Package ‘dandelionR’

January 19, 2026

Title Single-cell Immune Repertoire Trajectory Analysis in R
Version 1.2.0

Description dandelionR is an R package for performing single-cell immune repertoire trajectory anal-
ysis, based on the original python implementation. It provides the necessary functions to inter-
face with scRepertoire and a custom implementation of an absorbing Markov chain for pseudo-
time inference, inspired by the Palantir Python package.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

biocViews Software, ImmunoOncology, SingleCell

Collate 'check.R' 'constructMarkovChain.R' 'dandelionR.R' 'data.R’
'determMultiscaleSpace.R' 'terminalStateFromMarkovChain.R'
'differentiationProbabilities.R' 'filterCells.R' 'getPbs.R’
'projectProbability.R' 'maxMinSampling.R' 'minMaxScale.R'
'markovProbability.R' 'miloUmap.R’' 'projectPseudotimeToCell.R'
'setupVdjPseudobulk.R' 'splitCTgene.R' 'vdjPseudobulk.R'

Imports BiocGenerics, bluster, destiny, igraph, MASS, Matrix, methods,
miloR, purrr, rlang, S4Vectors, SingleCellExperiment, spam,
stats, SummarizedExperiment, uwot, RANN

Suggests BiocStyle, fields, knitr, rmarkdown, RColorBrewer, scater,
scRepertoire, DelayedMatrixStats, slingshot, testthat

VignetteBuilder knitr
URL https://www.github.com/tuonglab/dandelionR/

BugReports https://www.github.com/tuonglab/dandelionR/issues
Depends R (>=4.4.0)

git_url https://git.bioconductor.org/packages/dandelionR

git_branch RELEASE_3_22

git_last_commit da413e4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

https://www.github.com/tuonglab/dandelionR/
https://www.github.com/tuonglab/dandelionR/issues

Author Jiawei Yu [aut] (ORCID: <https://orcid.org/0009-0005-9170-7881>),
Nicholas Borcherding [aut] (ORCID:
<https://orcid.org/0000-0003-1427-6342>),
Kelvin Tuong [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6735-6808>)

Maintainer Kelvin Tuong <z.tuong@uq.edu.au>

Contents

addColData o L L
allowedChaino L o
calDif © oL
«classCheck o oL
.collapse_nested_list
.constructMarkovChain oL oL
determExtractColN
.determineMultiscaleSpace L oL
determTerminal oL
extractVdj
featureSpaceConstruct
filterCells o o L
filterProductivity L.
filterUnmapped o oL
findNewWaypoints
.generateExtractColumn L oL
.generateExtractName L. oL Lo
LetPbs . L e
.getPbsCol . . . L L e
.getPbsPerCol L
KNNind . .o
.maxMinSampling
.minMaxScale
.normalizeFeatureSpace L
.normalizePerVDI . . . o L L L
.packFeatureSpace
RANNINX . .o o e
xremoveEdge Lo
SubsetSce .. oL L
terminalStateFromMarkovChaino 0oL
ypeCheck o oL
waypiontsPerCol oo
chainAssign e
dandelionR
demo_airr e e
demo_sce
differentiationProbabilities oL
formatVdj
markovProbability
miloUmap e
projectProbability oo
projectPseudotimeToCell

Contents

https://orcid.org/0009-0005-9170-7881
https://orcid.org/0000-0003-1427-6342
https://orcid.org/0000-0002-6735-6808

.addColData 3
project_single_value 29
SCe_VA] . . e e e 30
setupVdjPseudobulk L 31
splitCTgene e 34
vdjPseudobulk 34

Index 37

.addColData add the calculated probability to the colData
Description

add the calculated probability to the colData

Usage

.addColData(probabilities_proj, terminal_state, milo, verbose)

Arguments

probabilities_proj
the probabilities need to be stored

terminal_state Integer. The index of the terminal state in the Markov chain, passed from

markovProbability
milo the milo object provided by user
verbose logical, print warnings.

Value

a Milo object with probabilties and pseudotime in its colData slot

.allowedChain filtering cell without allowed chain status

Description

filtering cell without allowed chain status

Usage

.allowedChain(sce, allowed_chain_status, verbose)

Arguments

sce SingleCellExperiment object input
allowed_chain_status

the chain needs to be retain, passed from setupVdjPseudobulk
verbose logical, print messages. Default is TRUE.
Value

SingleCellExperiment object with allowed chain status

.classCheck

.calDbif function help to calculate the diffusion distance

Description

function help to calculate the diffusion distance

Usage

.calDif(idx, eigenvector, lambda_t, K)

Arguments
idx integer the index of the calculated value
eigenvector numeric vector, the eigenvector from diffusion map
lambda_t eigenvalues to the power of t(diffusion time)
K The number of the eigenvectors to be used in calculation
Value

updated diffusion distance matrix after one iteration

.classCheck .classCheck

Description

check whether the input is with the correct class

Usage

.classCheck(input, must)

Arguments
input the input need to be check
must the type we need

Value

whether or not the input is the correct class

.collapse_nested_list 5

.collapse_nested_list Collapse a nested list

Description

Collapse a nested list

Usage

.collapse_nested_list(input_list)

Arguments

input_list input nested list.

Value

collapsed list

.constructMarkovChain .constructMarkovChain

Description

Markov chain construction

Usage

.constructMarkovChain(wp_data, knn., pseudotime, waypoints, vb, use_RANN)

Arguments
wp_data Multi scale data of the waypoints
knn. Number of nearest neighbors for graph construction
pseudotime pseudotime ordering of cells
waypoints integer vector, index of selected waypoint used to
vb whether to print messages
use_RANN parameter to make user choose whether to use RANN to construct Markov
chain, or keep using bluster
Value

transition matrix of the markov chain

6 .determineMultiscaleSpace

.determExtractColN determine the columns in the colData where the main VDJ information
is stored

Description

determine the columns in the colData where the main VDJ information is stored

Usage

.determExtractColN(extract_cols, mode_option, milo)

Arguments

extract_cols names of columns in the colData where the main VDJ information stores, passed

from vdjPseudobulk
mode_option Specifies the mode for extracting V(D)J genes
milo Milo or SingleCellExperiment object provided by user

Value

a character vector stores the names of columns in the colData where the main VDJ information
stores

.determineMultiscaleSpace
.determineMultiscaleSpace

Description

.determineMultiscaleSpace

Usage

.determineMultiscaleSpace(diffusionmap, n_eigs = NULL)

Arguments

diffusionmap DiffusionMap object
n_eigs integer, default is NULL. Number of eigen vectors to use.

