is that design is a vector where each element specifies to which
condition a sample belongs.
Default: design = ~ 1, which means that all samples are treated as if they belong
to the same condition. Note that this is the fasted option.

col_data a dataframe with one row for each sample in data. Default: NULL.

reference_level
a single string that specifies which level is used as reference when the model
matrix is created. The reference level becomes the intercept and all other coeffi-
cients are calculated with respect to the reference_level. Default: NULL.

offset Constant offset in the model in addition to log(size_factors). It can either
be a single number, a vector of length ncol(data) or a matrix with the same
dimensions as dim(data). Default: 0.

size_factors  inlarge scale experiments, each sample is typically of different size (for example
different sequencing depths). A size factor is an internal mechanism of GLMs
to correct for this effect.
size_factors is either a numeric vector with positive entries that has the same
lengths as columns in the data that specifies the size factors that are used. Or
it can be a string that species the method that is used to estimate the size fac-
tors (one of c("normed_sum”, "deconvolution”, "poscounts”, "ratio")).
Note that "normed_sum” and "poscounts” are fairly simple methods and can
lead to suboptimal results. For the best performance on data with many zeros, I
recommend to use size_factors = "deconvolution” which calls scran: :calculateSumFactors(
However, you need to separately install the scran package from Bioconduc-
tor for this method to work. For small datasets common for bulk RNA-seq
experiments, I recommend to use size_factors = "ratio”, which uses the
same procedure as DESeq2 and edgeR. Also note that size_factors =1 and
size_factors = FALSE are equivalent. If only a single gene is given, no size
factor is estimated (ie. size_factors = 1). Default: "normed_sum”.

overdispersion the simplest count model is the Poisson model. However, the Poisson model
assumes that variance = mean. For many applications this is too rigid and the
Gamma-Poisson allows a more flexible mean-variance relation (variance =
mean + mean® x overdispersion).
overdispersion can either be

* a single boolean that indicates if an overdispersion is estimated for each
gene.

* a numeric vector of length nrow(data) fixing the overdispersion to those
values.

* the string "global” to indicate that one dispersion is fit across all genes.
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Note that overdispersion =0 and overdispersion = FALSE are equivalent
and both reduce the Gamma-Poisson to the classical Poisson model. Default:
TRUE.

overdispersion_shrinkage

ridge_penalty

the overdispersion can be difficult to estimate with few replicates. To improve
the overdispersion estimates, we can share information across genes and shrink
each individual overdispersion estimate towards a global overdispersion esti-
mate. Empirical studies show however that the overdispersion varies based
on the mean expression level (lower expression level => higher dispersion). If
overdispersion_shrinkage = TRUE, a median trend of dispersion and expres-
sion level is fit and used to estimate the variances of a quasi Gamma Poisson
model (Lund et al. 2012). Default: TRUE.

to avoid overfitting, we can penalize fits with large coefficient estimates. Instead
of directly minimizing the deviance per gene (3 dev(y;, X;b)), we will mini-
mize Y dev(y;, X;b) + N * > (penalty, x b,)?.
ridge_penalty can be
* ascalar in which case all parameters except the intercept are penalized.
* avector which has to have the same length as columns in the model matrix
* a matrix with the same number of columns as columns in the model ma-

trix. This gives maximum flexibility for expert users and allows for full
Tikhonov regularization.

Default: ridge_penalty = @, which is internally replaced with a small positive
number for numerical stability.

do_cox_reid_adjustment

subsample

on_disk

use_assay

verbose

Details

the classical maximum likelihood estimator of the overdisperion is biased
towards small values. McCarthy et al. (2012) showed that it is preferable to
optimize the Cox-Reid adjusted profile likelihood.

do_cox_reid_adjustment can be either be TRUE or FALSE to indicate if the
adjustment is added during the optimization of the overdispersion parameter.
Default: TRUE.

the estimation of the overdispersion is the slowest step when fitting a Gamma-
Poisson GLM. For datasets with many samples, the estimation can be consider-
ably sped up without loosing much precision by fitting the overdispersion only
on a random subset of the samples. Default: FALSE which means that the data is
not subsampled. If set to TRUE, at most 1,000 samples are considered. Otherwise
the parameter just specifies the number of samples that are considered for each
gene to estimate the overdispersion.

a boolean that indicates if the dataset is loaded into memory or if it is kept on
disk to reduce the memory usage. Processing in memory can be significantly
faster than on disk. Default: NULL which means that the data is only processed
in memory if data is an in-memory data structure.

Specify which assay to use. Default: NULL, which means that if available ’counts’
are used. Otherwise an error is thrown except if there is only a single assay.

a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

The method follows the following steps:
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1. The size factors are estimated.

If size_factors = "normed_sum”, the column-sum for each cell is calculated and the re-
sulting size factors are normalized so that their geometric mean is 1. If size_factors =
"poscounts”, a slightly adapted version of the procedure proposed by Anders and Huber
(2010) in equation (5) is used. To handle the large number of zeros the geometric means are
calculated for Y + 0.5 and ignored during the calculation of the median. Columns with all
zeros get a default size factor of 0.001. If size_factors = "deconvolution”, the method
scran: :calculateSumFactors() is called. If size_factors="ratio"”, the unmodified
procedure from Anders and Huber (2010) in equation (5) is used.

