Package ‘fabia’

January 19, 2026
Title FABIA: Factor Analysis for Bicluster Acquisition
Version 2.56.0
Date 2020-01-30
Author Sepp Hochreiter <hochreit@bioinf. jku.at>
Maintainer Andreas Mitterecker <mitterecker@bioinf. jku.at>
Depends R (>= 3.6.0), Biobase
Imports methods, graphics, grDevices, stats, utils

Description Biclustering by * * Factor Analysis for Bicluster
Acquisition" (FABIA). FABIA is a model-based technique for
biclustering, that is clustering rows and columns
simultaneously. Biclusters are found by factor analysis where
both the factors and the loading matrix are sparse. FABIA is a
multiplicative model that extracts linear dependencies between
samples and feature patterns. It captures realistic
non-Gaussian data distributions with heavy tails as observed in
gene expression measurements. FABIA utilizes well understood
model selection techniques like the EM algorithm and
variational approaches and is embedded into a Bayesian
framework. FABIA ranks biclusters according to their
information content and separates spurious biclusters from true
biclusters. The code is written in C.

License LGPL (>=2.1)

Collate AllClasses.R AllGenerics.R fabia.R
methods-Factorization-class.R zzz.R

URL http://www.bioinf.jku.at/software/fabia/fabia.html

biocViews StatisticalMethod, Microarray, DifferentialExpression,
MultipleComparison, Clustering, Visualization

git_url https://git.bioconductor.org/packages/fabia
git_branch RELEASE_3_22

git_last_commit 3ac43fc

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

http://www.bioinf.jku.at/software/fabia/fabia.html

2 estimateMode

Contents
estimateMode L. L e e e e 2
extractBic L e e e e 4
extractPlot e 7
fabi . . . e 9
fabia e e e 13
fabiaDemo e e e e e 19
fabiap e 20
fabias e e e 26
fabiasp 32
fabiaVersion e e e e 36
Factorization-class 37
makeFabiaData 44
makeFabiaDataBlocks 46
makeFabiaDataBlocksPos 49
makeFabiaDataPos e 51
matrixImagePlot 53
MESC . . . e e e e e e e 55
nmfdiv e e e e e e 61
nmfeu e e e 62
nmfsC e e e 64
plotBicluster 66
projFunco e e e 68
projFuncPos L e 70
readSamplesSpfabia oL oo 71
readSpfabiaResult L 72
samplesPerFeature 73
spfabia e e e 74

Index 78

estimateMode Estimation of the modes of the rows of a matrix
Description

estimateMode: R implementation of estimateMode.

Usage

estimateMode (X, maxiter=50,t01=0.001,alpha=0.1,a1=4.0,G1=FALSE)

Arguments
X matrix of which the modes of the rows are estimated.
maxiter maximal number of iterations; default = 50.
tol tolerance for stopping; default = 0.001.
alpha learning rate; default = 0.1.
al parameter of the width of the given distribution; default = 4.
G1 kind of distribution, TRUE: G1, FALSE: G2; default = FALSE.

estimateMode 3

Details
The mode is estimated by contrast functions G1
(1/a1) * In(cosh(al * x))

or G2
—(1/a1) *exp(—=1/2 %z * x)

The estimation is performed by gradient descent initialized by the median.

Implementation in R.

Value

u the vector of estimated modes.

XU X — u the mode centered data.

Author(s)

Sepp Hochreiter

References
A. Hyvaerinen, ‘Fast and Robust Fixed-Point Algorithms for Independent Component Analysis’,
IEEE Transactions on Neural Networks 10(3):626-634, 1999.

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocksPos(n = 100,1= 50,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 2.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

modes <- estimateMode(X)

modes$u - apply(X, 1, median)

4 extractBic

extractBic Extraction of Biclusters

Description

extractBic: R implementation of extractBic.

Usage

extractBic(fact,thresZ=0.5, thresL=NULL)

Arguments

fact object of the class Factorization.

thresz threshold for sample belonging to bicluster; default 0.5.

thresL threshold for loading belonging to bicluster (if not given it is estimated).
Details

Essentially the model is the sum of outer products of vectors:

P
X=> Nzl +U

i=1
where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here)\; are from R", z; from R!, L from R™*?, Z from RP*!, and X, U from R"*".
U is the Gaussian noise with a diagonal covariance matrix which entries are given by Psi.
The Z is locally approximated by a Gaussian with inverse variance given by lapla.

Using these values we can computer for each j the variance z; given ;. Here

Ty = LZj + u;

This variance can be used to determine the information content of a bicluster.

The \; and z; are used to extract the bicluster 7, where a threshold determines which observations
and which samples belong the the bicluster.

In bic the biclusters are extracted according to the largest absolute values of the component i, i.e.
the largest values of \; and the largest values of z;. The factors z; are normalized to variance 1.

The components of bic are binp, bixv, bixn, biypv, and biypn.

binp give the size of the bicluster: number observations and number samples. bixv gives the values
of the extracted observations that have absolute values above a threshold. They are sorted. bixn
gives the extracted observation names (e.g. gene names). biypv gives the values of the extracted
samples that have absolute values above a threshold. They are sorted. biypn gives the names of the
extracted samples (e.g. sample names).

extractBic 5

In bicopp the opposite clusters to the biclusters are given. Opposite means that the negative pattern
is present.

The components of opposite clusters bicopp are binn, bixv, bixn, biypnv, and biynn.

binp give the size of the opposite bicluster: number observations and number samples. bixv gives
the values of the extracted observations that have absolute values above a threshold. They are
sorted. bixn gives the extracted observation names (e.g. gene names). biynv gives the values of
the opposite extracted samples that have absolute values above a threshold. They are sorted. biynn
gives the names of the opposite extracted samples (e.g. sample names).

That means the samples are divided into two groups where one group shows large positive values
and the other group has negative values with large absolute values. That means a observation pattern
can be switched on or switched off relative to the average value.

numn gives the indices of bic with components: numng = bix and numnp = biypn.
numn gives the indices of bicopp with components: numng = bix and numnn = biynn.

Implementation in R.

Value
bic extracted biclusters.
numn indexes for the extracted biclusters.
bicopp extracted opposite biclusters.
numnopp indexes for the extracted opposite biclusters.
X scaled and centered data matrix.
np number of biclusters.
Author(s)
Sepp Hochreiter
See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]1]

resex <- fabia(X,3,0.01,20)

reEx <- extractBic(resEx)

rexsbic[1,]
rexsbicl2,]
rex$bicl3,]

Not run:

’

dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5
= 2.0,

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

resToy <- fabia(X,13,0.01,200)
rToy <- extractBic(resToy)
avini(resToy)

rToy$bic[1,]

rToy$bic[2,]
rToy$bic[3,]

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

message (" #HHHHEHHHHEHAHHEHRHEEEHHBHRHHEHRAHEHRHHBHRAHE AR)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHAHHHAAHHAHHAAEHBHEHARHHBAHHEHEHAAEHEA)

} else {

data(Breast_A)

X <- as.matrix(XBreast)
resBreast <- fabia(X,5,0.1,200)
rBreast <- extractBic(resBreast)
avini(resBreast)

rBreast$bic[1,]

rBreast$bic[2,]
rBreast$bic[3,]

extractBic

extractPlot

End(Not run)

extractPlot

Plotting of Biclustering Results

Description

extractPlot: R implementation of extractPlot.

Usage

extractPlot(fact,thresZ=0.5,ti="",thresL=NULL,Y=NULL,which=c(1,2,3,4,5,6))

Arguments

fact
thresZz
thresL
ti

Y

which

Details

object of the class Factorization.

threshold for sample belonging to bicluster; default 0.5.

threshold for loading belonging to bicluster (estimated if not given).
plot title; default "".

noise free data matrix.

which plot is shown: 1=noise free data (if available), 2=data, 3=reconstructed
data, 4=error, 5=absolute factors, 6=absolute loadings; default c(1,2,3,4,5,6).

Essentially the model is the sum of outer products of vectors:

p
X=> Nzl +U

i=1

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X, U from R"*!.

The hidden dimension p is used for kmeans clustering of \; and z;.

The \; and z; are used to extract the bicluster 7, where a threshold determines which observations
and which samples belong the the bicluster.

The method produces following plots depending what plots are chosen by the "which" variable:

“Y”: noise free data (if available), “X”: data, “LZ”: reconstructed data, “LZ-X": error, “abs(Z)”:
absolute factors, “abs(L)”: absolute loadings.

Implementation in R.

Value

Returns corresponding plots

8 extractPlot

Author(s)

Sepp Hochreiter

See Also

fabia, fabias, fabiap, fabi, fabiasp, spfabia, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot,
extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData,
makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo,
fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]]

resEx <- fabia(X,3,0.1,20)

extractPlot(resEx, ti="FABIA",Y=Y)

Not run:

dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5
= 2.0,

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

resToy <- fabia(X,13,0.01,200)

extractPlot(resToy, ti="FABIA",Y=Y)

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

fabi

message (" #HHHHHAHHHAHEHAAHHAAHHAHEHAAEHARHHBAHHAHEHAAEHARHHEE)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHAHHAAHAHAHHAHHAAHEHAHEHAHAE)

} else {

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabia(X,5,0.1,200)

extractPlot(resBreast,ti="FABIA Breast cancer(Veer)")

#sorting of predefined labels

CBreast
3

End(Not run)

fabi Factor Analysis for Bicluster Acquisition: Laplace Prior (FABI)

Description

fabi: R implementation of fabia, therefore it is slow.

Usage
fabi(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,center=2,norm=1,1lap=1.0)

Arguments
X the data matrix.
p number of hidden factors = number of biclusters; default = 13.
alpha sparseness loadings (0-1.0); default = 0.01.
cyc number of iterations; default = 500.
spl sparseness prior loadings (0 - 2.0); default = 0 (Laplace).
spz sparseness factors (0.5-2.0); default = 0.5 (Laplace).
center data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.
norm data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.
lap minimal value of the variational parameter; default = 1.0.
Details

Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.

Essentially the model is the sum of outer products of vectors:

p
X=> Nzl +U
=1

10 fabi

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here \; are from R", z; from R!, L from R"*P?, Z from RP*!, and X, U from R™*!.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

We recommend to normalize the components to variance one in order to make the signal and noise
comparable across components.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer
et al. 2006.

We included a prior on the parameters and minimize a lower bound on the posterior of the parame-
ters given the data. The update of the loadings includes an additive term which pushes the loadings
toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in R, therefore it is slow.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ7),L (loadings L), Z (factors Z), U (noise X — L7), center (centering vector),
scaleData (scaling vector), X (centered and scaled data X), Psi (noise variance
0), lapla (variational parameter), avini (the information which the factor z;;
contains about x; averaged over j) xavini (the information which the factor z;
contains about ;) ini (for each j the information which the factor z;; contains
about ;).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’,
Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent
variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

See Also

fabia, fabias, fabiap, spfabia, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot,
extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData,
makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo,
fabiaVersion

Examples

fabi 11

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]1]

reskx <- fabi(X,3,0.01,20)
Not run:
dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

:5’
2.0,
X <- dat[[1]1]
Y <- dat[[2]1]

resToy <- fabi(X,13,0.01,200)

extractPlot(resToy, ti="FABI",Y=Y)

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHEHHEHAHRHHEHEHEEEHHEHRHHEEEHEHRHHEHREHE AR)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHEHHHAHEHAAHHAHHBAEHBHEHARHHBAHHEHEHAAEHEA)
} else {

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabi(X,5,0.1,200)
extractPlot(resBreast,ti="FABI Breast cancer(Veer)")

#sorting of predefined labels
CBreast

12

fabi

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHEHEHBRHHBAHHRHEHBAEHARHHBAEHAHEHAAEHBRHHEE)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHHHHHAHEHAAHEAHAEHAHHAAHHEHAEHAHAA)
} else {

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabi(X,5,0.1,200)

extractPlot(resMulti,ti="FABI Multiple tissues(Su)")

#sorting of predefined labels
CMulti

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHEHEHAAHHAHHBAEHAHEHARHHAAHHAEHAAHA)
message("Package 'fabiaData' is not available: please install."”)
message (" #HHHHHAHHHAHHHAAHHEHAHEHAHHEAHHE A)
} else {

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabi(X,5,0.1,200)
extractPlot(resDLBCL,ti="FABI Lymphoma(Rosenwald)")
#sorting of predefined labels

CDLBCL
3

End(Not run)

fabia

13

fabia

Factor Analysis for Bicluster Acquisition: Laplace Prior (FABIA)

Description

fabia: C implementation of fabia.

Usage

fabia(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,non_negative=0,random=1.0,center=2,norm=1,scale=0.

Arguments
X
p
alpha
cyc
spl
spz
non_negative

random

center
norm

scale

lap
nL

1L
bL

Details

the data matrix.

number of hidden factors = number of biclusters; default = 13.
sparseness loadings (0 - 1.0); default = 0.01.

number of iterations; default = 500.

sparseness prior loadings (0 - 2.0); default = 0 (Laplace).
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace).
Non-negative factors and loadings if non_negative > 0; default = 0.

<=0: by SVD, >0: random initialization of loadings in [-random,random]; de-
fault = 1.0.

data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.

loading vectors are scaled in each iteration to the given variance. 0.0 indicates
non scaling; default = 0.0.

minimal value of the variational parameter; default = 1.0

maximal number of biclusters at which a row element can participate; default =
0 (no limit)

maximal number of row elements per bicluster; default = O (no limit)

cycle at which the nL or 1L maximum starts; default = O (start at the beginning)

Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.

Essentially the model is the sum of outer products of vectors:

p
X=> Nzl +U

i=1

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X, U from R"*!.

14 fabia

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer
et al. 2006.