* Ifis not specified, the number of eigen vectors will be determined using the
eigen gap.

Value

dataframe

.determTerminal 7

.determTerminal .determTerminal

Description

function in Reduce to provide waypoints

Usage

.determTerminal (terminal_states, i, dm_boudaries, wp_data)

Arguments

terminal_states
integer vector to store the generated waypoint index

i iteration index
dm_boudaries index of the maxium or minium value of transition matrix per row

wp_data Multi scale data of the waypoints

Value

integer vector store the index of waypoints serve as terminal state

.extractVdj Specify the columns which store VDJ information, and extract the main
chain from it

Description

Specify the columns which store VDJ information, and extract the main chain from it

Usage

.extractVdj(sce, extract_cols, mode_option, verbose)

Arguments

sce SingleCellExperiment object input

extract_cols The setupVdjPseutobulk transfered parameter given by user to specify the VDJ
information columns

mode_option see document of setupVdjPseudobulk for detailed explanation
verbose logical, print messages. Default is TRUE.
Value

SingleCellExperiment objects with column stores the information of the main VDIJ information in
colData slot

8 ilterCells

.featureSpaceConstruct
Construct VDJ feature space

Description

Construct VDJ feature space

Usage

.featureSpaceConstruct(milo, extract_cols, pbs)

Arguments
milo Milo or SingleCellExperiment object provided by user
extract_cols columns of names where to extract the VDJ information
pbs cell x pseudobulk adjacent matrix

Value

constructed feature space

.filterCells SilterCells

Description

Helper function that identifies filter_pattern hits in determined column of sce, and then either
removes the offeending cells or masks the matched values with a uniform value of ’(column’s
name)_missing’

Usage
.filterCells(
sce,
col_n,
filter_pattern = ", |None|No_contig”,
remove_missing = TRUE
)
Arguments
sce SingleCellExperiment object, adata in python data after combineTCR, contain
both vdj and seq
col_n mode for extraction the V(D)J genes.

filter_pattern character string, optional ’,INonelNo_contig’ by default
remove_missing bool, True by default
 If TRUE, will remove cells with contigs matching the filter from the object.

e If FALSE, will mask them with a uniform value dependent on the column
name.

ilterProductivity

Value

filtered SingleCellExperiment object according to the parameter.

.filterProductivity filer out cell with unproductive chain

Description

filer out cell with unproductive chain

Usage

.filterProductivity(
sce,
mode_option,
productive_cols,
productive_vj,
productive_vdj,
verbose

Arguments
sce SingleCellExperiment input
mode_option check setupVdjPseudobulk for detailed explanation
productive_vj If TRUE, retains cells where the main VJ chain is productive.
productive_vdj If TRUE, retains cells where the main VDI chain is productive.

verbose logical, print messages. Default is TRUE.

Value

SingleCellExperiment object after filtering on producive chain

.filterUnmapped Filter out cell with unclear mapping in VDJ information

Description

Filter out cell with unclear mapping in VDJ information

10 .findNewWaypoints

Usage

.filterUnmapped(
sce,
mode_option,
check_vj_mapping,
check_vdj_mapping,
main_cols,
check_extract_cols_mapping,
remove_missing,

verbose
)
Arguments
sce SingleCellExperiment object input
mode_option see document of setupVdjPseudobulk for explanation

check_vj_mapping
logical vector to set whether to check V and J gene in VI chain, passed from
setupVdjPseudobulk

check_vdj_mapping
logical vector to set whether to check V, D and J gene in VDJ chain, passed from
setupVdjPseudobulk

main_cols column names in colData in which The information of main chain stores

check_extract_cols_mapping
character vector,the names of columns that needs to be checked, passed from

setupVdjPseudobulk

remove_missing option for removing the unclear mappin or just mask it, passed from setupVd-
jPseudobulk

verbose logical, print messages.

Value

filtered SingleCellExperiment object

.findNewWaypoints function used in Reduce to find new waypoint in an iteration

Description

function used in Reduce to find new waypoint in an iteration

Usage

.findNewWaypoints(iterdists, k, vecs, ind, datas)

.generateExtractColumn 11

Arguments
iterdists a list containing both waypoints deteted in the former iterations and the distance
matrix used to find waypoints
k the iteration number
vecs a numeric vector used to calculate distance of waypoints to each points
ind colnames
Value

a list containing updated distance matrix and new waypoints

.generateExtractColumn

Check whether the columns with specified names exist, if not, create
them with CTgene columns

Description

Check whether the columns with specified names exist, if not, create them with CTgene columns

Usage

.generateExtractColumn(sce, extract_cols, verbose)

Arguments

sce SingleCellExperiment object input
extract_cols column names we aim to extract information from

verbose logical, print messages. Default is TRUE.

Value

SingleCellExperiment with columns containing VDJ information in the names we’ve specified.

.generateExtractName Generate the name of columns with given parameter

Description

Generate the name of columns with given parameter

Usage

.generateExtractName(sce, mode_option, verbose)

12 .getPbsCol

Arguments
sce SingleCellExperiment object input
mode_option see document of setupVdjPseudobulk for explanation
verbose logical, print messages. Default is TRUE.

Value

a vecotor of colnames we need to perform main chain extraction

.getPbs .getPbs

Description

Helper function to ensure we have cells by pseudobulks matrix which we can use for pseudobulking.

