
Package ‘genefilter’
January 19, 2026

Title genefilter: methods for filtering genes from high-throughput
experiments

Version 1.92.0

Description Some basic functions for filtering genes.

Suggests class, hgu95av2.db, tkWidgets, ALL, ROC, RColorBrewer,
BiocStyle, knitr

Imports MatrixGenerics (>= 1.11.1), AnnotationDbi, annotate, Biobase,
graphics, methods, stats, survival, grDevices

License Artistic-2.0

LazyLoad yes

LazyData yes

Collate AllClasses.R AllGenerics.R all.R dist2.R eSetFilter.R fastT.R
filter_volcano.R filtered_p.R genefinder.R half.range.mode.R
kappa_p.R nsFilter.R rejection_plot.R rowROC-accessors.R
rowSds.R rowpAUCs-methods.R rowttests-methods.R shorth.R zzz.R

biocViews Microarray

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/genefilter

git_branch RELEASE_3_22

git_last_commit b24c1ba

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Robert Gentleman [aut],
Vincent J. Carey [aut],
Wolfgang Huber [aut],
Florian Hahne [aut],
Emmanuel Taiwo [ctb] ('howtogenefinder' vignette translation from
Sweave to RMarkdown / HTML.),

Khadijah Amusat [ctb] (Converted genefilter vignette from Sweave to
RMarkdown / HTML.),

Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

1

2 Anova

Contents
Anova . 2
coxfilter . 3
cv . 4
dist2 . 5
eSetFilter . 6
filtered_p . 7
filterfun . 8
filter_volcano . 9
findLargest . 10
gapFilter . 11
genefilter . 12
genefilter-deprecated . 13
genefinder . 13
genescale . 15
half.range.mode . 16
kappa_p . 17
kOverA . 18
maxA . 19
nsFilter . 19
pOverA . 22
rejection_plot . 23
rowFtests . 24
rowpAUCs-methods . 27
rowROC-class . 29
rowSds . 31
shorth . 32
tdata . 33
ttest . 34

Index 36

Anova A filter function for Analysis of Variance

Description

Anova returns a function of one argument with bindings for cov and p. The function, when evalu-
ated, performs an ANOVA using cov as the covariate. It returns TRUE if the p value for a difference
in means is less than p.

Usage

Anova(cov, p=0.05, na.rm=TRUE)

Arguments

cov The covariate. It must have length equal to the number of columns of the array
that Anova will be applied to.

p The p-value for the test.

na.rm If set to TRUE any NA’s will be removed.

coxfilter 3

Details

The function returned by Anova uses lm to fit a linear model of the form lm(x ~ cov), where x is
the set of gene expressions. The F statistic for an overall effect is computed and if it has a p-value
less than p the function returns TRUE, otherwise it returns FALSE for that gene.

Value

Anova returns a function with bindings for cov and p that will perform a one-way ANOVA.

The covariate can be continuous, in which case the test is for a linear effect for the covariate.

Author(s)

R. Gentleman

See Also

kOverA, lm

Examples

set.seed(123)
af <- Anova(c(rep(1,5),rep(2,5)), .01)
af(rnorm(10))

coxfilter A filter function for univariate Cox regression.

Description

A function that performs Cox regression with bindings for surt, cens, and p is returned. This
function filters genes according to the attained p-value from a Cox regression using surt as the
survival times, and cens as the censoring indicator. It requires survival.

Usage

coxfilter(surt, cens, p)

Arguments

surt Survival times.

cens Censoring indicator.

p The p-value to use in filtering.

Value

Calls to the coxph function in the survival library are used to fit a Cox model. The filter function
returns TRUE if the p-value in the fit is less than p.

Author(s)

R. Gentleman

4 cv

See Also

Anova

Examples

set.seed(-5)
sfun <- coxfilter(rexp(10), ifelse(runif(10) < .7, 1, 0), .05)
ffun <- filterfun(sfun)
dat <- matrix(rnorm(1000), ncol=10)
out <- genefilter(dat, ffun)

cv A filter function for the coefficient of variation.

Description

cv returns a function with values for a and b bound. This function takes a single argument. It
computes the coefficient of variation for the input vector and returns TRUE if the coefficient of
variation is between a and b. Otherwise it returns FALSE

Usage

cv(a=1, b=Inf, na.rm=TRUE)

Arguments

a The lower bound for the cv.

b The upper bound for the cv.

na.rm If set to TRUE any NA’s will be removed.

Details

The coefficient of variation is the standard deviation divided by the absolute value of the mean.

Value

It returns a function of one argument. The function has an environment with bindings for a and b.

Author(s)

R. Gentleman

See Also

pOverA, kOverA

Examples

set.seed(-3)
cvfun <- cv(1,10)
cvfun(rnorm(10,10))
cvfun(rnorm(10))

dist2 5

dist2 Calculate an n-by-n matrix by applying a function to all pairs of
columns of an m-by-n matrix.

Description

Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix.

Usage

dist2(x, fun, diagonal=0)

Arguments

x A matrix.

fun A symmetric function of two arguments that may be columns of x.

diagonal The value to be used for the diagonal elements of the resulting matrix.

Details

With the default value of fun, this function calculates for each pair of columns of x the mean of the
absolute values of their differences (which is proportional to the L1-norm of their difference). This
is a distance metric.

The implementation assumes that fun(x[,i], x[,j]) can be evaluated for all pairs of i and j
(see examples), and that fun is symmetric, i.e. fun(a, b) = fun(b, a). fun(a, a) is not actually
evaluated, instead the value of diagonal is used to fill the diagonal elements of the returned matrix.

Note that dist computes distances between rows of x, while this function computes relations be-
tween columns of x (see examples).

Value

A symmetric matrix of size n x n.

Author(s)

Wolfgang Huber, James Reid

Examples

example matrix
z = matrix(1:15693, ncol=3)
matL1 = dist2(z)
matL2 = dist2(z, fun=function(a,b) sqrt(sum((a-b)^2, na.rm=TRUE)))

euc = as.matrix(dist(t(z)))

stopifnot(identical(dim(matL2), dim(euc)),
all(euc==matL2))

6 eSetFilter

eSetFilter A function to filter an eSet object

Description

Given a Bioconductor’s ExpressionSet object, this function filters genes using a set of selected
filters.

Usage

eSetFilter(eSet)
getFilterNames()
getFuncDesc(lib = "genefilter", funcs = getFilterNames())
getRdAsText(lib)
parseDesc(text)
parseArgs(text)
showESet(eSet)
setESetArgs(filter)
isESet(eSet)

Arguments

eSet eSet an ExpressionSet object

lib lib a character string for the name of an R library where functions of interests
reside

funcs funcs a vector of character strings for names of functions of interest

text text a character of string from a filed (e. g. description, argument, ..) filed of
an Rd file for a fucntion

filter filter a character string for the name of a filter function

Details

These functions are deprecated. Please use the ‘iSee’ package instead.

