
Package ‘dada2’
January 19, 2026

Type Package

Title Accurate, high-resolution sample inference from amplicon
sequencing data

Description The dada2 package infers exact amplicon sequence variants (ASVs) from
high-throughput amplicon sequencing data, replacing the coarser and less accurate
OTU clustering approach. The dada2 pipeline takes as input demultiplexed fastq
files, and outputs the sequence variants and their sample-wise abundances after
removing substitution and chimera errors. Taxonomic classification is available
via a native implementation of the RDP naive Bayesian classifier, and species-level
assignment to 16S rRNA gene fragments by exact matching.

Version 1.38.0

Date 2024-12-01

Maintainer Benjamin Callahan <benjamin.j.callahan@gmail.com>

Author Benjamin Callahan <benjamin.j.callahan@gmail.com>, Paul McMurdie, Susan Holmes

License LGPL-2

LazyLoad yes

Depends R (>= 3.4.0), Rcpp (>= 0.12.0), methods (>= 3.4.0)

Imports Biostrings (>= 2.42.1), ggplot2 (>= 2.1.0), reshape2 (>=
1.4.1), ShortRead (>= 1.32.0), RcppParallel (>= 4.3.0),
parallel (>= 3.2.0), IRanges (>= 2.6.0), XVector (>= 0.16.0),
BiocGenerics (>= 0.22.0)

Suggests BiocStyle, knitr, rmarkdown

LinkingTo Rcpp, RcppParallel

SystemRequirements GNU make

VignetteBuilder knitr

biocViews ImmunoOncology, Microbiome, Sequencing, Classification,
Metagenomics

URL http://benjjneb.github.io/dada2/

BugReports https://github.com/benjjneb/dada2/issues

LazyData true

Collate 'RcppExports.R' 'allClasses.R' 'allPackage.R' 'chimeras.R'
'dada.R' 'errorModels.R' 'filter.R' 'misc.R' 'multiSample.R'
'paired.R' 'plot-methods.R' 'sequenceIO.R' 'show-methods.R'
'taxonomy.R'

1

http://benjjneb.github.io/dada2/
https://github.com/benjjneb/dada2/issues

2 Contents

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/dada2

git_branch RELEASE_3_22

git_last_commit 60234dd

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
dada2-package . 3
addSpecies . 4
assignSpecies . 5
assignTaxonomy . 6
c,dada-method . 7
c,derep-method . 8
collapseNoMismatch . 8
dada . 10
dada-class . 12
derep-class . 13
derepFasta . 13
derepFastq . 14
errBalancedF . 15
errBalancedR . 15
fastqFilter . 15
fastqPairedFilter . 17
filterAndTrim . 20
getDadaOpt . 23
getErrors . 24
getSequences . 25
getUniques . 25
inflateErr . 26
isBimera . 27
isBimeraDenovo . 28
isBimeraDenovoTable . 29
isPhiX . 30
isShiftDenovo . 31
learnErrors . 32
loessErrfun . 34
makeBinnedQualErrfun . 35
makeSequenceTable . 35
makeSpeciesFasta_RDP . 36
makeSpeciesFasta_Silva . 37
makeTaxonomyFasta_GG2 . 37
makeTaxonomyFasta_RDP . 38
makeTaxonomyFasta_SilvaNR . 38
mergePairs . 39
mergeSequenceTables . 41
names<-,dada,ANY-method . 42
names<-,derep,ANY-method . 43

dada2-package 3

noqualErrfun . 43
nwalign . 44
nwhamming . 45
PacBioErrfun . 45
plotComplexity . 46
plotErrors . 47
plotQualityProfile . 48
qtables2 . 49
rc . 50
removeBimeraDenovo . 50
removePrimers . 51
seqComplexity . 53
setDadaOpt . 54
show,derep-method . 56
tperr1 . 57
uniques-vector . 57
uniquesToFasta . 57
writeFasta,character-method . 58

Index 60

dada2-package DADA2 package

Description

The dada2 package is centered around the DADA2 algorithm for accurate high-resolution of sample
composition from amplicon sequencing data. The DADA2 algorithm is both more sensitive and
more specific than commonly used OTU methods, and resolves amplicon sequence variants (ASVs)
that differ by as little as one nucleotide.