We included a prior on the parameters and minimize a lower bound on the posterior of the parame-
ters given the data. The update of the loadings includes an additive term which pushes the loadings
toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in C.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ), L (loadings L), Z (factors Z), U (noise: X — LZ), center (centering
vector), scaleData (scaling vector), X (centered and scaled data X)), Psi (noise
variance o), lapla (variational parameter), avini (the information which the
factor z;; contains about x; averaged over j) xavini (the information which the
factor z; contains about ;) ini (for each j the information which the factor z;;
contains about ;).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’,
Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent
variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

See Also

fabia, fabias, fabiap, spfabia, readSpfabiaResult, fabi, fabiasp, mfsc, nmfdiv, nmfeu,

nmfsc, extractPlot, extractBic, plotBicluster, Factorization, projFuncPos, projFunc,
estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos,
matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]1]

fabia

resEx <- fabia(X,3,0.01,50)

Not run:

n = 1000
1= 100
p =10

dat <- makeFabiaDataBlocks(n = n,1=1,p = p,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

5}
2»

X <- dat[[1]1]
Y <- dat[[2]1]
ZC <- dat[[3]]
LC <- dat[[4]]

gclab <- rep.int(0,1)
gllab <- rep.int(Q,n)
clab <- as.character(1:1)
llab <- as.character(1:n)
for (i in 1:p){

for (j in zZCLil){

clab[j] <- paste(as.character(i),”_",clab[j],sep="")
}
for (j in LCLiI){

1lab[j] <- paste(as.character(i),”_",1lab[j],sep="")
}

gclablunlist(ZC[il)] <- gclablunlist(ZC[il)] + p*i
gllab[unlist(LC[i])] <- gllablunlist(LC[il)] + p*i

groups <- gclab

#i#t## FABIA

resToyl <- fabia(X,13,0.01,400)
extractPlot(resToyl,ti="FABIA",6Y=Y)
raToyl <- extractBic(resToy1)

if ((raToy1$bic[[1]1[11>1) 8&& (raToyl1$bic[[1]11[21)>1) {
plotBicluster(raToy1,1)

}

if ((raToy1$bic[[2]11[11>1) && (raToyl$bic[[2]11[21)>1) {
plotBicluster(raToy1,2)

}

if ((raToyl1$bic[[311[11>1) && (raToyl1$bic[[311[21)>1) {
plotBicluster(raToy1,3)

15

16

fabia

3

if ((raToyl1$bic[[411[11>1) && (raToyl1$bic[[4]11[21)>1) {
plotBicluster(raToy1,4)

3

colnames(X(resToy1)) <- clab
rownames(X(resToy1)) <- llab
plot(resToy1,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)

plot(resToyl,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy1,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)

__
DEMO2: Laura van't Veer's gene expression
data set for breast cancer

__

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #H#HHHHEHHEHAHRHHHRHAEAHBHRAHEAEAHAERAHBHRAHARAEAE)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHEHHHHEHAHHEHREHEHEHHEHRHHEHEEHEHHEHEHRAHE)
} else {

data(Breast_A)

X <- as.matrix(XBreast)

resBreast1 <- fabia(X,5,0.1,400)

extractPlot(resBreastl,ti="FABIA Breast cancer(Veer)")

raBreast1 <- extractBic(resBreast1)

if ((raBreast1$bic[[1]]1[11>1) && (raBreast1$bic[[1]11[2]1)>1) {
plotBicluster(raBreastl,1)

3

if ((raBreast1$bic[[2]1[1]1>1) && (raBreast1$bic[[2]11[21)>1) {
plotBicluster(raBreast1,2)

3

if ((raBreast1$bic[[3]1[1]1>1) && (raBreast1$bic[[3]11[21)>1) {
plotBicluster(raBreast1,3)

3

if ((raBreast1$bic[[4]1[1]1>1) && (raBreast1$bic[[411[21)>1) {
plotBicluster(raBreast1,4)

fabia

plot(resBreast1,dim=c(1,2),label.tol=0.
plot(resBreast1,dim=c(1,3),label.tol=0.
plot(resBreast1,dim=c(1,4),label.tol=0.
plot(resBreast1,dim=c(1,5),label.tol=0
plot(resBreast1,dim=c(2,3),label.tol=0.
plot(resBreast1,dim=c(2,4),label.tol=0.
plot(resBreast1,dim=c(2,5),label.tol=0.
plot(resBreast1,dim=c(3,4),label.tol=0
plot(resBreast1,dim=c(3,5),label.tol=0

plot(resBreast1,dim=c(4,5),label.tol=0.
3

DEMO3: Su's multiple tissue types

gene expression data set

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

03,col.
03,col.
03,col.
.03,col.
03,col.
03,col.
03,col.
.03,col.
.03,col.
03,col.

group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.
group=CBreast, lab.

size=0.
size=0.
size=0.
.6)
size=0.
size=0.
size=0.
.6)
size=0.
size=0.

size=0

size=0

message (" #HHHHEHHEHEHAHHEHRHEHEEHBHRHHEHEEHEHRAHEHRAHE)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHAHHHAAHHAHHAHEHAHEHAAHHBHHA A)

} else {

data(Multi_A)
X <- as.matrix(XMulti)

resMultil <- fabia(X,5,0.06,300,norm=2)

extractPlot(resMultil,ti="FABIA Multiple tissues(Su)")

raMultil <- extractBic(resMultil)

if ((raMulti1$bic[[111[11>1) && (raMultii$bic[[111[21)>1) {

plotBicluster(raMultil,1)
}

if ((raMulti1$bic[[211[11>1) && (raMultii$bic[[211[21)>1) {

plotBicluster(raMultit,?2)
}

if ((raMulti1$hic[[311[11>1) && (raMultil$bic[[311[21)>1) {

plotBicluster(raMultit,3)
}

if ((raMulti1$bic[[411[11>1) & (raMultilshic[[411[21)>1) {

plotBicluster(raMultii,4)
}

plot(resMultil,dim=c(1,2),label.t0l=0.01,col.group=CMulti,lab.size=0.6)

6)
6)
6)

6)
6)
6)

6)
6)

17

18

plot(resMultil,dim=c(1,3),label.to0l=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(1,4),label.t0l=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(1,5),label.t0l1=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(2,3),label.to0l=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(2,4),label.t0l=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(2,5),label.t0l1=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(3,4),label.t0l=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(3,5),label.t0l=0.01,col.group=CMulti,lab.size=0.6)
plot(resMultil,dim=c(4,5),label.t0l1=0.01,col.group=CMulti,lab.size=0.6)

3

DEMO4: Rosenwald's diffuse large-B-cell
lymphoma gene expression data set

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHEHEHBRHHBEHHRHEHBHEHBRHHEAHHEHEHAAEHEEEHE)
message("Package 'fabiaData' is not available: please install.”)
message (" HHHHHAHHHAHEHAAHHAHHAEHAHEHAAHHAHAHEHAHE)
} else {

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL1 <- fabia(X,5,0.1,400,norm=2)
extractPlot(resDLBCL1,ti="FABIA Lymphoma(Rosenwald)")
raDLBCL1 <- extractBic(resDLBCL1)

if ((raDLBCL1$bic[[1]1[1]1>1) && (rabDLBCL1$bic[[1]1[21)>1) {
plotBicluster(rabDLBCL1,1)

3

if ((raDLBCL1$bic[[2]1[1]1>1) && (raDLBCL1$bic[[2]1[2]1)>1) {
plotBicluster(raDLBCL1,2)

3

if ((raDLBCL1$bic[[3]1[1]1>1) && (rabDLBCL1$bic[[3]1[21)>1) {
plotBicluster(raDLBCL1,3)

3

if ((raDLBCL1$bic[[4]1[11>1) && (raDLBCL1$bic[[411[21)>1) {
plotBicluster(raDLBCL1,4)

3

plot(resDLBCL1,dim=c(1,2),label.t0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(1,3),label.t0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(1,4),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(1,5),label.t0l=0.03,col.group=CDLBCL,lab.size=0.6)

fabia

fabiaDemo 19

plot(resDLBCL1,dim=c(2,3),label.to0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(2,4),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(2,5),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(3,4),label.t0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(3,5),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL1,dim=c(4,5),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)

}

End(Not run)

fabiaDemo Demos for fabia

Description

fabiaDemo calls the demo codes for fabia.

Usage

fabiaDemo ()

Value

Calls the demo codes for fabia

Author(s)

Sepp Hochreiter

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

Not run:
interactive
fabiaDemo()

End(Not run)

20

fabiap

fabiap

Factor Analysis for Bicluster Acquisition: Post-Projection (FABIAP)

Description

fabiap: C implementation of fabiap.

Usage

fabiap(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,sL=0.6,sZ=0.6,non_negative=0,random=1.0,center=2,

Arguments

X

p

alpha

cyc

spl

spz

sL

sZ
non_negative

random

center
norm

scale

lap
nL

1L
bL

Details

the data matrix.

number of hidden factors = number of biclusters; default = 13.
sparseness loadings (0-1.0); default = 0.01.

number of iterations; default = 500.

sparseness prior loadings (0 - 2.0); default = 0 (Laplace).
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace).

final sparseness loadings; default = 0.6.

final sparseness factors; default = 0.6.

Non-negative factors and loadings if non_negative > 0; default = 0.

<=0: by SVD, >0: random initialization of loadings in [-random,random]; de-
fault = 1.0.

data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.

loading vectors are scaled in each iteration to the given variance. 0.0 indicates
non scaling; default = 0.0.

minimal value of the variational parameter; default = 1.0.

maximal number of biclusters at which a row element can participate; default =
0 (no limit)

maximal number of row elements per bicluster; default = 0 (no limit)

cycle at which the nL or 1L maximum starts; default = O (start at the beginning)

Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Post-processing by projecting the final results to a given sparseness criterion.

Essentially the model is the sum of outer products of vectors:

P
X:Z)\iziTnLU

i=1

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

fabiap 21

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X, U from R"*!.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer
et al. 2006.

We included a prior on the parameters and minimize a lower bound on the posterior of the parame-
ters given the data. The update of the loadings includes an additive term which pushes the loadings
toward zero (Gaussian prior leads to an multiplicative factor).

Post-processing: The final results of the loadings and the factors are projected to a sparse vector
according to Hoyer, 2004: given an /;-norm and an /s-norm minimize the Euclidean distance to the
original vector (currently the /o-norm is fixed to 1). The projection is a convex quadratic problem
which is solved iteratively where at each iteration at least one component is set to zero. Instead of
the [1-norm a sparseness measurement is used which relates the /;-norm to the l5-norm:

The code is implemented in C and the projection in R.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ),L (loadings L), Z (factors Z), U (noise X — LZ), center (centering vector),
scaleData (scaling vector), X (centered and scaled data X)), Psi (noise variance
0), lapla (variational parameter), avini (the information which the factor z;;
contains about x; averaged over j) xavini (the information which the factor z;
contains about ;) ini (for each j the information which the factor z;; contains
about ;).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’,
Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent
variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.

See Also

fabia, fabias, fabiap, spfabia, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot,
extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData,
makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo,
fabiaVersion

22 fabiap

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]]

resex <- fabiap(X,3,0.1,50)

Not run:

n = 1000
1= 100
p =10

dat <- makeFabiaDataBlocks(n = n,1=1,p = p,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

5?
27

X <- dat[[1]1]
Y <- dat[[2]]
ZC <- dat[[3]]
LC <- dat[[4]1]

gclab <- rep.int(0,1)
gllab <- rep.int(0,n)
clab <- as.character(1:1)
1llab <- as.character(1:n)
for (i in 1:p){

for (j in ZCLil){

clab[j] <- paste(as.character(i),”_",clab[j],sep="")
3
for (j in LCLil){

1lab[j] <- paste(as.character(i),”_",1lab[j],sep="")
}

gclablunlist(ZC[i])] <- gclab[unlist(ZC[il)] + p*i
gllablunlist(LC[i])] <- gllab[unlist(LC[i])] + p*i

groups <- gclab
FABIAP

resToy3 <- fabiap(X,13,0.1,400)

fabiap

extractPlot(resToy3, ti="FABIAP",fY=Y)
raToy3 <- extractBic(resToy3)

if ((raToy3$bic[[1]1[11>1) && (raToy3$bic[[1]11[2]1)>1) {
plotBicluster(raToy3,1)

3

if ((raToy3$bic[[2]1[11>1) && (raToy3$bic[[2]11[2]1)>1) {
plotBicluster(raToy3,2)

3

if ((raToy3$bic[[3]1[11>1) && (raToy3$bic[[3]11[21)>1) {
plotBicluster(raToy3,3)

3

if ((raToy3$bic[[4]11[11>1) && (raToy3$bic[[4]11[21)>1) {
plotBicluster(raToy3,4)

3

colnames(X(resToy3)) <- clab

rownames (X(resToy3)) <- llab

plot(resToy3,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy3,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy3,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)

__
DEMO2: Laura van't Veer's gene expression
data set for breast cancer

__

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHEHHHAAHHAAHHBHEHBHEHARHHBAHHEHEHAAEHEA)
message("Package 'fabiaData' is not available: please install.”)
message (" HHHHHAHHHAHHHAAHEHEHHAHHEAHHE A)
} else {

data(Breast_A)

X <- as.matrix(XBreast)

resBreast3 <- fabiap(X,5,0.1,400)
extractPlot(resBreast3,ti="FABIAP Breast cancer(Veer)")
raBreast3 <- extractBic(resBreast3)

if ((raBreast3$bic[[1]]1[1]>1) && (raBreast3$bic[[1]11[2]1)>1) {

plotBicluster(raBreast3,1)
3

23

24

if ((raBreast3$bic[[2]1[11>1) &&
plotBicluster(raBreast3,2)

3

if ((raBreast3$bic[[3]1[11>1) &&
plotBicluster(raBreast3,3)

3

if ((raBreast3$bic[[4]1[11>1) &&
plotBicluster(raBreast3,4)

3

plot(resBreast3,dim=c(1,2),label.
plot(resBreast3,dim=c(1,3),label.
plot(resBreast3,dim=c(1,4),label.
plot(resBreast3,dim=c(1,5),label.
plot(resBreast3,dim=c(2,3),label.
plot(resBreast3,dim=c(2,4),label.
plot(resBreast3,dim=c(2,5),label.
plot(resBreast3,dim=c(3,4),label.
plot(resBreast3,dim=c(3,5),label.
plot(resBreast3,dim=c(4,5),label.