2. The dispersion estimates are initialized based on the moments of each row of Y.

3. The coefficients of the model are estimated.
If all samples belong to the same condition (i.e. design = ~ 1), the betas are estimated using a
quick Newton-Raphson algorithm. This is similar to the behavior of edgeR. For more complex
designs, the general Fisher-scoring algorithm is used. Here, the code is based on a fork of the
internal function fitBeta() from DESeq2. It does however contain some modification to
make the fit more robust and faster.

4. The mean for each gene and sample is calculate.
Note that this step can be very IO intensive if data is or contains a DelayedArray.

5. The overdispersion is estimated.

The classical method for estimating the overdispersion for each gene is to maximize the
Gamma-Poisson log-likelihood by iterating over each count and summing the the correspond-
ing log-likelihood. It is however, much more efficient for genes with many small counts to
work on the contingency table of the counts. Originally, this approach had already been used
by Anscombe (1950). In this package, I have implemented an extension of their method that
can handle general offsets.

See also overdispersion_mle().

6. The beta coefficients are estimated once more with the updated overdispersion estimates

7. The mean for each gene and sample is calculated again.
This method can handle not just in memory data, but also data stored on disk. This is essential for
large scale datasets with thousands of samples, as they sometimes encountered in modern single-

cell RNA-seq analysis. glmGamPoi relies on the DelayedArray and beachmat package to efficiently
implement the access to the on-disk data.

Value
The method returns a list with the following elements:
Beta a matrix with dimensions nrow(data) x n_coefficients where n_coefficients is based

on the design argument. It contains the estimated coefficients for each gene.

overdispersions a vector with length nrow(data). The overdispersion parameter for each gene.
It describes how much more the counts vary than one would expect according to the Poisson
model.

overdispersion_shrinkage_list a list with additional information from the quasi-likelihood
shrinkage. For details see overdispersion_shrinkage().

deviances a vector with the deviance of the fit for each row. The deviance is a measure how well
the data is fit by the model. A smaller deviance means a better fit.

Mu a matrix with the same dimensions as dim(data). If the calculation happened on disk, than Mu
is a HDF5Matrix. It contains the estimated mean value for each gene and sample.

size_factors a vector with length ncol(data). The size factors are the inferred correction fac-
tors for different sizes of each sample. They are also sometimes called the exposure factor.
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Offset amatrix with the same dimensions as dim(data). If the calculation happened on disk, than

Offset is a HDF5Matrix. It contains the log(size_factors) + offset from the function
call.

data a SummarizedExperiment that contains the input counts and the col_data

model_matrix a matrix with dimensions ncol(data) x n_coefficients. It is build based on

the design argument.

design_formula the formula that used to fit the model, or NULL otherwise

ridge_penalty a vector with the specification of the ridge penalty.

References

See Also
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Anders Simon, & Huber Wolfgang. (2010). Differential expression analysis for sequence
count data. Genome Biology. https://doi.org/10.1016/j.jcf.2018.05.006.

Love, M. 1., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/
10.1186/s13059-014-0550-8

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics, 26(1),
139-140. https://doi.org/10.1093/bioinformatics/btp616.

Lun ATL, Pages H, Smith ML (2018). “beachmat: A Bioconductor C++ API for accessing
high-throughput biological data from a variety of R matrix types.” PLoS Comput. Biol., 14(5),
e1006135. doi: 10.1371/journal.pcbi. 1006135..

Lund, S. P, Nettleton, D., McCarthy, D. J., & Smyth, G. K. (2012). Detecting differential
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Statistical Applications in Genetics and Molecular Biology, 11(5). https://doi.org/10.
1515/1544-6115.1826.
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overdispersion_mle() and overdispersion_shrinkage() for the internal functions that do the
work. For differential expression analysis, see test_de().

Examples

set.seed(1)

# The simplest example

y <= rnbinom(n = 10, mu = 3, size = 1/2.4)
c(glm_gp(y, size_factors = FALSE))

# Fitting a whole matrix

model_matrix <- cbind(1, rnorm(5))

true_Beta <- cbind(rnorm(n = 30), rnorm(n = 30, mean = 3))
sf <- exp(rnorm(n = 5, mean = 0.7))

model_matrix

Y <-

matrix(rnbinom(n = 30 * 5, mu = sf * exp(true_Beta %*% t(model_matrix)), size =1/2.4),
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nrow = 30, ncol = 5)

fit <- glm_gp(Y
summary (fit)

, design = model_matrix, size_factors = sf, verbose

# Fitting a model with covariates

data <- data.frame(fav_food = sample(c("apple”, "banana”, "cherry"), size =
city = sample(c(”heidelberg”, "paris”, "new york"), size = 50, replace =

age = rnorm(n =

50, mean = 40, sd = 15))
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TRUE)

50, replace = TRUE),
TRUE),

Y <- matrix(rnbinom(n = 100 * 50, mu = 3, size = 1/3.1), nrow = 100, ncol = 50)

fit <- glm_gp(Y
summary (fit)

, design = ~ fav_food + city + age, col_data = data)