Usage
.getPbs(pbs, col_to_bulk, milo, verbose = TRUE)

Arguments
pbs pbs parameter provided by vdjPseudobulk(), cells by pseudobulks matrix or
NULL
col_to_bulk col_to_bulk parameter provided by vdjPseudobulk(), column’s name of colData
from milo
milo SingleCellExperiment object
verbose logical, whether to print messages
Value

a cell x pseudobulk matrix

.getPbsCol .getPbsCol

Description

Helper function to create the new pseudobulk object’s coldata.

Usage
.getPbsCol (pbs, col_to_take, milo)

Arguments
pbs dgeMatrix, cell x pseudobulk binary matrix
col_to_take character vector, names of colData of milo that need to be processed

milo Milo or SingleCellExperiment object

.getPbsPerCol 13

Value

pbs_col, a DataFrame which will be passed to the new SingleCellExperiment object as colData of
vdj x pseudobulk assays

.getPbsPerCol .getPbsPerCol

Description

function used in Reduce to get the PbsCol

Usage

.getPbsPerCol(pbs.col, anno_col, milo, pbs)

Arguments
pbs.col DataFrame object used to store the result of each iteration
anno_col colname where to generate the metadata from
milo milo or SingleCellExperiment objects provided by user
pbs dgeMatrix, cell x pseudobulk binary matrix

Value

DataFrame object, serve as part of metadata of the new milo object

.KNNind Calculate the weighted adjacency matrix of knn graph and its index

Description

Calculate the weighted adjacency matrix of knn graph and its index

Usage

.KNNind(wp_data, knn.)

Arguments

wp_data Multi scale data of the waypoints

knn. Number of nearest neighbors for graph construction
Value

a list containing the weight adjacent matrix and index

14 .minMaxScale

.maxMinSampling .maxMinSampling

Description

function for max min sampling of waypoints

Usage

.maxMinSampling(datas, num_waypoints, verbose = TRUE)

Arguments

datas data matrix along which to sample the waypoints, usually diffusion components
num_waypoints number of waypoints to sample

verbose logical, print progress

Value

Series reprenting the sampled waypoints

.minMaxScale minMaxScale

Description

scale the value to range O to 1

Usage

.minMaxScale(data)
Arguments

data dataframe need to be scale
Value

scaled value

.normalizeFeatureSpace

15

.normalizeFeatureSpace
Normalize Feature Space

Description

Make sure the sum of each V, D, and J gene within a pseudobulk equals to 1

Usage

.normalizeFeatureSpace(
pseudo_vdj_feature,
extract_cols,
min_count,
renormalize,
milo

Arguments

pseudo_vdj_feature
constructed feature space

extract_cols names of columns to extract the VDJ information

min_count the minim count of a V/D/J gene

renormalize Whether to renormalize the matrix

milo Milo or SingleCellExperiment object provided by user
Value

normalized VDJ feature space

.normalizePerVDJ function to normalize a specific kind of VDJ gene in feature space

Description

function to normalize a specific kind of VDJ gene in feature space

Usage

.normalizePerVDJ(
pseudo_vdj_feature,
col_n,
renormalize,
define.mask,
milo,
min_count

16 .packFeatureSpace

Arguments

pseudo_vdj_feature
constructed feature space

col_n name of column to extract the VDJ information
renormalize Whether to renormalize the matrix
define.mask logical vector determine whether the V/D/J gene should be masked when nor-
malizing
milo Milo or SingleCellExperiment object provided by user
min_count the minim count of a V/D/J gene
Value

feature space normalized on specifed V/D/J gene

.packFeatureSpace Pack the normalized feature space into new Milo object

Description

The metadata will derived from the original milo

Usage

.packFeatureSpace(pbs, col_to_take, milo, pseudo_vdj_feature)

Arguments
pbs cell x pseudobulk adjacent matrix
col_to_take Optional character or vector of characters. Specifies names of colData of milo
that need to identify the most common value for each pseudobulk
milo Milo or SingleCellExperiment object provided by user

pseudo_vdj_feature
VDJ feature space

Value

Milo object with VDJ feature space stored in its assay

.RANNiInx 17

.RANNinx Calculate the weight adjacent matricks of knn graph and its index us-
ing RANN

Description

Calculate the weight adjacent matricks of knn graph and its index using RANN

Usage

.RANNinx(wp_data, knn.)

Arguments

wp_data Multi scale data of the waypoints

knn. Number of nearest neighbors for graph construction
Value

a list containing the weight adjacent matrix and index

.removeEdge function used in Reduce to remove KNN'’s backward edges except for
edges that are within the computed standard deviation

Description

function used in Reduce to remove KNN’s backward edges except for edges that are within the
computed standard deviation

Usage

.removeEdge(Knn, i, rem_edges)

Arguments

Knn weight KNN adjacent matrix

i the iteration number

rem_edges the edges that need to be removes
Value

an updated matrix after one round of iteration

18 .terminalStateFromMarkovChain

.subsetSce Subset sce with given parameter

Description

Subset sce with given parameter

Usage

.subsetSce(sce, subsetby, groups, verbose)

Arguments
sce SingleCellExperiment object input
subsetby subsetby Character. Name of a colData column for subsetting. given by se-
tupVdjPsudobulk.
groups Character vector. Specifies the subset condition for filtering. given by setupVd-
jPsudobulk.
verbose logical, print messages. Default is TRUE.
Value

subsetted SingleCellExperiment object

.terminalStateFromMarkovChain
Determine terminal states using Markov chain if end states are not
provided.

Description

Determine terminal states using Markov chain if end states are not provided.

Usage
.terminalStateFromMarkovChain(
Transmat,
wp_data,
pseudotime,
waypoints,
verbose
)
Arguments
Transmat Transition matrix
wp_data Multi scale data of the waypoints
pseudotime numeric vector, pseudotime of each pseudobulk
waypoints integer vector, waypoint selected to construct markov chain.

verbose Boolean, whether to print messages/warnings.

