

Package ‘glmGamPoi’

January 20, 2026

Type Package

Title Fit a Gamma-Poisson Generalized Linear Model

Version 1.22.0

Description Fit linear models to overdispersed count data.

The package can estimate the overdispersion and fit repeated models for matrix input. It is designed to handle large input datasets as they typically occur in single cell RNA-seq experiments.

License GPL-3

Encoding UTF-8

SystemRequirements C++17

Suggests testthat (>= 2.1.0), zoo, DESeq2, edgeR, limma, MASS, statmod, ggplot2, bench, BiocParallel, knitr, rmarkdown, BiocStyle, TENxPBMCData, muscData, scran, dplyr

LinkingTo Rcpp, RcppArmadillo, beachmat, assorthead

Imports Rcpp, beachmat, DelayedMatrixStats, matrixStats, MatrixGenerics, SparseArray (>= 1.5.21), S4Vectors, DelayedArray, HDF5Array, Matrix, SummarizedExperiment, SingleCellExperiment, BiocGenerics, methods, stats, utils, splines, rlang, vctrs

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

URL <https://github.com/const-ae/glmGamPoi>

BugReports <https://github.com/const-ae/glmGamPoi/issues>

biocViews Regression, RNASeq, Software, SingleCell

VignetteBuilder knitr

git_url <https://git.bioconductor.org/packages/glmGamPoi>

git_branch RELEASE_3_22

git_last_commit 908cde9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Constantin Ahlmann-Eltze [aut, cre] (ORCID: <<https://orcid.org/0000-0002-3762-068X>>),
 Nathan Lubock [ctb] (ORCID: <<https://orcid.org/0000-0001-8064-2465>>),
 Michael Love [ctb]

Maintainer Constantin Ahlmann-Eltze <artjom31415@googlemail.com>

Contents

as.list.glmGamPoi	2
estimate_betas_fisher_scoring	3
estimate_betas_group_wise	4
estimate_betas_roughly	4
estimate_betas_roughly_group_wise	5
estimate_size_factors	5
format_matrix	6
glm_gp	6
glm_gp_impl	11
loc_median_fit	13
overdispersion_mle	14
overdispersion_shrinkage	16
predict.glmGamPoi	18
print.glmGamPoi	20
pseudobulk	21
residuals.glmGamPoi	22
solve_lm_for_A	23
test_de	24
variance_prior	27
vars	28

Index

29

as.list.glmGamPoi *Convert glmGamPoi object to a list*

Description

Convert glmGamPoi object to a list

Usage

```
## S3 method for class 'glmGamPoi'
as.list(x, ...)
```

Arguments

x	an object with class glmGamPoi
...	not used

Value

The method returns a list with the following elements:

`Beta` a matrix with dimensions `nrow(data)` x `n_coefficients` where `n_coefficients` is based on the `design` argument. It contains the estimated coefficients for each gene.

`overdispersions` a vector with length `nrow(data)`. The overdispersion parameter for each gene. It describes how much more the counts vary than one would expect according to the Poisson model.

`Mu` a matrix with the same dimensions as `dim(data)`. If the calculation happened on disk, than `Mu` is a `HDF5Matrix`. It contains the estimated mean value for each gene and sample.

`size_factors` a vector with length `ncol(data)`. The size factors are the inferred correction factors for different sizes of each sample. They are also sometimes called the exposure factor.

`model_matrix` a matrix with dimensions `ncol(data)` x `n_coefficients`. It is build based on the `design` argument.

estimate_betas_fisher_scoring

Estimate the Betas for Fixed Dispersions

Description

Estimate the Betas for Fixed Dispersions

Usage

```
estimate_betas_fisher_scoring(
  Y,
  model_matrix,
  offset_matrix,
  dispersions,
  beta_mat_init,
  ridge_penalty,
  try_recovering_convergence_problems = TRUE
)
```

Value

a list with two elements

- `Beta` a matrix with one column for each coefficient
- `iterations` the number of iterations

estimate_betas_group_wise*Estimate the Betas for Fixed Dispersions*

Description

Estimate the Betas for Fixed Dispersions

Usage

```
estimate_betas_group_wise(
  Y,
  offset_matrix,
  dispersions,
  beta_group_init = NULL,
  beta_mat_init = NULL,
  groups,
  model_matrix
)
```

Value

a list with three elements

- Beta a matrix with one column per group and a row for each gene
- iterations the number of iterations from the Newton-Raphson method
- deviances the deviance for each gene (sum of the deviance per group)

estimate_betas_roughly*Make a quick first guess where reasonable beta would be*

Description

Make a quick first guess where reasonable beta would be

Usage

```
estimate_betas_roughly(
  Y,
  model_matrix,
  offset_matrix,
  pseudo_count = 1,
  ridge_penalty = NULL
)
```

Value

a matrix with one column for each coefficient

estimate_betas_roughly_group_wise

Make a quick first guess where reasonable beta would be for a set of groups

Description

Make a quick first guess where reasonable beta would be for a set of groups

Usage

```
estimate_betas_roughly_group_wise(Y, offset_matrix, groups)
```

Value

a matrix with the mean per group for each gene

estimate_size_factors *Estimate the Size Factors*

Description

Estimate the Size Factors

Usage

```
estimate_size_factors(Y, method, verbose = FALSE)
```

Arguments

Y	any matrix-like object (base::matrix(), DelayedArray, HDF5Matrix, Matrix::Matrix(), etc.)
method	one of c("normed_sum", "deconvolution", "poscounts")

Value

a vector with one size factor per column of Y

format_matrix	<i>Helper to format a matrix nicely</i>
---------------	---

Description

Helper to format a matrix nicely

Usage

```
format_matrix(matrix, digits = NULL)
```

Value

a string

glm_gp	<i>Fit a Gamma-Poisson Generalized Linear Model</i>
--------	---

Description

This function provides a simple to use interface to fit Gamma-Poisson generalized linear models. It works equally well for small scale (a single model) and large scale data (e.g. thousands of rows and columns, potentially stored on disk). The function automatically determines the appropriate size factors for each sample and efficiently finds the best overdispersion parameter for each gene.