# Specify 'ridge_penalty' to penalize extreme Beta coefficients
fit_reg <- glm_gp(Y, design = ~ fav_food + city + age, col_data = data, ridge_penalty = 1.5)
summary (fit_reg)

glm_gp_impl

Internal Function to Fit a Gamma-Poisson GLM

Description

Internal Function to Fit a Gamma-Poisson GLM

Usage
glm_gp_impl(
Y,
model_matrix,

offset = 0,
size_factors

Arguments

Y

model_matrix

offset

= c("normed_sum”, "deconvolution”, "poscounts”, "ratio"),
overdispersion = TRUE,
overdispersion_shrinkage = TRUE,
ridge_penalty = 0,
do_cox_reid_adjustment = TRUE,
subsample = FALSE,

verbose = FALSE

any matrix-like object (e.g. matrix(), DelayedArray(), HDF5Matrix()) with

one column per sample and row per gene.

a numeric matrix that specifies the experimental design. It can be produced

using stats: :model.matrix(). Default: NULL

Constant offset in the model in addition to log(size_factors). It can either
be a single number, a vector of length ncol(data) or a matrix with the same

dimensions as dim(data). Default: 9.
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size_factors
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in large scale experiments, each sample is typically of different size (for example
different sequencing depths). A size factor is an internal mechanism of GLMs
to correct for this effect.

size_factors is either a numeric vector with positive entries that has the same
lengths as columns in the data that specifies the size factors that are used. Or
it can be a string that species the method that is used to estimate the size fac-
tors (one of c("normed_sum”, "deconvolution”, "poscounts”, "ratio")).
Note that "normed_sum” and "poscounts” are fairly simple methods and can
lead to suboptimal results. For the best performance on data with many zeros, |

recommend to use size_factors = "deconvolution” which calls scran: :calculateSumFactors(

However, you need to separately install the scran package from Bioconduc-
tor for this method to work. For small datasets common for bulk RNA-seq
experiments, I recommend to use size_factors = "ratio”, which uses the
same procedure as DESeq2 and edgeR. Also note that size_factors =1 and
size_factors = FALSE are equivalent. If only a single gene is given, no size
factor is estimated (ie. size_factors = 1). Default: "normed_sum”.

overdispersion the simplest count model is the Poisson model. However, the Poisson model

assumes that variance = mean. For many applications this is too rigid and the
Gamma-Poisson allows a more flexible mean-variance relation (variance =
mean + mean? x overdispersion).

overdispersion can either be

* a single boolean that indicates if an overdispersion is estimated for each
gene.

* a numeric vector of length nrow(data) fixing the overdispersion to those
values.

* the string "global” to indicate that one dispersion is fit across all genes.
Note that overdispersion =0 and overdispersion = FALSE are equivalent

and both reduce the Gamma-Poisson to the classical Poisson model. Default:
TRUE.

overdispersion_shrinkage

ridge_penalty

the overdispersion can be difficult to estimate with few replicates. To improve
the overdispersion estimates, we can share information across genes and shrink
each individual overdispersion estimate towards a global overdispersion esti-
mate. Empirical studies show however that the overdispersion varies based
on the mean expression level (lower expression level => higher dispersion). If
overdispersion_shrinkage = TRUE, a median trend of dispersion and expres-
sion level is fit and used to estimate the variances of a quasi Gamma Poisson
model (Lund et al. 2012). Default: TRUE.

to avoid overfitting, we can penalize fits with large coefficient estimates. Instead
of directly minimizing the deviance per gene (3 dev(y;, X;b)), we will mini-
mize Y dev(y;, X;b) + N > (penalty, = b,)?.
ridge_penalty can be
* ascalar in which case all parameters except the intercept are penalized.
* a vector which has to have the same length as columns in the model matrix
* a matrix with the same number of columns as columns in the model ma-

trix. This gives maximum flexibility for expert users and allows for full
Tikhonov regularization.

Default: ridge_penalty = @, which is internally replaced with a small positive
number for numerical stability.
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do_cox_reid_adjustment

subsample

verbose

Value

the classical maximum likelihood estimator of the overdisperion is biased
towards small values. McCarthy er al. (2012) showed that it is preferable to
optimize the Cox-Reid adjusted profile likelihood.

do_cox_reid_adjustment can be either be TRUE or FALSE to indicate if the
adjustment is added during the optimization of the overdispersion parameter.
Default: TRUE.

the estimation of the overdispersion is the slowest step when fitting a Gamma-
Poisson GLM. For datasets with many samples, the estimation can be consider-
ably sped up without loosing much precision by fitting the overdispersion only
on a random subset of the samples. Default: FALSE which means that the data is
not subsampled. If set to TRUE, at most 1,000 samples are considered. Otherwise
the parameter just specifies the number of samples that are considered for each
gene to estimate the overdispersion.

a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

a list with four elements

¢ Beta the coefficient matrix

* overdispersion the vector with the estimated overdispersions

* Mu a matrix with the corresponding means for each gene and sample

* size_factors a vector with the size factor for each sample

* ridge_penalty a vector with the ridge penalty

See Also

glm_gp() and overdispersion_mle()

loc_median_fit

Estimate local median fit

Description

This function fits y based on x through a (weighted) median using the npoints/2 neighborhood.