Details

The dada2 package also provides a full set of tools for taking raw amplicon sequencing data all the
way through to a feature table representing sample composition. Provided facilities include:

• Quality filtering (filterAndTrim, fastqFilter, fastqPairedFilter)

• Dereplication (derepFastq)

• Learn error rates (learnErrors)

• Sample Inference (dada)

• Chimera Removal (removeBimeraDenovo, isBimeraDenovo, isBimeraDenovoTable)

• Merging of Paired Reads (mergePairs)

• Taxonomic Classification (assignTaxonomy, assignSpecies)

Author(s)

Benjamin Callahan <benjamin.j.callahan@gmail.com>

Paul J McMurdie II <mcmurdie@stanford.edu>

Michael Rosen <eigenrosen@gmail.com>

Susan Holmes <susan@stat.stanford.edu>

4 addSpecies

See Also

Useful links:

• http://benjjneb.github.io/dada2/

• Report bugs at https://github.com/benjjneb/dada2/issues

addSpecies Add species-level annotation to a taxonomic table.

Description

addSpecies wraps the assignSpecies function to assign genus-species binomials to the input
sequences by exact matching against a reference fasta. Those binomials are then merged with the
input taxonomic table with species annotations appended as an additional column to the input table.
Only species identifications where the genera in the input table and the binomial classification are
consistent are included in the return table.

Usage

addSpecies(
taxtab,
refFasta,
allowMultiple = FALSE,
tryRC = FALSE,
n = 2000,
verbose = FALSE

)

Arguments

taxtab (Required). A taxonomic table, the output of assignTaxonomy.

refFasta (Required). The path to the reference fasta file, or an R connection. Can be
compressed. This reference fasta file should be formatted so that the id lines
correspond to the genus-species binomial of the associated sequence:
>SeqID genus species ACGAATGTGAAGTAA......

allowMultiple (Optional). Default FALSE. Defines the behavior when multiple exact matches
against different species are returned. By default only unambiguous identifica-
tions are return. If TRUE, a concatenated string of all exactly matched species
is returned. If an integer is provided, multiple identifications up to that many are
returned as a concatenated string.

tryRC (Optional). Default FALSE. If TRUE, the reverse-complement of each sequences
will be used for classification if it is a better match to the reference sequences
than the forward sequence.

n (Optional). Default 1e5. The number of records (reads) to read in and filter at
any one time. This controls the peak memory requirement so that very large
fastq files are supported. See FastqStreamer for details.

verbose (Optional). Default FALSE. If TRUE, print status to standard output.

http://benjjneb.github.io/dada2/
https://github.com/benjjneb/dada2/issues

assignSpecies 5

Value

A character matrix one column larger than input. Rows correspond to sequences, and columns to
the taxonomic levels. NA indicates that the sequence was not classified at that level.

See Also

assignTaxonomy, assignSpecies

Examples

seqs <- getSequences(system.file("extdata", "example_seqs.fa", package="dada2"))
training_fasta <- system.file("extdata", "example_train_set.fa.gz", package="dada2")
taxa <- assignTaxonomy(seqs, training_fasta)
species_fasta <- system.file("extdata", "example_species_assignment.fa.gz", package="dada2")
taxa.spec <- addSpecies(taxa, species_fasta)
taxa.spec.multi <- addSpecies(taxa, species_fasta, allowMultiple=TRUE)

assignSpecies Taxonomic assignment to the species level by exact matching.

Description

assignSpecies uses exact matching against a reference fasta to identify the genus-species binomial
classification of the input sequences.

Usage

assignSpecies(
seqs,
refFasta,
allowMultiple = FALSE,
tryRC = FALSE,
n = 2000,
verbose = FALSE

)

Arguments

seqs (Required). A character vector of the sequences to be assigned, or an object
coercible by getUniques. Sequences must be A/C/G/T only.

refFasta (Required). The path to the reference fasta file, or an R connection. Can be
compressed. This reference fasta file should be formatted so that the id lines
correspond to the genus-species of the associated sequence:
>SeqID genus species ACGAATGTGAAGTAA......

allowMultiple (Optional). Default FALSE. Defines the behavior when multiple exact matches
against different species are returned. By default only unambiguous identifica-
tions are return. If TRUE, a concatenated string of all exactly matched species
is returned. If an integer is provided, multiple identifications up to that many are
returned as a concatenated string.