Usage

```
glm_gp(
  data,
  design = ~1,
  col_data = NULL,
  reference_level = NULL,
  offset = 0,
  size_factors = c("normed_sum", "deconvolution", "poscounts", "ratio"),
  overdispersion = TRUE,
  overdispersion_shrinkage = TRUE,
  ridge_penalty = 0,
  do_cox_reid_adjustment = TRUE,
  subsample = FALSE,
  on_disk = NULL,
  use_assay = NULL,
  verbose = FALSE
)
```

Arguments

<code>data</code>	any matrix-like object (e.g. <code>matrix</code> , sparse matrix (<code>dgCMatrix</code>), <code>DelayedArray</code> , <code>HDF5Matrix</code>) or anything that can be cast to a <code>SummarizedExperiment</code> (e.g. <code>MSnSet</code> , <code>eSet</code> etc.) with one column per sample and row per gene.
<code>design</code>	<p>a specification of the experimental design used to fit the Gamma-Poisson GLM. It can be a <code>model.matrix()</code> with one row for each sample and one column for each coefficient.</p> <p>Alternatively, <code>design</code> can be a <code>formula</code>. The entries in the formula can refer to global objects, columns in the <code>col_data</code> parameter, or the <code>colData(data)</code> of <code>data</code> if it is a <code>SummarizedExperiment</code>.</p> <p>The third option is that <code>design</code> is a vector where each element specifies to which condition a sample belongs.</p> <p>Default: <code>design = ~ 1</code>, which means that all samples are treated as if they belong to the same condition. Note that this is the fastest option.</p>
<code>col_data</code>	a data frame with one row for each sample in <code>data</code> . Default: <code>NULL</code> .
<code>reference_level</code>	a single string that specifies which level is used as reference when the model matrix is created. The reference level becomes the intercept and all other coefficients are calculated with respect to the <code>reference_level</code> . Default: <code>NULL</code> .
<code>offset</code>	Constant offset in the model in addition to <code>log(size_factors)</code> . It can either be a single number, a vector of length <code>ncol(data)</code> or a matrix with the same dimensions as <code>dim(data)</code> . Default: <code>0</code> .
<code>size_factors</code>	<p>in large scale experiments, each sample is typically of different size (for example different sequencing depths). A size factor is an internal mechanism of GLMs to correct for this effect.</p> <p><code>size_factors</code> is either a numeric vector with positive entries that has the same lengths as columns in the data that specifies the size factors that are used. Or it can be a string that specifies the method that is used to estimate the size factors (one of <code>c("normed_sum", "deconvolution", "poscounts", "ratio")</code>). Note that <code>"normed_sum"</code> and <code>"poscounts"</code> are fairly simple methods and can lead to suboptimal results. For the best performance on data with many zeros, I recommend to use <code>size_factors = "deconvolution"</code> which calls <code>scran::calculateSumFactors()</code>. However, you need to separately install the <code>scran</code> package from Bioconductor for this method to work. For small datasets common for bulk RNA-seq experiments, I recommend to use <code>size_factors = "ratio"</code>, which uses the same procedure as <code>DESeq2</code> and <code>edgeR</code>. Also note that <code>size_factors = 1</code> and <code>size_factors = FALSE</code> are equivalent. If only a single gene is given, no size factor is estimated (i.e. <code>size_factors = 1</code>). Default: <code>"normed_sum"</code>.</p>
<code>overdispersion</code>	<p>the simplest count model is the Poisson model. However, the Poisson model assumes that $variance = mean$. For many applications this is too rigid and the Gamma-Poisson allows a more flexible mean-variance relation ($variance = mean + mean^2 * overdispersion$).</p> <p><code>overdispersion</code> can either be</p> <ul style="list-style-type: none"> • a single boolean that indicates if an overdispersion is estimated for each gene. • a numeric vector of length <code>nrow(data)</code> fixing the overdispersion to those values. • the string <code>"global"</code> to indicate that one dispersion is fit across all genes.

Note that `overdispersion = 0` and `overdispersion = FALSE` are equivalent and both reduce the Gamma-Poisson to the classical Poisson model. Default: `TRUE`.

`overdispersion_shrinkage`

the overdispersion can be difficult to estimate with few replicates. To improve the overdispersion estimates, we can share information across genes and shrink each individual overdispersion estimate towards a global overdispersion estimate. Empirical studies show however that the overdispersion varies based on the mean expression level (lower expression level => higher dispersion). If `overdispersion_shrinkage = TRUE`, a median trend of dispersion and expression level is fit and used to estimate the variances of a quasi Gamma Poisson model (Lund *et al.* 2012). Default: `TRUE`.

`ridge_penalty` to avoid overfitting, we can penalize fits with large coefficient estimates. Instead of directly minimizing the deviance per gene ($\sum dev(y_i, X_i b)$), we will minimize $\sum dev(y_i, X_i b) + N * \sum (penalty_p * b_p)^2$. `ridge_penalty` can be

- a scalar in which case all parameters except the intercept are penalized.
- a vector which has to have the same length as columns in the model matrix
- a matrix with the same number of columns as columns in the model matrix. This gives maximum flexibility for expert users and allows for full Tikhonov regularization.

Default: `ridge_penalty = 0`, which is internally replaced with a small positive number for numerical stability.

`do_cox_reid_adjustment`

the classical maximum likelihood estimator of the overdispersion is biased towards small values. McCarthy *et al.* (2012) showed that it is preferable to optimize the Cox-Reid adjusted profile likelihood.

`do_cox_reid_adjustment` can be either be `TRUE` or `FALSE` to indicate if the adjustment is added during the optimization of the overdispersion parameter. Default: `TRUE`.

`subsample`

the estimation of the overdispersion is the slowest step when fitting a Gamma-Poisson GLM. For datasets with many samples, the estimation can be considerably sped up without loosing much precision by fitting the overdispersion only on a random subset of the samples. Default: `FALSE` which means that the data is not subsampled. If set to `TRUE`, at most 1,000 samples are considered. Otherwise the parameter just specifies the number of samples that are considered for each gene to estimate the overdispersion.

`on_disk`

a boolean that indicates if the dataset is loaded into memory or if it is kept on disk to reduce the memory usage. Processing in memory can be significantly faster than on disk. Default: `NULL` which means that the data is only processed in memory if data is an in-memory data structure.

`use_assay`

Specify which assay to use. Default: `NULL`, which means that if available 'counts' are used. Otherwise an error is thrown except if there is only a single assay.

`verbose`

a boolean that indicates if information about the individual steps are printed while fitting the GLM. Default: `FALSE`.

Details

The method follows the following steps:

1. The size factors are estimated.

If `size_factors = "normed_sum"`, the column-sum for each cell is calculated and the resulting size factors are normalized so that their geometric mean is 1. If `size_factors = "poscounts"`, a slightly adapted version of the procedure proposed by Anders and Huber (2010) in equation (5) is used. To handle the large number of zeros the geometric means are calculated for $Y + 0.5$ and ignored during the calculation of the median. Columns with all zeros get a default size factor of 0.001. If `size_factors = "deconvolution"`, the method `scran::calculateSumFactors()` is called. If `size_factors = "ratio"`, the unmodified procedure from Anders and Huber (2010) in equation (5) is used.

2. The dispersion estimates are initialized based on the moments of each row of Y .

3. The coefficients of the model are estimated.

If all samples belong to the same condition (i.e. `design = ~ 1`), the betas are estimated using a quick Newton-Raphson algorithm. This is similar to the behavior of `edgeR`. For more complex designs, the general Fisher-scoring algorithm is used. Here, the code is based on a fork of the internal function `fitBeta()` from `DESeq2`. It does however contain some modification to make the fit more robust and faster.