Usage

loc_median_fit(

X’
Y,

fraction

npoints

0.1,
max(1, round(length(x) * fraction)),

weighted = TRUE,
ignore_zeros = FALSE,
sample_fraction = 1
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Arguments

X,y the x and y coordinates of the points.
fraction, npoints

the fraction / number of the points that are considered for each fit. npoints is
the argument that is used in the end it is at least one. Default: fraction=0.1
and npoints = length(x) * fraction.

weighted a boolean that indicates if a weighted median is calculated.

ignore_zeros should the zeros be excluded from the fit
sample_fraction

use a fraction of the data to estimate the local median. Useful for extremely
large datasets where the trend is well-sampled

Details

This function is low-level implementation detail and should usually not be called by the user.

See Also

locfit: a package dedicated to local regression.

Examples

X <= runif(n = 1000, max = 4)
y <- rpois(n = 1000, lambda = x * 10)

plot(x, y)

fit <- loc_median_fit(x, y, fraction = 0.1)

fit2 <- loc_median_fit(x, y, fraction = 0.1, sample_fraction = 0.75)
points(x, fit, col = "red")

points(x, fit2, col = "blue")

overdispersion_mle Estimate the Overdispersion for a Vector of Counts

Description

Estimate the Overdispersion for a Vector of Counts

Usage

overdispersion_mle(
Y,
mean,
model_matrix = NULL,
do_cox_reid_adjustment = !is.null(model_matrix),
global_estimate = FALSE,
subsample = FALSE,
max_iter = 200,
verbose = FALSE



overdispersion_mle

Arguments

y

mean

model_matrix

15

a numeric or integer vector or matrix with the counts for which the overdisper-
sion is estimated

anumeric vector of either length 1 or 1length(y) orif'y is a matrix, a matrix with
the same dimensions. Contains the predicted value for that sample. If missing:
mean(y) / rowMeans(y)

a numeric matrix that specifies the experimental design. It can be produced
using stats: :model.matrix(). Default: NULL

do_cox_reid_adjustment

global_estimate

subsample

max_iter

verbose

Details

the classical maximum likelihood estimator of the overdisperion is biased
towards small values. McCarthy et al. (2012) showed that it is preferable to
optimize the Cox-Reid adjusted profile likelihood.

do_cox_reid_adjustment can be either be TRUE or FALSE to indicate if the
adjustment is added during the optimization of the overdispersion parameter.
Default: TRUE if a model matrix is provided, otherwise FALSE

flag to decide if a single overdispersion for a whole matrix is calculated instead
of one estimate per row. This parameter has no affect if y is a vector. Default:
FALSE

the estimation of the overdispersion is the slowest step when fitting a Gamma-
Poisson GLM. For datasets with many samples, the estimation can be consider-
ably sped up without loosing much precision by fitting the overdispersion only
on a random subset of the samples. Default: FALSE which means that the data is
not subsampled. If set to TRUE, at most 1,000 samples are considered. Otherwise
the parameter just specifies the number of samples that are considered for each
gene to estimate the overdispersion.

the maximum number of iterations for each gene

a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

The function is optimized to be fast on many small counts. To achieve this, the frequency table of
the counts is calculated and used to avoid repetitive calculations. If there are probably many unique
counts the optimization is skipped. Currently the heuristic is to skip if more than half of the counts
are expected to be unique. The estimation is based on the largest observed count in y.

An earlier version of this package (< 1.1.1) used a separate set of functions for the case of many
small counts based on a paper by Bandara et al. (2019). However, this didn’t bring a sufficient
performance increase and meant an additional maintenance burden.

Value

The function returns a list with the following elements:

estimate the numerical estimate of the overdispersion.

iterations the number of iterations it took to calculate the result.

message additional information about the fitting process.

See Also

glm_gp()
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Examples

set.seed(1)

# true overdispersion = 2.4
y <- rnbinom(n = 1@, mu = 3, size = 1/2.4)
# estimate = 1.7

overdispersion_mle(y)

# true overdispersion = @
y <- rpois(n = 10, lambda
# estimate = 0
overdispersion_mle(y)

# with different mu, overdispersion estimate changes
overdispersion_mle(y, mean = 15)

# Cox-Reid adjustment changes the result

overdispersion_mle(y, mean = 15, do_cox_reid_adjustment = FALSE)

3

# Many very small counts, true overdispersion = 50
y <= rnbinom(n = 1000, mu = .01, size = 1/50)
summary (y)

# estimate = 31

overdispersion_mle(y, do_cox_reid_adjustment = TRUE)

# Function can also handle matrix input

Y <- matrix(rnbinom(n = 10 * 3, mu = 4, size = 1/2.2), nrow = 10, ncol = 3)
Y

as.data.frame(overdispersion_mle(Y))

overdispersion_shrinkage
Shrink the overdispersion estimates

Description

Low-level function to shrink a set of overdispersion estimates following the quasi-likelihood and
Empirical Bayesian framework.