6 assignTaxonomy

tryRC (Optional). Default FALSE. If TRUE, the reverse-complement of each sequences
will also be tested for exact matching to the reference sequences.

n (Optional). Default 2000. The number of sequences to perform assignment on
at one time. This controls the peak memory requirement so that large numbers
of sequences are supported.

verbose (Optional). Default FALSE. If TRUE, print status to standard output.

Value

A two-column character matrix. Rows correspond to the provided sequences, columns to the genus
and species taxonomic levels. NA indicates that the sequence was not classified at that level.

Examples

seqs <- getSequences(system.file("extdata", "example_seqs.fa", package="dada2"))
species_fasta <- system.file("extdata", "example_species_assignment.fa.gz", package="dada2")
spec <- assignSpecies(seqs, species_fasta)

assignTaxonomy Classifies sequences against reference training dataset.

Description

assignTaxonomy implements the Naive Bayesian Classifier algorithm described in Wang et al.
Applied and Environmental Microbiology 2007, with kmer size 8 and 100 bootstrap replicates.
Properly formatted reference files for several popular taxonomic databases are available http:
//benjjneb.github.io/dada2/training.html

Usage

assignTaxonomy(
seqs,
refFasta,
minBoot = 50,
tryRC = FALSE,
outputBootstraps = FALSE,
taxLevels = c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species"),
multithread = FALSE,
verbose = FALSE

)

Arguments

seqs (Required). A character vector of the sequences to be assigned, or an object
coercible by getUniques.

refFasta (Required). The path to the reference fasta file, or an R connection Can be
compressed. This reference fasta file should be formatted so that the id lines
correspond to the taxonomy (or classification) of the associated sequence, and
each taxonomic level is separated by a semicolon. Eg.
>Kingom;Phylum;Class;Order;Family;Genus; ACGAATGTGAAGTAA......

http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html

c,dada-method 7

minBoot (Optional). Default 50. The minimum bootstrap confidence for assigning a
taxonomic level.

tryRC (Optional). Default FALSE. If TRUE, the reverse-complement of each sequences
will be used for classification if it is a better match to the reference sequences
than the forward sequence.

outputBootstraps

(Optional). Default FALSE. If TRUE, bootstrap values will be retained in an
integer matrix. A named list containing the assigned taxonomies (named "taxa")
and the bootstrap values (named "boot") will be returned. Minimum bootstrap
confidence filtering still takes place, to see full taxonomy set minBoot=0

taxLevels (Optional). Default is c("Kingdom", "Phylum", "Class", "Order", "Family",
"Genus", "Species"). The taxonomic levels being assigned. Truncates if deeper
levels not present in training fasta.

multithread (Optional). Default is FALSE. If TRUE, multithreading is enabled and the num-
ber of available threads is automatically determined. If an integer is provided,
the number of threads to use is set by passing the argument on to setThreadOptions.

verbose (Optional). Default FALSE. If TRUE, print status to standard output.

Value

A character matrix of assigned taxonomies exceeding the minBoot level of bootstrapping confi-
dence. Rows correspond to the provided sequences, columns to the taxonomic levels. NA indicates
that the sequence was not consistently classified at that level at the minBoot threshhold.

If outputBootstraps is TRUE, a named list containing the assigned taxonomies (named "taxa") and
the bootstrap values (named "boot") will be returned.

Examples

seqs <- getSequences(system.file("extdata", "example_seqs.fa", package="dada2"))
training_fasta <- system.file("extdata", "example_train_set.fa.gz", package="dada2")
taxa <- assignTaxonomy(seqs, training_fasta)
taxa80 <- assignTaxonomy(seqs, training_fasta, minBoot=80, multithread=2)

c,dada-method Change concatenation of dada-class objects to list construction.

Description

Change concatenation of dada-class objects to list construction.

Usage

S4 method for signature 'dada'
c(x, ..., recursive = FALSE)

8 collapseNoMismatch

Arguments

x A dada-class object

... objects to be concatenated. All NULL entries are dropped before method dispatch
unless at the very beginning of the argument list.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.

Value

list.

c,derep-method Change concatenation of derep-class objects to list construction.

Description

Change concatenation of derep-class objects to list construction.