.typeCheck

Value

terminal_state

19

. typeCheck .typeCheck

Description

check whether the input has the correct type

Usage

.typeCheck(input, must)

Arguments
input the input need to be check
must the type we need

Value

whether or not the input is the correct type

.waypiontsPerCol find the waypoints according to certain columns of data

Description

find the waypoints according to certain columns of data

Usage

.waypiontsPerCol(waypoints, ind, datas, no.iterations)

Arguments
waypoints integer vector used to store waypoints
ind columns’ colnames
datas scaled diffusionmap

Value

a numeric vector containing waypoints’ index

20 dandelionR

chainAssign Assign the V(D)J gene to the right chain.

Description

Assign the V(D)J gene to the right chain.

Usage

chainAssign(vec, num, min_len, max_len)

Arguments
vec vector of V(D)J genes to assign to the right chain.
num number of genes to return. should be 2(vj) or 3(vdj)
min_len minimum length of the vector to account for missing constant gene.
max_len maximum length of the vector to account for multiple chains.
Value

list contain vector of VJ + VDI of the cell input

dandelionR dandelionR: Single-cell immune repertoire trajectory analysis

Description

dandelionR is an R package for performing single-cell immune repertoire trajectory analysis, based
on the original python implementation. It provides the necessary functions to interface with scReper-
toire and a custom implementation of an absorbing Markov chain for pseudotime inference, inspired
by the Palantir Python package.

Main functions

* setupVdjPseudobulk: Preprocess V(D)J Data for Pseudobulk Analysis.
* vdjPseudobulk: Generate Pseudobulk V(D)J Feature Space.
* markovProbability: Markov Chain Construction and Probability Calculation.

* projectPseudotimeToCell: Project Pseudotime and Branch Probabilities to Single Cells.

Vignettes

See the package vignettes for detailed workflows: vignette('dandelionR")

Installation

To install from Bioconductor, use:

if (!requireNamespace('BiocManager', quietly = TRUE))
install.packages('BiocManager')
BiocManager::install('dandelionR")

demo_airr 21

Author(s)

Maintainer: Kelvin Tuong <z. tuong@uq. edu.au> (ORCID)
Authors:

e Jiawei Yu <jiawei.yu@uq.edu.au> (ORCID)
* Nicholas Borcherding <borcherding@wustl.edu> (ORCID)

See Also
Useful links:

e https://www.github.com/tuonglab/dandelionR/

* Report bugs at https://www.github.com/tuonglab/dandelionR/issues

demo_airr Example AIRR Dataset for V(D)J Analysis

Description

The demo_airr object is a list of AIRR data frames from a down-sampled demo dataset derived
from Suo et al., 2024, Nature Biotechnology.

This dataset is used in vignettes to demonstrate workflows for V(D)J analysis.

For details, see the original publication at https: //www.nature.com/articles/s41587-023-01734-7.
The original files are available at https://github.com/zktuong/dandelion-demo-files.

Usage

data(demo_airr)

Format

A SingleCellExperiment object with the following slots:

list List of DataFrames containing the standardised AIRR data for each sample.
For information of AIRR rearrangements, see the AIRR Community standards at https:
//docs.airr-community.org/.

Source

Suo et al., 2024, Nature Biotechnology.
https://www.nature.com/articles/s41587-023-01734-7.

Examples

data(demo_airr)

https://orcid.org/0000-0002-6735-6808
https://orcid.org/0009-0005-9170-7881
https://orcid.org/0000-0003-1427-6342
https://www.github.com/tuonglab/dandelionR/
https://www.github.com/tuonglab/dandelionR/issues
https://www.nature.com/articles/s41587-023-01734-7
https://github.com/zktuong/dandelion-demo-files
https://docs.airr-community.org/
https://docs.airr-community.org/
https://www.nature.com/articles/s41587-023-01734-7

22 differentiationProbabilities

demo_sce Example SCE Dataset that does not contain V(D)J information

Description

The demo_sce object is a down-sampled demo dataset derived from Suo et al., 2024, Nature
Biotechnology.

This dataset is used in vignettes to demonstrate workflows for V(D)J analysis.

For details, see the original publication at https://www.nature.com/articles/s41587-023-01734-7.
The original Lymphoid cells data in h5ad format is available at ht tps: //developmental.cellatlas.
io/fetal-immune.

Usage

data(demo_sce)

Format

A SingleCellExperiment object with the following slots:

colData A minimall DataFrame containing metadata about each sample, corresponding to obs in
AnnData (Python). The following columns are relevant for vignette usage:
anno_lvl_2_final_clean Cell type annotations.

int_colData A DataFrame containing additional assay metadata important for further analysis.
Includes:

* X_scvi: A dimensionality reduction matrix from the scVI model.
* UMAP: A UMAP reduction matrix.

Source
Suo et al., 2024, Nature Biotechnology.
https://www.nature.com/articles/s41587-023-01734-7.

Examples

data(demo_sce)

differentiationProbabilities
Compute Branch Probabilities Using Markov Chain

Description

This function calculates branch probabilities for differentiation trajectories based on a Markov chain
constructed from waypoint data and pseudotime ordering.

https://www.nature.com/articles/s41587-023-01734-7
https://developmental.cellatlas.io/fetal-immune
https://developmental.cellatlas.io/fetal-immune
https://www.nature.com/articles/s41587-023-01734-7

formatVdj 23

Usage

differentiationProbabilities(
wp_data,
terminal_states = NULL,
knn = 30L,
pseudotime,
waypoints,
verbose = TRUE,
use_RANN = TRUE

Arguments

wp_data A multi-scale data matrix or data frame representing the waypoints.
terminal_states
Integer vector. Indices of the terminal states. Default is NULL.

knn Integer. Number of nearest neighbors for graph construction. Default is 30L.
pseudotime Numeric vector. Pseudotime ordering of cells.

waypoints Integer vector. Indices of selected waypoints used to construct the Markov chain.
verbose Boolean, whether to print messages/warnings.

use_RANN parameter to make user choose whether to use RANN to construct Markov

chain, or keep using bluster

Value

A numeric matrix or data frame containing branch probabilities for each waypoint.

formatvdj Change the format of splitCTgene output.

Description

Change the format of splitCTgene output.