3

DEMO3: Su's multiple tissue typ
gene expression data set

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

(raBreast3$bic[[2]11[21)>1) {

(raBreast3s$bic[[3]1[21)>1) {

(raBreast3s$bic[[411[2]1)>1) {

tol=0.03,col.group=CBreast, lab.
t01=0.03,col.group=CBreast, lab.
t01=0.03,col.group=CBreast, lab.
tol=0.03,col.group=CBreast, lab.
t01=0.03,col.group=CBreast,lab.
t01=0.03,col.group=CBreast, lab.
tol=0.03,col.group=CBreast, lab.
t01=0.03,col.group=CBreast,lab.
t01=0.03,col.group=CBreast, lab.
tol=0.03,col.group=CBreast,lab.

€s

size=0.
size=0.
size=0.
size=0.
.6)
size=0.
size=0.
size=0.
size=0.
size=0.

size=0

message (" #HHHHHAHHHAHEHAAHHAHHBHEHBHEHARHHBAEHAEHAAEHEA)
message("Package 'fabiaData' is not available: please install."”)
message (" #HHHHHAHHHAHHHAAHE A)

} else {

data(Multi_A)

X <- as.matrix(XMulti)

resMulti3 <- fabiap(X,5,0.1,300)

extractPlot(resMulti3, ti="FABIAP

raMulti3 <- extractBic(resMulti3)

if ((raMulti3sbic[[1]I[1]>1) && (
plotBicluster(raMulti3,1)

3

if ((raMulti3s$bic[[2]1[1]>1) && (
plotBicluster(raMulti3,2)

Multiple tissues(Su)")

raMulti3sbic[[111[21)>1) {

raMulti3sbic[[2]11[21)>1) {

6)
6)
6)
6)

6)
6)
6)
6)
6)

fabiap

fabiap

if ((raMulti3$bic[[3]11[11>1) && (raMulti3s$bic[[311[21)>1) {
plotBicluster(raMulti3, 3)

3

if ((raMulti3$bic[[411[11>1) && (raMulti3s$bic[[411[21)>1) {
plotBicluster(raMulti3,4)

3

plot(resMulti3,dim=c(1,2),label.t0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(1,3),label.t0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(1,4),label.to0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(1,5),label.t0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(2,3),label.t0l1=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(2,4),label.to0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(2,5),label.t0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(3,4),label.t0l1=0.01,col.group=CMulti,lab.size=0.

plot(resMulti3,dim=c(3,5),label.to0l=0.01,col.group=CMulti,lab.size=0.
plot(resMulti3,dim=c(4,5),label.t0l=0.01,col.group=CMulti,lab.size=0.
3

DEMO4: Rosenwald's diffuse large-B-cell

lymphoma gene expression data set

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" HHHHHAHHHAHHHAHHEHEHHEHHEAHHEHE A)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHEHHHHEHAHHEHEHAEAEHEHRAHEEEHEERHHEHREHE AR)
} else {

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL3 <- fabiap(X,5,0.1,400)

extractPlot(resDLBCL3,ti="FABIAP Lymphoma(Rosenwald)")
raDLBCL3 <- extractBic(resDLBCL3)

if ((raDLBCL3$bic[[111[11>1) && (raDLBCL3$bic[[111[21)>1) {
plotBicluster(rabDLBCL3,1)

3

if ((raDLBCL3$bic[[2]11[11>1) && (raDLBCL3$bic[[211[21)>1) {
plotBicluster(raDLBCL3,2)

3

if ((raDLBCL3$bic[[3]1[11>1) && (raDLBCL3$bic[[311[21)>1) {
plotBicluster(rabDLBCL3,3)

3

if ((raDLBCL3$bic[[411[11>1) && (raDLBCL3$bic[[411[21)>1) {

6)
6)
6)
6)
6)
6)
6)
6)
6)
6)

25

26 fabias

plotBicluster(raDLBCL3,4)
3

plot(resDLBCL3,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,3),label.t0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,4),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,5),label.to0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,3),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,4),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,5),label.to0l=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(3,4),label.t0l1=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(3,5),label.t01=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)

End(Not run)

fabias Factor Analysis for Bicluster Acquisition: Sparseness Projection
(FABIAS)

Description

fabias: C implementation of fabias.

Usage

fabias(X,p=13,alpha=0.6,cyc=500,spz=0.5,non_negative=0,random=1.0,center=2,norm=1,1lap=1.0,nL=0,1

Arguments
X the data matrix.
p number of hidden factors = number of biclusters; default = 13.
alpha sparseness loadings (0.1 - 1.0); default = 0.1.
cyc number of iterations; default = 500.
spz sparseness factors (0.5 - 2.0); default = 0.5 (Laplace).
non_negative Non-negative factors and loadings if non_negative > 0; default = 0.
random <=0: by SVD, >0: random initialization of loadings in [-random,random]; de-
fault = 1.0.
center data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.
norm data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.
lap minimal value of the variational parameter; default = 1.0.
nL maximal number of biclusters at which a row element can participate; default =

0 (no limit)
1L maximal number of row elements per bicluster; default = 0 (no limit)

bL cycle at which the nL or 1L maximum starts; default = O (start at the beginning)

fabias 27

Details

Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.

Essentially the model is the sum of outer products of vectors:

X:zp:m,HU

i=1
where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here)\; are from R", z; from R!, L from R™*?, Z from RP*!, and X, U from R"*!.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer
et al. 2006.

The prior has finite support, therefore after each update of the loadings they are projected to the
finite support. The projection is done according to Hoyer, 2004: given an [;-norm and an /3-norm
minimize the Euclidean distance to the original vector (currently the /s-norm is fixed to 1). The
projection is a convex quadratic problem which is solved iteratively where at each iteration at least
one component is set to zero. Instead of the [-norm a sparseness measurement is used which relates
the {1-norm to the [5-norm.

The code is implemented in C.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ),L (loadings L), Z (factors Z), U (noise X — LZ), center (centering vector),
scaleData (scaling vector), X (centered and scaled data X), Psi (noise variance
0), lapla (variational parameter), avini (the information which the factor z;;
contains about x; averaged over j) xavini (the information which the factor z;
contains about ;) ini (for each j the information which the factor z;; contains
about ;).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’,
Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent
variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.

28 fabias

See Also

fabia, fabias, fabiap, spfabia, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot,
extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData,
makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo,
fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabias(X,3,0.6,50)

Not run:

DEMO1: Toy Data

n = 1000

1= 100

p =10

dat <- makeFabiaDataBlocks(n = n,1=1,p = p,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

5?
27

X <- dat[[1]1]
Y <- dat[[2]]
ZC <- dat[[3]]
LC <- dat[[4]]

gclab <- rep.int(0,1)
gllab <- rep.int(0,n)
clab <- as.character(1:1)
1llab <- as.character(1:n)
for (i in 1:p){

for (j in ZCLil){

clab[j] <- paste(as.character(i),"”_",clab[j],sep="")
3
for (j in LCLil){

1lab[j] <- paste(as.character(i),"”_",11lab[j],sep="")
3

gclablunlist(ZC[i])] <- gclab[unlist(ZC[i])] + p*i
gllabfunlist(LC[i])] <- gllab[unlist(LC[i])] + p*i

fabias

groups <- gclab
##t## FABIAS
resToy2 <- fabias(X,13,0.6,400)

extractPlot(resToy2, ti="FABIAS",fY=Y)

raToy2 <- extractBic(resToy2)

if ((raToy2$bic[[111[11>1) && (raToy2$bic[[111[21)>1) {
plotBicluster(raToy2,1)

3

if ((raToy2$bic[[2]11[11>1) && (raToy2$bic[[211[21)>1) {
plotBicluster(raToy2,2)

3

if ((raToy2$bic[[311[11>1) && (raToy2$bic[[311[21)>1) {
plotBicluster(raToy2,3)

3

if ((raToy2$bic[[4]11[11>1) && (raToy2$bic[[411[21)>1) {
plotBicluster(raToy2,4)

3

colnames(X(resToy2)) <- clab
rownames (X(resToy2)) <- llab
plot(resToy2,dim=c(1,2),label.t0ol=0.1,col.group = groups,lab.size=0.6)

plot(resToy2,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy2,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)

__
DEMO2: Laura van't Veer's gene expression
data set for breast cancer

__

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHAHEHAAHHAHHAAEHAAEHAAHHAAHHAHEHAAEHAA)
message("Package 'fabiaData' is not available: please install."”)
message (" HHHHHAHHHAHHAHHEHAHHAHHEAHE A)
} else {

data(Breast_A)

X <- as.matrix(XBreast)

29

30

resBreast2 <- fabias(X,5,0.6,300)

extractPlot(resBreast2,ti="FABIAS Breast cancer(Veer)")

raBreast2 <- extractBic(resBreast2)

if ((raBreast2$bic[[1]]1[11>1) && (raBreast2$bic[[1]1][2]1)>1) {
plotBicluster(raBreast2,1)

3

if ((raBreast2$bic[[2]]1[11>1) && (raBreast2$bic[[2]1][2]1)>1) {
plotBicluster(raBreast2,?2)

3

if ((raBreast2$bic[[3]1[1]1>1) && (raBreast2$bic[[3]11[21)>1) {
plotBicluster(raBreast2,3)

3

if ((raBreast2$bic[[4]1[1]1>1) && (raBreast2$bic[[4]1]1[21)>1) {
plotBicluster(raBreast2,4)

plot(resBreast2,dim=c(1,2),label.t0l1=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(1,3),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(1,4),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(1,5),label.t0l=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(2,3),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(2,4),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(2,5),label.t0l1=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(3,4),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast2,dim=c(3,5),label.tol=0.03,col.group=CBreast, lab.

plot(resBreast2,dim=c(4,5),label.t0l1=0.03,col.group=CBreast, lab.
3

DEMO3: Su's multiple tissue types

gene expression data set

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

size=0.
size=0.
size=0.
.6)
size=0.
size=0.
size=0.
size=0.
.6)
size=0.

size=0

size=0

message (" #HHHHHAHHHAHHHAHAHEHHAHHA A)
message("Package 'fabiaData' is not available: please install.")
message (" #HHHHEHHHHEHRHHEHREEHEEAHHBHRHHEHREHEERHHEHREHE)

} else {

data(Multi_A)

X <- as.matrix(XMulti)

resMulti2 <- fabias(X,5,0.6,300)
extractPlot(resMulti2,ti="FABIAS Multiple tissues(Su)")

raMulti2 <- extractBic(resMulti2)

6)
6)
6)

6)
6)
6)
6)

6)

fabias

fabias

if ((raMulti2$bic[[1]11[11>1) &&

3

if ((raMulti2$bic[[2]11[11>1) &&

3

if ((raMulti2$bic[[311[11>1) &&

3

if ((raMulti2$bic[[411[11>1) &&

3

plot(resMulti2,dim=c(1,2),label.
plot(resMulti2,dim=c(1,3),label.
plot(resMulti2,dim=c(1,4),label.
plot(resMulti2,dim=c(1,5),label.
plot(resMulti2,dim=c(2,3),label.
plot(resMulti2,dim=c(2,4),label.
plot(resMulti2,dim=c(2,5),label.
plot(resMulti2,dim=c(3,4),label.
plot(resMulti2,dim=c(3,5),label.
plot(resMulti2,dim=c(4,5),label.

plotBicluster(raMulti2,1)

plotBicluster(raMulti2,2)

plotBicluster(raMulti2, 3)

plotBicluster(raMulti2,4)

(raMulti2$bic[[111[21)>1) {

(raMulti2$bic[[2]1[21)>1) {

(raMulti2$bic[[311[21)>1) {

(raMulti2$bic[[411[21)>1) {

t01=0.01,col.group=CMulti,lab.
t0l=0.01,col.group=CMulti,lab.
t0l=0.01,col.group=CMulti,lab.
t01=0.01,col.group=CMulti,lab.
t0l=0.01,col.group=CMulti,lab.
t0l=0.01,col.group=CMulti,lab.
t01=0.01,col.group=CMulti,lab.
t0l=0.01,col.group=CMulti,lab.
t0l=0.01,col.group=CMulti,lab.
t01=0.01,col.group=CMulti,lab.

DEMO4: Rosenwald's diffuse large-B-cell
lymphoma gene expression data set

#

a

i

}

d

X

resDLBCL2 <- fabias(X,5,0.6,300)

vail <- require(fabiaData)

f (lavail) {
message("")
message("")

size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.

message (" #HHHHEHHHHEHAHHEHREHEEAHHBHRAHERAHEEREHBHRAHA AR)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHEHEHAAHHAHHBAEHBHEHARHHBAHHEHEHAAEHEA)

else {
ata(DLBCL_B)

<- as.matrix(XDLBCL)

extractPlot(resDLBCL2,ti="FABIAS Lymphoma(Rosenwald)")

raDLBCL2 <- extractBic(resDLBCL2)

if ((rabDLBCL2$bic[[1]11[1]1>1) && (rabDLBCL2$bic[[1]1[21)>1) {

3

plotBicluster(rabDLBCL2,1)

6)
6)
6)
6)
6)
6)
6)
6)
6)
6)

31

32

if ((raDLBCL2$bic[[2]11[11>1) 8&&

plotBicluster(rabDLBCL2,2)

}

if ((raDLBCL2$bic[[3]11[11>1) &&

plotBicluster(raDLBCL2,3)

}

if ((raDLBCL2$bic[[4]1[11>1) &&

plotBicluster(rabDLBCL2,4)

}

plot(resDLBCL2,dim=c(1,2),label.t0l1=0.03,col.
plot(resDLBCL2,dim=c(1,3),label.t01=0.03,col.
plot(resDLBCL2,dim=c(1,4),label.t0l1=0.03,col.
plot(resDLBCL2,dim=c(1,5),label.t0l1=0.03,col.
plot(resDLBCL2,dim=c(2,3),label.t01=0.03,col.
plot(resDLBCL2,dim=c(2,4),label.t0l1=0.03,col.
plot(resDLBCL2,dim=c(2,5),label.t0l1=0.03,col.
plot(resDLBCL2,dim=c(3,4),label.t01=0.03,col.
plot(resDLBCL2,dim=c(3,5),label.t0l1=0.03,col.
plot(resDLBCL2,dim=c(4,5),label.t0l1=0.03,col.