Usage

overdispersion_shrinkage(
disp_est,
gene_means,
df,
disp_trend = TRUE,
ql_disp_trend = NULL,

L

verbose = FALSE
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Arguments
disp_est vector of overdispersion estimates
gene_means vector of average gene expression values. Used to fit disp_trend if that is NULL.
df degrees of freedom for estimating the Empirical Bayesian variance prior. Can
be length 1 or same length as disp_est and gene_means.
disp_trend vector with the dispersion trend. If NULL or TRUE the dispersion trend is fitted

using a (weighted) local median fit. Default: TRUE.

gl_disp_trend alogical to indicate if a second abundance trend using splines is fitted for the
quasi-likelihood dispersions. Default: NULL which means that the extra fit is
only done if enough observations are present.

additional parameters for the loc_median_fit() function

verbose a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

Details
The function goes through the following steps
1. Fit trend between overdispersion MLE’s and the average gene expression. Per default it uses
the loc_median_fit () function.

2. Convert the overdispersion MLE’s to quasi-likelihood dispersion estimates by fixing the trended
dispersion as the "true" dispersion value: dispy = (1 +mu* dispmie)/ (1 +mu* dispirend)

3. Shrink the quasi-likelihood dispersion estimates using Empirical Bayesian variance shrinkage
(see Smyth 2004).

Value
the function returns a list with the following elements

dispersion_trend the dispersion trend provided by disp_trend or the local median fit.

ql_disp_estimate the quasi-likelihood dispersion estimates based on the dispersion trend, disp_est,
and gene_means

gl_disp_trend the ql_disp_estimate still might show a trend with respect to gene_means. If
gl_disp_trend = TRUE a spline is used to remove this secondary trend. If ql_disp_trend =
FALSE it corresponds directly to the dispersion prior

ql_disp_shrunken the shrunken quasi-likelihood dispersion estimates. They are shrunken towards
ql_disp_trend.

ql_df0 the degrees of freedom of the empirical Bayesian shrinkage. They correspond to spread of
the ql_disp_estimate’s

References

* Lund, S. P, Nettleton, D., McCarthy, D. J., & Smyth, G. K. (2012). Detecting differential
expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.
Statistical Applications in Genetics and Molecular Biology, 11(5). https://doi.org/10.
1515/1544-6115.1826.

* Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Statistical Applications in Genetics and Molecular
Biology, 3(1). https://doi.org/10.2202/1544-6115.1027
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See Also

limma: : squeezeVar()

Examples

Y <- matrix(rnbinom(n = 300 * 4, mu = 6, size = 1/4.2), nrow = 300, ncol = 4)
disps <- sapply(seg_len(nrow(Y)), function(idx){
overdispersion_mle(Y[idx, ])$estimate
»
shrink_list <- overdispersion_shrinkage(disps, rowMeans(Y), df = ncol(Y) - 1,
disp_trend = FALSE, gl_disp_trend = FALSE)

plot(rowMeans(Y), shrink_list$ql_disp_estimate)
lines(sort(rowMeans(Y)), shrink_list$ql_disp_trend[order(rowMeans(Y))], col = "red")
points(rowMeans(Y), shrink_list$ql_disp_shrunken, col = "blue”, pch = 16, cex = 0.5)

predict.glmGamPoi Predict ’link’ or ’response’ values for Gamma-Poisson GLMs

Description

Predict mu (i.e., type = "response”) or log(mu) (i.e., type = "1link”) from a ’glmGamPoi’ fit
(created by glm_gp(...)) with the corresponding estimate of the standard error. If newdata is
NULL, mu is returned for the original input data.

Usage

## S3 method for class 'glmGamPoi'
predict(
object,
newdata = NULL,
type = c("link"”, "response"),
se.fit = FALSE,
offset = mean(object$0ffset),
on_disk = NULL,
verbose = FALSE,

)
Arguments
object a glmGamPo1i fit object (produced by glm_gp()).
newdata a specification of the new data for which the expression for each gene is pre-

dicted. newdata should be a

data.frame if the original fit was specified with a formula, provide a data. frame
with one column for each variable in the formula. For example, if glm_gp(se,
design =~ age + batch + treatment), then the data.frame needs a age,
batch, and treatment column that contain the same data types as the orig-
inal fit.
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vector if the original fit was specified using a vector, you need to again provide
a vector with the same format.

matrix if newdata is a matrix, it is applied directly as Mu <- exp(object$Beta
%*% t (newdata) + object$offset_matrix). So make sure, that it is con-
structed correctly.

NULL if newdata is NULL, the predicted values for the original input data are
returned.

type either ’link’ or 'response’. The default is ’link’, which returns the predicted val-
ues before the link function (exp()) is applied. Thus, the values can be positive
and negative numbers. However, often the predicted values are easier to inter-
pret after the link function is applied (i.e., type = "response"), because then the
values are on the same scale as the original counts.

se.fit boolean that indicates if in addition to the mean the standard error of the mean
is returned.

offset count models (in particular for sequencing experiments) usually have a sample
specific size factor (offset = log(size factor)). It defines how big we
expect the predicted results are. If newdata is NULL, the offset is ignored,
because the predict () returns a result based on the pre-calculated object$Mu.
If newdata is not NULL, by default the of fset is mean(object$0ffset), which
puts the in the same size as the average sample.

on_disk a boolean that indicates if the results are HDF5Matrix’s from the HDF5Array
package. If newdata is NULL, on_disk is ignored. Otherwise, if on_disk =
NULL, the result is calculated on disk depending if of fset is stored on disk.

verbose a boolean that indicates if information about the individual steps are printed
while predicting. Default: FALSE.

currently ignored.