Usage

formatVdj(gene_list)

Arguments

gene_list list containing the output from splitCTgene.

Value

list contain vector of VJ + VDJ information of the cell input

24

markovProbability

markovProbability

Markov Chain Construction and Probability Calculation

Description

This function preprocesses data, constructs a Markov chain, and calculates transition probabilities
based on pseudotime information.

Usage

markovProbability(

milo,
diffusionmap,

terminal_state = NULL,

root_cell,
knn = 30L,
diffusiontime

= NULL,

pseudotime_key = "pseudotime”,
scale_components = TRUE,

num_waypoints

= 500,

n_eigs = NULL,
verbose = TRUE,
use_RANN = TRUE

Arguments

milo

diffusionmap

terminal_state
root_cell
knn

diffusiontime

pseudotime_key

A Miloor SingleCellExperiment object. This object should have pseudotime
stored in colData, which will be used to calculate probabilities. If pseudotime
is available in milo, it takes precedence over the value provided through the
diffusiontime parameter.

A DiffusionMap object corresponding to the milo object. Used for Markov
chain construction.

Integer. The index of the terminal state in the Markov chain.
Integer. The index of the root state in the Markov chain.
Integer. The number of nearest neighbors for graph construction. Default is 30L.

Numeric vector. If pseudotime is not stored in milo, this parameter can be used
to provide pseudotime values to the function.

Character. The name of the column in colData that contains the inferred pseu-
dotime.

scale_components

num_waypoints

n_eigs

Logical. If TRUE, the components will be scaled before constructing the Markov
chain. Default is FALSE.

Integer. The number of waypoints to sample when constructing the Markov
chain. Default is 500L.

integer, default is NULL. Number of eigen vectors to use.

* If is not specified, the number of eigen vectors will be determined using the
eigen gap.

markovProbability 25

verbose Logical. If TRUE, print progress. Default is TRUE.

use_RANN parameter to make user choose whether to use RANN to construct Markov
chain, or keep using bluster

Value

milo or SinglCellExperiment object with pseudotime, probabilities in its colData

Examples

data(sce_vdj)

downsample to first 2000 cells

sce_vdj <- sce_vdj[, 1:2000]

sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair")

)

Build Milo Object

set.seed(100)

milo_object <- miloR::Milo(sce_vdj)

milo_object <- miloR::buildGraph(milo_object,
k = 50, d = 20,

reduced.dim = "X_scvi”

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”,
d =20

)

Construct Pseudobulked VDJ Feature Space
pb.milo <- vdjPseudobulk(milo_object, col_to_take = "anno_lvl_2_final_clean")
pb.milo <- scater::runPCA(pb.milo, assay.type = "Feature_space")

Define root and branch tips

pca <- t(as.matrix(SingleCellExperiment::reducedDim(pb.milo, type = "PCA")))
branch.tips <- c(which.min(pcal, 2]), which.max(pcal, 2]))
names(branch.tips) <- c("CD8+T", "CD4+T")

root <- which.min(pcal, 11)

Construct Diffusion Map
dm <- destiny::DiffusionMap(t(pca), n_pcs = 10, n_eigs = 5)
dif.pse <- destiny::DPT(dm, tips = c(root, branch.tips), w_width = 0.1)

Markov Chain Construction
pb.milo <- markovProbability(
milo = pb.milo,
diffusionmap = dm,
diffusiontime = dif.pse[[paste@("DPT", root)]],
terminal_state = branch.tips,
root_cell = root,
pseudotime_key = "pseudotime”

26

miloUmap

miloUmap

Perform UMAP on the Adjacency Matrix of a Milo Object

Description

This function uses

uwot: :umap to perform UMAP dimensionality reduction on the adjacency ma-

trix of the KNN graph in a Milo object.

Usage

miloUmap(
milo,

slot_name = "UMAP_knngraph"”,

n_neighbors =

50L,

metric = "euclidean”,
min_dist = 0.3,
use_graph = TRUE,

Arguments
milo

slot_name

n_neighbors

metric

min_dist

use_graph

Value

the milo object with knn graph that needed to conduct umap on.
character, with default "'UMAP_knngraph’.

* The slot name in reduceDim where the result store
integer, with default SOL.

* the size of local neighborhood (in terms of number of neighboring sample
points) used for manifold approximation.

* Here, the goal is to create large enough neighborhoods to capture the local
manifold structure to allow for hypersampling.

character, with default ’euclidean’

¢ the choice of metric used to measure distance to find nearest neighbors.
Default is ’euclidean’.

numeric, with default 0.3
¢ the minimum distance between points in the low dimensional space
Logical, default TRUE.

* Whether to run UMAP on the graph adjacency matrix (TRUE) as in Dan-
delion, or directly on the latent space (FALSE) for faster performance.

other parameters passed to uwot::umap

milo object with umap reduction

projectProbability

Examples

data(sce_vdj)

downsample to just 1000 cells

sce_vdj <- sce_vdj[, 1:1000]

sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair")

)

Build Milo Object

milo_object <- miloR::Milo(sce_vdj)

milo_object <- miloR::buildGraph(milo_object,
k = 50, d = 20,

reduced.dim = "X_scvi”

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”, d = 20

)

Construct UMAP on Milo Neighbor Graph
milo_object <- miloUmap(milo_object)

27

projectProbability Project Probabilities from Markov Chain to Pseudobulks

Description

This function projects probabilities calculated from a Markov chain onto each pseudobulk based on

a diffusion distance matrix.

Usage

projectProbability(
diffusionmap,
waypoints,
probabilities,

t =1,

verbose = TRUE

Arguments

diffusionmap diffusion map, used to reconstruct diffustion distance matrix

waypoints Integer vector. Indices of the waypoints used in the Markov chain.

probabilities Numeric vector. Probabilities associated with the waypoints, calculated from

the Markov chain.

t Numeric. The diffusion time to be used in the projection.
verbose Boolean, whether to print messages/warnings.
Value

each pseudobulk’s probabilites

28 projectPseudotimeToCell

projectPseudotimeToCell
Project Pseudotime and Branch Probabilities to Single Cells

Description

This function projects pseudotime and branch probabilities from pseudobulk data to single-cell
resolution (milo). The results are stored in the colData of the milo object.