A set of filters may be selected to filter genes in through each of the filters in the order the filters
have been selected

Value

A logical vector of length equal to the number of rows of ’expr’. The values in that vector indicate
whether the corresponding row of ’expr’ passed the set of filter functions.

Author(s)

Jianhua Zhang

See Also

genefilter

filtered_p 7

Examples

if(interactive()) {
data(sample.ExpressionSet)
res <- eSetFilter(sample.ExpressionSet)

}

filtered_p Compute and adjust p-values, with filtering

Description

Given filter and test statistics in the form of unadjusted p-values, or functions able to compute these
statistics from the data, filter and then correct the p-values across a range of filtering stringencies.

Usage

filtered_p(filter, test, theta, data, method = "none")
filtered_R(alpha, filter, test, theta, data, method = "none")

Arguments

alpha A cutoff to which p-values, possibly adjusted for multiple testing, will be com-
pared.

filter A vector of stage-one filter statistics, or a function which is able to compute this
vector from data, if data is supplied.

test A vector of unadjusted p-values, or a function which is able to compute this
vector from the filtered portion of data, if data is supplied. The option to
supply a function is useful when the value of the test statistic depends on which
hypotheses are filtered out at stage one. (The limma t-statistic is an example.)

theta A vector with one or more filtering fractions to consider. Actual cutoffs are then
computed internally by applying quantile to the filter statistics contained in (or
produced by) the filter argument.

data If filter and/or test are functions rather than vectors of statistics, they will be
applied to data. The functions will be passed the whole data object, and must
work over rows, etc. themselves as appropriate.

method The unadjusted p-values contained in (or produced by) test will be adjusted for
multiple testing after filtering, using the p.adjust function in the stats package.
See the method argument there for options.

p

Value

For filtered_p, a matrix of p-values, possible adjusted for multiple testing, with one row per null
hypothesis and one column per filtering fraction given in theta. For a given column, entries which
have been filtered out are NA.

For filtered_R, a count of the entries in the filtered_p result which are less than alpha.

Author(s)

Richard Bourgon <bourgon@ebi.ac.uk>

8 filterfun

See Also

See rejection_plot for visualization of filtered_p results.

Examples

See the vignette: Diagnostic plots for independent filtering

filterfun Creates a first FALSE exiting function from the list of filter functions it
is given.

Description

This function creates a function that takes a single argument. The filtering functions are bound in the
environment of the returned function and are applied sequentially to the argument of the returned
function. When the first filter function evaluates to FALSE the function returns FALSE otherwise it
returns TRUE.

Usage

filterfun(...)

Arguments

... Filtering functions.

Value

filterfun returns a function that takes a single argument. It binds the filter functions given to it
in the environment of the returned function. These functions are applied sequentially (in the order
they were given to filterfun). The function returns FALSE (and exits) when the first filter function
returns FALSE otherwise it returns TRUE.

Author(s)

R. Gentleman

See Also

genefilter

Examples

set.seed(333)
x <- matrix(rnorm(100,2,1),nc=10)
cvfun <- cv(.5,2.5)
ffun <- filterfun(cvfun)
which <- genefilter(x, ffun)

filter_volcano 9

filter_volcano Volcano plot for overall variance filtering

Description

Generate a volcano plot contrasting p-value with fold change (on the log scale), in order to visualize
the effect of filtering on overall variance and also assign significance via p-value.

Usage

filter_volcano(
d, p, S,
n1, n2,
alpha, S_cutoff,
cex = 0.5, pch = 19,
xlab = expression(paste(log[2], " fold change")),
ylab = expression(paste("-", log[10], " p")),
cols = c("grey80", "grey50", "black"),
ltys = c(1, 3),
use_legend = TRUE,
...
)

Arguments

d Fold changes, typically on the log scale, base 2.

p The p-values

S The overall standard deviation filter statistics, i.e., the square roots of the overall
variance filter statistics.

n1 Sample size for group 1.

n2 Sample size for group 2.

alpha Significance cutoff used for p-values.

S_cutoff Filter cutoff used for the overall standard deviation in S.

cex Point size for plotting.

pch Point character for plotting.

xlab Label for x-axis.

ylab Label for y-axis.

cols A vector of three colors used for plotting. These correspond to filtered data,
data which pass the filter but are insignificant, and data pass the filter and are
also statistically significant.

ltys The induced bound on log-scale fold change is plotted, as is the significance
cutoff for data passing the filter. The ltys argument gives line styles for these
drawing these two thresholds on the plot.

use_legend Should a legend for point color be produced?

... Other arguments for plot.

10 findLargest

Author(s)

Richard Bourgon <bourgon@ebi.ac.uk>

Examples

See the vignette: Diagnostic plots for independent filtering

findLargest Find the Entrez Gene ID corresponding to the largest statistic

Description

Most microarrays have multiple probes per gene (Entrez). This function finds all replicates, and
then selects the one with the largest value of the test statistic.

Usage

findLargest(gN, testStat, data = "hgu133plus2")

Arguments

gN A vector of probe identifiers for the chip.

testStat A vector of test statistics, of the same length as gN with the per probe test statis-
tics.

data The character string identifying the chip.

Details

All the probe identifiers, gN, are mapped to Entrez Gene IDs and the duplicates determined. For
any set of probes that map to the same Gene ID, the one with the largest test statistic is found. The
return vector is the named vector of selected probe identifiers. The names are the Entrez Gene IDs.

This could be extended in different ways, such as allowing the user to use a different selection
criterion. Also, matching on different identifiers seems like another alternative.

Value

A named vector of probe IDs. The names are Entrez Gene IDs.

Author(s)

R. Gentleman

See Also

sapply

gapFilter 11

Examples

library("hgu95av2.db")
set.seed(124)
gN <- sample(ls(hgu95av2ENTREZID), 200)
stats <- rnorm(200)
findLargest(gN, stats, "hgu95av2")

gapFilter A filter to select genes based on there being a gap.

Description

The gapFilter looks for genes that might usefully discriminate between two groups (possibly
unknown at the time of filtering). To do this we look for a gap in the ordered expression values. The
gap must come in the central portion (we exclude jumps in the initial Prop values or the final Prop
values). Alternatively, if the IQR for the gene is large that will also pass our test and the gene will
be selected.

Usage

gapFilter(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE)

Arguments

Gap The size of the gap required to pass the test.

IQR The size of the IQR required to pass the test.

Prop The proportion (or number) of samples to exclude at either end.

na.rm If TRUE then NA’s will be removed before processing.

neg.rm If TRUE then negative values in x will be removed before processing.

Details

As stated above we are interested in

Value

A function that returns either TRUE or FALSE depending on whether the vector supplied has a gap
larger than Gap or an IQR (inter quartile range) larger than IQR. For computing the gap we want to
exclude a proportion, Prop from either end of the sorted values. The reason for this requirement is
that genes which differ in expression levels only for a few samples are not likely to be interesting.