Details

For se.fit = TRUE, the function sticks very close to the behavior of stats: :predict.glm() for
fits from MASS: :glm.nb().

Note: If type = "1ink", the results are computed using the natural logarithm as the link function.
This differs from the 1fc estimate provided by test_de, which are on the log2 scale.

Value

If se.fit == FALSE, a matrix with dimensions nrow(object$data) x nrow(newdata).
If se.fit == TRUE, a list with three entries

fit the predicted values as a matrix with dimensions nrow(object$data) x nrow(newdata). This
is what would be returned if se.fit == FALSE.

se.fit the associated standard errors for each fit. Also a matrix with dimensions nrow(object$data) x nrow(newdata

residual.scale Currently fixed to 1. In the future, this might become the values from object$overdispersion_shrinka

See Also

stats::predict.1m() and stats::predict.glm()
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Examples

set.seed(1)

# The simplest example

y <= rnbinom(n = 1@, mu = 3, size = 1/2.4)
fit <- glm_gp(y, size_factors = FALSE)
predict(fit, type = "response”)
predict(fit, type = "link", se.fit = TRUE)

# Fitting a whole matrix

model_matrix <- cbind(1, rnorm(5))

true_Beta <- cbind(rnorm(n = 30), rnorm(n = 30, mean = 3))

sf <= exp(rnorm(n = 5, mean = 0.7))

model_matrix

Y <- matrix(rnbinom(n = 30 * 5, mu = sf * exp(true_Beta %*% t(model_matrix)), size =1/2.4),
nrow = 30, ncol = 5)

fit <- glm_gp(Y, design = model_matrix, size_factors = sf, verbose = TRUE)

head(predict(fit, type = "response”))

pred <- predict(fit, type = "link"”, se.fit = TRUE, verbose = TRUE)
head(pred$fit)

head(pred$se.fit)

# Fitting a model with covariates
data <- data.frame(fav_food = sample(c("apple”, "banana”, "cherry"), size = 50, replace = TRUE),
city = sample(c("heidelberg"”, "paris”, "new york"), size = 50, replace = TRUE),
age = rnorm(n = 50, mean = 40, sd = 15))
Y <- matrix(rnbinom(n = 4 * 50, mu = 3, size = 1/3.1), nrow = 4, ncol = 50)
fit <- glm_gp(Y, design = ~ fav_food + city + age, col_data = data)
predict(fit)[, 1:3]

nd <- data.frame(fav_food = "banana”, city = "paris”, age = 29)
predict(fit, newdata = nd)

nd <- data.frame(fav_food = "banana”, city = "paris"”, age = 29:40)
predict(fit, newdata = nd, se.fit = TRUE, type = "response”)

print.glmGamPoi Pretty print the result from glm_gp()

Description

Pretty print the result from glm_gp()

Usage
## S3 method for class 'glmGamPoi'
print(x, ...)

## S3 method for class 'glmGamPoi'
format(x, ...)



pseudobulk 21

## S3 method for class 'glmGamPoi'
summary (object, ...)

## S3 method for class 'summary.glmGamPoi'
print(x, ...)

## S3 method for class 'summary.glmGamPoi'

format(x, ...)
Arguments
X the glmGamPoi object
additional parameters, currently ignored
object the glmGamPoi object that is summarized
Value

The print() methods return the object x. The format() method returns a string. The summary ()
method returns an object of class summary . glmGamPoi.

pseudobulk Create a ’SingleCellExperiment’ containing pseudo-bulk samples

Description

Create a ’SingleCellExperiment’ containing pseudo-bulk samples

Usage

pseudobulk(
data,
group_by,
aggregation_functions = list(counts = "rowSums2", .default = "rowMeans2"),
col_data = NULL,
make_colnames = TRUE,
verbose = TRUE

)
Arguments
data a ’SingleCellExperiment’ or an object of a related class
group_by an unquoted expression that can refer to columns in the ’colData()’. All observa-

tions with the same factor level are aggregated. The argument follows the same
logic as dplyr: :group_by(). The argument must wrapped using vars().

named expressions that summarize columns in ’colData()’. Each expression
must produce a value of length 1. The arguments follow the same logic as
dplyr: :summarize().
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aggregation_functions
a named list with functions that are used to aggregate the assays in the data.

col_data additional data with ncol(data) rows. The group_by and named arguments
can refer to the columns of the col_data in addition to the columns in colData(data)
(assuming data is a SummarizedExperiment).

make_colnames a boolean that decides if the column names are the concatenated values of
group_by. Default: TRUE

verbose a boolean that indicates if information about the process are printed Default:
TRUE.