Usage
projectPseudotimeToCell(
milo,
pb_milo,
value_key = NULL,
suffix = "",
verbose = TRUE
)
Arguments
milo A SingleCellExperiment or Milo object. Represents single-cell data where
pseudotime and branch probabilities will be projected.
pb_milo A pseudobulk Milo object. Contains aggregated branch probabilities and pseu-
dotime information to be transferred to single cells.
value_key Character. The column name in colData of pb_milo that contains the value that
is needed to be projected back. Default is NULL.
suffix Character. A suffix to be added to the new column names in colData. Default
is an empty string (' ").
verbose Boolean, whether to print messages/warnings.
Value

subset of milo or SingleCellExperiment object where cell that do not belong to any neighbourhood
are removed and projected pseudotime information stored colData

Examples

data(sce_vdj)

downsample to first 2000 cells

sce_vdj <- sce_vdj[, 1:2000]

sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair"”, "Extra pair”)

)

Build Milo Object

set.seed(100)

milo_object <- miloR::Milo(sce_vdj)

milo_object <- miloR::buildGraph(milo_object,
k = 50, d = 20,
reduced.dim = "X_scvi"

project_single_value

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”,
d = 20

)

Construct Pseudobulked VDJ Feature Space
pb.milo <- vdjPseudobulk(milo_object, col_to_take = "anno_lvl_2_final_clean"”)
pb.milo <- scater::runPCA(pb.milo, assay.type = "Feature_space")

Define root and branch tips

pca <- t(as.matrix(SingleCellExperiment::reducedDim(pb.milo, type = "PCA")))
branch.tips <- c(which.min(pcal, 21), which.max(pcal, 2]))
names(branch.tips) <- c("CD8+T", "CD4+T")

root <- which.min(pcal, 11)

Construct Diffusion Map
dm <- destiny::DiffusionMap(t(pca), n_pcs = 10, n_eigs = 5)
dif.pse <- destiny::DPT(dm, tips = c(root, branch.tips), w_width = 0.1)

Markov Chain Construction
pb.milo <- markovProbability(
milo = pb.milo,
diffusionmap = dm,
diffusiontime = dif.pse[[paste@("DPT", root)]1],
terminal_state = branch.tips,
root_cell = root,
pseudotime_key = "pseudotime”
)
Project Pseudobulk Data
projected_milo <- projectPseudotimeToCell(
milo_object,
pb.milo,
value_key = c("pseudotime”, "CD8+T", "CD4+T")

project_single_value Function to project pseudobulk-level values to single-cell level

Description

Function to project pseudobulk-level values to single-cell level

Usage

project_single_value(x, y, value_name, verbose = TRUE)

Arguments
X Numeric vector, pseudobulk-level value to be projected.
y Matrix (pseudobulk x cell), used to project x back to cell level.
value_name Character, name of the value being projected.

verbose Boolean, whether to print messages/warnings.

30 sce_vdj

Value

Numeric vector of projected values at cell level.

sce_vdj Example Dataset for V(D)J Analysis

Description

The sce_vdj object is a down-sampled demo dataset derived from Suo et al., 2024, Nature Biotech-
nology.

This dataset is used in vignettes to demonstrate workflows for V(D)J analysis.

For details, see the original publication at https://www.nature.com/articles/s41587-023-01734-7.

Usage

data(sce_vdj)

Format
A SingleCellExperiment object with the following slots:

colData A DataFrame containing metadata about each sample, corresponding to obs in AnnData
(Python). The following columns are relevant for vignette usage:

productive_(mode)_VDJ, productive_(mode)_VJ Factors indicating whether the heavy or
light chain is productive. mode refers to the extraction mode for V(D)J genes and can be
one of:

e 'abT': TCR alpha-beta
e 'gdT': TCR gamma-delta
* 'B': BCR
Gene segment fields Gene segment annotations with column names in the format (v/d/j)_call_(mode)_(VDJ/
Examples include:
e v_call_abT_VDJ: V gene for TCR alpha-beta VDJ recombination
* d_call_abT_VJ: D gene for TCR alpha-beta VJ recombination
chain_status A factor describing the receptor chain’s status.
anno_lvl_2_final_clean Cell type annotations.
int_colData A DataFrame containing additional assay metadata important for further analysis.
Includes:
e X_scvi: A dimensionality reduction matrix from the scVI model.
* UMAP: A UMAP reduction matrix.

Source

Suo et al., 2024, Nature Biotechnology.
https://www.nature.com/articles/s41587-023-01734-7.

Examples

data(sce_vdj)

https://www.nature.com/articles/s41587-023-01734-7
https://www.nature.com/articles/s41587-023-01734-7

setupVdjPseudobulk 31

setupVdjPseudobulk Preprocess V(D)J Data for Pseudobulk Analysis

Description

This function preprocesses single-cell V(D)J sequencing data for pseudobulk analysis. It filters
data based on productivity and chain status, subsets data, extracts main V(D)J genes, and removes
unmapped entries.

Usage

setupVdjPseudobulk(
sce,
mode_option = c("abT", "gdT", "B"),
already.productive = TRUE,
productive_cols = NULL,
productive_vj = TRUE,
productive_vdj = TRUE,
allowed_chain_status = NULL,
subsetby = NULL,
groups = NULL,
extract_cols = NULL,
filter_unmapped = TRUE,
check_vj_mapping = c(TRUE, TRUE),
check_vdj_mapping = c(TRUE, FALSE, TRUE),
check_extract_cols_mapping = NULL,
remove_missing = TRUE,
verbose = TRUE

Arguments

sce A SingleCellExperiment object. V(D)J data should be contained in colData
for filtering.

mode_option Optional character. Specifies the mode for extracting V(D)J genes. If NULL,
extract_cols must be specified. Default is NULL.

already.productive
Logical. Whether the data has already been filtered for productivity. If TRUE,
skips productivity filtering. Default is FALSE.

productive_cols
Character vector. Names of colData columns used for productivity filtering.
Default is NULL.

productive_vj Logical. If TRUE, retains cells where the main VJ chain is productive. Default is
TRUE.

productive_vdj Logical. If TRUE, retains cells where the main VDJ chain is productive. Default
is TRUE.
allowed_chain_status
Character vector. Specifies chain statuses to retain. Valid options include™ c('single
pair', 'Extrapair', 'Extra pair-exception', 'Orphan VDJ', 'Orphan VDJ-exception')".
Default is NULL.