Author(s)

R. Gentleman

See Also

ttest, genefilter

12 genefilter

Examples

set.seed(256)
x <- c(rnorm(10,100,3), rnorm(10, 100, 10))
y <- x + c(rep(0,10), rep(100,10))
tmp <- rbind(x,y)
Gfilter <- gapFilter(200, 100, 5)
ffun <- filterfun(Gfilter)
genefilter(tmp, ffun)

genefilter A function to filter genes.

Description

genefilter filters genes in the array expr using the filter functions in flist. It returns an array
of logical values (suitable for subscripting) of the same length as there are rows in expr. For each
row of expr the returned value is TRUE if the row passed all the filter functions. Otherwise it is set
to FALSE.

Usage

genefilter(expr, flist)

Arguments

expr A matrix or ExpressionSet that the filter functions will be applied to.

flist A list of filter functions to apply to the array.

Details

This package uses a very simple but powerful protocol for filtering genes. The user simply con-
structs any number of tests that they want to apply. A test is simply a function (as constructed using
one of the many helper functions in this package) that returns TRUE if the gene of interest passes the
test (or filter) and FALSE if the gene of interest fails.

The benefit of this approach is that each test is constructed individually (and can be tested individ-
ually). The tests are then applied sequentially to each gene. The function returns a logical vector
indicating whether the gene passed all tests functions or failed at least one of them.

Users can construct their own filters. These filters should accept a vector of values, corresponding
to a row of the expr object. The user defined function should return a length 1 logical vector,
with value TRUE or FALSE. User-defined functions can be combined with filterfun, just as built-in
filters.

Value

A logical vector of length equal to the number of rows of expr. The values in that vector indicate
whether the corresponding row of expr passed the set of filter functions.

Author(s)

R. Gentleman

genefilter-deprecated 13

See Also

genefilter, kOverA

Examples

set.seed(-1)
f1 <- kOverA(5, 10)
flist <- filterfun(f1)
exprA <- matrix(rnorm(1000, 10), ncol = 10)
ans <- genefilter(exprA, flist)

genefilter-deprecated Deprecated functions in package ‘genefilter’

Description

These functions are provided for compatibility with older versions of ‘genefilter’ only, and will be
defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

• eSetFilter

• getFilterNames

• getFuncDesc

• getRdAsText

• parseDesc

• parseArgs

• showESet

• setESetArgs

• isESet

genefinder Finds genes that have similar patterns of expression.

Description

Given an ExpressionSet or a matrix of gene expressions, and the indices of the genes of interest,
genefinder returns a list of the numResults closest genes. The user can specify one of the
standard distance measures listed below. The number of values to return can be specified. The
return value is a list with two components: genes (measured through the desired distance method)
to the genes of interest (where X is the number of desired results returned) and their distances.

Usage

genefinder(X, ilist, numResults=25, scale="none", weights, method="euclidean")

14 genefinder

Arguments

X A numeric matrix where columns represent patients and rows represent genes.

ilist A vector of genes of interest. Contains indices of genes in matrix X.

numResults Number of results to display, starting from the least distance to the greatest.

scale One of "none", "range", or "zscore". Scaling is carried out separately on each
row.

weights A vector of weights applied across the columns of X. If no weights are supplied,
no weights are applied.

method One of "euclidean", "maximum", "manhattan", "canberra", "correlation", "bi-
nary".

Details

If the scale option is "range", then the input matrix is scaled using genescale(). If it is "zscore",
then the input matrix is scaled using the scale builtin with no arguments.

The method option specifies the metric used for gene comparisons. The metric is applied, row by
row, for each gene specified in ilist.

The "correlation" option for the distance method will return a value equal to 1-correlation(x).

See dist for a more detailed description of the distances.

Value

The returned value is a list containing an entry for each gene specified in ilist. Each list entry
contains an array of distances for that gene of interest.

Author(s)

J. Gentry and M. Kajen

See Also

genescale

Examples

set.seed(12345)

#create some fake expression profiles
m1 <- matrix (1:12, 4, 3)
v1 <- 1
nr <- 2

#find the 2 rows of m1 that are closest to row 1
genefinder (m1, v1, nr, method="euc")

v2 <- c(1,3)
genefinder (m1, v2, nr)

genefinder (m1, v2, nr, scale="range")

genefinder (m1, v2, nr, method="manhattan")

genescale 15

m2 <- matrix (rnorm(100), 10, 10)
v3 <- c(2, 5, 6, 8)
nr2 <- 6
genefinder (m2, v3, nr2, scale="zscore")

genescale Scales a matrix or vector.

Description

genescale returns a scaled version of the input matrix m by applying the following formula to each
column of the matrix:

y[i] = (x[i]−min(x))/(max(x)−min(x))

Usage

genescale(m, axis=2, method=c("Z", "R"), na.rm=TRUE)

Arguments

m Input a matrix or a vector with numeric elements.

axis An integer indicating which axis of m to scale.

method Either "Z" or "R", indicating whether a Z scaling or a range scaling should be
performed.

na.rm A boolean indicating whether NA’s should be removed.

Details

Either the rows or columns of m are scaled. This is done either by subtracting the mean and dividing
by the standard deviation ("Z") or by subtracing the minimum and dividing by the range.

Value

A scaled version of the input. If m is a matrix or a dataframe then the dimensions of the returned
value agree with that of m, in both cases the returned value is a matrix.

Author(s)

R. Gentleman

See Also

genefinder,scale

Examples

m <- matrix(1:12, 4, 3)
genescale(m)

16 half.range.mode

half.range.mode Mode estimation for continuous data

Description

For data assumed to be drawn from a unimodal, continuous distribution, the mode is estimated by
the “half-range” method. Bootstrap resampling for variance reduction may optionally be used.

Usage

half.range.mode(data, B, B.sample, beta = 0.5, diag = FALSE)

Arguments

data A numeric vector of data from which to estimate the mode.

B Optionally, the number of bootstrap resampling rounds to use. Note that B = 1
resamples 1 time, whereas omitting B uses data as is, without resampling.

B.sample If bootstrap resampling is requested, the size of the bootstrap samples drawn
from data. Default is to use a sample which is the same size as data. For large
data sets, this may be slow and unnecessary.

beta The fraction of the remaining range to use at each iteration.

diag Print extensive diagnostics. For internal testing only... best left FALSE.

Details

Briefly, the mode estimator is computed by iteratively identifying densest half ranges. (Other frac-
tions of the current range can be requested by setting beta to something other than 0.5.) A densest
half range is an interval whose width equals half the current range, and which contains the maximal
number of observations. The subset of observations falling in the selected densest half range is then
used to compute a new range, and the procedure is iterated. See the references for details.

If bootstrapping is requested, B half-range mode estimates are computed for B bootstrap samples,
and their average is returned as the final estimate.

Value

The mode estimate.

Author(s)

Richard Bourgon <bourgon@stat.berkeley.edu>

References

• DR Bickel, “Robust estimators of the mode and skewness of continuous data.” Computational
Statistics & Data Analysis 39:153-163 (2002).

• SB Hedges and P Shah, “Comparison of mode estimation methods and application in molec-
ular clock analysis.” BMC Bioinformatics 4:31-41 (2003).