4. The mean for each gene and sample is calculate.

Note that this step can be very IO intensive if `data` is or contains a `DelayedArray`.

5. The overdispersion is estimated.

The classical method for estimating the overdispersion for each gene is to maximize the Gamma-Poisson log-likelihood by iterating over each count and summing the the corresponding log-likelihood. It is however, much more efficient for genes with many small counts to work on the contingency table of the counts. Originally, this approach had already been used by Anscombe (1950). In this package, I have implemented an extension of their method that can handle general offsets.

See also [overdispersion_mle\(\)](#).

6. The beta coefficients are estimated once more with the updated overdispersion estimates

7. The mean for each gene and sample is calculated again.

This method can handle not just in memory data, but also data stored on disk. This is essential for large scale datasets with thousands of samples, as they sometimes encountered in modern single-cell RNA-seq analysis. `glmGamPoi` relies on the `DelayedArray` and `beachmat` package to efficiently implement the access to the on-disk data.

Value

The method returns a list with the following elements:

`Beta` a matrix with dimensions `nrow(data) x n_coefficients` where `n_coefficients` is based on the `design` argument. It contains the estimated coefficients for each gene.

`overdispersions` a vector with length `nrow(data)`. The overdispersion parameter for each gene. It describes how much more the counts vary than one would expect according to the Poisson model.

`overdispersion_shrinkage_list` a list with additional information from the quasi-likelihood shrinkage. For details see [overdispersion_shrinkage\(\)](#).

`deviances` a vector with the deviance of the fit for each row. The deviance is a measure how well the data is fit by the model. A smaller deviance means a better fit.

`Mu` a matrix with the same dimensions as `dim(data)`. If the calculation happened on disk, than `Mu` is a `HDF5Matrix`. It contains the estimated mean value for each gene and sample.

`size_factors` a vector with length `ncol(data)`. The size factors are the inferred correction factors for different sizes of each sample. They are also sometimes called the exposure factor.

`Offset` a matrix with the same dimensions as `dim(data)`. If the calculation happened on disk, than `Offset` is a `HDF5Matrix`. It contains the `log(size_factors) + offset` from the function call.

`data` a `SummarizedExperiment` that contains the input counts and the `col_data`
`model_matrix` a matrix with dimensions `ncol(data) x n_coefficients`. It is build based on the `design` argument.
`design_formula` the formula that used to fit the model, or `NULL` otherwise
`ridge_penalty` a vector with the specification of the ridge penalty.

References

- McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. *Nucleic Acids Research*, 40(10), 4288–4297. <https://doi.org/10.1093/nar/gks042>.
- Anders Simon, & Huber Wolfgang. (2010). Differential expression analysis for sequence count data. *Genome Biology*. <https://doi.org/10.1016/j.jcf.2018.05.006>.
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 550. <https://doi.org/10.1186/s13059-014-0550-8>.
- Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–140. <https://doi.org/10.1093/bioinformatics/btp616>.
- Lun ATL, Pagès H, Smith ML (2018). “beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types.” *PLoS Comput. Biol.*, 14(5), e1006135. doi: [10.1371/journal.pcbi.1006135](https://doi.org/10.1371/journal.pcbi.1006135).
- Lund, S. P., Nettleton, D., McCarthy, D. J., & Smyth, G. K. (2012). Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. *Statistical Applications in Genetics and Molecular Biology*, 11(5). <https://doi.org/10.1515/1544-6115.1826>.
- Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. *Genome Biol.* 17:75 <https://doi.org/10.1186/s13059-016-0947-7>

See Also

`overdispersion_mle()` and `overdispersion_shrinkage()` for the internal functions that do the work. For differential expression analysis, see `test_de()`.

Examples

```
set.seed(1)
# The simplest example
y <- rbinom(n = 10, mu = 3, size = 1/2.4)
c(glm_gp(y, size_factors = FALSE))

# Fitting a whole matrix
model_matrix <- cbind(1, rnorm(5))
true_Beta <- cbind(rnorm(n = 30), rnorm(n = 30, mean = 3))
sf <- exp(rnorm(n = 5, mean = 0.7))
model_matrix
Y <- matrix(rbinom(n = 30 * 5, mu = sf * exp(true_Beta %*% t(model_matrix)), size = 1/2.4),
```

```

nrow = 30, ncol = 5)

fit <- glm_gp(Y, design = model_matrix, size_factors = sf, verbose = TRUE)
summary(fit)

# Fitting a model with covariates
data <- data.frame(fav_food = sample(c("apple", "banana", "cherry"), size = 50, replace = TRUE),
city = sample(c("heidelberg", "paris", "new york"), size = 50, replace = TRUE),
age = rnorm(n = 50, mean = 40, sd = 15))
Y <- matrix(rnbinom(n = 100 * 50, mu = 3, size = 1/3.1), nrow = 100, ncol = 50)
fit <- glm_gp(Y, design = ~ fav_food + city + age, col_data = data)
summary(fit)

# Specify 'ridge_penalty' to penalize extreme Beta coefficients
fit_reg <- glm_gp(Y, design = ~ fav_food + city + age, col_data = data, ridge_penalty = 1.5)
summary(fit_reg)

```

glm_gp_impl*Internal Function to Fit a Gamma-Poisson GLM*

Description

Internal Function to Fit a Gamma-Poisson GLM

Usage

```
glm_gp_impl(
  Y,
  model_matrix,
  offset = 0,
  size_factors = c("normed_sum", "deconvolution", "poscounts", "ratio"),
  overdispersion = TRUE,
  overdispersion_shrinkage = TRUE,
  ridge_penalty = 0,
  do_cox_reid_adjustment = TRUE,
  subsample = FALSE,
  verbose = FALSE
)
```

Arguments

Y	any matrix-like object (e.g. <code>matrix()</code> , <code>DelayedArray()</code> , <code>HDF5Matrix()</code>) with one column per sample and row per gene.
model_matrix	a numeric matrix that specifies the experimental design. It can be produced using <code>stats::model.matrix()</code> . Default: <code>NULL</code>
offset	Constant offset in the model in addition to <code>log(size_factors)</code> . It can either be a single number, a vector of length <code>ncol(data)</code> or a matrix with the same dimensions as <code>dim(data)</code> . Default: <code>0</code> .

`size_factors` in large scale experiments, each sample is typically of different size (for example different sequencing depths). A size factor is an internal mechanism of GLMs to correct for this effect.