32 setupVdjPseudobulk

subsetby Character. Name of a colData column for subsetting. Default is NULL.
groups Character vector. Specifies the subset condition for filtering. Default is NULL.

extract_cols Character vector. Names of colData columns where V(D)J information is stored,
used instead of the standard columns. Default is NULL.
filter_unmapped
Logic. Whether to filter unmapped data. Default is TRUE.
check_vj_mapping
Logic vector. Whether to check for VJ mapping. Default is c(TRUE, TRUE).
o If the first element is TRUE, function will filter the unmapped data in V
gene of the VJ chain

* If the second element is TRUE, function will filter the unmapped data in J
gene of the VJ chain

check_vdj_mapping
Logic vector. Specifies columns to check for VDJ mapping. Defaultis c(TRUE, FALSE, 'TRUE).
o If the first element is TRUE, function will filter the unmapped data in V
gene of the VDJ chain

* If the second element is TRUE, function will filter the unmapped data in D
gene of the VDJ chain

e If the third element is TRUE, function will filter the unmapped data in J
gene of the VDJ chain
check_extract_cols_mapping

Character vector. Specifies columns related to extract_cols for mapping checks.
Default is NULL.

remove_missing Logical. If TRUE, removes cells with contigs matching the filter. If FALSE, masks
them with uniform values. Default is TRUE.

verbose Logical. Whether to print messages. Default is TRUE.

Details
The function performs the following preprocessing steps:

¢ Productivity Filtering:

Skipped if already.productive = TRUE.

Filters cells based on productivity using productive_cols or standard colData columns

named productive_{mode_option}_{type} (where type is "VDJ’ or *VJ’).

— mode_option

+ function will check colData(s) named productive_{mode_option}_{type}, where
type should be VDJ’ or *VJ’ or both, depending on values of productive_vj and
productive_vdj.

If set as NULL, the function needs the option ’extract_cols’ to be specified

productive_cols

* must be be specified when productivity filtering is need to conduct and mode_option
is NULL.

* where VDJ/V] information is stored so that this will be used instead of the standard
columns.

— productive_vj, productive_vdj
If TRUE, cell will only be kept if the main V(D)J chain is productive
* Chain Status Filtering:

setupVdjPseudobulk 33

— Retains cells with chain statuses specified by allowed_chain_status.
* Subsetting:

— Conducted only if both subsetby and groups are provided.

— Retains cells matching the groups condition in the subsetby column.
¢ Main V(D)J Extraction:

— Uses extract_cols to specify custom columns for extracting V(D)J information.
* Unmapped Data Filtering:

— decided to removes or masks cells based on filter_unmapped.

— Checks specific columns for unclear mappings using check_vj_mapping, check_vdj_mapping,
or check_extract_cols_mapping.

— filter_unmapped

* pattern to be filtered from object.

If is set to be NULL, the filtering process will not start
— check_vj_mapping, check_vdj_mapping

only colData specified by these arguments (check_vj_mapping and check_vdj_mapping)
will be checked for unclear mappings

— check_extract_cols_mapping, related to extract_cols

Only colData specified by the argument will be checked for unclear mapping, the
colData should first specified by extract_cols

— remove_missing
If TRUE, will remove cells with contigs matching the filter from the object.

* [f FALSE, will mask them with a uniform value dependent on the column name.

Value

filtered SingleCellExperiment object

Examples

load data

data(sce_vdj)

check the dimension

dim(sce_vdj)

filtered the data

sce_vdj <- setupVdjPseudobulk(
sce = sce_vdj,
mode_option = "abT"”, # set the mode to alpha-beta TCR
allowed_chain_status = c("Single pair”, "Extra pair"),
already.productive = FALSE

) # need to filter the unproductive cells

check the remaining dim

dim(sce_vdj)

34 vdjPseudobulk

splitCTgene Split the V(D)J genes from CTgene column and store them separately.

Description

Split the V(D)J genes from CTgene column and store them separately.

Usage

splitCTgene(sce)
Arguments

sce SingleCellExperiment object after conducting scRepertoire::combineTCR()
Value

list contain vector of VJ & VDIJ genes from each cell

vdjPseudobulk Generate Pseudobulk V(D)J Feature Space

Description

This function creates a pseudobulk V(D)J feature space from single-cell data, aggregating V(D)J in-
formation into pseudobulk groups. It supports input as either aMilo object ora SingleCellExperiment

object.
Usage
vdjPseudobulk(
milo,
pbs = NULL,

col_to_bulk = NULL,

extract_cols = c("v_call_abT_VDJ_main", "j_call_abT_VDJ_main”, "v_call_abT_VJ_main”
"j_call_abT_VJ_main"),

mode_option = c("abT", "gdT", "B"),

col_to_take = NULL,

normalise = TRUE,

renormalize = FALSE,

min_count = 1L,

verbose = TRUE

vdjPseudobulk 35

Arguments
milo A Milo or SingleCellExperiment object containing V(D)J data.
pbs Optional. A binary matrix with cells as rows and pseudobulk groups as columns.
* If milo is a Milo object, this parameter is not required.
e If milo is a SingleCellExperiment object, either pbs or col_to_bulk
must be provided.
col_to_bulk Optional character or character vector. Specifies colData column(s) to generate

pbs. If multiple columns are provided, they will be combined. Default is NULL.

e If milo is a Milo object, this parameter is not required.
e If milo is a SingleCellExperiment object, either pbs or col_to_bulk
must be provided.