Usage

S4 method for signature 'derep'
c(x, ..., recursive = FALSE)

Arguments

x A derep-class object

... objects to be concatenated. All NULL entries are dropped before method dispatch
unless at the very beginning of the argument list.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.

Value

list.

collapseNoMismatch Combine together sequences that are identical up to shifts and/or
length.

Description

This function takes as input a sequence table and returns a sequence table in which any sequences
that are identical up to shifts or length variation, i.e. that have no mismatches or internal indels
when aligned, are collapsed together. The most abundant sequence is chosen as the representative
of the collapsed sequences. This function can be thought of as implementing greedy 100% OTU
clustering with end-gapping ignored.

collapseNoMismatch 9

Usage

collapseNoMismatch(
seqtab,
minOverlap = 20,
orderBy = "abundance",
identicalOnly = FALSE,
vec = TRUE,
band = -1,
verbose = FALSE

)

Arguments

seqtab (Required). A sample by sequence matrix, the return of makeSequenceTable.

minOverlap (Optional). numeric(1). Default 20. The minimum amount of overlap between
sequences required to collapse them together.

orderBy (Optional). character(1). Default "abundance". Specifies how the sequences
(columns) of the returned table should be ordered (decreasing). Valid values:
"abundance", "nsamples", NULL.

identicalOnly (Optional). logical(1). Default FALSE. If TRUE, only identical sequences
(i.e. duplicates) are collapsed together.

vec (Optional). logical(1). Default TRUE. Use the vectorized aligner. Should be
turned off if sequences exceed 2kb in length.

band (Optional). numeric(1). Default -1 (no banding). The Needleman-Wunsch
alignment can be banded. This value specifies the radius of that band. Set band
= -1 to turn off banding.

verbose (Optional). logical(1). Default FALSE. If TRUE, a summary of the function
results are printed to standard output.

Value

Named integer matrix. A row for each sample, and a column for each collapsed sequence across
all the samples. Note that the columns are named by the sequence which can make display a little
unwieldy. Columns are in the same order (modulo the removed columns) as in the input matrix.

See Also

makeSequenceTable

Examples

derep1 <- derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
derep2 <- derepFastq(system.file("extdata", "sam2F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, tperr1)
dada2 <- dada(derep2, tperr1)
seqtab <- makeSequenceTable(list(sample1=dada1, sample2=dada2))
collapseNoMismatch(seqtab)

10 dada

dada High resolution sample inference from amplicon data.

Description

The dada function takes as input dereplicated amplicon sequencing reads and returns the inferred
composition of the sample (or samples). Put another way, dada removes all sequencing errors to
reveal the members of the sequenced community.

If dada is run in selfConsist=TRUE mode, the algorithm will infer both the sample composition and
the parameters of its error model from the data.

Usage

dada(
derep,
err,
errorEstimationFunction = loessErrfun,
selfConsist = FALSE,
pool = FALSE,
priors = character(0),
multithread = FALSE,
verbose = TRUE,
...

)

Arguments

derep (Required). character or derep-class. The file path(s) to the fastq file(s), or
a directory containing fastq file(s) corresponding to the the samples to be de-
noised. Compressed file formats such as .fastq.gz and .fastq.bz2 are supported.
A derep-class object (or list thereof) returned by link{derepFastq} can also
be provided. If multiple samples are provided, each will be denoised with a
shared error model.

err (Required). 16xN numeric matrix, or an object coercible by getErrors such as
the output of the learnErrors function.
The matrix of estimated rates for each possible nucleotide transition (from sam-
ple nucleotide to read nucleotide). Rows correspond to the 16 possible transi-
tions (t_ij) indexed such that 1:A->A, 2:A->C, ..., 16:T->T Columns correspond
to quality scores. Each entry must be between 0 and 1.
Typically there are 41 columns for the quality scores 0-40. However, if USE_QUALS=FALSE,
the matrix must have only one column.
If selfConsist = TRUE, err can be set to NULL and an initial error matrix will
be estimated from the data by assuming that all reads are errors away from one
true sequence.

errorEstimationFunction

(Optional). Function. Default loessErrfun.
If USE_QUALS = TRUE, errorEstimationFunction(dada()$trans_out)
is computed after sample inference, and the return value is used as the new
estimate of the err matrix in $err_out.

dada 11

If USE_QUALS = FALSE, this argument is ignored, and transition rates are
estimated by maximum likelihood (t_ij = n_ij/n_i).