3

End(Not run)

(rabDLBCL2$bic[[2]1[21)>1) {

(rabDLBCL2$bic[[3]1[21)>1) {

(rabDLBCL2$bic[[411[21)>1) {

group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.

size=0.
size=0.
size=0.
size=0.
.6)
size=0.
size=0.
size=0.
size=0.
size=0.

size=0

6)
6)
6)
6)

6)
6)
6)
6)

fabiasp

fabiasp

Factor Analysis for Bicluster Acquisition:

(FABIASP)

Sparseness Projection

Description

fabiasp: R implementation of fabias, therefore it is slow.

Usage

fabiasp(X,p=13,alpha=0.6,cyc=500,spz=0.5,center=2,norm=1,lap=1.0)

Arguments
X
p
alpha
cyc
spz
center
norm

lap

the data matrix.

number of hidden factors = number of biclusters; default = 13.

sparseness loadings (0.1 - 1.0); default = 0.6.

number of iterations; default = 500.

sparseness factors (0.5 - 2.0); default = 0.5 (Laplace).

data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.

data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.

minimal value of the variational parameter; default = 1.0.

fabiasp 33

Details

Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.

Essentially the model is the sum of outer products of vectors:

X:zp:m,HU

i=1
where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here)\; are from R", z; from R!, L from R™*?, Z from RP*!, and X, U from R"*!.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer
et al. 2006.

The prior has finite support, therefore after each update of the loadings they are projected to the
finite support. The projection is done according to Hoyer, 2004: given an [;-norm and an /3-norm
minimize the Euclidean distance to the original vector (currently the /s-norm is fixed to 1). The
projection is a convex quadratic problem which is solved iteratively where at each iteration at least
one component is set to zero. Instead of the [-norm a sparseness measurement is used which relates
the {1-norm to the [5-norm.

The code is implemented in R, therefore it is slow.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ),L (loadings L), Z (factors Z), U (noise X — LZ), center (centering vector),
scaleData (scaling vector), X (centered and scaled data X), Psi (noise variance
0), lapla (variational parameter), avini (the information which the factor z;;
contains about x; averaged over j) xavini (the information which the factor z;
contains about ;) ini (for each j the information which the factor z;; contains
about ;).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’,
Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent
variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.

34 fabiasp

See Also

fabia, fabias, fabiap, spfabia, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot,
extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData,
makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo,
fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabiasp(X,3,0.6,50)
Not run:
dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,2

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

= 5,
2.0,

X <- dat[[1]1]
Y <- dat[[2]]

resToy <- fabiasp(X,13,0.6,200)

extractPlot(resToy, "ti=FABIASP",6Y=Y)

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHAHEHAEHHBEHHRHEHRHEHBRHHEHEHRHEHAAEHEAHHE)
message("Package 'fabiaData' is not available: please install.”)
message (" HHHHHAHHHAHEHAAHAHAEHAHHAAHHE AR)
} else {

fabiasp

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabiasp(X,5,0.6,200)
extractPlot(resBreast,ti="FABIASP Breast cancer(Veer)")

#sorting of predefined labels
CBreast

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHEHEHBRHHBEHHRHEHBHEHBRHHEAHHEHEHAAEHEEEHE)
message("Package 'fabiaData' is not available: please install.”)
message (" HHHHHAHHHAHEHAAHHAHHAEHAHEHAAHHAHAHEHAHE)
} else {

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabiasp(X,5,0.6,200)
extractPlot(resMulti,”ti=FABIASP Multiple tissues(Su)")

#sorting of predefined labels
CMulti

avail <- require(fabiaData)

if (lavail) {
message("")
message("")
message (" #HHHHHAHHHAHEHAAHHBAEHAHEHBHEHBAHHBAEHBHEHAAEHAAHHE)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHAHHAAHAHAHHAHEHEAHEHAHA A)
} else {

35

36 fabiaVersion

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabiasp(X,5,0.6,200)
extractPlot(resDLBCL,ti="FABIASP Lymphoma(Rosenwald)")
#sorting of predefined labels

CDLBCL
}

End(Not run)

fabiaVersion Display version info for package and for FABIA

Description

fabiaVersion displays version information about the package.

Usage

fabiaVersion()

Value

Displays version information

Author(s)

Sepp Hochreiter

See Also

fabia, fabias, fabiap, spfabia, readSpfabiaResult, fabi, fabiasp, mfsc, nmfdiv, nmfeu,

nmfsc, extractPlot, extractBic, plotBicluster, Factorization, projFuncPos, projFunc,
estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos,
matrixImagePlot, fabiaDemo, fabiaVersion

Examples

fabiaVersion()

Factorization-class

37

Factorization-class Factorization instances

Description

Factorization is a class to store results of matrix factorization algorithms. It has been designed

for biclustering but can be used for "principal component analysis", "singular value decomposition",
"independent component analysis", "factor analysis", and "non-negative matrix factorization".

Usage

S4 method for signature 'Factorization'
plot(x, Rm=NULL, Cm=NULL, dim = c(1, 2),

zoom

rep(1, 2), col.group = NULL,

colors = c("orange1”, "red"”, rainbow(length(unique(col.group)),

col.areas

start=2/6, end=4/6)),

TRUE, col.symbols = c(1, rep(2, length(unique(col.group)))),

sampleNames = TRUE, rot = rep(-1, length(dim)),

labels

NULL, label.tol = 0.1, lab.size = 0.725, col.size = 10,

row.size = 10, do.smoothScatter = FALSE,
do.plot = TRUE, ...)

S4 method for signature 'Factorization'

show(object)

S4 method for signature 'Factorization'
showSelected(object, which=c(1,2,3,4))

S4 method for signature 'Factorization'

summary (object,

Arguments

X
Rm
Cm

dim

zoom

col.group

colors

L)

PLOT:

object of the class Factorization.

row weighting vector. If NULL, it defaults to rep(1,nrow(L(x))).
column weighting vector. If NULL, it defaults to rep(1,ncol(Z(x))).

optional principal factors that are plotted along the horizontal and vertical axis.
Defaults to c(1, 2).

optional zoom factor for row and column items. Defaults to c(1,1).

optional vector (character or numeric) indicating the different groupings of the
columns. Defaults to 1.

vector specifying the colors for the annotation of the plot; the first two elements
concern the rows; the third till the last element concern the columns; the first ele-

ment will be used to color the unlabeled rows; the second element for the labeled

rows and the remaining elements to give different colors to different groups of
columns. Defaults to c("orange1”, "red”, rainbow(length(unique(col.group)),
start=2/6, end=4/6)).

38

col.areas

col.symbols

sampleNames

rot
labels

label.tol

lab.size

col.size

row.size

Factorization-class

logical value indicating whether columns should be plotted as squares with areas
proportional to their marginal mean and colors representing the different groups
(TRUE), or with symbols representing the groupings and identical size (FALSE).
Defaults to TRUE.

vector of symbols when col.areas=FALSE corresponds to the pch argument of
the function plot. Defaults to c(1, rep(2, length(unique(col.group)))).

either a logical vector of length one or a character vector of length equal to the
number of samples in the dataset. If a logical is provided, sample names will
be displayed on the plot (TRUE; default) or not (FALSE); if a character vector is
provided, the names provided will be used to label the samples instead of the
default column names.

rotation of plot. Defaults to c(-1,-1).

character vector to be used for labeling points on the graph; if NULL (default),
the row names of x are used instead.

numerical value specifying either the percentile (label. tol<=1) of rows or the
number of rows (label.tol>1) most distant from the plot-center (0,0) that are
labeled and are plotted as circles with area proportional to the marginal means
of the original data. Defaults to 1.

size of identifying labels for row- and column-items as cex parameter of the
text function. Defaults to 0.725.

size of the column symbols in mm. Defaults to 10.

size of the row symbols in mm. Defaults to 10.

do.smoothScatter

do.plot

object

which

Details

use smoothScatter or not instead of plotting individual points. Defaults to FALSE.
produce a plot or not. Defaults to TRUE.

further arguments are passed on to eqscaleplotLoc which draws the canvas for
the plot; useful for adding a main or a custom sub.

SHOW:

An instance of Factorization-class.
SHOWSELECTED:

see object at show.

used to provide a list of which plots should be generated: 1=the information
content of biclusters, 2=the information content of samples, 3=the loadings per
bicluster, 4=the factors per bicluster, default c(1,2,3,4).

SUMMARY:
see object at show.

... further arguments.

Plot Produces a biplot of a matrix factorization result stored in an instance of the Factorization

class.

The function plot is based on the function plot.mpm in the R package mpm (Version: 1.0-
16, Date: 2009-08-26, Title: Multivariate Projection Methods, Maintainer: Tobias Verbeke
<tobias.verbeke @openanalytics.be>, Author: Luc Wouters <wouters_luc @telenet.be>).

Biclusters are found by sparse factor analysis where both the factors and the loadings are

sparse.

Factorization-class 39

Essentially the model is the sum of outer products of vectors:

p
X=> Nz +U

i=1
where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here)\; are from R", z; from R!, L from R™*P, Z from RP*!, and X, U from R"*!.

For noise free projection like independent component analysis we set the noise term to zero:
U=0.

The argument label. tol can be used to select the most informative rows, i.e. rows that are
most distant from the center of the plot (smaller 1: percentage of rows, larger 1: number of
TOWS).

Only these row-items are then labeled and represented as circles with their areas proportional
to the row weighting.

If the column-items are grouped these groups can be visualized by colors given by col. group.

Show Statistics of a matrix factorization result stored in an instance of the Factorization class.

This function supplies statistics on a matrix factorization result which is stored as an instance
of Factorization-class.

The following is plotted:

1. the information content of biclusters.
2. the information content of samples.
3. the loadings per bicluster.
4. the factors per bicluster.
ShowSelected Lists selected statistics of a matrix factorization result stored in an instance of the
Factorization class.

This function supplies selected statistics on a matrix factorization result which is stored as an
instance of Factorization-class.

The following is plotted depending on the display selection variable which:

1. the information content of biclusters.
2. the information content of samples.
3. the loadings per bicluster.

4. the factors per bicluster.

Summary Summary of matrix factorization result stored in an instance of the Factorization class.

This function gives information on a matrix factorization result which is stored as an instance
of Factorization-class.

The summary consists of following items:
. the number or rows and columns of the original matrix.
. the number of clusters for rows and columns is given.

. for the row cluster the information content is given.

1

2

3

4. for each column its information is given.

5. for each column cluster a summary is given.
6

. for each row cluster a summary is given.

40 Factorization-class

Value

FACTORIZATION:
An instance of Factorization-class.
PLOT:

Rows a list with the X and Y coordinates of the rows and an indication Select of
whether the row was selected according to label. tol.

Columns a list with the X and Y coordinates of the columns.
SHOW:
no value.
SHOWSELECTED:
no value.
SUMMARY:

no value.

Slots
Objects of class Factorization have the following slots:

parameters: Saves parameters of the factorization method in a list: ("method","number of cy-

non non non non

cles","sparseness weight","sparseness prior for loadings","sparseness prior for factors","number

non non non

biclusters","projection sparseness loadings", "projection sparseness factors","initialization range","are

"non "non

loadings rescaled after each iterations","normalization = scaling of rows","centering method

"non

of rows","parameter for method").
n: number of rows, left dimension.
p1: right dimension of left matrix.
p2: left dimension of right matrix.
1: number of columns, right dimension.
center: vector of the centers.
scaleData: vector of the scaling factors.
X: centered and scaled data matrix n x 1.
L: left matrix n x pl.
Z: right matrix p2 x L.
M: middle matrix p1 x p2.
LZ: matrix Lx M x Z.
U: noise matrix.
avini: information of each bicluster, vector of length p2.
xavini: information extracted from each sample, vector of length 1.
ini: information of each bicluster in each sample, matrix p2 x L.
Psi: noise variance per row, vector of length n.

lapla: prior information for each sample, vector of length 1.

Constructor

Constructor of class Factorization.

Factorization(parameters=1list(),n=1,p1=1,p2=1,1=1,center=as.vector(1),scaleData=as.vector (1), X=c

Factorization-class 41

Accessors

In the following x denotes a Factorization object.

parameters(x), parameters(x) <- value: Returns or sets parameters, where the return value
and value are both an instance of 1ist. Parameters of the factorization method are stored in a

non non non

list: ("method","number of cycles","sparseness weight","sparseness prior for loadings","sparseness

non non non

prior for factors","number biclusters","projection sparseness loadings", "projection sparseness

"non: non non

factors","initialization range","are loadings rescaled after each iterations","normalization =

"non non

scaling of rows","centering method of rows","parameter for method").

n(x), n(x) <- value: Returns or sets n, where the return value and value are both an instance of
numeric. Number of rows, left dimension.

p1(x), p1(x) <- value: Returns or sets p1, where the return value and value are both an instance
of numeric. Right dimension of left matrix

p2(x), p2(x) <- value: Returns or sets p2, where the return value and value are both an instance
of numeric. Left dimension of right matrix.

