Package ‘dir.expiry’

January 19, 2026
Version 1.18.0
Date 2024-10-17
Title Managing Expiration for Cache Directories

Description Implements an expiration system for access to versioned directories.
Directories that have not been accessed by a registered function within a cer-
tain time frame are deleted.
This aims to reduce disk usage by eliminating obsolete caches generated by old versions of pack-
ages.

License GPL-3

Imports utils, filelock

Suggests rmarkdown, knitr, testthat, BiocStyle
biocViews Software, Infrastructure
VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/dir.expiry
git_branch RELEASE_3_22

git_last commit 6d768b3
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-19

Author Aaron Lun [aut, cre]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents
clearDIrectories e e 2
lockDirectory o . e e 3
touchDirectory e 4
Index 7

2 clearDirectories

clearDirectories Clear expired directories

Description

Remove versioned directories that have passed on expiration limit.

Usage

clearDirectories(dir, reference = NULL, limit = NULL, force = FALSE)

Arguments
dir String containing the path to a package cache containing any number of ver-
sioned directories.
reference A package_version specifying a reference version to be protected from deletion.
limit Integer scalar specifying the maximum number of days to have passed before a
versioned directory expires.
force Logical scalar indicating whether to forcibly re-examine dir for expired ver-
sioned directories.
Details

This function checks the last access date in the *_dir.expiry files in dir (generated by touchDirectory).
If the last access date is too old, the corresponding subdirectory in path is treated as expired and

is deleted. The age threshold depends on 1imit, which defaults to the value of the environment
variable BIOC_DIR_EXPIRY_LIMIT. If this is not specified, it is set to 30 days.

If reference is specified, any directory of that name is protected from deletion. In addition, direc-
tories with version numbers greater than (or equal to) reference are not deleted, even if their last
access date was older than the specified 1imit. This aims to favor the retention of newer versions,
which is generally a sensible outcome when the aim is to stay up-to-date.

This function will acquire exclusive locks on the package cache directory and on each versioned
directory before attempting to delete the latter. Applications can achieve thread safety by calling
lockDirectory prior to any operations on the versioned directory. This ensures that clearDirectories
will not delete a directory in use by another process, especially if the latter might update the last
access time.

By default, this function will remember the values of dir that were passed in previous calls, and
will avoid re-examining those same dirs for expired directories on the same day. This avoids
unnecessary file system queries and locks when this function is repeatedly called. Advanced users
can force a re-examination by setting force=TRUE.

Value

Expired directories are deleted and NULL is invisibly returned.

Author(s)

Aaron Lun

lockDirectory 3

See Also

touchDirectory, which calls this function automatically when clear=TRUE.

Examples

Creating the package cache.
cache.dir <- tempfile(pattern="expired_demo")

Creating an older versioned directory.
version <- package_version("1.11.0")
version.dir <- file.path(cache.dir, version)

lck <- lockDirectory(version.dir)
dir.create(version.dir)

touchDirectory(version.dir, date=Sys.Date() - 100)
unlockDirectory(lck, clear=FALSE) # manually clear below.

list.files(cache.dir)
Clearing them out.

clearDirectories(cache.dir)
list.files(cache.dir)

lockDirectory Lock and unlock directories

Description

Lock and unlock the package and version directories for thread-safe processing.

Usage
lockDirectory(path, ...)
unlockDirectory(lock.info, clear = TRUE, ...)
Arguments
path String containing the path to a versioned directory. The dirname should be the
package cache while the basename should be a version number.
For lockDirectory, further arguments to pass to lock.
For unlockDirectory, further arguments to pass to clearDirectories.
lock.info The list returned by lockDirectory.

clear Logical scalar indicating whether to remove expired versions via clearDirectories.

4 touchDirectory

Details

lockDirectory actually creates two locks:

* The first “V” lock is applied to the versioned directory (i.e., basename(path)) within the
package cache (i.e., dirname(path)). This provides thread-safe read/write on its contents,
protecting against other processes that want to write to the same versioned directory. If the
caller is only reading from path, they can set exclusive=FALSE in . .. to define a shared lock
for concurrent reads across multiple processes.