selfConsist (Optional). logical(1). Default FALSE.
If selfConsist = TRUE, the algorithm will alternate between sample inference
and error rate estimation until convergence. Error rate estimation is performed
by errorEstimationFunction.
If selfConsist=FALSE the algorithm performs one round of sample inference
based on the provided err matrix.

pool (Optional). logical(1). Default is FALSE.
If pool = TRUE, the algorithm will pool together all samples prior to sample
inference. If pool = FALSE, sample inference is performed on each sample
individually. If pool = "pseudo", the algorithm will perform pseudo-pooling
between individually processed samples.
This argument has no effect if only 1 sample is provided, and pool does not
affect error rates, which are always estimated from pooled observations across
samples.

priors (Optional). character. Default is character(0), i.e. no prior sequences.
The priors argument provides a set of sequences for which there is prior in-
formation suggesting they may truly exist, i.e. are not errors. The abundance
p-value of dereplicated sequences that exactly match one of the priors are calcu-
lated without conditioning on presence, allowing singletons to be detected, and
are compared to a reduced threshold ‘OMEGA_P‘ when forming new partitions.

multithread (Optional). Default is FALSE. If TRUE, multithreading is enabled and the num-
ber of available threads is automatically determined. If an integer is provided,
the number of threads to use is set by passing the argument on to setThreadOptions.

verbose (Optional). Default TRUE. Print verbose text output. More fine-grained control
is available by providing an integer argument.

• 0: Silence. No text output (same as FALSE).
• 1: Basic text output (same as TRUE).
• 2: Detailed text output, mostly intended for debugging.

... (Optional). All dada_opts can be passed in as arguments to the dada() function.
See setDadaOpt for a full list and description of these options.

Details

Briefly, dada implements a statistical test for the notion that a specific sequence was seen too many
times to have been caused by amplicon errors from currently inferred sample sequences. Overly-
abundant sequences are used as the seeds of new partitions of sequencing reads, and the final set of
partitions is taken to represent the denoised composition of the sample. A more detailed explanation
of the algorithm is found in two publications:

• Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016). DADA2:
High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-3.

• Rosen MJ, Callahan BJ, Fisher DS, Holmes SP (2012). Denoising PCR-amplified metagenome
data. BMC bioinformatics, 13(1), 283.

dada depends on a parametric error model of substitutions. Thus the quality of its sample inference
is affected by the accuracy of the estimated error rates. selfConsist mode allows these error rates
to be inferred from the data.

12 dada-class

All comparisons between sequences performed by dada depend on pairwise alignments. This step
is the most computationally intensive part of the algorithm, and two alignment heuristics have been
implemented for speed: A kmer-distance screen and banded Needleman-Wunsch alignmemt. See
setDadaOpt.

Value

A dada-class object or list of such objects if a list of dereps was provided.

See Also

derepFastq, setDadaOpt

Examples

fn1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
fn2 <- system.file("extdata", "sam2F.fastq.gz", package="dada2")
derep1 = derepFastq(fn1)
derep2 = derepFastq(fn2)
dada(fn1, err=tperr1)
dada(list(sam1=derep1, sam2=derep2), err=tperr1, selfConsist=TRUE)
dada(derep1, err=inflateErr(tperr1,3), BAND_SIZE=32, OMEGA_A=1e-20)

dada-class The object class returned by dada

Description

A multi-item List with the following named values...

• $denoised: Integer vector, named by sequence valued by abundance, of the denoised se-
quences.

• $clustering: An informative data.frame containing information on each cluster.

• $sequence: A character vector of each denoised sequence. Identical to names($denoised).

• $quality: The average quality scores for each cluster (row) by position (col).

• $map: Integer vector that maps the unique (index of derep$unique) to the denoised sequence
(index of dada$denoised).

• $birth_subs: A data.frame containing the substitutions at the birth of each new cluster.

• $trans: The matrix of transitions by type (row), eg. A2A, A2C..., and quality score (col)
observed in the final output of the dada algorithm.

• $err_in: The err matrix used for this invocation of dada.

• $err_out: The err matrix estimated from the output of dada. NULL if err_function not pro-
vided.

• $opts: A list of the dada_opts used for this invocation of dada.