See Also

shorth

kappa_p 17

Examples

A single normal-mixture data set

x <- c(rnorm(10000), rnorm(2000, mean = 3))
M <- half.range.mode(x)
M.bs <- half.range.mode(x, B = 100)

if(interactive()){
hist(x, breaks = 40)
abline(v = c(M, M.bs), col = "red", lty = 1:2)
legend(

1.5, par("usr")[4],
c("Half-range mode", "With bootstrapping (B = 100)"),
lwd = 1, lty = 1:2, cex = .8, col = "red"
)

}

Sampling distribution, with and without bootstrapping

X <- rbind(
matrix(rnorm(1000 * 100), ncol = 100),
matrix(rnorm(200 * 100, mean = 3), ncol = 100)
)

M.list <- list(
Simple = apply(X, 2, half.range.mode),
BS = apply(X, 2, half.range.mode, B = 100)
)

if(interactive()){
boxplot(M.list, main = "Effect of bootstrapping")
abline(h = 0, col = "red")
}

kappa_p Compute proportionality constant for fold change bound.

Description

Filtering on overall variance induces a lower bound on fold change. This bound depends on the
significance of the evidence against the null hypothesis, an is a multiple of the cutoff used for an
overall variance filter. It also depends on sample size in both of the groups being compared. These
functions compute the multiplier for the supplied p-values or t-statistics.

Usage

kappa_p(p, n1, n2 = n1)
kappa_t(t, n1, n2 = n1)

Arguments

p The p-values at which to compute the multiplier.
t The t-statistics at which to compute the multiplier.
n1 Sample size for class 1.
n2 Sample size for class 2.

18 kOverA

Value

A vector of multipliers: one per p-value or t-static in p or t.

Author(s)

Richard Bourgon <bourgon@ebi.ac.uk>

Examples

See the vignette: Diagnostic plots for independent filtering

kOverA A filter function for k elements larger than A.

Description

kOverA returns a filter function with bindings for k and A. This function evaluates to TRUE if at least
k of the arguments elements are larger than A.

Usage

kOverA(k, A=100, na.rm=TRUE)

Arguments

A The value you want to exceed.

k The number of elements that have to exceed A.

na.rm If set to TRUE any NA’s will be removed.

Value

A function with bindings for A and k.

Author(s)

R. Gentleman

See Also

pOverA

Examples

fg <- kOverA(5, 100)
fg(90:100)
fg(98:110)

maxA 19

maxA A filter function to filter according to the maximum.

Description

maxA returns a function with the parameter A bound. The returned function evaluates to TRUE if any
element of its argument is larger than A.

Usage

maxA(A=75, na.rm=TRUE)

Arguments

A The value that at least one element must exceed.

na.rm If TRUE then NA’s are removed.

Value

maxA returns a function with an environment containing a binding for A.

Author(s)

R. Gentleman

See Also

pOverA

Examples

ff <- maxA(30)
ff(1:10)
ff(28:31)

nsFilter Filtering of Features in an ExpressionSet

Description

The function nsFilter tries to provide a one-stop shop for different options of filtering (remov-
ing) features from an ExpressionSet. Filtering features exhibiting little variation, or a consistently
low signal, across samples can be advantageous for the subsequent data analysis (Bourgon et al.).
Furthermore, one may decide that there is little value in considering features with insufficient anno-
tation.

20 nsFilter

Usage

nsFilter(eset, require.entrez=TRUE,
require.GOBP=FALSE, require.GOCC=FALSE,
require.GOMF=FALSE, require.CytoBand=FALSE,
remove.dupEntrez=TRUE, var.func=IQR,
var.cutoff=0.5, var.filter=TRUE,
filterByQuantile=TRUE, feature.exclude="^AFFX", ...)

varFilter(eset, var.func=IQR, var.cutoff=0.5, filterByQuantile=TRUE)

featureFilter(eset, require.entrez=TRUE,
require.GOBP=FALSE, require.GOCC=FALSE,
require.GOMF=FALSE, require.CytoBand=FALSE,
remove.dupEntrez=TRUE, feature.exclude="^AFFX")

Arguments

eset an ExpressionSet object
var.func The function used as the per-feature filtering statistic. This function should re-

turn a numeric vector of length one when given a numeric vector as input.
var.filter A logical indicating whether to perform filtering based on var.func.
filterByQuantile

A logical indicating whether var.cutoff is to be interprested as a quantile of
all var.func values (the default), or as an absolute value.

var.cutoff A numeric value. If var.filter is TRUE, features whose value of var.func is
less than either: the var.cutoff-quantile of all var.func values (if filterByQuantile
is TRUE), or var.cutoff (if filterByQuantile is FALSE) will be removed.

require.entrez If TRUE, filter out features without an Entrez Gene ID annotation. If using an
annotation package where an identifier system other than Entrez Gene IDs is
used as the central ID, then that ID will be required instead.

require.GOBP, require.GOCC, require.GOMF
If TRUE, filter out features whose target genes are not annotated to at least one
GO term in the BP, CC or MF ontology, respectively.

require.CytoBand

If TRUE, filter out features whose target genes have no mapping to cytoband
locations.

remove.dupEntrez

If TRUE and there are features mapping to the same Entrez Gene ID (or equiv-
alent), then the feature with the largest value of var.func will be retained and
the other(s) removed.

feature.exclude

A character vector of regular expressions. Feature identifiers (i.e. value of
featureNames(eset)) that match one of the specified patterns will be filtered
out. The default value is intended to filter out Affymetrix quality control probe
sets.

... Unused, but available for specializing methods.

Details

In this Section, the effect of filtering on the type I error rate estimation / control of subsequent
hypothesis testing is explained. See also the paper by Bourgon et al.

nsFilter 21

Marginal type I errors: Filtering on the basis of a statistic which is independent of the test statistic
used for detecting differential gene expression can increase the detection rate at the same marginal
type I error. This is clearly the case for filter criteria that do not depend on the data, such as
the annotation based criteria provided by the nsFilter and featureFilter functions. However,
marginal type I error can also be controlled for certain types of data-dependent criteria. Call U I the
stage 1 filter statistic, which is a function that is applied feature by feature, based on whose value
the feature is or is not accepted to pass to stage 2, and which depends only on the data for that
feature and not any other feature, and call U II the stage 2 test statistic for differential expression.
Sufficient conditions for marginal type-I error control are:

• U I the overall (across all samples) variance or mean, U II the t-statistic (or any other scale
and location invariant statistic), data normal distributed and exchangeable across samples.

• U I the overall mean, U II the moderated t-statistic (as in limma’s eBayes function), data
normal distributed and exchangeable.

• U I a sample-class label independent function (e.g. overall mean, median, variance, IQR), U II

the Wilcoxon rank sum statistic, data exchangeable.