`size_factors` is either a numeric vector with positive entries that has the same lengths as columns in the data that specifies the size factors that are used. Or it can be a string that specifies the method that is used to estimate the size factors (one of `c("normed_sum", "deconvolution", "poscounts", "ratio")`). Note that `"normed_sum"` and `"poscounts"` are fairly simple methods and can lead to suboptimal results. For the best performance on data with many zeros, I recommend to use `size_factors = "deconvolution"` which calls `scran::calculateSumFactors`. However, you need to separately install the `scran` package from Bioconductor for this method to work. For small datasets common for bulk RNA-seq experiments, I recommend to use `size_factors = "ratio"`, which uses the same procedure as `DESeq2` and `edgeR`. Also note that `size_factors = 1` and `size_factors = FALSE` are equivalent. If only a single gene is given, no size factor is estimated (ie. `size_factors = 1`). Default: `"normed_sum"`.

`overdispersion` the simplest count model is the Poisson model. However, the Poisson model assumes that $variance = mean$. For many applications this is too rigid and the Gamma-Poisson allows a more flexible mean-variance relation ($variance = mean + mean^2 * overdispersion$).

`overdispersion` can either be

- a single boolean that indicates if an overdispersion is estimated for each gene.
- a numeric vector of length `nrow(data)` fixing the overdispersion to those values.
- the string `"global"` to indicate that one dispersion is fit across all genes.

Note that `overdispersion = 0` and `overdispersion = FALSE` are equivalent and both reduce the Gamma-Poisson to the classical Poisson model. Default: `TRUE`.

`overdispersion_shrinkage`

the overdispersion can be difficult to estimate with few replicates. To improve the overdispersion estimates, we can share information across genes and shrink each individual overdispersion estimate towards a global overdispersion estimate. Empirical studies show however that the overdispersion varies based on the mean expression level (lower expression level \Rightarrow higher dispersion). If `overdispersion_shrinkage = TRUE`, a median trend of dispersion and expression level is fit and used to estimate the variances of a quasi Gamma Poisson model (Lund et al. 2012). Default: `TRUE`.

`ridge_penalty` to avoid overfitting, we can penalize fits with large coefficient estimates. Instead of directly minimizing the deviance per gene ($\sum dev(y_i, X_i b)$), we will minimize $\sum dev(y_i, X_i b) + N * \sum (penalty_p * b_p)^2$.

`ridge_penalty` can be

- a scalar in which case all parameters except the intercept are penalized.
- a vector which has to have the same length as columns in the model matrix
- a matrix with the same number of columns as columns in the model matrix. This gives maximum flexibility for expert users and allows for full Tikhonov regularization.

Default: `ridge_penalty = 0`, which is internally replaced with a small positive number for numerical stability.

do_cox_reid_adjustment	the classical maximum likelihood estimator of the overdispersion is biased towards small values. McCarthy <i>et al.</i> (2012) showed that it is preferable to optimize the Cox-Reid adjusted profile likelihood.
do_cox_reid_adjustment	can be either be TRUE or FALSE to indicate if the adjustment is added during the optimization of the overdispersion parameter. Default: TRUE.
subsample	the estimation of the overdispersion is the slowest step when fitting a Gamma-Poisson GLM. For datasets with many samples, the estimation can be considerably sped up without loosing much precision by fitting the overdispersion only on a random subset of the samples. Default: FALSE which means that the data is not subsampled. If set to TRUE, at most 1,000 samples are considered. Otherwise the parameter just specifies the number of samples that are considered for each gene to estimate the overdispersion.
verbose	a boolean that indicates if information about the individual steps are printed while fitting the GLM. Default: FALSE.

Value

a list with four elements

- Beta the coefficient matrix
- overdispersion the vector with the estimated overdispersions
- Mu a matrix with the corresponding means for each gene and sample
- size_factors a vector with the size factor for each sample
- ridge_penalty a vector with the ridge penalty

See Also

[glm_gp\(\)](#) and [overdispersion_mle\(\)](#)

loc_median_fit	<i>Estimate local median fit</i>
----------------	----------------------------------

Description

This function fits y based on x through a (weighted) median using the npoints/2 neighborhood.

Usage

```
loc_median_fit(
  x,
  y,
  fraction = 0.1,
  npoints = max(1, round(length(x) * fraction)),
  weighted = TRUE,
  ignore_zeros = FALSE,
  sample_fraction = 1
)
```

Arguments

x, y the x and y coordinates of the points.
 fraction, npoints the fraction / number of the points that are considered for each fit. npoints is the argument that is used in the end it is at least one. Default: fraction = 0.1 and npoints = length(x) * fraction.
 weighted a boolean that indicates if a weighted median is calculated.
 ignore_zeros should the zeros be excluded from the fit
 sample_fraction use a fraction of the data to estimate the local median. Useful for extremely large datasets where the trend is well-sampled

Details

This function is low-level implementation detail and should usually not be called by the user.

See Also

locfit: a package dedicated to local regression.

Examples

```

x <- runif(n = 1000, max = 4)
y <- rpois(n = 1000, lambda = x * 10)

plot(x, y)
fit <- loc_median_fit(x, y, fraction = 0.1)
fit2 <- loc_median_fit(x, y, fraction = 0.1, sample_fraction = 0.75)
points(x, fit, col = "red")
points(x, fit2, col = "blue")

```

overdispersion_mle *Estimate the Overdispersion for a Vector of Counts*

Description

Estimate the Overdispersion for a Vector of Counts

Usage

```

overdispersion_mle(
  y,
  mean,
  model_matrix = NULL,
  do_cox_reid_adjustment = !is.null(model_matrix),
  global_estimate = FALSE,
  subsample = FALSE,
  max_iter = 200,
  verbose = FALSE
)

```

Arguments

<code>y</code>	a numeric or integer vector or matrix with the counts for which the overdispersion is estimated
<code>mean</code>	a numeric vector of either length 1 or <code>length(y)</code> or if <code>y</code> is a matrix, a matrix with the same dimensions. Contains the predicted value for that sample. If missing: <code>mean(y) / rowMeans(y)</code>
<code>model_matrix</code>	a numeric matrix that specifies the experimental design. It can be produced using <code>stats::model.matrix()</code> . Default: <code>NULL</code>
<code>do_cox_reid_adjustment</code>	the classical maximum likelihood estimator of the overdispersion is biased towards small values. McCarthy <i>et al.</i> (2012) showed that it is preferable to optimize the Cox-Reid adjusted profile likelihood. <code>do_cox_reid_adjustment</code> can be either be <code>TRUE</code> or <code>FALSE</code> to indicate if the adjustment is added during the optimization of the overdispersion parameter. Default: <code>TRUE</code> if a model matrix is provided, otherwise <code>FALSE</code>
<code>global_estimate</code>	flag to decide if a single overdispersion for a whole matrix is calculated instead of one estimate per row. This parameter has no affect if <code>y</code> is a vector. Default: <code>FALSE</code>
<code>subsample</code>	the estimation of the overdispersion is the slowest step when fitting a Gamma-Poisson GLM. For datasets with many samples, the estimation can be considerably sped up without loosing much precision by fitting the overdispersion only on a random subset of the samples. Default: <code>FALSE</code> which means that the data is not subsampled. If set to <code>TRUE</code> , at most 1,000 samples are considered. Otherwise the parameter just specifies the number of samples that are considered for each gene to estimate the overdispersion.
<code>max_iter</code>	the maximum number of iterations for each gene
<code>verbose</code>	a boolean that indicates if information about the individual steps are printed while fitting the GLM. Default: <code>FALSE</code> .