1(x), 1(x) <- value: Returns or sets 1, where the return value and value are both an instance of
numeric. Number of columns, right dimension.

center(x), center(x) <- value: Returns or sets center, where the return value and value are
both an instance of numeric. Vector of the centers.

scaleData(x), scaleData(x) <- value: Returns or sets scaleData, where the return value and
value are both an instance of numeric. Vector of the scaling factors.

X(x), X(x) <- value: Returns or sets X, where the return value and value are both an instance of
matrix. Centered and scaled data matrix n x 1.

L(x), L(x) <- value: Returns or sets L, where the return value and value are both an instance of
matrix. Left matrix n x p1.

Z(x), Z(x) <- value: Returns or sets Z, where the return value and value are both an instance of
matrix. Right matrix p2 x 1.

M(x), M(x) <- value: Returns or sets M, where the return value and value are both an instance of
matrix. Middle matrix p1 x p2.

LZ(x), LZ(x) <- value: Returns or sets LZ, where the return value and value are both an instance
of matrix. Matrix Lx M x Z.

U(x), U(x) <- value: Returns or sets U, where the return value and value are both an instance of
matrix. Noise matrix.

avini(x), avini(x) <- value: Returns or sets avini, where the return value and value are both
an instance of numeric. Information of each bicluster, vector of length p2.

xavini(x), xavini(x) <- value: Returns or sets xavini, where the return value and value are
both an instance of numeric. Information extracted from each sample, vector of length 1.

ini(x), ini(x) <- value: Returns or sets ini, where the return value and value are both an
instance of matrix. Information of each bicluster in each sample, matrix p2 x 1.

Psi(x), Psi(x) <- value: Returns or sets Psi, where the return value and value are both an
instance of numeric. Noise variance per row, vector of length n.

lapla(x), lapla(x) <- value: Returns or sets lapla, where the return value and value are both
an instance of matrix. Prior information for each sample, vector of length 1.

42 Factorization-class

Signatures

plot signature(x = "Factorization”, y = "missing") Plot of a matrix factorization result
show signature(object = "Factorization™) Display statistics of a matrix factorization result

showSelected signature(object = "Factorization"”, which = "numeric") Display particular
statistics of a matrix factorization result

summary signature(object = "Factorization”) Summary of matrix factorization result

Functions that return objects of this class

Factorization objects are returned by fabia, fabias, fabiap, fabiasp, mfsc, nmfsc, nmfdiv, and
nmfeu.

Extension to store results of other methods

The class Factorization may contain the result of different matrix factorization methods. The
methods may be generative or not.

Methods my be "singular value decomposition" (M contains singular values as well as avini, L and
Z are orthonormal matrices), "independent component analysis" (Z contains the projection/sources,
L is the mixing matrix, M is unity), "factor analysis" (Z contains factors, L the loadings, M is unity,
U the noise, Psi the noise covariance, lapla is a variational parameter for non-Gaussian factors, avini
and ini are the information the factors convey about the observations).

Author(s)

Sepp Hochreiter

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

IR
TEST
FHHHEHHHEHEEAEAE

n=200
1=100
p=4

dat <- makeFabiaDataBlocks(n = n,1=1,p = p,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

5»
2:

Factorization-class

X <- dat[[1]]
ZC <- dat[[3]]
LC <- dat[[4]]

resex <- fabia(X,p,0.01,400)

gclab <- rep.int(0,1)
gllab <- rep.int(@,n)
clab <- as.character(1:1)
1llab <- as.character(1:n)
for (i in 1:p){

for (j in ZCLil){

clab[j] <- paste(as.character(i),"”_",clab[j]1,sep="")
3
for (j in LCLil){

1lab[j] <- paste(as.character(i),”_",11ab[j1,sep="")
3

gclablunlist(ZC[i])] <- gclablunlist(ZC[il)] + p*i
gllabfunlist(LC[i])] <- gllab[unlist(LC[i])] + p*i

groups <- gclab

colnames(X(resEx)) <- clab

rownames (X(resgx)) <- 1llab
plot(reskx,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)

plot(resEx,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(reskEx,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

reskx <- fabia(X,3,0.01,100)

show(resEx)

SHOWSELECTED

44 makeFabiaData

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

resEx <- fabia(X,3,0.01,100)

showSelected(resEx,which=1)
showSelected(reskx,which=2)

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

reseEx <- fabia(X,3,0.01,100)

summary (resEx)

makeFabiaData Generation of Bicluster Data

Description

makeFabiaData: R implementation of makeFabiaData.

Usage

makeFabiaData(n,1,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_1_noise,mean_1,sd_1)

Arguments
n number of observations.
1 number of samples.
p number of biclusters.
f1 nn/f1 max. additional samples are active in a bicluster.

f2 n/f2 max. additional observations that form a pattern in a bicluster.

makeFabiaData 45

of1 minimal active samples in a bicluster.
of2 minimal observations that form a pattern in a bicluster.
sd_noise Gaussian zero mean noise std on data matrix.
sd_z_noise Gaussian zero mean noise std for deactivated hidden factors.
mean_z Gaussian mean for activated factors.
sd_z Gaussian std for activated factors.
sd_l_noise Gaussian zero mean noise std if no observation patterns are present.
mean_1 Gaussian mean for observation patterns.
sd_1 Gaussian std for observation patterns.
Details

Essentially the data generation model is the sum of outer products of sparse vectors:

p
X:Z)\LZ?+U

i=1
where the number of summands p is the number of biclusters. The matrix factorization is
X=LZ+U

and noise free
Y=LZ

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X, U, Y from R"*!.

Sequentially L; are generated using n, f2, of2, sd_1_noise, mean_1, sd_1. of2 gives the minimal
observations participating in a bicluster to which between 0 and n/ f2 observations are added, where
the number is uniformly chosen. sd_1_noise gives the noise of observations not participating in
the bicluster. mean_1 and sd_1 determines the Gaussian from which the values are drawn for the
observations that participate in the bicluster. The sign of the mean is randomly chosen for each
component.

Sequentially Z; are generated using 1, f1, of 1, sd_z_noise, mean_z, sd_z. of1 gives the minimal
samples participating in a bicluster to which between 0 and [/ f1 samples are added, where the num-
ber is uniformly chosen. sd_z_noise gives the noise of samples not participating in the bicluster.
mean_z and sd_z determines the Gaussian from which the values are drawn for the samples that
participate in the bicluster.

U is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R.

Value

X the noise data from R™*!.

Y the noise free data from R™*!.

ZC list where i-th element gives samples belonging to i-th bicluster.

LC list where i-th element gives observations belonging to i-th bicluster.
Author(s)

Sepp Hochreiter

46 makeFabiaDataBlocks

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaData(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

matrixImagePlot(Y)
dev.new()
matrixImagePlot (X)

Not run:

dat <- makeFabiaData(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]]

matrixImagePlot(Y)

dev.new()
matrixImagePlot(X)

End(Not run)

makeFabiaDataBlocks Generation of Bicluster Data with Bicluster Blocks

Description

makeFabiaDataBlocks: R implementation of makeFabiaDataBlocks.

Usage

makeFabiaDataBlocks(n,1,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_1_noise,mean_1,sd_1)

makeFabiaDataBlocks

sd_z_noise

47

Arguments
number of observations.
number of samples.
p number of biclusters.
f1 nn/f1 max. additional samples are active in a bicluster.
f2 n/f2 max. additional observations that form a pattern in a bicluster.
of1 minimal active samples in a bicluster.
of2 minimal observations that form a pattern in a bicluster.
sd_noise Gaussian zero mean noise std on data matrix.

Gaussian zero mean noise std for deactivated hidden factors.

mean_z Gaussian mean for activated factors.
sd_z Gaussian std for activated factors.
sd_1_noise Gaussian zero mean noise std if no observation patterns are present.
mean_1 Gaussian mean for observation patterns.
sd_1 Gaussian std for observation patterns.
Details

Bicluster data is generated for visualization because the biclusters are now in block format. That
means observations and samples that belong to a bicluster are consecutive. This allows visual
inspection because the use can identify blocks and whether they have been found or reconstructed.

Essentially the data generation model is the sum of outer products of sparse vectors:

p
X=> Nzl +U
=1

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

and noise free
Y=LZ

Here)\; are from R", z; from R!, L from R™*?, Z from RP*!, and X, U, Y from R"*!.

Sequentially L; are generated using n, f2, of2, sd_1_noise, mean_1, sd_1. of2 gives the minimal
observations participating in a bicluster to which between 0 and n/ f2 observations are added, where
the number is uniformly chosen. sd_1_noise gives the noise of observations not participating in
the bicluster. mean_1 and sd_1 determines the Gaussian from which the values are drawn for the
observations that participate in the bicluster. The sign of the mean is randomly chosen for each
component.

Sequentially Z; are generated using 1, f1, of 1, sd_z_noise, mean_z, sd_z. of1 gives the minimal
samples participating in a bicluster to which between 0 and [/ f1 samples are added, where the num-
ber is uniformly chosen. sd_z_noise gives the noise of samples not participating in the bicluster.
mean_z and sd_z determines the Gaussian from which the values are drawn for the samples that
participate in the bicluster.

U is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R.

48 makeFabiaDataBlocks

Value

Y the noise data from R"*!.

X the noise free data from R™*!.

ZC list where i-th element gives samples belonging to i-th bicluster.

LC list where i-th element gives observations belonging to i-th bicluster.
Author(s)

Sepp Hochreiter
See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]1]

matrixImagePlot(Y)
dev.new()
matrixImagePlot (X)

Not run:
dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

:5’
2.0,
Y <- dat[[1]]

X <- dat[[2]]

matrixImagePlot(Y)

dev.new()
matrixImagePlot (X)

End(Not run)

makeFabiaDataBlocksPos 49

makeFabiaDataBlocksPos
Generation of Bicluster Data with Bicluster Blocks

Description

makeFabiaDataBlocksPos: R implementation of makeFabiaDataBlocksPos.

Usage

makeFabiaDataBlocksPos(n,1,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_1_noise,mean_1,sd_1)

sd_z_noise

Arguments
n number of observations.
1 number of samples.
p number of biclusters.
f1 nn/f1 max. additional samples are active in a bicluster.
f2 n/f2 max. additional observations that form a pattern in a bicluster.
of1 minimal active samples in a bicluster.
of2 minimal observations that form a pattern in a bicluster.
sd_noise Gaussian zero mean noise std on data matrix.

Gaussian zero mean noise std for deactivated hidden factors.

mean_z Gaussian mean for activated factors.
sd_z Gaussian std for activated factors.
sd_1_noise Gaussian zero mean noise std if no observation patterns are present.
mean_1 Gaussian mean for observation patterns.
sd_1 Gaussian std for observation patterns.
Details

Bicluster data is generated for visualization because the biclusters are now in block format. That
means observations and samples that belong to a bicluster are consecutive. This allows visual
inspection because the use can identify blocks and whether they have been found or reconstructed.

Essentially the data generation model is the sum of outer products of sparse vectors:

X:zp:)\iziT+U

i=1

where the number of summands p is the number of biclusters. The matrix factorization is

and noise free

X=LZ+U

Y=LZ

50 makeFabiaDataBlocksPos

Here \; are from R", z; from R, L from R"*?, Z from RP*!, and X, U, Y from R™*!.

Sequentially L; are generated using n, f2, of2, sd_1_noise, mean_1, sd_1. of2 gives the minimal
observations participating in a bicluster to which between 0 and n/ f2 observations are added, where
the number is uniformly chosen. sd_1_noise gives the noise of observations not participating in
the bicluster. mean_1 and sd_1 determines the Gaussian from which the values are drawn for the
observations that participate in the bicluster. "POS": The sign of the mean is fixed.

Sequentially Z; are generated using 1, f1, of1, sd_z_noise, mean_z, sd_z. of1 gives the minimal
samples participating in a bicluster to which between 0 and [/ f1 samples are added, where the num-
ber is uniformly chosen. sd_z_noise gives the noise of samples not participating in the bicluster.
mean_z and sd_z determines the Gaussian from which the values are drawn for the samples that
participate in the bicluster.

U is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R.

Value

Y the noise data from R™*!,

X the noise free data from R"™*.

ZC list where i-th element gives samples belonging to i-th bicluster.

LC list where i-th element gives observations belonging to i-th bicluster.
Author(s)

Sepp Hochreiter
See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocksPos(n = 100,1= 50,p = 3,f1 = 5,f2
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z =
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

=5,
2.0,
X <- dat[[1]]

Y <- dat[[2]]

matrixImagePlot(Y)

dev.new()
matrixImagePlot (X)

Not run:

makeFabiaDataPos 51

dat <- makeFabiaDataBlocksPos(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)
Y <- dat[[1]]
X <- dat[[2]]
matrixImagePlot(Y)
dev.new()
matrixImagePlot (X)
End(Not run)
makeFabiaDataPos Generation of Bicluster Data
Description
makeFabiaDataPos: R implementation of makeFabiaDataPos.
Usage
makeFabiaDataPos(n,1,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_1_noise,mean_1,sd_1)
Arguments
n number of observations.
1 number of samples.
p number of biclusters.
f1 nn/f1 max. additional samples are active in a bicluster.
f2 n/f2 max. additional observations that form a pattern in a bicluster.
of1 minimal active samples in a bicluster.
of2 minimal observations that form a pattern in a bicluster.
sd_noise Gaussian zero mean noise std on data matrix.
sd_z_noise Gaussian zero mean noise std for deactivated hidden factors.
mean_z Gaussian mean for activated factors.
sd_z Gaussian std for activated factors.
sd_1_noise Gaussian zero mean noise std if no observation patterns are present.
mean_1 Gaussian mean for observation patterns.

sd_1 Gaussian std for observation patterns.

52 makeFabiaDataPos

Details

Essentially the data generation model is the sum of outer products of sparse vectors:

X:ZP:)\iziT+U

i=1
where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

and noise free
Y=LZ7

Here)\; are from R", z; from R!, L from R™*?, Z from RP*!, and X, U, Y from R"*!.