See Also

dada

derep-class 13

derep-class A class representing dereplicated sequences

Description

A list with the following three members.

• $uniques: Named integer vector. Named by the unique sequence, valued by abundance.

• $quals: Numeric matrix of average quality scores by position for each unique. Uniques are
rows, positions are cols.

• $map: Integer vector of length the number of reads, and value the index (in $uniques) of the
unique to which that read was assigned.

This can be created from a FastQ sequence file using derepFastq

See Also

derepFastq

derepFasta derepFasta creates a derep-class object from a fasta file, by creating
a corresponding fastq file with a uniform quality score and calling
derepFastq.

Description

derepFasta creates a derep-class object from a fasta file, by creating a corresponding fastq file with
a uniform quality score and calling derepFastq.

Usage

derepFasta(fls, ...)

Arguments

fls (Required). character. The file path(s) to the fasta or gzipped fasta file(s).

... (Optional). Additional arguments passed on to derepFastq

14 derepFastq

derepFastq Read in and dereplicate a fastq file.

Description

A custom interface to FastqStreamer for dereplicating amplicon sequences from fastq or com-
pressed fastq files, while also controlling peak memory requirement to support large files.

Usage

derepFastq(fls, n = 1e+06, verbose = FALSE, qualityType = "Auto")

Arguments

fls (Required). character. The file path(s) to the fastq file(s), or a directory con-
taining fastq file(s). Compressed file formats such as .fastq.gz and .fastq.bz2 are
supported.

n (Optional). numeric(1). The maximum number of records (reads) to parse
and dereplicate at any one time. This controls the peak memory requirement
so that large fastq files are supported. Default is 1e6, one-million reads. See
FastqStreamer for details on this parameter, which is passed on.

verbose (Optional). Default FALSE. If TRUE, throw standard R messages on the inter-
mittent and final status of the dereplication.

qualityType (Optional). character(1). The quality encoding of the fastq file(s). "Auto"
(the default) means to attempt to auto-detect the encoding. This may fail for
PacBio files with uniformly high quality scores, in which case use "FastqQual-
ity". This parameter is passed on to readFastq; see information there for de-
tails.

Value

A derep-class object or list of such objects.

Examples

Test that chunk-size, `n`, does not affect the result.
testFastq = system.file("extdata", "sam1F.fastq.gz", package="dada2")
derep1 = derepFastq(testFastq, verbose = TRUE)
derep1.35 = derepFastq(testFastq, n = 35, verbose = TRUE)
all.equal(getUniques(derep1), getUniques(derep1.35)[names(getUniques(derep1))])

errBalancedF 15

errBalancedF An empirical error matrix.

Description

A dataset containing the error matrix estimated by DADA2 from the forward reads of the Illumina
Miseq 2x250 sequenced Balanced mock community (see manuscript).

Format

A numerical matrix with 16 rows and 41 columns. Rows correspond to the 16 transition (eg. A2A,
A2C, ...) Columns correspond to consensus quality scores 0 to 40.

errBalancedR An empirical error matrix.

Description

A dataset containing the error matrix estimated by DADA2 from the reverse reads of the Illumina
Miseq 2x250 sequenced Balanced mock community (see manuscript).

Format

A numerical matrix with 16 rows and 41 columns. Rows correspond to the 16 transition (eg. A2A,
A2C, ...) Columns correspond to consensus quality scores 0 to 40.

fastqFilter Filter and trim a fastq file.

Description

fastqFilter takes an input fastq file (can be compressed), filters it based on several user-definable
criteria, and outputs those reads which pass the filter to a new fastq file (also can be compressed).
Several functions in the ShortRead package are leveraged to do this filtering.

Usage

fastqFilter(
fn,
fout,
truncQ = 2,
truncLen = 0,
maxLen = Inf,
minLen = 20,
trimLeft = 0,
trimRight = 0,
maxN = 0,
minQ = 0,

16 fastqFilter

maxEE = Inf,
rm.phix = TRUE,
rm.lowcomplex = 0,
orient.fwd = NULL,
n = 1e+06,
OMP = TRUE,
qualityType = "Auto",
compress = TRUE,
verbose = FALSE,
...