Details

The function is optimized to be fast on many small counts. To achieve this, the frequency table of the counts is calculated and used to avoid repetitive calculations. If there are probably many unique counts the optimization is skipped. Currently the heuristic is to skip if more than half of the counts are expected to be unique. The estimation is based on the largest observed count in `y`.

An earlier version of this package (< 1.1.1) used a separate set of functions for the case of many small counts based on a paper by Bandara *et al.* (2019). However, this didn't bring a sufficient performance increase and meant an additional maintenance burden.

Value

The function returns a list with the following elements:

`estimate` the numerical estimate of the overdispersion.

`iterations` the number of iterations it took to calculate the result.

`message` additional information about the fitting process.

See Also

[glm_gp\(\)](#)

Examples

```

set.seed(1)
# true overdispersion = 2.4
y <- rnbnom(n = 10, mu = 3, size = 1/2.4)
# estimate = 1.7
overdispersion_mle(y)

# true overdispersion = 0
y <- rpois(n = 10, lambda = 3)
# estimate = 0
overdispersion_mle(y)
# with different mu, overdispersion estimate changes
overdispersion_mle(y, mean = 15)
# Cox-Reid adjustment changes the result
overdispersion_mle(y, mean = 15, do_cox_reid_adjustment = FALSE)

# Many very small counts, true overdispersion = 50
y <- rnbnom(n = 1000, mu = 0.01, size = 1/50)
summary(y)
# estimate = 31
overdispersion_mle(y, do_cox_reid_adjustment = TRUE)

# Function can also handle matrix input
Y <- matrix(rnbnom(n = 10 * 3, mu = 4, size = 1/2.2), nrow = 10, ncol = 3)
Y
as.data.frame(overdispersion_mle(Y))

```

overdispersion_shrinkage

Shrink the overdispersion estimates

Description

Low-level function to shrink a set of overdispersion estimates following the quasi-likelihood and Empirical Bayesian framework.

Usage

```

overdispersion_shrinkage(
  disp_est,
  gene_means,
  df,
  disp_trend = TRUE,
  ql_disp_trend = NULL,
  ...,
  verbose = FALSE
)

```

Arguments

disp_est	vector of overdispersion estimates
gene_means	vector of average gene expression values. Used to fit disp_trend if that is NULL.
df	degrees of freedom for estimating the Empirical Bayesian variance prior. Can be length 1 or same length as disp_est and gene_means.
disp_trend	vector with the dispersion trend. If NULL or TRUE the dispersion trend is fitted using a (weighted) local median fit. Default: TRUE.
ql_disp_trend	a logical to indicate if a second abundance trend using splines is fitted for the quasi-likelihood dispersions. Default: NULL which means that the extra fit is only done if enough observations are present.
...	additional parameters for the loc_median_fit() function
verbose	a boolean that indicates if information about the individual steps are printed while fitting the GLM. Default: FALSE.

Details

The function goes through the following steps

1. Fit trend between overdispersion MLE's and the average gene expression. Per default it uses the loc_median_fit() function.
2. Convert the overdispersion MLE's to quasi-likelihood dispersion estimates by fixing the trended dispersion as the "true" dispersion value: $disp_{ql} = (1 + mu * disp_{mle}) / (1 + mu * disp_{trend})$
3. Shrink the quasi-likelihood dispersion estimates using Empirical Bayesian variance shrinkage (see Smyth 2004).

Value

the function returns a list with the following elements

dispersion_trend the dispersion trend provided by disp_trend or the local median fit.

ql_disp_estimate the quasi-likelihood dispersion estimates based on the dispersion trend, disp_est, and gene_means

ql_disp_trend the ql_disp_estimate still might show a trend with respect to gene_means. If ql_disp_trend = TRUE a spline is used to remove this secondary trend. If ql_disp_trend = FALSE it corresponds directly to the dispersion prior

ql_disp_shrunken the shrunken quasi-likelihood dispersion estimates. They are shrunken towards ql_disp_trend.

ql_df0 the degrees of freedom of the empirical Bayesian shrinkage. They correspond to spread of the ql_disp_estimate's

References

- Lund, S. P., Nettleton, D., McCarthy, D. J., & Smyth, G. K. (2012). Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. *Statistical Applications in Genetics and Molecular Biology*, 11(5). <https://doi.org/10.1515/1544-6115.1826>.
- Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology*, 3(1). <https://doi.org/10.2202/1544-6115.1027>

See Also

limma::squeezeVar()

Examples

```

Y <- matrix(rnbinom(n = 300 * 4, mu = 6, size = 1/4.2), nrow = 300, ncol = 4)
disps <- sapply(seq_len(nrow(Y)), function(idx){
  overdispersion_mle(Y[idx, ])$estimate
})
shrink_list <- overdispersion_shrinkage(disps, rowMeans(Y), df = ncol(Y) - 1,
                                         disp_trend = FALSE, ql_disp_trend = FALSE)

plot(rowMeans(Y), shrink_list$ql_disp_estimate)
lines(sort(rowMeans(Y)), shrink_list$ql_disp_trend[order(rowMeans(Y))], col = "red")
points(rowMeans(Y), shrink_list$ql_disp_shrunken, col = "blue", pch = 16, cex = 0.5)

```

predict.glmGamPoi

Predict 'link' or 'response' values for Gamma-Poisson GLMs

Description

Predict mu (i.e., type = "response") or log(mu) (i.e., type = "link") from a 'glmGamPoi' fit (created by `glm_gp(...)`) with the corresponding estimate of the standard error. If newdata is NULL, mu is returned for the original input data.

Usage

```

## S3 method for class 'glmGamPoi'
predict(
  object,
  newdata = NULL,
  type = c("link", "response"),
  se.fit = FALSE,
  offset = mean(object$Offset),
  on_disk = NULL,
  verbose = FALSE,
  ...
)

```

Arguments

<code>object</code>	a <code>glmGamPoi</code> fit object (produced by <code>glm_gp()</code>).
<code>newdata</code>	a specification of the new data for which the expression for each gene is predicted. <code>newdata</code> should be a
	data.frame if the original fit was specified with a <code>formula</code> , provide a <code>data.frame</code> with one column for each variable in the formula. For example, if <code>glm_gp(se, design = ~ age + batch + treatment)</code> , then the <code>data.frame</code> needs a <code>age</code> , <code>batch</code> , and <code>treatment</code> column that contain the same data types as the original fit.

vector if the original fit was specified using a vector, you need to again provide a vector with the same format.

matrix if newdata is a matrix, it is applied directly as $\text{Mu} \leftarrow \exp(\text{object}\$Beta \%*% t(\text{newdata}) + \text{object}\$offset_matrix)$. So make sure, that it is constructed correctly.