Experiment-wide type I error: Marginal type-I error control provided by the conditions above is
sufficient for control of the family wise error rate (FWER). Note, however, that common false dis-
covery rate (FDR) methods depend not only on the marginal behaviour of the test statistics under the
null hypothesis, but also on their joint distribution. The joint distribution can be affected by filter-
ing, even when this filtering leaves the marginal distributions of true-null test statistics unchanged.
Filtering might, for example, change correlation structure. The effect of this is negligible in many
cases in practice, but this depends on the dataset and the filter used, and the assessment is in the
responsibility of the data analyst.

Annotation Based Filtering Arguments require.entrez, require.GOBP, require.GOCC, require.GOMF
and require.CytoBand filter based on available annotation data. The annotation package is deter-
mined by calling annotation(eset).

Variance Based Filtering The var.filter, var.func, var.cutoff and varByQuantile arguments
control numerical cutoff-based filtering. Probes for which var.func returns NA are removed. The
default var.func is IQR, which we here define as rowQ(eset, ceiling(0.75 * ncol(eset))) -
rowQ(eset, floor(0.25 * ncol(eset))); this choice is motivated by the observation that unex-
pressed genes are detected most reliably through low variability of their features across samples.
Additionally, IQR is robust to outliers (see note below). The default var.cutoff is 0.5 and is mo-
tivated by a rule of thumb that in many tissues only 40% of genes are expressed. Please adapt this
value to your data and question.

By default the numerical-filter cutoff is interpreted as a quantile, so with the default settings, 50%
of the genes are filtered.

Variance filtering is performed last, so that (if varByQuantile=TRUE and remove.dupEntrez=TRUE)
the final number of genes does indeed exclude precisely the var.cutoff fraction of unique genes
remaining after all other filters were passed.

The stand-alone function varFilter does only var.func-based filtering (and no annotation based
filtering). featureFilter does only annotation based filtering and duplicate removal; it always
performs duplicate removal to retain the highest-IQR probe for each gene.

Value

For nsFilter a list consisting of:

eset the filtered ExpressionSet

filter.log a list giving details of how many probe sets where removed for each filtering
step performed.

22 pOverA

For both varFilter and featureFilter the filtered ExpressionSet.

Note

IQR is a reasonable variance-filter choice when the dataset is split into two roughly equal and rela-
tively homogeneous phenotype groups. If your dataset has important groups smaller than 25% of
the overall sample size, or if you are interested in unusual individual-level patterns, then IQR may
not be sensitive enough for your needs. In such cases, you should consider using less robust and
more sensitive measures of variance (the simplest of which would be sd).

Author(s)

Seth Falcon (somewhat revised by Assaf Oron)

References

R. Bourgon, R. Gentleman, W. Huber, Independent filtering increases power for detecting differen-
tially expressed genes, Technical Report.

Examples

library("hgu95av2.db")
library("Biobase")
data(sample.ExpressionSet)
ans <- nsFilter(sample.ExpressionSet)
ans$eset
ans$filter.log

skip variance-based filtering
ans <- nsFilter(sample.ExpressionSet, var.filter=FALSE)

a1 <- varFilter(sample.ExpressionSet)
a2 <- featureFilter(sample.ExpressionSet)

pOverA A filter function to filter according to the proportion of elements larger
than A.

Description

A function that returns a function with values for A, p and na.rm bound to the specified values. The
function takes a single vector, x, as an argument. When the returned function is evaluated it returns
TRUE if the proportion of values in x that are larger than A is at least p.

Usage

pOverA(p=0.05, A=100, na.rm=TRUE)

Arguments

A The value to be exceeded.

p The proportion that need to exceed A for TRUE to be returned.

na.rm If TRUE then NA’s are removed.

rejection_plot 23

Value

pOverA returns a function with bindings for A, p and na.rm. This function evaluates to TRUE if the
proportion of values in x that are larger than A exceeds p.

Author(s)

R. Gentleman

See Also

cv

Examples

ff<- pOverA(p=.1, 10)
ff(1:20)
ff(1:5)

rejection_plot Plot rejections vs. p-value cutoff

Description

Plot the number, or fraction, of null hypotheses rejected as a function of the p-value cutoff. Multiple
sets of p-values are accepted, in a list or in the columns of a matrix, in order to permit comparisons.

Usage

rejection_plot(p,
col, lty = 1, lwd = 1,
xlab = "p cutoff", ylab = "number of rejections",
xlim = c(0, 1), ylim,
legend = names(p),
at = c("all", "sample"),
n_at = 100,
probability = FALSE,
...
)

Arguments

p The p-values to be used for plotting. These may be in the columns of a matrix, or
in the elements of a list. One curve will be generated for each column/element,
and all NA entries will be dropped. If column or element names are supplied,
they are used by default for a plot legend.

col Colors to be used for each curve plotted. Recycled if necessary. If col is omit-
ted, rainbow is used to generate a set of colors.

lty Line styles to be used for each curve plotted. Recycled if necessary.

lwd Line widths to be used for each curve plotted. Recycled if necessary.

xlab X-axis text label.

24 rowFtests

ylab Y-axis text label.

xlim X-axis limits.

ylim Y-axis limits.

legend Text for legend. Matrix column names or list element names (see p above) are
used by default. If NULL, no legend is plotted.

at Should step functions be plotted with a step at every value in p, or should linear
interpolation be used at a sample of points spanning xlim? The latter looks
when there are many p-values.

n_at When at = "sample" is given, how many sample points should be used for in-
terpolation and plotting?

probability Should the fraction of null hypotheses rejected be reported instead of the count?
See the probability argument to hist.

... Other arguments to pass to the plot call which sets up the axes. Note that the
... argument will not be passed to the lines calls which actually generate the
curves.

Value

A list of the step functions used for plotting is returned invisibly.

Author(s)

Richard Bourgon <bourgon@ebi.ac.uk>

Examples

See the vignette: Diagnostic plots for independent filtering

rowFtests t-tests and F-tests for rows or columns of a matrix

Description

t-tests and F-tests for rows or columns of a matrix, intended to be speed efficient.

Usage

rowttests(x, fac, tstatOnly = FALSE, na.rm = FALSE)
colttests(x, fac, tstatOnly = FALSE, na.rm = FALSE)
fastT(x, ig1, ig2, var.equal = TRUE)

rowFtests(x, fac, var.equal = TRUE)
colFtests(x, fac, var.equal = TRUE)

rowFtests 25

Arguments

x Numeric matrix. The matrix must not contain NA values. For rowttests and
colttests, x can also be an ExpressionSet.

fac Factor which codes the grouping to be tested. There must be 1 or 2 groups for
the t-tests (corresponding to one- and two-sample t-test), and 2 or more for the
F-tests. If fac is missing, this is taken as a one-group test (i.e. is only allowed
for the t-tests). The length of the factor needs to correspond to the sample size:
for the row* functions, the length of the factor must be the same as the number
of columns of x, for the col* functions, it must be the same as the number of
rows of x.
If x is an ExpressionSet, then fac may also be a character vector of length 1
with the name of a covariate in x.

tstatOnly A logical variable indicating whether to calculate p-values from the t-distribution
with appropriate degrees of freedom. If TRUE, just the t-statistics are returned.
This can be considerably faster.

na.rm A logical variable indicating whether to remove NA values prior to calculation
test statistics.

ig1 The indices of the columns of x that correspond to group 1.

ig2 The indices of the columns of x that correspond to group 2.

var.equal A logical variable indicating whether to treat the variances in the samples as
equal. If ’TRUE’, a simple F test for the equality of means in a one-way analysis
of variance is performed. If ’FALSE’, an approximate method of Welch (1951)
is used, which generalizes the commonly known 2-sample Welch test to the case
of arbitrarily many samples.

