Package ‘findIPs’

January 19, 2026
Type Package
Title Influential Points Detection for Feature Rankings
Version 1.6.0
Date 2024-11-20

Description Feature rankings can be distorted by a single case in the
context of high-dimensional data. The cases exerts abnormal influence
on feature rankings are called influential points (IPs). The package
aims at detecting IPs based on case deletion and quantifies their
effects by measuring the rank changes (DOI:10.48550/arXiv.2303.10516).
The package applies a novel rank comparing measure using the adaptive
weights that stress the top-ranked important features and adjust the
weights to ranking properties.

License GPL-3
URL https://github.com/ShuoStat/findIPs

BugReports https://github.com/ShuoStat/findIPs
Depends graphics, R (>=4.4.0)

Imports Biobase, BiocParallel, parallel, stats, SummarizedExperiment,
survival, utils

Suggests BiocStyle, knitr, rmarkdown, testthat
VignetteBuilder knitr

biocViews GeneExpression, DifferentialExpression, Regression, Survival
Encoding UTF-8

LazyData FALSE

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/findIPs
git_branch RELEASE_3_22

git_last_commit b043ffe

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Shuo Wang [aut, cre] (ORCID: <https://orcid.org/0009-0000-0424-2160>),
Junyan Lu [aut]

Maintainer Shuo Wang <wangsures@foxmail.com>

1

https://github.com/ShuoStat/findIPs
https://github.com/ShuoStat/findIPs
https://orcid.org/0009-0000-0424-2160

2 findIPs
Contents
findIPs e 2
getdroplranks L 4
millerO5 5
plotAdaptiveWeights L 6
plotIPs e 6
plotRankScatters 7
sumRanks L 8
Index 10
findIPs Function to detect influential points for feature rankings
Description
findIPs employs two important functions: getdroplranks and sumRanks. getdroplranks can
calculate the original feature ranking and leave-one-out feature rankings. The outputs are subse-
quently taken to sumRanks, which computes the overall rank changes for each observation, indicat-
ing their influence on feature rankings.
Usage
findIPs(
X,
Y,
fun,
decreasing = FALSE,
topN = 100,
method = "adaptive”,
nCores = NULL
)
Arguments
X A data matrix, with rows being the variables and columns being samples.
y Groups or survival object (for cox regression).
fun fun can either be a character or a function. fun should be one of the ’t.test’, ’cox’,
’log2fc’, and "kruskal.test” when it is a character. findIPs() incorporates four
widely used ranking criteria: t-test, univariate cox model, log2fc, and kruskal
test, whose outputs are p values except log2fc (absolute log2 fold changes).
The features would be ordered by specifying the argument decreasing. For
instance, if fun = 't.test', the decreasing =F, such that features are order
by the pvalues of t.test in a increasing manner.
fun can also be a function to obtain ranking criteria with x and y being the only
input and the ranking criteria, such as p-values being the only output.
decreasing logical. How the rank criteria are ordered? For instance, p-value should be
ordered increasingly, while fold-change should be ordered decreasingly.
topN the number of important features included for comparison.

findIPs

method method to summarize rank changes. It should be one of the *adaptive’, ’weight-
edSpearman’, and 'unweighted’. Both ’adaptive’ and ’weightedSpearman’ are
weighted rank comparison method, but former employs the weight that are adap-
tive to the distribution of rank changes. ’unweighted’ denotes a direct compari-
son of ranks without considering weights.

nCores the number of CPU cores used for parallel running. If nCores = NULL, a single
core is used.

Value

kappa The weight function’s shape is controlled by kappa, which ranges from 0 to 1.
Weighted rank changes are calculated using kappa, with higher values indicating
more weight on top features.

score The influence of each observation on feature rankings, with larger values indi-
cating more influence.

origRank The original ranking. origRank is exactly the input. Here it is re-output for
visualization purposes.

drop1Rank The leave-one-out rankings.

origRankWeighted
The weighted original ranking

drop1RankWeighted
The weighted leave-one-out rankings

Examples
data(millero5)