Sequentially L; are generated using n, 2, of2, sd_1_noise, mean_1, sd_1. of2 gives the minimal
observations participating in a bicluster to which between 0 and n/ f2 observations are added, where
the number is uniformly chosen. sd_1_noise gives the noise of observations not participating in
the bicluster. mean_1 and sd_1 determines the Gaussian from which the values are drawn for the
observations that participate in the bicluster. "POS": The sign of the mean is fixed.

Sequentially Z; are generated using 1, f1, of 1, sd_z_noise, mean_z, sd_z. of1 gives the minimal
samples participating in a bicluster to which between 0 and [/ f 1 samples are added, where the num-
ber is uniformly chosen. sd_z_noise gives the noise of samples not participating in the bicluster.
mean_z and sd_z determines the Gaussian from which the values are drawn for the samples that
participate in the bicluster.

U is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R.

Value

X the noise data from R™*!,

Y the noise free data from R/,

ZC list where i-th element gives samples belonging to i-th bicluster.

LC list where i-th element gives observations belonging to i-th bicluster.
Author(s)

Sepp Hochreiter
See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataPos(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,

matrixImagePlot

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]]

matrixImagePlot(Y)
dev.new()
matrixImagePlot (X)

Not run:

dat <- makeFabiaDataPos(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]]

matrixImagePlot(Y)

dev.new()
matrixImagePlot(X)

End(Not run)

matrixImagePlot Plotting of a Matrix

Description

matrixImagePlot: R implementation of myImagePlot.

Usage

matrixImagePlot(x,xLabels=NULL, ylLabels=NULL, zlim=NULL, title=NULL)

Arguments
X the matrix.
xLabels vector of strings to label the columns (default "colnames(x)").
yLabels vector of strings to label the rows (default "rownames(x)").
zlim vector containing a low and high value to use for the color scale.

title title of the plot.

54 matrixImagePlot

Details

Plotting a table of numbers as an image using R.
The color scale is based on the highest and lowest values in the matrix.

The original R code has been obtained by http: //www.phaget4.org/R/myImagePlot.R and then
has been modified.

Value

Plotting a table of numbers as an image

References

http://www.phaget4.org/R/myImagePlot.R

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]]

matrixImagePlot(Y)
dev.new()
matrixImagePlot(X)

Not run:

dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z =
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]1]

X <- X- rowMeans(X)

XX <= (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <= dXX*X

http://www.phaget4.org/R/myImagePlot.R
http://www.phaget4.org/R/myImagePlot.R

mfsc 55

matrixImagePlot (X)

End(Not run)

mfsc Sparse Matrix Factorization for Bicluster Analysis (MFSC)

Description

mfsc: R implementation of mfsc.

Usage

mfsc(X,p=5,cyc=100,sL.=0.6,s2=0.6,center=2,norm=1)

Arguments

X the data matrix.

p number of hidden factors = number of biclusters; default = 5.

cyc maximal number of iterations; default = 100.

sL final sparseness loadings; default = 0.6.

sZ final sparseness factors; default = 0.6.

center data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.

norm data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.
Details

Biclusters are found by sparse matrix factorization where both factors are sparse.

Essentially the model is the sum of outer products of vectors:

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X from R™*!.
No noise assumption: In contrast to factor analysis there is no noise assumption.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a constraint optimization according to Hoyer, 2004. The
Euclidean distance (the Frobenius norm) is minimized subject to sparseness constraints.

Model selection is done by gradient descent on the Euclidean objective and thereafter projection of
single vectors of L and single vectors of Z to fulfill the sparseness constraints.

56 mfsc

The projection minimize the Euclidean distance to the original vector given an /;-norm and an
l-norm.

The projection is a convex quadratic problem which is solved iteratively where at each iteration at
least one component is set to zero. Instead of the [;-norm a sparseness measurement is used which
relates the [1-norm to the /5-norm.

The code is implemented in R.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ),L (loadings L), Z (factors Z), U (noise X — LZ), center (centering vector),
scaleData (scaling vector), X (centered and scaled data X)
Author(s)
Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.
See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]
Y <- dat[[2]]
resEx <- mfsc(X,3,30,0.6,0.6)

Not run:

n = 1000
1= 100
p =10

mfsc

dat <- makeFabiaDataBlocks(n = n,1=1,p = p,f1 = 5,f2 =5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

5»
27

X <- dat[[1]1]
Y <- dat[[2]]
ZC <- dat[[3]]
LC <- dat[[4]]

gclab <- rep.int(0,1)
gllab <- rep.int(0,n)
clab <- as.character(1:1)
1llab <- as.character(1:n)
for (i in 1:p){

for (j in ZC[il){

clab[j] <- paste(as.character(i),"”_",clab[j],sep="")
3
for (j in LCLil){

1lab[j] <- paste(as.character(i),"”_",11lab[j],sep="")
3

gclablunlist(ZC[i])] <- gclab[unlist(ZC[il)] + p*i
gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p*i

groups <- gclab

MFSC

resToy4 <- mfsc(X,13,100,0.6,0.6)
extractPlot(resToy4,ti="MFSC",Y=Y)

raToy4 <- extractBic(resToy4,thresZ=0.01,thresL=0.05)

if ((raToy4$bic[[111[11>1) 8&& (raToy4$bic[[111[21)>1) {
plotBicluster(raToy4,1)

3

if ((raToy4$bic[[2]11[11>1) 8&& (raToy4$bic[[2]11[21)>1) {
plotBicluster(raToy4,?2)

3

if ((raToy4$bic[[3]11[11>1) && (raToy4$bic[[3]11[21)>1) {
plotBicluster(raToy4,3)

3

if ((raToy4$bic[[4]11[11>1) && (raToy4$bic[[4]11[21)>1) {
plotBicluster(raToy4,4)

3

colnames(X(resToy4)) <- clab
rownames (X(resToy4)) <- llab
plot(resToy4,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)

plot(resToy4,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy4,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)

58

__
DEMO2: Laura van't Veer's gene expression
data set for breast cancer

__

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

message (" #HHHHHAHHHAHEHARHHASHHAHEHRAEHBRHHBAHHAHEHBAEHERHHEE)
message("Package 'fabiaData' is not available: please install.”)
message (" HHHHHAHHHAHEHAAHEAHAHEHAHEHEAHEAHHAEHAAHAA)

} else {

data(Breast_A)
X <- as.matrix(XBreast)
resBreast4 <- mfsc(X,5,100,0.6,0.6)

extractPlot(resBreast4,ti="MFSC Breast cancer(Veer)")

raBreast4 <- extractBic(resBreast4,thresZ=0.01,threslL=0.05)

if ((raBreast4$bic[[1]1[1]1>1) && (raBreast4$bic[[1]11[2]1)>1) {
plotBicluster(raBreast4,1)

3

if ((raBreast4$bic[[2]1[1]1>1) && (raBreast4$bic[[2]11[2]1)>1) {
plotBicluster(raBreast4,2)

3

if ((raBreast4$bic[[3]1[1]1>1) && (raBreast4$bic[[3]11[2]1)>1) {
plotBicluster(raBreast4,3)

3

if ((raBreast4$bic[[4]1[1]1>1) && (raBreast4$bic[[4]11[2]1)>1) {
plotBicluster(raBreast4,4)

3

plot(resBreast4,dim=c(1,2),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast4,dim=c(1,3),label.t0l1=0.03,col.group=CBreast,lab.
plot(resBreast4,dim=c(1,4),label.t0l=0.03,col.group=CBreast,lab.
plot(resBreast4,dim=c(1,5),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast4,dim=c(2,3),label.t0l1=0.03,col.group=CBreast, lab.
plot(resBreast4,dim=c(2,4),label.t0l1=0.03,col.group=CBreast,lab.
plot(resBreast4,dim=c(2,5),label.tol=0.03,col.group=CBreast, lab.
plot(resBreast4,dim=c(3,4),label.t01=0.03,col.group=CBreast,lab.
plot(resBreast4,dim=c(3,5),label.t0l=0.03,col.group=CBreast, lab.
plot(resBreast4,dim=c(4,5),label.tol=0.03,col.group=CBreast, lab.

size=0.
size=0.
size=0.
size=0.
.6)
size=0.
size=0.
size=0.
.6)

size=0.

size=0

size=0

6)
6)
6)
6)

6)
6)
6)

6)

mfsc

mfsc

DEMO3: Su's multiple tissue types
gene expression data set

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

message (" ##HHHHEHHHAHAHHEHREHAEAEHBHRAHEHREEHAEREAHBHRAHAHEAEAE)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHEHEHBRHHBSHHBHEHBHEHBEHHBAHHAHEHAAEHARHHEE)

} else {

data(Multi_A)

X <- as.matrix(XMulti)

resMulti4 <- mfsc(X,5,100,0.6,0.6)

extractPlot(resMulti4,ti="MFSC Multiple tissues(Su)")

raMulti4 <- extractBic(resMulti4,thresZ=0.01,thresL=0.05)

if ((raMulti4$bic[[111[11>1) && (raMulti4s$bic[[111[21)>1) {
plotBicluster(raMulti4,1)

3

if ((raMulti4$bic[[2]11[11>1) && (raMulti4s$bic[[2]11[21)>1) {
plotBicluster(raMulti4,?2)

3

if ((raMulti4$bic[[3]11[11>1) && (raMulti4s$bic[[3]11[21)>1) {
plotBicluster(raMulti4,3)

3

if ((raMulti4$bic[[411[11>1) && (raMulti4s$bic[[411[21)>1) {
plotBicluster(raMulti4,4)

3

plot(resMulti4,dim=c(1,2),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(1,3),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(1,4),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(1,5),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(2,3),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(2,4),label.to0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(2,5),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(3,4),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(3,5),label.t0l=0.01,col.group=CMulti,lab.
plot(resMulti4,dim=c(4,5),label.t0l=0.01,col.group=CMulti,lab.

DEMO4: Rosenwald's diffuse large-B-cell
lymphoma gene expression data set

size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.

6)
6)
6)
6)
6)
6)
6)
6)
6)
6)

59

60

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

message (" #HHHHEHHEHEHRHHEHREHHAEAHHBHRAHEHEAHAHRAHBHRAHA AR)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHHAHHHAHEHAAHHBAHHAHEHBAEHBRHHBAHHAHEHAAEHERHEEE)

} else {

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL4 <- mfsc(X,5,100,0.6,0.

6)

extractPlot(resDLBCL4,ti="MFSC Lymphoma(Rosenwald)")

raDLBCL4 <- extractBic(resDLBCL4,thresZ=0.01,thresL=0.05)

if ((raDLBCL4$bic[[111[11>1) && (raDLBCL4$bic[[111[21)>1) {

plotBicluster(rabDLBCL4,1)

3

if ((raDLBCL4$bic[[2]11[11>1) 8&&
plotBicluster(raDLBCL4,?2)

3

if ((raDLBCL4$bic[[3]11[11>1) 8&&
plotBicluster(raDLBCL4,3)

3

if ((raDLBCL4$bic[[4]11[11>1) 8&&
plotBicluster(raDLBCL4,4)

3

plot(resDLBCL4,dim=c(1,2),label.
plot(resDLBCL4,dim=c(1,3),label.
plot(resDLBCL4,dim=c(1,4),label.
plot(resDLBCL4,dim=c(1,5),label.
plot(resDLBCL4,dim=c(2,3),label.
plot(resDLBCL4,dim=c(2,4),label.
plot(resDLBCL4,dim=c(2,5),label.
plot(resDLBCL4,dim=c(3,4),label.
plot(resDLBCL4,dim=c(3,5),label.
plot(resDLBCL4,dim=c(4,5),label.

End(Not run)

(raDLBCL4$bic[[211[21)>1) {

(raDLBCL4$bic[[3]11[21)>1) {

(raDLBCL4$bic[[411[21)>1) {

=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.
=0.03,col.

group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.
group=CDLBCL, lab.

size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.
size=0.

6)
6)
6)
6)
6)
6)
6)
6)
6)
6)

nmfdiv 61

nmfdiv Non-negative Matrix Factorization: Kullback-Leibler Divergence

Description

nmfdiv: R implementation of nmfdiv.

Usage
nmfdiv(X,p=5,cyc=100)

Arguments
X the data matrix.
p number of hidden factors = number of biclusters; default = 5.
cyc maximal number of iterations; default = 100.

Details

Non-negative Matrix Factorization represents positive matrix X by positive matrices L and Z.
Objective for reconstruction is Kullback-Leibler divergence.

Essentially the model is the sum of outer products of vectors:

where the number of summands p is the number of biclusters. The matrix factorization is
X=LZ
Here \; are from R", z; from R!, L from R"*P?, Z from RP*!, and X from R™*!.

The model selection is performed according to D. D. Lee and H. S. Seung, 1999, 2001.

The code is implemented in R.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ7), L (loading L), Z (factors Z), U (noise X — LZ), X (scaled data X).
Author(s)
Sepp Hochreiter
References

D. D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’, In Advances in
Neural Information Processing Systems 13, 556-562, 2001.

D. D. Lee and H. S. Seung, ‘Learning the parts of objects by non-negative matrix factorization’,
Nature, 401(6755):788-791, 1999.

62 nmfeu

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]]
X <- abs(X)

reskx <- nmfdiv(X,3)

Not run:

dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z =
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]1]

X <- abs(X)

resToy <- nmfdiv(X,13)

extractPlot(resToy, ti="NMFDIV",6Y=Y)

End(Not run)

nmfeu Non-negative Matrix Factorization: Euclidean Distance

Description

nmfeu: R implementation of nmfeu.

nmfeu 63

Usage
nmfeu (X, p=5,cyc=100)

Arguments
X the data matrix.
p number of hidden factors = number of biclusters; default = 5.
cyc maximal number of iterations; default = 100.

Details

Non-negative Matrix Factorization represents positive matrix X by positive matrices L and Z.
Objective for reconstruction is Euclidean distance.