NULL if newdata is NULL, the predicted values for the original input data are returned.

type	either 'link' or 'response'. The default is 'link', which returns the predicted values before the link function (<code>exp()</code>) is applied. Thus, the values can be positive and negative numbers. However, often the predicted values are easier to interpret after the link function is applied (i.e., <code>type = "response"</code>), because then the values are on the same scale as the original counts.
se.fit	boolean that indicates if in addition to the mean the standard error of the mean is returned.
offset	count models (in particular for sequencing experiments) usually have a sample specific size factor (<code>offset = log(size factor)</code>). It defines how big we expect the predicted results are. If newdata is NULL, the offset is ignored, because the <code>predict()</code> returns a result based on the pre-calculated <code>object\$Mu</code> . If newdata is not NULL, by default the offset is <code>mean(object\$Offset)</code> , which puts the in the same size as the average sample.
on_disk	a boolean that indicates if the results are <code>HDF5Matrix</code> 's from the <code>HDF5Array</code> package. If newdata is NULL, <code>on_disk</code> is ignored. Otherwise, if <code>on_disk = TRUE</code> , the result is calculated on disk depending if offset is stored on disk.
verbose	a boolean that indicates if information about the individual steps are printed while predicting. Default: FALSE.
...	currently ignored.

Details

For `se.fit = TRUE`, the function sticks very close to the behavior of `stats::predict.glm()` for fits from `MASS::glm.nb()`.

Note: If `type = "link"`, the results are computed using the natural logarithm as the link function. This differs from the `lfc` estimate provided by `test_de`, which are on the `log2` scale.

Value

If `se.fit == FALSE`, a matrix with dimensions `nrow(object$data) x nrow(newdata)`.
If `se.fit == TRUE`, a list with three entries

fit the predicted values as a matrix with dimensions `nrow(object$data) x nrow(newdata)`. This is what would be returned if `se.fit == FALSE`.

se.fit the associated standard errors for each `fit`. Also a matrix with dimensions `nrow(object$data) x nrow(newdata)`

residual.scale Currently fixed to 1. In the future, this might become the values from `object$overdispersion_shrinkage`.

See Also

`stats::predict.lm()` and `stats::predict.glm()`

Examples

```

set.seed(1)
# The simplest example
y <- rnbinom(n = 10, mu = 3, size = 1/2.4)
fit <- glm_gp(y, size_factors = FALSE)
predict(fit, type = "response")
predict(fit, type = "link", se.fit = TRUE)

# Fitting a whole matrix
model_matrix <- cbind(1, rnorm(5))
true_Beta <- cbind(rnorm(n = 30), rnorm(n = 30, mean = 3))
sf <- exp(rnorm(n = 5, mean = 0.7))
model_matrix
Y <- matrix(rnbinom(n = 30 * 5, mu = sf * exp(true_Beta %*% t(model_matrix)), size = 1/2.4),
             nrow = 30, ncol = 5)
fit <- glm_gp(Y, design = model_matrix, size_factors = sf, verbose = TRUE)

head(predict(fit, type = "response"))
pred <- predict(fit, type = "link", se.fit = TRUE, verbose = TRUE)
head(pred$fit)
head(pred$se.fit)

# Fitting a model with covariates
data <- data.frame(fav_food = sample(c("apple", "banana", "cherry"), size = 50, replace = TRUE),
                    city = sample(c("heidelberg", "paris", "new york"), size = 50, replace = TRUE),
                    age = rnorm(n = 50, mean = 40, sd = 15))
Y <- matrix(rnbinom(n = 4 * 50, mu = 3, size = 1/3.1), nrow = 4, ncol = 50)
fit <- glm_gp(Y, design = ~ fav_food + city + age, col_data = data)
predict(fit)[, 1:3]

nd <- data.frame(fav_food = "banana", city = "paris", age = 29)
predict(fit, newdata = nd)

nd <- data.frame(fav_food = "banana", city = "paris", age = 29:40)
predict(fit, newdata = nd, se.fit = TRUE, type = "response")

```

print.glmGamPoi *Pretty print the result from glm_gp()*

Description

Pretty print the result from `glm_gp()`

Usage

```

## S3 method for class 'glmGamPoi'
print(x, ...)

## S3 method for class 'glmGamPoi'
format(x, ...)

```

```

## S3 method for class 'glmGamPoi'
summary(object, ...)

## S3 method for class 'summary.glmGamPoi'
print(x, ...)

## S3 method for class 'summary.glmGamPoi'
format(x, ...)

```

Arguments

x	the <code>glmGamPoi</code> object
...	additional parameters, currently ignored
object	the <code>glmGamPoi</code> object that is summarized

Value

The `print()` methods return the object `x`. The `format()` method returns a string. The `summary()` method returns an object of class `summary.glmGamPoi`.

`pseudobulk`

Create a 'SingleCellExperiment' containing pseudo-bulk samples

Description

Create a 'SingleCellExperiment' containing pseudo-bulk samples

Usage

```

pseudobulk(
  data,
  group_by,
  ...,
  aggregation_functions = list(counts = "rowSums2", .default = "rowMeans2"),
  col_data = NULL,
  make_colnames = TRUE,
  verbose = TRUE
)

```

Arguments

<code>data</code>	a 'SingleCellExperiment' or an object of a related class
<code>group_by</code>	an unquoted expression that can refer to columns in the 'colData()'. All observations with the same factor level are aggregated. The argument follows the same logic as <code>dplyr::group_by()</code> . The argument must be wrapped using <code>vars()</code> .
<code>...</code>	named expressions that summarize columns in 'colData()'. Each expression must produce a value of length 1. The arguments follow the same logic as <code>dplyr::summarize()</code> .

aggregation_functions	a named list with functions that are used to aggregate the assays in the data.
col_data	additional data with ncol(data) rows. The group_by and named arguments can refer to the columns of the col_data in addition to the columns in colData(data) (assuming data is a SummarizedExperiment).
make_colnames	a boolean that decides if the column names are the concatenated values of group_by. Default: TRUE
verbose	a boolean that indicates if information about the process are printed Default: TRUE.