)

Arguments

fn (Required). The path to the input fastq file.

fout (Required). The path to the output file. Note that by default (compress=TRUE)
the output fastq file is gzipped.

truncQ (Optional). Default 2. Truncate reads at the first instance of a quality score less
than or equal to truncQ.

truncLen (Optional). Default 0 (no truncation). Truncate reads after truncLen bases.
Reads shorter than this are discarded.

maxLen (Optional). Default Inf (no maximum). Remove reads with length greater than
maxLen. maxLen is enforced on the raw reads.

minLen (Optional). Default 20. Remove reads with length less than minLen. minLen is
enforced after all other trimming and truncation.

trimLeft (Optional). Default 0. The number of nucleotides to remove from the start of
each read. If both truncLen and trimLeft are provided, filtered reads will have
length truncLen-trimLeft.

trimRight (Optional). Default 0. The number of nucleotides to remove from the end of
each read. If both truncLen and trimRight are provided, truncation will be
performed after trimRight is enforced.

maxN (Optional). Default 0. After truncation, sequences with more than maxN Ns will
be discarded. Note that dada currently does not allow Ns.

minQ (Optional). Default 0. After truncation, reads contain a quality score below
minQ will be discarded.

maxEE (Optional). Default Inf (no EE filtering). After truncation, reads with higher
than maxEE "expected errors" will be discarded. Expected errors are calculated
from the nominal definition of the quality score: EE = sum(10^(-Q/10))

rm.phix (Optional). Default TRUE. If TRUE, discard reads that match against the phiX
genome, as determined by isPhiX.

rm.lowcomplex (Optional). Default 0. If greater than 0, reads with an effective number of kmers
less than this value will be removed. The effective number of kmers is deter-
mined by seqComplexity using a Shannon information approximation. The
default kmer-size is 2, and therefore perfectly random sequences will approach
an effective kmer number of 16 = 4 (nucleotides) ^ 2 (kmer size).

orient.fwd (Optional). Default NULL. A character string present at the start of valid reads.
Only allows unambiguous nucleotides. This string is compared to the start of
each read, and the reverse complement of each read. If it exactly matches the

fastqPairedFilter 17

start of the read, the read is kept. If it exactly matches the start of the reverse-
complement read, the read is reverse-complemented and kept. Otherwise the
read if filtered out. The primary use of this parameter is to unify the orienta-
tion of amplicon sequencing libraries that are a mixture of forward and reverse
orientations, and that include the forward primer on the reads.

n (Optional). The number of records (reads) to read in and filter at any one time.
This controls the peak memory requirement so that very large fastq files are
supported. Default is 1e6, one-million reads. See FastqStreamer for details.

OMP (Optional). Default TRUE. Whether or not to use OMP multithreading when
calling FastqStreamer. Set this to FALSE if calling this function within a
parallelized chunk of code (eg. within mclapply).

qualityType (Optional). character(1). The quality encoding of the fastq file(s). "Auto"
(the default) means to attempt to auto-detect the encoding. This may fail for
PacBio files with uniformly high quality scores, in which case use "FastqQual-
ity". This parameter is passed on to readFastq; see information there for de-
tails.

compress (Optional). Default TRUE. Whether the output fastq file should be gzip com-
pressed.

verbose (Optional). Default FALSE. Whether to output status messages.

... (Optional). Arguments passed on to isPhiX.

Value

integer(2). The number of reads read in, and the number of reads that passed the filter and were
output.

See Also

fastqPairedFilter FastqStreamer trimTails

Examples

testFastq = system.file("extdata", "sam1F.fastq.gz", package="dada2")
filtFastq <- tempfile(fileext=".fastq.gz")
fastqFilter(testFastq, filtFastq, maxN=0, maxEE=2)
fastqFilter(testFastq, filtFastq, trimLeft=10, truncLen=200, maxEE=2, verbose=TRUE)

fastqPairedFilter Filters and trims paired forward and reverse fastq files.

Description

fastqPairedFilter filters pairs of input fastq files (can be compressed) based on several user-definable
criteria, and outputs those read pairs which pass the filter in both directions to two new fastq file
(also can be compressed). Several functions in the ShortRead package are leveraged to do this
filtering. The filtered forward/reverse reads remain identically ordered.