Essentially the model is the sum of outer products of vectors:

where the number of summands p is the number of biclusters. The matrix factorization is
X=LZ
Here \; are from R™, z; from R!, L from R™*P, Z from RP*!, and X from R"*!.

The model selection is performed according to D. D. Lee and H. S. Seung, 2001.

The code is implemented in R.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ7), L (loadings L), Z (factors Z), U (noise X — LZ), X (scaled data X).
Author(s)
Sepp Hochreiter
References

Paatero, P and Tapper, U, ‘Least squares formulation of robust non-negative factor analysis’, Chemometr.
Intell. Lab. 37: 23-35, 1997.

D. D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’, In Advances in
Neural Information Processing Systems 13, 556-562, 2001.

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

64

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]]
X <- abs(X)

resex <- nmfeu(X,3)

Not run:

dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z =
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]1]

X <= abs(X)

resToy <- nmfeu(X,13)

extractPlot(resToy, ti="NMFEU",Y=Y)

End(Not run)

nmftsc

nmfsc Non-negative Sparse Matrix Factorization

Description

nmfsc: R implementation of nmfsc.

Usage

nmfsc(X,p=5,cyc=100,sL=0.6,s7=0.6)

nmfsc 65

Arguments
X the data matrix.
p number of hidden factors = number of biclusters; default = 5.
cyc maximal number of iterations; default = 100.
sL sparseness loadings; default = 0.6.
sZ sparseness factors; default = 0.6.
Details

Non-negative Matrix Factorization represents positive matrix X by positive matrices L and Z that
are sparse.

Objective for reconstruction is Euclidean distance and sparseness constraints.

Essentially the model is the sum of outer products of vectors:

p
X=> Nzl
i=1
where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X from R™*!.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a constraint optimization according to Hoyer, 2004. The
Euclidean distance (the Frobenius norm) is minimized subject to sparseness and non-negativity
constraints.

Model selection is done by gradient descent on the Euclidean objective and thereafter projection of
single vectors of L and single vectors of Z to fulfill the sparseness and non-negativity constraints.

The projection minimize the Euclidean distance to the original vector given an /;-norm and an
l-norm and enforcing non-negativity.

The projection is a convex quadratic problem which is solved iteratively where at each iteration at
least one component is set to zero. Instead of the [;-norm a sparseness measurement is used which
relates the [1-norm to the [5-norm.

The code is implemented in R.

Value
object of the class Factorization. Containing LZ (estimated noise free data
LZ7), L (loadings L), Z (factors Z), U (noise X — LZ), X (data X).
Author(s)
Sepp Hochreiter
References

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.

D. D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’, In Advances in
Neural Information Processing Systems 13, 556-562, 2001.

66 plotBicluster

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[11]

Y <- dat[[2]]
X <= abs(X)

reskx <- nmfsc(X,3,30,0.6,0.6)
Not run:
dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 = 5,f2

of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

:5,
2.0,

X <- dat[[1]1]
Y <- dat[[2]]
X <= abs(X)

resToy <- nmfsc(X,13,100,0.6,0.6)

extractPlot(resToy, ti="NMFSC",Y=Y)

End(Not run)

plotBicluster Plotting of a bicluster

Description

plotBicluster: R implementation of plotBicluster.

Usage

plotBicluster(r,p,opp=FALSE,zlim=NULL,title=NULL,which=c(1, 2))

plotBicluster 67

Arguments
r the result of extract_bic.
p the bicluster to plot.
opp plot opposite bicluster, default = FALSE.
zlim vector containing a low and high value to use for the color scale.
title title of the plot.
which which plots are shown: 1=data matrix with bicluster on upper left, 2=plot of the
bicluster; default c(1, 2).
Details

One bicluster is visualized by two plots. The variable "which" indicates which plots should be
shown.

Plotl (which=1): The data matrix is sorted such that the bicluster appear at the upper left corner.
The bicluster is marked by a rectangle.

Plot2 (which=2): Only the bicluster is plotted.

Implementation in R.

Value

Plotting of a bicluster

Author(s)

Sepp Hochreiter

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

dat <- makeFabiaDataBlocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]1]

Y <- dat[[2]1]

resex <- fabia(X,3,0.01,20)

rex <- extractBic(resEx)

plotBicluster(rEx,p=1)

68

Not run:

dat <- makeFabiaDataBlocks(n = 1000,1= 100,p = 10,f1 =
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z

sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)
X <- dat[[1]]
Y <- dat[[2]1]

resToy <- fabia(X,13,0.01,200)

rToy <- extractBic(resToy)

plotBicluster(rToy,p=1)

avail <- require(fabiaData)

if (lavail) {
message("")
message("")

5,f2 =5,
= 2.0,

message (" ##HHHHEHHHAHAHHEHRHAEAEHBHRAHEHHEAHAERAHBERAHAREAEA)
message("Package 'fabiaData' is not available: please install.”)
message (" #HHHHEHHHHEHAHHEHEHAEEHHEHRHHEEEHEHRHHEHREHE AR)

} else {

data(Breast_A)

X <- as.matrix(XBreast)
resBreast <- fabia(X,5,0.1,200)
rBreast <- extractBic(resBreast)

plotBicluster(rBreast,p=1)

End(Not run)

projFunc

projFunc Projection of a Vector to a Sparse Vector

projFunc 69

Description

projFunc: R implementation of projFunc.

Usage

projFunc(s, ki1, k2)

Arguments
s data vector.
k1 sparseness, 11 norm constraint.
k2 12 norm constraint.

Details

The projection is done according to Hoyer, 2004: given an /;-norm and an /5-norm minimize the
Euclidean distance to the original vector. The projection is a convex quadratic problem which is
solved iteratively where at each iteration at least one component is set to zero.

In the applications, instead of the [;-norm a sparseness measurement is used which relates the ;-
norm to the /5-norm.

Implementation in R.

Value

v sparse projected vector.

Author(s)

Sepp Hochreiter

References
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

size <- 30
sparseness <- 0.7

s <- as.vector(rnorm(size))
sp <- sqrt(1.0*xsize)-(sqrt(1.0*size)-1.0)*sparseness

70 projFuncPos

ss <- projFunc(s,kl=sp,k2=1)

SS

projFuncPos Projection of a Vector to a Non-negative Sparse Vector

Description

projFuncPos: R implementation of projFuncPos.

Usage

projFuncPos(s, k1, k2)

Arguments
s data vector.
k1 sparseness, 11 norm constraint.
k2 12 norm constraint.

Details

The projection minimize the Euclidean distance to the original vector given an /;-norm and an
lo-norm and enforcing non-negativity.

The projection is a convex quadratic problem which is solved iteratively where at each iteration at
least one component is set to zero.

In the applications, instead of the /;-norm a sparseness measurement is used which relates the [; -
norm to the /y-norm:

Implementation in R.

Value

v non-negative sparse projected vector.

Author(s)

Sepp Hochreiter

References

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Ma-
chine Learning Research 5:1457-1469, 2004.

readSamplesSpfabia 71

See Also

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic,
plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks,
makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

size <- 30
sparseness <- 0.7

s <- as.vector(rnorm(size))
sp <- sgrt(1.0*xsize)-(sqrt(1.0*size)-1.0)*sparseness

ss <- projFuncPos(s,kl=sp,k2=1)

s
ss
readSamplesSpfabia Factor Analysis for Bicluster Acquisition: Read Sparse Matrix Sam-
ples
Description

readSamplesSpfabia: C implementation of readSamplesSpfabia.

Usage

readSamplesSpfabia(X, samples=0,lowerB=0.0,upperB=1000.0)

Arguments
X the file name of the sparse matrix in sparse format.
samples vector of samples which should be read; default = 0 (all samples)
lowerB lower bound for filtering the inputs columns, the minimal column sum; default
=0.0.
upperB upper bound for filtering the inputs columns, the maximal column sum; default
=1000.0.
Details

The data matrix is directly scanned by the C-code and must be in sparse matrix format.

Sparse matrix format: *first line: numer of rows (the samples). *second line: number of columns
(the features). *following lines: for each sample (row) three lines with

I) number of nonzero row elements

72 readSpfabiaResult

II) indices of the nonzero row elements (ATTENTION: starts with 0!!)
IIT) values of the nonzero row elements (ATTENTION: floats with decimal point like 1.0 !!)

The code is implemented in C.

Value

X (data of the given samples)

Author(s)

Sepp Hochreiter

References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

See Also

fabia, fabias, fabiap, spfabia, readSamplesSpfabia, readSpfabiaResult, fabi, fabiasp,

mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic, plotBicluster, Factorization, projFuncPos,

projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos,
matrixImagePlot, fabiaDemo, fabiaVersion

Examples

readSpfabiaResult Factor Analysis for Bicluster Acquisition: Read Results of SpFabia

Description

readSpfabiaResult: C implementation of readSpfabiaResult.

Usage

readSpfabiaResult(X)
Arguments

X the file prefix name of the result files of spfabia.
Details

Read the results of spfabia.

The code is implemented in C.

samplesPerFeature 73

Value
object of the class Factorization. Containing L (loadings L), Z (factors Z),
Psi (noise variance o), lapla (variational parameter), avini (the information
which the factor z;; contains about x; averaged over j) xavini (the information
which the factor z; contains about x;) ini (for each j the information which the
factor z;; contains about).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

See Also

fabia, fabias, fabiap, spfabia, readSamplesSpfabia, readSpfabiaResult, fabi, fabiasp,

mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic, plotBicluster, Factorization, projFuncPos,

projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos,
matrixImagePlot, fabiaDemo, fabiaVersion

samplesPerFeature Factor Analysis for Bicluster Acquisition: Supplies samples per fea-
ture

Description

samplesPerFeature: C implementation of samplesPerFeature.

Usage

samplesPerFeature(X, samples=0, lowerB=0.0, upperB=1000.0)

Arguments
X the file name of the sparse matrix in sparse format.
samples vector of samples which should be read; default = O (all samples)
lowerB lower bound for filtering the inputs columns, the minimal column sum; default
=0.0.
upperB upper bound for filtering the inputs columns, the maximal column sum; default

=1000.0.

74 spfabia

Details

Supplies the samples for which a feature is not zero.
The data matrix is directly scanned by the C-code and must be in sparse matrix format.

Sparse matrix format: *first line: numer of rows (the samples). *second line: number of columns
(the features). *following lines: for each sample (rows) three lines with

I) number of nonzero row elements
II) indices of the nonzero row elements (ATTENTION: starts with 0!!)
III) values of the nonzero row elements (ATTENTION: floats with decimal point like 1.0 !!)

The code is implemented in C.

Value
list with elements: sL (List with one element per feature: each element is a
vector of samples where the feature is not zero.) nsL Vector of feature length
containing number of samples having a non-zero feature value.
Author(s)
Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

See Also

fabia, fabias, fabiap, spfabia, readSamplesSpfabia, samplesPerFeature, readSpfabiaResult,
fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic, plotBicluster, Factorization,
projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos,
makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

spfabia Factor Analysis for Bicluster Acquisition: SPARSE FABIA

Description

spfabia: C implementation of spfabia.

spfabia 75

Usage

spfabia(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,non_negative=0,random=1.0,write_file=1,norm=1, sc

Arguments
X the file name of the sparse matrix in sparse format.
p number of hidden factors = number of biclusters; default = 13.
alpha sparseness loadings (0 - 1.0); default = 0.01.
cyc number of iterations; default = 500.
spl sparseness prior loadings (0 - 2.0); default = 0 (Laplace).
spz sparseness factors (0.5 - 2.0); default = 0.5 (Laplace).

non_negative Non-negative factors and loadings if non_negative > 0; default = 0.

random >0: random initialization of loadings in [0,random], <0: random initialization
of loadings in [-random,random]; default = 1.0.

write_file >0: results are written to files (L in sparse format), default = 1.
norm data normalization: >0 (var=1), 0 (no); default = 1.
scale loading vectors are scaled in each iteration to the given variance. 0.0 indicates

non scaling; default = 0.0.
lap minimal value of the variational parameter; default = 1.0.

nL maximal number of biclusters at which a row element can participate; default =
0 (no limit).

1L maximal number of row elements per bicluster; default = 0 (no limit).

bL cycle at which the nL or IL maximum starts; default = O (start at the beginning).

samples vector of samples which should be included into the analysis; default = 0 (all
samples)

initL vector of indices of the selected samples which are used to initialize L; default

= 0 (random initialization).

iter number of iterations; default = 1.

quant qunatile of largest L values to remove in each iteration; default = 0.001.

lowerB lower bound for filtering the inputs columns, the minimal column sum; default
=0.0.

upperB upper bound for filtering the inputs columns, the maximal column sum; default
=1000.0.

dorescale rescale factors Z to variance 1 and consequently also L; logical; default: FALSE.

doini compute the information content of the biclusters and sort the biclusters accord-

ing to their information content; logical, default: FALSE.
eps lower bound for variational parameter lapla; default: 1e-3.

eps1 lower bound for divisions to avoid division by zero; default: le-10.

76 spfabia

Details

Version of fabia for a sparse data matrix. The data matrix is directly scanned by the C-code and
must be in sparse matrix format.

Sparse matrix format: *first line: numer of rows (the samples). *second line: number of columns
(the features). *following lines: for each sample (row) three lines with

I) number of nonzero row elements

II) indices of the nonzero row elements (ATTENTION: starts with 0!!)

III) values of the nonzero row elements (ATTENTION: floats with decimal point like 1.0 !!)
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.

Essentially the model is the sum of outer products of vectors:

p
X=> Nzl +U
i=1

where the number of summands p is the number of biclusters. The matrix factorization is

X=LZ+U

Here \; are from R", z; from R!, L from R"*?, Z from RP*!, and X, U from R™*!.

If the nonzero components of the sparse vectors are grouped together then the outer product results
in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer
et al. 2006.