Value

a SingleCellExperiment object

Examples

```
library(SingleCellExperiment)
data <- data.frame(sample = sample(c("samp1", "samp2", "samp3"), size = 50, replace = TRUE),
  celltype = sample(c("T cells", "B cells", "Macrophages"), size = 50, replace = TRUE),
  size = rnorm(n = 50, mean = 40, sd = 15))
Y <- matrix(rnbinom(n = 100 * 50, mu = 3, size = 1/3.1), nrow = 100, ncol = 50)
sce <- SingleCellExperiment(Y, colData = data)
aggr_sce <- pseudobulk(sce, group_by = vars(sample, celltype), size = mean(size))
aggr_sce
colData(aggr_sce)
```

residuals.glmGamPoi *Extract Residuals of Gamma Poisson Model*

Description

Extract Residuals of Gamma Poisson Model

Usage

```
## S3 method for class 'glmGamPoi'
residuals(
  object,
  type = c("deviance", "pearson", "randomized_quantile", "working", "response"),
  ...
)
```

Arguments

object	a fit of type glmGamPoi. It is usually produced with a call to glm_gp().
type	the type of residual that is calculated. See details for more information. Default: "deviance".
...	currently ignored.

Details

This method can calculate a range of different residuals:

deviance The deviance for the Gamma-Poisson model is

$$dev = 2*(1/theta*log((1+m*theta)/(1+y*theta))-y log((m+y*theta)/(y+y*m*theta)))$$

and the residual accordingly is

$$res = sign(y - m)\sqrt{dev}.$$

pearson The Pearson residual is $res = (y - m)/\sqrt{m + m^2 * theta}$.

randomized_quantile The randomized quantile residual was originally developed by Dunn & Smyth, 1995. Please see that publication or [statmod::qresiduals\(\)](#) for more information.

working The working residuals are $res = (y - m)/m$.

response The response residuals are $res = y - m$

Value

a matrix with the same size as `fit$data`. If `fit$data` contains a `DelayedArray` than the result will be a `DelayedArray` as well.

See Also

[glm_gp\(\)](#) and ‘stats::residuals.glm()

`solve_lm_for_A`

Solve the equation $Y = A B$ for A or B

Description

Solve the equation $Y = A B$ for A or B

Usage

`solve_lm_for_A(Y, B, w = NULL)`

`solve_lm_for_B(Y, A, w = NULL)`

Arguments

<code>Y</code>	the left side of the equation
<code>w</code>	a vector with weights. If <code>NULL</code> it is ignored, otherwise it must be of length 1 or have the same length as columns in <code>Y</code> . Default: <code>NULL</code>
<code>A, B</code>	the known matrix on the right side of the equation

test_de

*Test for Differential Expression***Description**

Conduct a quasi-likelihood ratio test for a Gamma-Poisson fit.

Usage

```
test_de(
  fit,
  contrast,
  reduced_design = NULL,
  full_design = fit$model_matrix,
  subset_to = NULL,
  pseudobulk_by = NULL,
  pval_adjust_method = "BH",
  sort_by = NULL,
  decreasing = FALSE,
  n_max = Inf,
  max_lfc = 10,
  compute_lfc_se = FALSE,
  verbose = FALSE
)
```

Arguments

<code>fit</code>	object of class <code>glmGamPoi</code> . Usually the result of calling <code>glm_gp(data, ...)</code>
<code>contrast</code>	The contrast to test. Can be a single column name (quoted or as a string) that is removed from the full model matrix of <code>fit</code> . Or a complex contrast comparing two or more columns: e.g. <code>A - B</code> , <code>"A - 3 * B"</code> , <code>(A + B) / 2 - C</code> etc. For complicated experimental design that involved nested conditions, you specify the condition level to compare using the <code>cond()</code> helper function. Only one of <code>contrast</code> or <code>reduced_design</code> must be specified.
<code>reduced_design</code>	a specification of the reduced design used as a comparison to see what how much better <code>fit</code> describes the data. Analogous to the <code>design</code> parameter in <code>glm_gp()</code> , it can be either a <code>formula</code> , a <code>model.matrix()</code> , or a <code>vector</code> . Only one of <code>contrast</code> or <code>reduced_design</code> must be specified.
<code>full_design</code>	option to specify an alternative <code>full_design</code> that can differ from <code>fit\$model_matrix</code> . Can be a <code>formula</code> or a <code>matrix</code> . Default: <code>fit\$model_matrix</code>
<code>subset_to</code>	a vector with the same length as <code>ncol(fit\$data)</code> or an expression that evaluates to such a vector. The expression can reference columns from <code>colData(fit\$data)</code> . A typical use case in single cell analysis would be to subset to a specific cell type (e.g. <code>subset_to = cell_type == "T-cells"</code>). Note that if this argument is set a new the model for the <code>full_design</code> is re-fit. Default: <code>NULL</code> which means that the data is not subset.
<code>pseudobulk_by</code>	<i>DEPRECATED</i> , please use the <code>pseudobulk</code> function instead. A vector with the same length as <code>ncol(fit\$data)</code> that is used to split the columns into different groups (calls <code>split()</code>). <code>pseudobulk_by</code> can also be an

expression that evaluates to a vector. The expression can reference columns from `colData(fit$data)`.

The counts are summed across the groups to create "pseudobulk" samples. This is typically used in single cell analysis if the cells come from different samples to get a proper estimate of the differences. This is particularly powerful in combination with the `subset_to` parameter to analyze differences between samples for subgroups of cells. Note that this does a fresh fit for both the full and the reduced design. Default: `NULL` which means that the data is not aggregated.

<code>pval_adjust_method</code>	one of the p-value adjustment method from p.adjust.methods . Default: "BH".
<code>sort_by</code>	the name of the column or an expression used to sort the result. If <code>sort_by</code> is <code>NULL</code> the table is not sorted. Default: <code>NULL</code>
<code>decreasing</code>	boolean to decide if the result is sorted increasing or decreasing order. Default: <code>FALSE</code> .
<code>n_max</code>	the maximum number of rows to return. Default: <code>Inf</code> which means that all rows are returned
<code>max_lfc</code>	set the maximum absolute log fold change that is returned. Large log fold changes occur for lowly expressed genes because the ratio of two small numbers can be impractically large. For example, limiting the range of log fold changes can clarify the patterns in a volcano plot. Default: <code>10</code> which corresponds to a thousand-fold (2^{10}) increase in expression.
<code>compute_lfc_se</code>	Compute standard errors for the log fold changes, and add a column <code>lfc_se</code> to the returned data frame. Only has an effect when using <code>contrast</code> instead of <code>reduced_design</code> . Default: <code>FALSE</code>
<code>verbose</code>	a boolean that indicates if information about the individual steps are printed while fitting the GLM. Default: <code>FALSE</code> .

Details

The `cond()` helper function simplifies the specification of a contrast for complex experimental designs. Instead of working out which combination of coefficients corresponds to a research question, you can simply specify the two conditions that you want to compare.