X <- miller@5%$X
y <- millero5$y

obj <- findIPs(X, vy,
fun = 't.test',
decreasing = FALSE,
topN = 100,
method = 'adaptive')

par(mfrow = c(1,

3), mar = c(4, 4, 2, 2))

plotRankScatters(obj, top = TRUE)
plotAdaptiveWeights(kappa = obj$kappa,

n = nrow(obj$dropiRank),
type = 'line’,
ylim = NULL)

plotIPs(obj, topn = 5, ylim = NULL)

Interop with ExpressionSet class

library(Biobase)

data(sample.ExpressionSet)

design <- phenoData(sample.ExpressionSet)$type

IPs <- findIPs(exprs(sample.ExpressionSet), design, fun = "t.test”,
method = "adaptive”)

plotIPs(IPs)

Interop with SummarizedExperiment class
library(SummarizedExperiment)
Make a SummarizedExperiment class

sample.SummarizedExperiment <- makeSummarizedExperimentFromExpressionSet(
sample.ExpressionSet)

design <- colData(sample.SummarizedExperiment)$type

getdrop Iranks

IPs <- findIPs(assay(sample.SummarizedExperiment), design, fun = "t.test",
method = "adaptive”)
plotIPs(IPs)
getdroplranks Derive ranking lists including original and leave-one-out rankings
Description

This function calculates the original and leave-one-out feature rankings using a predefined rank

droplrank matrix, Leave-one-out rankings

method
Usage
getdroplranks(X, y, fun, decreasing = FALSE, topN = 100, nCores = NULL)
Arguments
X A data matrix, with rows being the variables and columns being samples.
y Groups or survival object (for cox regression)
fun fun can either be a character or a function. fun should be one of the ’t.test’, ’cox’,
’log2fc’, and ’kruskal.test” when it is a character. findIPs() incorporates four
widely used ranking criteria: t-test, univariate cox model, log2fc, and kruskal
test, whose outputs are p values except log2fc (absolute log2 fold changes).
The features would be ordered by specifying the argument decreasing. For
instance, if fun = "'t.test', the decreasing =F, such that features are order
by the pvalues of t.test in the increasing manner.
fun can also be a function to obtain ranking criteria with x and y being the only
input and the ranking criteria, such as p-values being the only output.
decreasing logical. How the rank criteria are ordered? For instance, p-value should be
ordered increasingly, while fold-change should be ordered decreasingly.
topN the number of important features included for comparison. The top n features in
the original ranking list.
nCores the number of CPU cores used for parallel running. If nCores = NULL, a single
core is used.
Value
orig vector:,original ranking

millerO05 5

Examples

data(millero5)
X <- millero5%$X
y <- miller@5%y
obj <- getdroplranks(X, v,
fun = 't.test',
decreasing = FALSE,
topN = 100)
rks <- sumRanks(origRank = obj$origRank,
drop1Rank = obj$dropiRank,
topN = 100,
method = 'adaptive')
plotIPs(rks, topn = 5, ylim = NULL)

millero5 miller05 data

Description

miller05 is gene expression data with 1000 genes randomly sampled from 22283 genes and 236
samples since removing the case with missing response. The data has binary and survival response.
The binary response contains 58 case with pS3 mutant and 193 wild type mutant. The survival
response has a total of 55 events.

Usage

data(millero5)

Format

a list

Value

millerO5 data, a list containing 1000 genes and binary and survival response.

References

Miller, Lance D., et al. *An expression signature for p53 status in human breast cancer predicts
mutation status, transcriptional effects, and patient survival.” Proceedings of the National Academy
of Sciences 102.38 (2005): 13550-13555.d0i:10.1073pnas.0506230102

Examples

data(millero5)

6 plotIPs

plotAdaptiveWeights Visualize the weight function for adaptive weights

Description

Plot the weight function for the adaptive weights with given kappa and the list length (n).

Usage

plotAdaptiveWeights(kappa, n, type = c("line”, "points"), ylim = NULL)

Arguments
kappa a shape parameter of the weight function.
n the length list.
type draw line or points. Both line and points will be plotted if type = c(line’,
“points’).
ylim y coordinates ranges.
Value

plot based on basic graph

Examples

par(mfrow = c(1, 2), mar = c(4, 4, 2, 2))
plotAdaptiveWeights(kappa = 0.01, n = 100, type 'line', ylim = c(@, 0.025))
plotAdaptiveWeights(kappa = .02, n = 100, type = 'line', ylim = c(0, 0.025))

plotIPs Visualize the influential scores

Description

Visualize influential score using lollipop plot. The function uses the output obtained from rank. compare
or findIPs function.