We included a prior on the parameters and minimize a lower bound on the posterior of the parame-
ters given the data. The update of the loadings includes an additive term which pushes the loadings
toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in C.

Value
object of the class Factorization. Containing L (loadings L), Z (factors Z),
Psi (noise variance o), lapla (variational parameter), avini (the information
which the factor z;; contains about x; averaged over j) xavini (the information
which the factor z; contains about x;) ini (for each j the information which the
factor z;; contains about ;).

Author(s)

Sepp Hochreiter
References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-
1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’,
Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent
variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

spfabia 77

See Also

fabia, fabias, fabiap, spfabia, readSamplesSpfabia, samplesPerFeature, readSpfabiaResult,
fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic, plotBicluster, Factorization,
projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos,
makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

samples <- 20
features <- 200
sparseness <- 0.9

write(samples, file = "sparseFabiaTest.txt"”,ncolumns = features,append = FALSE, sep =" ")
write(features, file = "sparseFabiaTest.txt"”,ncolumns = features,append = TRUE, sep =" ")
for (i in 1:samples)

{

ind <- which(runif(features)>sparseness)-1
num <- length(ind)
val <- abs(rnorm(num))

write(num, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ")

write(ind, file = "sparseFabiaTest.txt"”,ncolumns = features,append = TRUE, sep = " ")

write(val, file = "sparseFabiaTest.txt"”,ncolumns = features,append = TRUE, sep = " ")
}

res <- spfabia("”sparsefFabiaTest",p=3,alpha=0.03,cyc=50,non_negative=1,write_file=0,norm=0)
unlink("sparseFabiaTest.txt")
plot(res,dim=c(1,2))

plot(res,dim=c(1,3))
plot(res,dim=c(2,3))

Index

+x EM algorithm
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

x Laplace distribution
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* biclustering
extractBic, 4
extractPlot, 7
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
Factorization-class, 37
makeFabiaData, 44
makeFabiaDataBlocks, 46
makeFabiaDataBlocksPos, 49
makeFabiaDataPos, 51
mfsc, 55
plotBicluster, 66
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* classes
Factorization-class, 37

* cluster
fabi, 9

78

fabia, 13

fabiap, 20

fabias, 26

fabiasp, 32

mfsc, 55

nmfsc, 64
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* datagen

makeFabiaData, 44
makeFabiaDataBlocks, 46
makeFabiaDataBlocksPos, 49
makeFabiaDataPos, 51

* factor analysis

fabi, 9

fabia, 13

fabiap, 20

fabias, 26

fabiasp, 32
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

+ hplot

extractPlot, 7
Factorization-class, 37
matrixImagePlot, 53
plotBicluster, 66

* latent variables

fabi, 9

fabia, 13

fabiap, 20

fabias, 26

fabiasp, 32
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* manip

Factorization-class, 37

* matrix plot

INDEX

matrixImagePlot, 53

+ methods
estimateMode, 2
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
Factorization-class, 37
mfsc, 55
nmfdiv, 61
nmfeu, 62
nmfsc, 64
projFunc, 68
projFuncPos, 70
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

+« mode estimation
estimateMode, 2

+ models
fabiaVersion, 36

+ multivariate analysis
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

+« multivariate
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
Factorization-class, 37
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* non-negative matrix factorization
extractBic, 4
extractPlot, 7
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
mfsc, 55

nmfdiv, 61
nmfeu, 62
nmfsc, 64
projFuncPos, 70
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* non-negative sparse coding
projFuncPos, 70

* nonnegative matrix factorization
fabiasp, 32

* sparse coding
extractBic, 4
extractPlot, 7
fabi, 9
fabia, 13
fabiap, 20
fabias, 26
fabiasp, 32
makeFabiaData, 44
makeFabiaDataBlocks, 46
makeFabiaDataBlocksPos, 49
makeFabiaDataPos, 51
mfsc, 55
nmfdiv, 61
nmfeu, 62
nmfsc, 64
projFunc, 68
readSamplesSpfabia, 71
readSpfabiaResult, 72
samplesPerFeature, 73
spfabia, 74

* sparse matrix factorization
extractBic, 4
extractPlot, 7
makeFabiaData, 44
makeFabiaDataBlocks, 46
makeFabiaDataBlocksPos, 49
makeFabiaDataPos, 51
projFunc, 68

avini (Factorization-class), 37
avini,Factorization-method
(Factorization-class), 37
avini<- (Factorization-class), 37
avini<-,Factorization,numeric-method
(Factorization-class), 37
avini<-,Factorization,vector-method
(Factorization-class), 37

center (Factorization-class), 37

79

80

center,Factorization-method
(Factorization-class), 37
center<- (Factorization-class), 37
center<-,Factorization,numeric-method
(Factorization-class), 37
center<-,Factorization,vector-method
(Factorization-class), 37

estimateMode, 2, 3, 5, 8, 10, 14, 19, 21, 28,
34, 36, 42, 46, 48, 50, 52, 54, 56, 62,
63, 606, 67,69, 71-74,77

extractBic, 3,4, 5,8, 10, 14, 19, 21, 28, 34,
36,42, 46, 48, 50, 52, 54, 56, 62, 63,
66, 67,69, 71-74, 77

extractPlot, 3, 5,7, 8, 10, 14, 19, 21, 28, 34,
36,42, 46, 48, 50, 52, 54, 56, 62, 63,
66, 67,69, 71-74, 77

fabi, 3,5,8,9, 10, 14, 19, 21, 28, 34, 36, 42,
46, 48, 50, 52, 54, 56, 62, 63, 66, 67,
69,71-74,77

fabia, 3, 5,8, 10, 13, 14, 19, 21, 28, 34, 36,
42,46, 48, 50, 52, 54, 56, 62, 63, 66,
67,69, 71-74, 77

fabiaDemo, 3, 5, 8, 10, 14, 19, 19, 21, 28, 34,
36, 42, 46, 48, 50, 52, 54, 56, 62, 63,
66, 67,69, 71-74,77

fabiap, 3, 5, 8, 10, 14, 19, 20, 21, 28, 34, 36,
42,46, 48, 50, 52, 54, 56, 62, 63, 66,
67,69, 71-74,77

fabias, 3, 5, 8, 10, 14, 19, 21, 26, 28, 34, 36,
42,46, 48, 50, 52, 54, 56, 62, 63, 66,
67,69, 71-74, 77

fabiasp, 3, 5, 8, 10, 14, 19, 21, 28, 32, 34, 36,
42,46, 48, 50, 52, 54, 56, 62, 63, 66,
67,69, 71-74,77

fabiaVersion, 3, 5, 8, 10, 14, 19, 21, 28, 34,
36, 36,42, 46, 48, 50, 52, 54, 56, 62,
63, 66, 67,69, 71-74,77

Factorization, 3, 5, 8, 10, 14, 19, 21, 28, 34,
36, 42,46, 48, 50, 52, 54, 56, 62, 63,
66, 67,69, 71-74,77

Factorization (Factorization-class), 37

Factorization, ANY-method
(Factorization-class), 37

INDEX

ini,Factorization-method
(Factorization-class), 37

ini<- (Factorization-class), 37

ini<-,Factorization,matrix-method
(Factorization-class), 37

L (Factorization-class), 37
1 (Factorization-class), 37
L,Factorization-method
(Factorization-class), 37
1,Factorization-method
(Factorization-class), 37
L<- (Factorization-class), 37
1<- (Factorization-class), 37
L<-,Factorization,matrix-method
(Factorization-class), 37
1<-,Factorization,numeric-method
(Factorization-class), 37
lapla (Factorization-class), 37
lapla,Factorization-method
(Factorization-class), 37
lapla<- (Factorization-class), 37
lapla<-,Factorization,matrix-method
(Factorization-class), 37
LZ (Factorization-class), 37
LZ,Factorization-method
(Factorization-class), 37
LZ<- (Factorization-class), 37
LZ<-,Factorization,matrix-method
(Factorization-class), 37

M(Factorization-class), 37
M,Factorization-method
(Factorization-class), 37
M<- (Factorization-class), 37
M<-,Factorization,matrix-method
(Factorization-class), 37
makeFabiaData, 3, 5, 8, 10, 14, 19, 21, 28, 34,
36,42, 44, 46, 48, 50, 52, 54, 56, 62,
63,66, 67,69, 71-74,77
makeFabiaDataBlocks, 3, 5, 8, 10, 14, 19, 21,
28, 34, 36, 42, 46, 46, 48, 50, 52, 54,
56,62, 63, 66, 67,69, 71-74,77
makeFabiaDataBlocksPos, 3, 5, 8, 10, 14, 19,
21,28, 34, 36,42, 46, 48, 49, 50, 52,

Factorization,list-method,numeric-method, vector-methosymssréx-gethedsANyomeLhed 77

(Factorization-class), 37
Factorization-class, 37
Factorization-method

(Factorization-class), 37

ini (Factorization-class), 37

makeFabiaDataPos, 3, 5, 8, 10, 14, 19, 21, 28,
34, 36,42, 46, 48, 50, 51, 52, 54, 56,
62, 63,606, 67,69, 71-74,77

matrixImagePlot, 3, 5,8, 10, 14, 19, 21, 28,
34, 36,42, 46, 48, 50, 52, 53, 54, 56,
62, 63,606, 67,69, 71-74,77

INDEX

mfsc, 3,5, 8, 10, 14, 19, 21, 28, 34, 36, 42, 46,
48, 50, 52, 54, 55, 56, 62, 63, 66, 67,
69,71-74,77

n (Factorization-class), 37

n,Factorization-method
(Factorization-class), 37

n<- (Factorization-class), 37

n<-,Factorization,numeric-method
(Factorization-class), 37

nmfdiv, 3, 5, 8, 10, 14, 19, 21, 28, 34, 36, 42,
46, 48, 50, 52, 54, 56, 61, 62, 63, 66,
67,69, 71-74,77

nmfeu, 3, 5, 8, 10, 14, 19, 21, 28, 34, 36, 42,
46, 48, 50, 52, 54, 56, 62, 62, 63, 66,
67,69, 71-74, 77

nmfsc, 3, 5,8, 10, 14, 19, 21, 28, 34, 36, 42,
46, 48, 50, 52, 54, 56, 62, 63, 64, 66,
67,69, 71-74,77

pl1 (Factorization-class), 37
pl1,Factorization-method
(Factorization-class), 37
p1<- (Factorization-class), 37
p1<-,Factorization,numeric-method
(Factorization-class), 37
p2 (Factorization-class), 37
p2,Factorization-method
(Factorization-class), 37
p2<- (Factorization-class), 37
p2<-,Factorization,numeric-method
(Factorization-class), 37
parameters (Factorization-class), 37
parameters,Factorization-method
(Factorization-class), 37
parameters<- (Factorization-class), 37
parameters<-,Factorization,list-method
(Factorization-class), 37
plot,Factorization,missing-method
(Factorization-class), 37
plot,Factorization-method
(Factorization-class), 37
plotBicluster, 3,5, 8, 10, 14, 19, 21, 28, 34,
36,42, 46, 48, 50, 52, 54, 56, 62, 63,
66, 66, 67,69, 71-74, 77
projFunc, 3, 5, 8, 10, 14, 19, 21, 28, 34, 36,
42,46, 48, 50, 52, 54, 56, 62, 63, 66,
67,68, 69, 71-74,77
projFuncPos, 3, 5, 8, 10, 14, 19, 21, 28, 34,
36,42, 46,48, 50, 52, 54, 56, 62, 63,
66, 67, 69,70, 71-74, 77
Psi (Factorization-class), 37

81

Psi,Factorization-method
(Factorization-class), 37
Psi<- (Factorization-class), 37
Psi<-,Factorization,numeric-method
(Factorization-class), 37
Psi<-,Factorization,vector-method
(Factorization-class), 37

readSamplesSpfabia, 71, 72-74, 77
readSpfabiaResult, 14, 36,72,72,73, 74,77

samplesPerFeature, 73, 74, 77
scaleData (Factorization-class), 37
scaleData,Factorization-method
(Factorization-class), 37
scaleData<- (Factorization-class), 37

scaleData<-,Factorization,numeric-method

(Factorization-class), 37
scaleData<-,Factorization, vector-method

(Factorization-class), 37
show,Factorization-method

(Factorization-class), 37
showSelected (Factorization-class), 37

showSelected, Factorization, numeric-method

(Factorization-class), 37
showSelected,Factorization-method
(Factorization-class), 37
spfabia, 8, 10, 14, 21, 28, 34, 36, 72-74, 74,
77
summary,Factorization-method
(Factorization-class), 37

U (Factorization-class), 37
U,Factorization-method
(Factorization-class), 37
U<- (Factorization-class), 37
U<-,Factorization,matrix-method
(Factorization-class), 37

X (Factorization-class), 37
X,Factorization-method
(Factorization-class), 37
X<- (Factorization-class), 37
X<-,Factorization,matrix-method
(Factorization-class), 37
xavini (Factorization-class), 37
xavini,Factorization-method
(Factorization-class), 37
xavini<- (Factorization-class), 37
xavini<-,Factorization,numeric-method
(Factorization-class), 37
xavini<-, Factorization,vector-method
(Factorization-class), 37

82

Z (Factorization-class), 37
Z,Factorization-method
(Factorization-class), 37
Z<- (Factorization-class), 37
Z<-,Factorization,matrix-method
(Factorization-class), 37

INDEX

	estimateMode
	extractBic
	extractPlot
	fabi
	fabia
	fabiaDemo
	fabiap
	fabias
	fabiasp
	fabiaVersion
	Factorization-class
	makeFabiaData
	makeFabiaDataBlocks
	makeFabiaDataBlocksPos
	makeFabiaDataPos
	matrixImagePlot
	mfsc
	nmfdiv
	nmfeu
	nmfsc
	plotBicluster
	projFunc
	projFuncPos
	readSamplesSpfabia
	readSpfabiaResult
	samplesPerFeature
	spfabia
	Index