Details

If fac is specified, rowttests performs for each row of x a two-sided, two-class t-test with equal
variances. fac must be a factor of length ncol(x) with two levels, corresponding to the two groups.
The sign of the resulting t-statistic corresponds to "group 1 minus group 2". If fac is missing,
rowttests performs for each row of x a two-sided one-class t-test against the null hypothesis
’mean=0’.

rowttests and colttests are implemented in C and should be reasonably fast and memory-
efficient. fastT is an alternative implementation, in Fortran, possibly useful for certain legacy
code. rowFtests and colFtests are currently implemented using matrix algebra in R. Compared
to the rowttests and colttests functions, they are slower and use more memory.

Value

A data.frame with columns statistic, p.value (optional in the case of the t-test functions) and
dm, the difference of the group means (only in the case of the t-test functions). The row.names of
the data.frame are taken from the corresponding dimension names of x.

The degrees of freedom are provided in the attribute df. For the F-tests, if var.equal is ’FALSE’,
nrow(x)+1 degree of freedoms are given, the first one is the first degree of freedom (it is the same
for each row) and the other ones are the second degree of freedom (one for each row).

Author(s)

Wolfgang Huber <whuber@embl.de>

26 rowFtests

References

B. L. Welch (1951), On the comparison of several mean values: an alternative approach. Biometrika,
38, 330-336

See Also

mt.teststat

Examples

##
example data
##
x = matrix(runif(40), nrow=4, ncol=10)
f2 = factor(floor(runif(ncol(x))*2))
f4 = factor(floor(runif(ncol(x))*4))

##
one- and two group row t-test; 4-group F-test
##
r1 = rowttests(x)
r2 = rowttests(x, f2)
r4 = rowFtests(x, f4)

approximate equality
about.equal = function(x,y,tol=1e-10)

stopifnot(is.numeric(x), is.numeric(y), length(x)==length(y), all(abs(x-y) < tol))

##
compare with the implementation in t.test
##
for (j in 1:nrow(x)) {

s1 = t.test(x[j,])
about.equal(s1$statistic, r1$statistic[j])
about.equal(s1$p.value, r1$p.value[j])

s2 = t.test(x[j,] ~ f2, var.equal=TRUE)
about.equal(s2$statistic, r2$statistic[j])
about.equal(s2$p.value, r2$p.value[j])

dm = -diff(tapply(x[j,], f2, mean))
about.equal(dm, r2$dm[j])

s4 = summary(lm(x[j,] ~ f4))
about.equal(s4$fstatistic["value"], r4$statistic[j])

}

##
colttests
##
c2 = colttests(t(x), f2)
stopifnot(identical(r2, c2))

##
missing values
##

rowpAUCs-methods 27

f2n = f2
f2n[sample(length(f2n), 3)] = NA
r2n = rowttests(x, f2n)
for(j in 1:nrow(x)) {

s2n = t.test(x[j,] ~ f2n, var.equal=TRUE)
about.equal(s2n$statistic, r2n$statistic[j])
about.equal(s2n$p.value, r2n$p.value[j])

}

##
larger sample size
##
x = matrix(runif(1000000), nrow=4, ncol=250000)
f2 = factor(floor(runif(ncol(x))*2))
r2 = rowttests(x, f2)
for (j in 1:nrow(x)) {

s2 = t.test(x[j,] ~ f2, var.equal=TRUE)
about.equal(s2$statistic, r2$statistic[j])
about.equal(s2$p.value, r2$p.value[j])

}

single row matrix
rowFtests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5))))
rowttests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5))))

rowpAUCs-methods Rowwise ROC and pAUC computation

Description

Methods for fast rowwise computation of ROC curves and (partial) area under the curve (pAUC)
using the simple classification rule x > theta, where theta is a value in the range of x

Usage

rowpAUCs(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2"))

Arguments

x ExpressionSet or numeric matrix. The matrix must not contain NA values.

fac A factor or numeric or character that can be coerced to a factor. If x is
an ExpressionSet, this may also be a character vector of length 1 with the
name of a covariate variable in x. fac must have exactly 2 levels. For better
control over the classification, use integer values in 0 and 1, where 1 indicates
the "Disease" class in the sense of the Pepe et al paper (see below).

p Numeric vector of length 1. Limit in (0,1) to integrate pAUC to.

flip Logical. If TRUE, both classification rules x > theta and x < theta are tested
and the (partial) area under the curve of the better one of the two is returned.
This is appropriate for the cases in which the classification is not necessarily
linked to higher expression values, but instead it is symmetric and one would
assume both over- and under-expressed genes for both classes. You can set
flip to FALSE if you only want to screen for genes which discriminate Disease
from Control with the x > theta rule.

28 rowpAUCs-methods

caseNames The class names that are used when plotting the data. If fac is the name of
the covariate variable in the ExpressionSet the function will use its levels as
caseNames.

Details

Rowwise calculation of Receiver Operating Characteristic (ROC) curves and the corresponding
partial area under the curve (pAUC) for a given data matrix or ExpressionSet. The function is
implemented in C and thus reasonably fast and memory efficient. Cutpoints (theta are calculated
before the first, in between and after the last data value. By default, both classification rules x >
theta and x < theta are tested and the (partial) area under the curve of the better one of the two
is returned. This is only valid for symmetric cases, where the classification is independent of the
magnitude of x (e.g., both over- and under-expression of different genes in the same class). For
unsymmetric cases in which you expect x to be consistently higher/lower in of of the two classes
(e.g. presence or absence of a single biomarker) set flip=FALSE or use the functionality provided
in the ROC package. For better control over the classification (i.e., the choice of "Disease" and
"Control" class in the sense of the Pepe et al paper), argument fac can be an integer in [0,1] where
1 indicates "Disease" and 0 indicates "Control".

Value

An object of class rowROC with the calculated specificities and sensitivities for each row and the
corresponding pAUCs and AUCs values. See rowROC for details.

Methods

Methods exist for rowPAUCs:

signature(x="matrix", fac="factor")

rowPAUCsrowPAUCs signature(x="matrix", fac="numeric")

rowPAUCs signature(x="ExpressionSet")

rowPAUCs signature(x="ExpressionSet", fac="character")

Author(s)

Florian Hahne <fhahne@fhcrc.org>

References

Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from
microarray experiments. Biometrics. 2003 Mar;59(1):133-42.