» The second “P” lock is applied to the package cache and is always a shared lock, regardless
of the contents of This provides thread-safe access to the lock file used by the V lock,
protecting it from deletion when the relevant directory expires in clearDirectories.

If dirname(path) does not exist, it will be created by lockDirectory.

clearDirectories is called in unlockDirectory as the former needs to hold an exclusive lock
on the package cache. Thus, the clearing can only be performed after the P lock created by
lockDirectory is released.

Value

lockDirectory returns a list of locking information, including lock handles generated by the file-
lock package.

unlockDirectory unlocks the handles generated by lockDirectory. If clear=TRUE, versioned
directories that have expired are removed by clearDirectories. It returns a NULL invisibly.

Author(s)

Aaron Lun

Examples

Creating the relevant directories.
cache.dir <- tempfile(pattern="expired_demo")
version <- package_version("1.11.0")

handle <- lockDirectory(file.path(cache.dir, version))
handle
unlockDirectory(handle)

list.files(cache.dir)

touchDirectory Touch a versioned directory

Description

Touch a versioned directory to indicate that it has been successfully accessed in the recent past.

Usage

touchDirectory(path, date = Sys.Date(), force = FALSE)

touchDirectory 5

Arguments
path String containing the path to a versioned directory. The dirname should be the
package cache while the basename should be a version number.
date A Date object containing the current date. Only provided for testing.
force Logical scalar indicating whether to forcibly update the access date for path.
Details

This function is used to update the last-accessed timestamp for a particular versioned directory. The
timestamp is stored in a *_dir.expiry stub file inside path, and is checked by clearDirectories
to determine whether the directory is old enough for deletion. We use an explicit timestamp instead
of relying on POSIX access times as the latter may not be reliable indicators of genuine access
(e.g., during filesystem scans for viruses or to create backups) or may be turned off altogether for
performance reasons. The touchDirectory function should be used in the following manner to
ensure thread safety:

1. The user should first call lockDirectory(path) before calling touchDirectory(path).
This ensures that another process calling clearDirectories does not delete path while its
access time is being updated.

2. The caller should then perform the desired operations on path. This may be a read-only
operation if the V lock is a shared lock or a read/write operation for an exclusive lock.

3. Once the operation has completed successfully, the caller should call touchDirectory(path).
This ensures that the most recent timestamp is recorded, especially for long-running opera-
tions. Multiple processes may safely call touchDirectory(path) when the V lock is shared.

4. Finally, the user should call unlockDirectory(path). This is typically wrappedin anon.exit
to ensure that the locks are removed.

For a given path and version, this function only modifies the files on its first call. All subsequent
calls with the same two arguments, in the same R session, and on the same day will have no ef-
fect. This avoids unnecessary filesystem writes and locks when this function is repeatedly called.
Advanced users can force an update by setting force=TRUE.

Value
The <version>_dir.expiry stub file within path is updated/created with the current date. A NULL
is invisibly returned.

Author(s)

Aaron Lun

See Also

lockDirectory, which should always be called before this function.

Examples

Creating the package cache.
cache.dir <- tempfile(pattern="expired_demo")
dir.create(cache.dir)

Creating the versioned subdirectory.
version <- package_version("1.11.0")

version.dir <- file.path(cache.dir, version)
lck <- lockDirectory(version.dir)
dir.create(version.dir)

Setting the last access time.
touchDirectory(version.dir)

list.files(cache.dir)

readLines(file.path(cache.dir, "1.11.0_dir.expiry"))

Making sure we unlock it afterwards.
unlockDirectory(lck)

touchDirectory

Index

clearDirectories, 2, 3-5
Date, 5

lock, 3
lockDirectory, 2, 3, 3,5

on.exit, 5
package_version, 2
touchDirectory, 2, 3, 4

unlockDirectory, 5
unlockDirectory (lockDirectory), 3

	clearDirectories
	lockDirectory
	touchDirectory
	Index