Value

a SingleCellExperiment object

Examples

library(SingleCellExperiment)

data <- data.frame(sample = sample(c("samp1”, "samp2”, "samp3"), size = 50, replace = TRUE),
celltype = sample(c("T cells”, "B cells"”, "Macrophages"”), size = 50, replace = TRUE),

size = rnorm(n = 50, mean = 40, sd = 15))

Y <- matrix(rnbinom(n = 100 * 50, mu = 3, size = 1/3.1), nrow = 100, ncol = 50)

sce <- SingleCellExperiment(Y, colData = data)

aggr_sce <- pseudobulk(sce, group_by = vars(sample, celltype), size = mean(size))

aggr_sce

colData(aggr_sce)

residuals.glmGamPoi Extract Residuals of Gamma Poisson Model

Description

Extract Residuals of Gamma Poisson Model

Usage
## S3 method for class 'glmGamPoi'
residuals(
object,
type = c("deviance”, "pearson”, "randomized_quantile”, "working"”, "response"),
)
Arguments
object a fit of type glmGamPoi. It is usually produced with a call to glm_gp().
type the type of residual that is calculated. See details for more information. Default:

"deviance".

currently ignored.
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Details

This method can calculate a range of different residuals:

deviance The deviance for the Gamma-Poisson model is
dev = 2%(1/thetaxlog((1+mxtheta)/(1+y*theta))—ylog((m+yxtheta) /(y+yxmxtheta)))
and the residual accordingly is

res = sign(y — m)vdev.

pearson The Pearson residual is res = (y — m)/vm + m?2 x theta.

randomized_quantile The randomized quantile residual was originally developed by Dunn &
Smyth, 1995. Please see that publication or statmod: :qresiduals() for more information.

working The working residuals are res = (y — m)/m.

response The response residuals are res =y — m

Value

a matrix with the same size as fit$data. If fit$data contains a DelayedArray than the result will
be a DelayedArray as well.

See Also

glm_gp() and ‘stats::residuals.glm()

solve_lm_for_A Solve the equation Y = A B for A or B

Description

Solve the equation Y = A B for A or B

Usage

solve_lm_for_A(Y, B, w = NULL)

solve_lm_for_B(Y, A, w = NULL)
Arguments
Y the left side of the equation
w a vector with weights. If NULL it is ignored, otherwise it must be of length 1 or

have the same length as columns in Y. Default: NULL

A, B the known matrix on the right side of the equation
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test_de Test for Differential Expression

Description

Conduct a quasi-likelihood ratio test for a Gamma-Poisson fit.

Usage

test_de(
fit,
contrast,
reduced_design = NULL,
full_design = fit$model_matrix,
subset_to = NULL,
pseudobulk_by = NULL,
pval_adjust_method = "BH",
sort_by = NULL,
decreasing = FALSE,
n_max = Inf,
max_1fc = 10,
compute_lfc_se = FALSE,
verbose = FALSE

)

Arguments
fit object of class glmGamPoi. Usually the result of calling glm_gp(data, ...)
contrast The contrast to test. Can be a single column name (quoted or as a string) that is

removed from the full model matrix of fit. Or a complex contrast comparing
two or more columns: e.g. A-B, "A-3%B" (A+B) /2-C etc. For com-
plicated experimental design that involved nested conditions, you specify the
condition level to compare using the cond() helper function.

Only one of contrast or reduced_design must be specified.

reduced_design a specification of the reduced design used as a comparison to see what how much
better fit describes the data. Analogous to the design parameter in glm_gp(),
it can be either a formula, a model.matrix(), or a vector.
Only one of contrast or reduced_design must be specified.

full_design option to specify an alternative full_design that can differ from fit$model_matrix.
Can be a formula or a matrix. Default: fit$model_matrix

subset_to a vector with the same length as ncol(fit$data) or an expression that evalu-
ates to such a vector. The expression can reference columns from colData(fit$data).
A typical use case in single cell analysis would be to subset to a specific cell type
(e.g. subset_to=cell_type == "T-cells"). Note that if this argument is set
a new the model for the full_design is re-fit.
Default: NULL which means that the data is not subset.

pseudobulk_by DEPRECTATED, please use the pseudobulk function instead.
A vector with the same length as ncol(fit$data) that is used to split the
columns into different groups (calls split()). pseudobulk_by can also be an
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expression that evaluates to a vector. The expression can reference columns
from colData(fit$data).

The counts are summed across the groups to create "pseudobulk” samples. This
is typically used in single cell analysis if the cells come from different samples
to get a proper estimate of the differences. This is particularly powerful in com-
bination with the subset_to parameter to analyze differences between samples
for subgroups of cells. Note that this does a fresh fit for both the full and the
reduced design. Default: NULL which means that the data is not aggregated.

pval_adjust_method

sort_by

decreasing

n_max

max_1fc

compute_lfc_se

verbose

Details

one of the p-value adjustment method from p.adjust.methods. Default: "BH".

the name of the column or an expression used to sort the result. If sort_by is
NULL the table is not sorted. Default: NULL

boolean to decide if the result is sorted increasing or decreasing order. Default:
FALSE.

the maximum number of rows to return. Default: Inf which means that all rows
are returned

set the maximum absolute log fold change that is returned. Large log fold
changes occur for lowly expressed genes because the ratio of two small numbers
can be impractically large. For example, limiting the range of log fold changes
can clarify the patterns in a volcano plot. Default: 10 which corresponds to a
thousand-fold (2*10) increase in expression.