See Also

rocdemo.sca, pAUC, rowROC

Examples

library(Biobase)
data(sample.ExpressionSet)

r1 = rowttests(sample.ExpressionSet, "sex")
r2 = rowpAUCs(sample.ExpressionSet, "sex", p=0.1)

rowROC-class 29

plot(area(r2, total=TRUE), r1$statistic, pch=16)
sel <- which(area(r2, total=TRUE) > 0.7)
plot(r2[sel])

this compares performance and output of rowpAUCs to function pAUC in
package ROC
if(require(ROC)){

performance
myRule = function(x)
pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 ,

data = x, rule = dxrule.sca), t0 = 0.1)
nGenes = 200
cat("computation time for ", nGenes, "genes:\n")
cat("function pAUC: ")
print(system.time(r3 <- esApply(sample.ExpressionSet[1:nGenes,], 1, myRule)))
cat("function rowpAUCs: ")
print(system.time(r2 <- rowpAUCs(sample.ExpressionSet[1:nGenes,],
"sex", p=1)))

compare output
myRule2 = function(x)
pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 ,

data = x, rule = dxrule.sca), t0 = 1)
r4 <- esApply(sample.ExpressionSet[1:nGenes,], 1, myRule2)
plot(r4,area(r2), xlab="function pAUC", ylab="function rowpAUCs",
main="pAUCs")

plot(r4, area(rowpAUCs(sample.ExpressionSet[1:nGenes,],
"sex", p=1, flip=FALSE)), xlab="function pAUC", ylab="function rowpAUCs",
main="pAUCs")

r4[r4<0.5] <- 1-r4[r4<0.5]
plot(r4, area(r2), xlab="function pAUC", ylab="function rowpAUCs",
main="pAUCs")
}

rowROC-class Class "rowROC"

Description

A class to model ROC curves and corresponding area under the curve as produced by rowpAUCs.

Objects from the Class

Objects can be created by calls of the form new("rowROC", ...).

Slots

data: Object of class "matrix" The input data.

ranks: Object of class "matrix" The ranked input data.

sens: Object of class "matrix" Matrix of senitivity values for each gene at each cutpoint.

spec: Object of class "matrix" Matrix of specificity values for each gene at each cutpoint.

30 rowROC-class

pAUC: Object of class "numeric" The partial area under the curve (integrated from 0 to p.

AUC: Object of class "numeric" The total area under the curve.

factor: Object of class "factor" The factor used for classification.

cutpoints: Object of class "matrix" The values of the cutpoints at which specificity ans sensitiv-
ity was calculated. (Note: the data is ranked prior to computation of ROC curves, the cutpoints
map to the ranked data.

caseNames: Object of class "character" The names of the two classification cases.

p: Object of class "numeric" The limit to which pAUC is integrated.

Methods

show signature(object="rowROC") Print nice info about the object.

[signature(x="rowROC", j="missing") Subset the object according to rows/genes.

plot signature(x="rowROC", y="missing") Plot the ROC curve of the first row of the object
along with the pAUC. To plot the curve for a specific row/gene subsetting should be done first
(i.e. plot(rowROC[1]).

pAUC signature(object="rowROC", p="numeric", flip="logical") Integrate area under the
curve from 0 to p. This method returns a new rowROC object.

AUC signature(object="rowROC") Integrate total area under the curve. This method returns a
new rowROC object.

sens signature(object="rowROC") Accessor method for sensitivity slot.

spec signature(object="rowROC") Accessor method for specificity slot.

area signature(object="rowROC", total="logical") Accessor method for pAUC slot.

Author(s)

Florian Hahne <fhahne@fhcrc.org>

References

Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from
microarray experiments. Biometrics. 2003 Mar;59(1):133-42.

See Also

rowpAUCs

Examples

library("Biobase")
data("sample.ExpressionSet")
roc <- rowpAUCs(sample.ExpressionSet, "sex", p=0.5)
roc
area(roc[1:3])

if(interactive()) {
par(ask=TRUE)
plot(roc)
plot(1-spec(roc[1]), sens(roc[2]))
par(ask=FALSE)
}

rowSds 31

pAUC(roc, 0.1)
roc

rowSds Row variance and standard deviation of a numeric array

Description

Row variance and standard deviation of a numeric array

Usage

rowVars(x, ...)
rowSds(x, ...)

Arguments

x An array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.

... Further arguments that get passed on to rowMeans and rowSums.

Details

These are very simple convenience functions, the main work is done in rowMeans and rowSums.
See the function definition of rowVars, it is very simple.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
‘dimnames’ (or ‘names’ for a vector result) are taken from the original array.

Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber

See Also

rowMeans and rowSums

Examples

a = matrix(rnorm(1e4), nrow=10)
rowSds(a)

http://www.ebi.ac.uk/huber

32 shorth

shorth A location estimator based on the shorth

Description

A location estimator based on the shorth

Usage

shorth(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05)

Arguments

x Numeric

na.rm Logical. If TRUE, then non-finite (according to is.finite) values in x are ig-
nored. Otherwise, presence of non-finite or NA values will lead to an error mes-
sage.

tie.action Character scalar. See details.

tie.limit Numeric scalar. See details.

Details

The shorth is the shortest interval that covers half of the values in x. This function calculates the
mean of the x values that lie in the shorth. This was proposed by Andrews (1972) as a robust
estimator of location.

Ties: if there are multiple shortest intervals, the action specified in ties.action is applied. Al-
lowed values are mean (the default), max and min. For mean, the average value is considered; how-
ever, an error is generated if the start indices of the different shortest intervals differ by more than
the fraction tie.limit of length(x). For min and max, the left-most or right-most, respectively,
of the multiple shortest intervals is considered.

Rate of convergence: as an estimator of location of a unimodal distribution, under regularity condi-
tions, the quantity computed here has an asymptotic rate of only n−1/3 and a complicated limiting
distribution.

See half.range.mode for an iterative version that refines the estimate iteratively and has a builtin
bootstrapping option.

Value

The mean of the x values that lie in the shorth.

Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber, Ligia Pedroso Bras

http://www.ebi.ac.uk/huber

tdata 33

References

• G Sawitzki, “The Shorth Plot.” Available at http://lshorth.r-forge.r-project.org/TheShorthPlot.pdf

• DF Andrews, “Robust Estimates of Location.” Princeton University Press (1972).

• R Grueble, “The Length of the Shorth.” Annals of Statistics 16, 2:619-628 (1988).

• DR Bickel and R Fruehwirth, “On a fast, robust estimator of the mode: Comparisons to other
robust estimators with applications.” Computational Statistics & Data Analysis 50, 3500-3530
(2006).

See Also

half.range.mode

Examples

x = c(rnorm(500), runif(500) * 10)
methods = c("mean", "median", "shorth", "half.range.mode")
ests = sapply(methods, function(m) get(m)(x))

if(interactive()) {
colors = 1:4
hist(x, 40, col="orange")
abline(v=ests, col=colors, lwd=3, lty=1:2)
legend(5, 100, names(ests), col=colors, lwd=3, lty=1:2)

}

tdata A small test dataset of Affymetrix Expression data.