extract_cols Character vector. Specifies column names where V(D)J information is stored.
Defaultis c('v_call_abT_VDJ_main', 'j_call_abT_VDJ_main', ' 'v_call_abT_VJ_main', ':

mode_option Character. Specifies the mode for extracting V(D)J genes. Must be one of
c('B', 'abT', 'gdT'). Defaultis 'abT"'.
* Note: This parameter is considered only when extract_cols = NULL.
e IfNULL, uses column names such as v_call_VDJ instead of v_call_abT_VDJ.

col_to_take Optional character or vector of characters. Specifies names of colData of milo
that need to identify the most common value for each pseudobulk Default is
NULL.

normalise Logical. If TRUE, scales the counts of each V(D)J gene group to 1 for each

pseudobulk. Default is TRUE.

renormalize Logical. If TRUE, rescales the counts of each V(D)J gene group to 1 for each
pseudobulk after removing *missing’ calls. Useful when setupVdjPseudobulk()
was run with remove_missing = FALSE. Default is FALSE.

min_count Integer. Sets pseudobulk counts in V(D)J gene groups with fewer than this many
non-missing calls to 0. Default is 1.
verbose Logical. If TRUE, prints messages and warnings. Default is TRUE.
Details

This function aggregates V(D)J data into pseudobulk groups based on the following logic:

* Input Requirements:

* If milo is a Milo object, neither pbs nor col_to_bulk is required.

e IfmiloisaSingleCellExperiment object, the user must provide either pbs or col_to_bulk.
* Normalization:

* When normalise = TRUE, scales V(D)J counts to 1 for each pseudobulk group.

* When renormalize = TRUE, rescales the counts after removing *missing’ calls.

* Mode Selection:

e Ifextract_cols = NULL, the function relies on mode_option to determine which V(D)J columns
to extract.

* Filtering:

* Uses min_count to filter pseudobulks with insufficient counts for V(D)J groups.

36

Value

SingleCellExperiment object

Examples

data(sce_vdj)
sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair"”)
)
Build Milo Object
milo_object <- miloR::Milo(sce_vdj)
milo_object <- miloR::buildGraph(milo_object,
k = 50, d = 20,

reduced.dim = "X_scvi”

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”,
d =20

)

Construct pseudobulked VDJ feature space

vdjPseudobulk

pb.milo <- vdjPseudobulk(milo_object, col_to_take = "anno_lvl_2_final_clean")

Index

+ datasets
demo_airr, 21
demo_sce, 22
sce_vdj, 30

* internal
.KNNind, 13
.RANNinx, 17
.addColData, 3
.allowedChain, 3
.calDif, 4
.classCheck, 4
.collapse_nested_list, 5
.constructMarkovChain, 5
.determExtractColN, 6
.determTerminal, 7
.determineMultiscaleSpace, 6
.extractVvdj, 7
.featureSpaceConstruct, 8
.filterCells, 8
.filterProductivity, 9
.filterUnmapped, 9
.findNewWaypoints, 10
.generateExtractColumn, 11
.generateExtractName, 11
.getPbs, 12
.getPbsCol, 12
.getPbsPerCol, 13
.maxMinSampling, 14
.minMaxScale, 14
.normalizeFeatureSpace, 15
.normalizePerVDJ, 15
.packFeatureSpace, 16
.removekdge, 17
.subsetSce, 18

.terminalStateFromMarkovChain, 18

. typeCheck, 19
.waypiontsPerCol, 19
chainAssign, 20
dandelionR, 20
formatVvdj, 23
splitCTgene, 34

.KNNind, 13

.RANNinx, 17

37

.addColData, 3
.allowedChain, 3

.calDif, 4

.classCheck, 4
.collapse_nested_list, 5
.constructMarkovChain, 5
.determExtractColN, 6
.determTerminal, 7
.determineMultiscaleSpace, 6
.extractVvdj, 7
.featureSpaceConstruct, 8
.filterCells, 8
.filterProductivity, 9
.filterUnmapped, 9
.findNewWaypoints, 10
.generateExtractColumn, 11
.generateExtractName, 11
.getPbs, 12

.getPbsCol, 12
.getPbsPerCol, 13
.maxMinSampling, 14
.minMaxScale, 14
.normalizeFeatureSpace, 15
.normalizePerVDJ, 15
.packFeatureSpace, 16
.removeEdge, 17
.subsetSce, 18
.terminalStateFromMarkovChain, 18
.typeCheck, 19
.waypiontsPerCol, 19

chainAssign, 20

dandelionR, 20

dandelionR-package (dandelionR), 20
demo_airr, 21

demo_sce, 22
differentiationProbabilities, 22

formatVvdj, 23

markovProbability, 20, 24
miloUmap, 26

project_single_value, 29

38 INDEX

projectProbability, 27
projectPseudotimeToCell, 20, 28

sce_vdj, 30
setupVdjPseudobulk, 20, 31
splitCTgene, 34

vdjPseudobulk, 20, 34

	.addColData
	.allowedChain
	.calDif
	.classCheck
	.collapse_nested_list
	.constructMarkovChain
	.determExtractColN
	.determineMultiscaleSpace
	.determTerminal
	.extractVdj
	.featureSpaceConstruct
	.filterCells
	.filterProductivity
	.filterUnmapped
	.findNewWaypoints
	.generateExtractColumn
	.generateExtractName
	.getPbs
	.getPbsCol
	.getPbsPerCol
	.KNNind
	.maxMinSampling
	.minMaxScale
	.normalizeFeatureSpace
	.normalizePerVDJ
	.packFeatureSpace
	.RANNinx
	.removeEdge
	.subsetSce
	.terminalStateFromMarkovChain
	.typeCheck
	.waypiontsPerCol
	chainAssign
	dandelionR
	demo_airr
	demo_sce
	differentiationProbabilities
	formatVdj
	markovProbability
	miloUmap
	projectProbability
	projectPseudotimeToCell
	project_single_value
	sce_vdj
	setupVdjPseudobulk
	splitCTgene
	vdjPseudobulk
	Index