Compute standard errors for the log fold changes, and add a column 1fc_se
to the returned dataframe. Only has an effect when using contrast instead of
reduced_design. Default: FALSE

a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

The cond() helper function simplifies the specification of a contrast for complex experimental de-
signs. Instead of working out which combination of coefficients corresponds to a research question,
you can simply specify the two conditions that you want to compare.

You can only call the cond function inside the contrast argument. The arguments are the selected
factor levels for each covariate. To compare two conditions, simply subtract the two cond calls.
Internally, the package calls model.matrix using the provided values and the original formula from
the fit to produce a vector. Subtracting two of these vectors produces a contrast vector. Missing
covariates are filled with the first factor level or zero for numerical covariates.

Value

a data.frame with the following columns

name the rownames of the input data

pval the p-values of the quasi-likelihood ratio test

adj_pval the adjusted p-values returned from p.adjust()

f_statistic the F-statistic: F' = (Devyyy — Devyeq)/(df1 * dispgi—shrunken)

df1 the degrees of freedom of the test: ncol(design) - ncol(reduced_design)

df2 the degrees of freedom of the fit: ncol(data) - ncol(design) + df_o

Ifc the log2-fold change. If the alternative model is specified by reduced_design will be NA.

Ifc_se the standard error of the log2-fold change. Only calculated if compute_1fc_se == TRUE.
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References

e Lund, S. P, Nettleton, D., McCarthy, D. J., & Smyth, G. K. (2012). Detecting differential
expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.
Statistical Applications in Genetics and Molecular Biology, 11(5). https://doi.org/10.
1515/1544-6115.1826

See Also

glm_gp()

Examples

# Make Data

Y <- matrix(rnbinom(n = 30 * 100, mu = 4, size = 0.3), nrow = 30, ncol = 100)

annot <- data.frame(mouse = sample(LETTERS[1:6], size = 100, replace = TRUE),
celltype = sample(c("Tcell”, "Bcell”, "Macrophages”), size = 100, replace = TRUE),
contl = rnorm(100@), cont2 = rnorm(100, mean = 30))

annot$condition <- ifelse(annot$mouse %in% c("A", "B", "C"), "ctrl”, "treated")

head(annot)

se <- SummarizedExperiment: :SummarizedExperiment(Y, colData = annot)

# Fit model

fit <- glm_gp(se, design = ~ condition + celltype + contl + cont2)
# Test with reduced design

res <- test_de(fit, reduced_design = ~ celltype + contl + cont2)
head(res)

# Test with contrast argument, the results are identical

res2 <- test_de(fit, contrast = conditiontreated)

head(res2)

# Test with explicit specification of the conditions

# The results are still identical

res3 <- test_de(fit, contrast = cond(condition = "treated”, celltype = "Bcell”) -
cond(condition = "ctrl”, celltype = "Bcell”))

head(res3)

# The column names of fit$Beta are valid variables in the contrast argument
colnames(fit$Beta)
# You can also have more complex contrasts:
# the following compares contl vs cont2:
test_de(fit, contl - cont2, n_max = 4)
# You can also sort the output
test_de(fit, contl - cont2, n_max = 4,
sort_by = "pval")
test_de(fit, contl - cont2, n_max = 4,
sort_by = - abs(f_statistic))

# If the data has multiple samples, it is a good

# idea to aggregate the cell counts by samples.

# This is called forming a "pseudobulk”.

se_reduced <- pseudobulk(se, group_by = vars(mouse, condition, celltype),
contl = mean(cont1), cont2 = min(cont2))

fit_reduced <- glm_gp(se_reduced, design = ~ condition + celltype)
test_de(fit_reduced, contrast = "conditiontreated”, n_max = 4)
test_de(fit_reduced, contrast = cond(condition = "treated”, celltype = "Macrophages") -

cond(condition = "ctrl”, celltype = "Macrophages"),


https://doi.org/10.1515/1544-6115.1826
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n_max = 4)

variance_prior Estimate the scale and df for a Inverse Chisquare distribution that
generate the true gene variances

Description

This function implements Smyth’s 2004 variance shrinkage. It also supports covariates that are
fitted to log(s2) with natural splines. This is based on the 2012 Lund et al. quasi-likelihood paper.

Usage

variance_prior(s2, df, covariate = NULL, abundance_trend = NULL)

Arguments
s2 vector of observed variances. Must not contain @’s.
df vector or single number with the degrees of freedom
covariate a vector with the same length as s2. covariate is used to regress out the trend

in s2. If covariate = NULL, it is ignored.

abundance_trend
logical that decides if the additional abundance trend is fit to the data. If NULL
the abundance trend is fitted if there are more than 10 observations and the
covariate is not NULL. Default: NULL

Value

a list with three elements:

variance0 estimate of the scale of the inverse Chisquared distribution. If covariate is NULL a single
number, otherwise a vector of length(covariate)

df0 estimate of the degrees of freedom of the inverse Chisquared distribution

var_pos the shrunken variance estimates: a combination of s2 and variance®@

See Also

limma: : squeezeVar()
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vars

vars Quote grouping variables

Description

Quote grouping variables

Usage

vars(...)

Arguments

the quoted expression

See Also

ggplot2::vars, dplyr::vars
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