Description

The tdata data frame has 500 rows and 26 columns. The columns correspond to samples while the
rows correspond to genes. The row names are Affymetrix accession numbers.

Usage

data(tdata)

Format

This data frame contains 26 columns.

Source

An unknown data set.

Examples

data(tdata)

34 ttest

ttest A filter function for a t.test

Description

ttest returns a function of one argument with bindings for cov and p. The function, when evalu-
ated, performs a t-test using cov as the covariate. It returns TRUE if the p value for a difference in
means is less than p.

Usage

ttest(m, p=0.05, na.rm=TRUE)

Arguments

m If m is of length one then it is assumed that elements one through m of x will be
one group. Otherwise m is presumed to be the same length as x and constitutes
the groups.

p The p-value for the test.

na.rm If set to TRUE any NA’s will be removed.

Details

When the data can be split into two groups (diseased and normal for example) then we often want
to select genes on their ability to distinguish those two groups. The t-test is well suited to this and
can be used as a filter function.

This helper function creates a t-test (function) for the specified covariate and considers a gene to
have passed the filter if the p-value for the gene is less than the prespecified p.

Value

ttest returns a function with bindings for m and p that will perform a t-test.

Author(s)

R. Gentleman

See Also

kOverA, Anova, t.test

Examples

dat <- c(rep(1,5),rep(2,5))
set.seed(5)
y <- rnorm(10)
af <- ttest(dat, .01)
af(y)
af2 <- ttest(5, .01)
af2(y)
y[8] <- NA
af(y)

ttest 35

af2(y)
y[1:5] <- y[1:5]+10
af(y)

Index

∗ arith
shorth, 32

∗ array
rowSds, 31

∗ classes
rowROC-class, 29

∗ datasets
tdata, 33

∗ manip
Anova, 2
coxfilter, 3
cv, 4
dist2, 5
eSetFilter, 6
filterfun, 8
findLargest, 10
gapFilter, 11
genefilter, 12
genefinder, 13
genescale, 15
kOverA, 18
maxA, 19
nsFilter, 19
pOverA, 22
rowSds, 31
ttest, 34

∗ math
rowFtests, 24
rowpAUCs-methods, 27

∗ robust
half.range.mode, 16

∗ univar
half.range.mode, 16

[,rowROC,ANY,ANY,ANY-method
(rowROC-class), 29

Anova, 2, 4, 34
area (rowROC-class), 29
area,rowROC-method (rowROC-class), 29
AUC (rowROC-class), 29
AUC,rowROC-method (rowROC-class), 29

colFtests (rowFtests), 24

colFtests,ExpressionSet,character-method
(rowFtests), 24

colFtests,ExpressionSet,factor-method
(rowFtests), 24

colFtests,matrix,factor-method
(rowFtests), 24

colttests (rowFtests), 24
colttests,ExpressionSet,character-method

(rowFtests), 24
colttests,ExpressionSet,factor-method

(rowFtests), 24
colttests,ExpressionSet,missing-method

(rowFtests), 24
colttests,matrix,factor-method

(rowFtests), 24
colttests,matrix,missing-method

(rowFtests), 24
coxfilter, 3
coxph, 3
cv, 4, 23

dist, 5, 14
dist2, 5

eBayes, 21
eSetFilter, 6
ExpressionSet, 25

fastT (rowFtests), 24
featureFilter (nsFilter), 19
filter_volcano, 9
filtered_p, 7
filtered_R (filtered_p), 7
filterfun, 8, 12
findLargest, 10

gapFilter, 11
genefilter, 6, 8, 11, 12, 13
genefilter-deprecated, 13
genefinder, 13, 15
genefinder,ExpressionSet,vector-method

(genefinder), 13
genefinder,matrix,vector-method

(genefinder), 13

36

INDEX 37

genescale, 14, 15
getFilterNames (eSetFilter), 6
getFuncDesc (eSetFilter), 6
getRdAsText (eSetFilter), 6

half.range.mode, 16, 32, 33
hist, 24

is.finite, 32
isESet (eSetFilter), 6

kappa_p, 17
kappa_t (kappa_p), 17
kOverA, 3, 4, 13, 18, 34

lines, 24
lm, 3

maxA, 19
mt.teststat, 26

nsFilter, 19
nsFilter,ExpressionSet-method

(nsFilter), 19

p.adjust, 7
parseArgs (eSetFilter), 6
parseDesc (eSetFilter), 6
pAUC, 28
pAUC (rowROC-class), 29
pAUC,rowROC,numeric-method

(rowROC-class), 29
plot, 24
plot,rowROC,missing-method

(rowROC-class), 29
pOverA, 4, 18, 19, 22

quantile, 7

rainbow, 23
rejection_plot, 8, 23
rocdemo.sca, 28
rowFtests, 24
rowFtests,ExpressionSet,character-method

(rowFtests), 24
rowFtests,ExpressionSet,factor-method

(rowFtests), 24
rowFtests,matrix,factor-method

(rowFtests), 24
rowMeans, 31
rowpAUCs, 30
rowpAUCs (rowpAUCs-methods), 27
rowpAUCs,ExpressionSet,ANY-method

(rowpAUCs-methods), 27

rowpAUCs,ExpressionSet,character-method
(rowpAUCs-methods), 27

rowpAUCs,matrix,factor-method
(rowpAUCs-methods), 27

rowpAUCs,matrix,numeric-method
(rowpAUCs-methods), 27

rowpAUCs-methods, 27
rowROC, 28
rowROC (rowROC-class), 29
rowROC-class, 29
rowSds, 31
rowSums, 31
rowttests (rowFtests), 24
rowttests,ExpressionSet,character-method

(rowFtests), 24
rowttests,ExpressionSet,factor-method

(rowFtests), 24
rowttests,ExpressionSet,missing-method

(rowFtests), 24
rowttests,matrix,factor-method

(rowFtests), 24
rowttests,matrix,missing-method

(rowFtests), 24
rowVars (rowSds), 31

sapply, 10
scale, 15
sens (rowROC-class), 29
sens,rowROC-method (rowROC-class), 29
setESetArgs (eSetFilter), 6
shorth, 16, 32
show,rowROC-method (rowROC-class), 29
showESet (eSetFilter), 6
spec (rowROC-class), 29
spec,rowROC-method (rowROC-class), 29

t.test, 34
tdata, 33
ttest, 11, 34

varFilter (nsFilter), 19

	Anova
	coxfilter
	cv
	dist2
	eSetFilter
	filtered_p
	filterfun
	filter_volcano
	findLargest
	gapFilter
	genefilter
	genefilter-deprecated
	genefinder
	genescale
	half.range.mode
	kappa_p
	kOverA
	maxA
	nsFilter
	pOverA
	rejection_plot
	rowFtests
	rowpAUCs-methods
	rowROC-class
	rowSds
	shorth
	tdata
	ttest
	Index