Usage
plotIPs(obj, topn = 5, ylim = NULL, ...)

Arguments
obj the object obtained from rank. compare or findIPs function.
topn the top n most influential points to be labelled in the plot.
ylim y coordinates ranges

other arguments

plotRankScatters 7

Value

plot based on basic graph

Examples

data(miller@5)
X <- miller@5%$X
y <- millero5$y
obj <- getdroplranks(X, vy,
fun = 't.test',
decreasing = FALSE,
topN = 100)
rks <- sumRanks(origRank = obj$origRank,
drop1Rank = obj$dropiRank,
topN = 100,
method = 'adaptive')
plotIPs(rks, topn = 5, ylim = NULL)

plotRankScatters Visualize the unweighted rank changes

Description
Visualize the unweighted rank changes using scatter plot. The plot displays the original ranking and
leave-one-out rankings.

Usage

plotRankScatters(obj, top = TRUE, points.arg = list(), top.arg = list())

Arguments
obj the objective obtained from findIPs() or sumRanks() functions
top logical, whether the most influential case needs to be plot in black
points.arg a list. Arguments in graphics: :points() can be used to define the points.
top.arg a list. Arguments in graphics: :points() can be used to define the top points.
Value

a plot based on basic graphic.

Examples

data(miller@5)
X <- miller@5%$X
y <- millero53$y

obj <- getdroplranks(X, vy,
fun = 't.test',
decreasing = FALSE,
topN = 100)

8 sumRanks
rks <- sumRanks(origRank = obj$origRank,
drop1Rank = obj$dropiRank,
topN = 100,
method = 'adaptive')
plotRankScatters(rks)
sumRanks Summarize the weighted rank changes caused by case-deletion
Description
This function measures the overall rank changes due to case deletion. A large rank changes indicates
more influence of the deleted case on feature rankings. sumRanks() provides three methods to
compute the overall rank changes: unweighted, weighted Spearman, and adaptive weights.
Usage
sumRanks(origRank, droplRank, topN = NULL, method = "adaptive"”, ...)
Arguments
origRank vectors, reference rankings. For influential observation detection, origRank de-
notes the original ranking obtained using the whole data.
drop1Rank matrix or data.frame, Each column is a feature list with a case removed.
topN the top n features in origRank will be used for rank comparison. If null, include
all features.
method method to summarize rank changes. It should be one of the ’adaptive’, ’weight-
edSpearman’, and 'unweighted’. Both ’adaptive’ and ’weightedSpearman’ are
weighted rank comparison method, but former employs the weight that are adap-
tive to the distribution of rank changes. 'unweighted’ denotes a direct compari-
son of ranks without considering weights.
other arguments
Value
kappa The weight function’s shape is controlled by kappa, which ranges from 0 to 1.
Weighted rank changes are calculated using kappa, with higher values indicating
more weight on top features.
score The influence of each observation on feature rankings, with larger values indi-
cating more influence.
origRank The original ranking. origRank is exactly the input. Here it is re-output for
visualization purposes.
drop1Rank The leave-one-out rankings.
origRankWeighted
The weighted original ranking. origRankWeighted will be returned when method
= "adaptive’.
drop1RankWeighted

The weighted leave-one-out rankings. droplRankWeighted will be returned
when method = "adaptive’.

sumRanks

Examples

data(millero5)

X <- millero5$X

y <- miller@5s%y

obj <- getdroplranks(X, vy,
fun = 't.test',
decreasing = FALSE,
topN = 100)

rks <- sumRanks(origRank = obj$origRank,
drop1Rank = obj$dropiRank,
topN = 100,
method = 'adaptive')

plotIPs(rks, topn = 5, ylim = NULL)

Index

x datasets
miller®@5, 5

findIPs, 2
getdroplranks, 4
miller@5, 5

plotAdaptiveWeights, 6
plotIPs, 6
plotRankScatters, 7

sumRanks, 8

10

	findIPs
	getdrop1ranks
	miller05
	plotAdaptiveWeights
	plotIPs
	plotRankScatters
	sumRanks
	Index