You can only call the `cond` function inside the `contrast` argument. The arguments are the selected factor levels for each covariate. To compare two conditions, simply subtract the two `cond` calls. Internally, the package calls [model.matrix](#) using the provided values and the original formula from the fit to produce a vector. Subtracting two of these vectors produces a contrast vector. Missing covariates are filled with the first factor level or zero for numerical covariates.

Value

a `data.frame` with the following columns

- name** the rownames of the input data
- pval** the p-values of the quasi-likelihood ratio test
- adj_pval** the adjusted p-values returned from [p.adjust\(\)](#)
- f_statistic** the F-statistic: $F = (Dev_{full} - Dev_{red}) / (df_1 * disp_{ql-shrunken})$
- df1** the degrees of freedom of the test: `ncol(design) - ncol(reduced_design)`
- df2** the degrees of freedom of the fit: `ncol(data) - ncol(design) + df_0`
- lfc** the log2-fold change. If the alternative model is specified by `reduced_design` will be `NA`.
- lfc_se** the standard error of the log2-fold change. Only calculated if `compute_lfc_se == TRUE`.

References

- Lund, S. P., Nettleton, D., McCarthy, D. J., & Smyth, G. K. (2012). Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. *Statistical Applications in Genetics and Molecular Biology*, 11(5). <https://doi.org/10.1515/1544-6115.1826>.

See Also

[glm_gp\(\)](#)

Examples

```

# Make Data
Y <- matrix(rnbinom(n = 30 * 100, mu = 4, size = 0.3), nrow = 30, ncol = 100)
annot <- data.frame(mouse = sample(LETTERS[1:6], size = 100, replace = TRUE),
  celltype = sample(c("Tcell", "Bcell", "Macrophages"), size = 100, replace = TRUE),
  cont1 = rnorm(100), cont2 = rnorm(100, mean = 30))
annot$condition <- ifelse(annot$mouse %in% c("A", "B", "C"), "ctrl", "treated")
head(annot)
se <- SummarizedExperiment::SummarizedExperiment(Y, colData = annot)

# Fit model
fit <- glm_gp(se, design = ~ condition + celltype + cont1 + cont2)
# Test with reduced design
res <- test_de(fit, reduced_design = ~ celltype + cont1 + cont2)
head(res)
# Test with contrast argument, the results are identical
res2 <- test_de(fit, contrast = conditiontreated)
head(res2)
# Test with explicit specification of the conditions
# The results are still identical
res3 <- test_de(fit, contrast = cond(condition = "treated", celltype = "Bcell") -
  cond(condition = "ctrl", celltype = "Bcell"))
head(res3)

# The column names of fit$Beta are valid variables in the contrast argument
colnames(fit$Beta)
# You can also have more complex contrasts:
# the following compares cont1 vs cont2:
test_de(fit, cont1 - cont2, n_max = 4)
# You can also sort the output
test_de(fit, cont1 - cont2, n_max = 4,
  sort_by = "pval")
test_de(fit, cont1 - cont2, n_max = 4,
  sort_by = - abs(f_statistic))

# If the data has multiple samples, it is a good
# idea to aggregate the cell counts by samples.
# This is called forming a "pseudobulk".
se_reduced <- pseudobulk(se, group_by = vars(mouse, condition, celltype),
  cont1 = mean(cont1), cont2 = min(cont2))
fit_reduced <- glm_gp(se_reduced, design = ~ condition + celltype)
test_de(fit_reduced, contrast = "conditiontreated", n_max = 4)
test_de(fit_reduced, contrast = cond(condition = "treated", celltype = "Macrophages") -
  cond(condition = "ctrl", celltype = "Macrophages")),

```

```
n_max = 4)
```

variance_prior	<i>Estimate the scale and df for a Inverse Chisquare distribution that generate the true gene variances</i>
----------------	---

Description

This function implements Smyth's 2004 variance shrinkage. It also supports covariates that are fitted to $\log(s2)$ with natural splines. This is based on the 2012 Lund et al. quasi-likelihood paper.

Usage

```
variance_prior(s2, df, covariate = NULL, abundance_trend = NULL)
```

Arguments

s2	vector of observed variances. Must not contain 0's.
df	vector or single number with the degrees of freedom
covariate	a vector with the same length as s2. covariate is used to regress out the trend in s2. If covariate = NULL, it is ignored.
abundance_trend	logical that decides if the additional abundance trend is fit to the data. If NULL the abundance trend is fitted if there are more than 10 observations and the covariate is not NULL. Default: NULL

Value

a list with three elements:

variance0 estimate of the scale of the inverse Chisquared distribution. If covariate is NULL a single number, otherwise a vector of `length(covariate)`

df0 estimate of the degrees of freedom of the inverse Chisquared distribution

var_pos the shrunken variance estimates: a combination of s2 and variance0

See Also

`limma::squeezeVar()`

vars	<i>Quote grouping variables</i>
------	---------------------------------

Description

Quote grouping variables

Usage

```
vars(...)
```

Arguments

...	the quoted expression
-----	-----------------------

See Also

`ggplot2::vars`, `dplyr::vars`

Index

```
* internals
  solve_lm_for_A, 23
* internal
  estimate_betas_fisher_scoring, 3
  estimate_betas_group_wise, 4
  estimate_betas_roughly, 4
  estimate_betas_roughly_group_wise,
    5
  estimate_size_factors, 5
  format_matrix, 6
  glm_gp_impl, 11
  variance_prior, 27

  as.list.glmGamPoi, 2

  DelayedArray, 7
  dgCMatrix, 7

  estimate_betas_fisher_scoring, 3
  estimate_betas_group_wise, 4
  estimate_betas_roughly, 4
  estimate_betas_roughly_group_wise, 5
  estimate_size_factors, 5

  format.glmGamPoi (print.glmGamPoi), 20
  format.summary.glmGamPoi
    (print.glmGamPoi), 20
  format_matrix, 6

  glm_gp, 6
  glm_gp(), 13, 15, 23, 26
  glm_gp_impl, 11

  HDF5Matrix, 7

  loc_median_fit, 13

  matrix, 7
  model.matrix, 25
  model.matrix(), 7

  overdispersion_mle, 14
  overdispersion_mle(), 9, 10, 13
  overdispersion_shrinkage, 16
  overdispersion_shrinkage(), 9, 10

  p.adjust(), 25
  p.adjust.methods, 25
  predict.glmGamPoi, 18
  print.glmGamPoi, 20
  print.summary.glmGamPoi
    (print.glmGamPoi), 20
  pseudobulk, 21, 24

  residuals.glmGamPoi, 22

  solve_lm_for_A, 23
  solve_lm_for_B (solve_lm_for_A), 23
  split(), 24
  statmod::qresiduals(), 23
  stats::predict.glm(), 19
  stats::predict.lm(), 19
  SummarizedExperiment, 7
  summary.glmGamPoi (print.glmGamPoi), 20

  test_de, 19, 24
  test_de(), 10

  variance_prior, 27
  vars, 28
```