18 fastqPairedFilter

Usage

fastqPairedFilter(
fn,
fout,
maxN = c(0, 0),
truncQ = c(2, 2),
truncLen = c(0, 0),
maxLen = c(Inf, Inf),
minLen = c(20, 20),
trimLeft = c(0, 0),
trimRight = c(0, 0),
minQ = c(0, 0),
maxEE = c(Inf, Inf),
rm.phix = c(TRUE, TRUE),
rm.lowcomplex = c(0, 0),
matchIDs = FALSE,
orient.fwd = NULL,
id.sep = "\\s",
id.field = NULL,
n = 1e+06,
OMP = TRUE,
qualityType = "Auto",
compress = TRUE,
verbose = FALSE,
...

)

Arguments

fn (Required). A character(2) naming the paths to the (forward,reverse) fastq
files.

fout (Required). A character(2) naming the paths to the (forward,reverse) output
files. Note that by default (compress=TRUE) the output fastq files are gzipped.
FILTERING AND TRIMMING ARGUMENTS
If a length 1 vector is provided, the same parameter value is used for the forward
and reverse reads. If a length 2 vector is provided, the first value is used for the
forward reads, and the second for the reverse reads.

maxN (Optional). Default 0. After truncation, sequences with more than maxN Ns will
be discarded. Note that dada currently does not allow Ns.

truncQ (Optional). Default 2. Truncate reads at the first instance of a quality score less
than or equal to truncQ.

truncLen (Optional). Default 0 (no truncation). Truncate reads after truncLen bases.
Reads shorter than this are discarded.

maxLen (Optional). Default Inf (no maximum). Remove reads with length greater than
maxLen. maxLen is enforced on the raw reads.

minLen (Optional). Default 20. Remove reads with length less than minLen. minLen is
enforced after all other trimming and truncation.

trimLeft (Optional). Default 0. The number of nucleotides to remove from the start of
each read. If both truncLen and trimLeft are provided, filtered reads will have
length truncLen-trimLeft.

fastqPairedFilter 19

trimRight (Optional). Default 0. The number of nucleotides to remove from the end of
each read. If both truncLen and trimRight are provided, truncation will be
performed after trimRight is enforced.

minQ (Optional). Default 0. After truncation, reads contain a quality score below
minQ will be discarded.

maxEE (Optional). Default Inf (no EE filtering). After truncation, reads with higher
than maxEE "expected errors" will be discarded. Expected errors are calculated
from the nominal definition of the quality score: EE = sum(10^(-Q/10))

rm.phix (Optional). Default TRUE. If TRUE, discard reads that match against the phiX
genome, as determined by isPhiX.

rm.lowcomplex (Optional). Default 0. If greater than 0, reads with an effective number of kmers
less than this value will be removed. The effective number of kmers is deter-
mined by seqComplexity using a Shannon information approximation. The
default kmer-size is 2, and therefore perfectly random sequences will approach
an effective kmer number of 16 = 4 (nucleotides) ^ 2 (kmer size).

matchIDs (Optional). Default FALSE. Whether to enforce matching between the id-line
sequence identifiers of the forward and reverse fastq files. If TRUE, only paired
reads that share id fields (see below) are output. If FALSE, no read ID checking
is done. Note: matchIDs=FALSE essentially assumes matching order between
forward and reverse reads. If that matched order is not present future processing
steps may break (in particular mergePairs).

orient.fwd (Optional). Default NULL. A character string present at the start of valid reads.
Only allows unambiguous nucleotides. This string is compared to the start of
the forward and reverse reads. If it exactly matches the start of the forward read,
the read is kept. If it exactly matches the start of the reverse read, the fwd/rev
reads are swapped. Otherwise the read if filtered out. The primary use of this
parameter is to unify the orientation of amplicon sequencing libraries that are a
mixture of forward and reverse orientations, and that include the forward primer
on the reads.
ID MATCHING ARGUMENTS
The following optional arguments enforce matching between the sequence iden-
tification strings in the forward and reverse reads, and can automatically detect
and match ID fields in Illumina format, e.g: EAS139:136:FC706VJ:2:2104:15343:197393.
ID matching is not required when using standard Illumina output fastq files.

id.sep (Optional). Default "\s" (white-space). The separator between fields in the id-
line of the input fastq files. Passed to the strsplit.

id.field (Optional). Default NULL (automatic detection). The field of the id-line con-
taining the sequence identifier. If NULL (the default) and matchIDs is TRUE,
the function attempts to automatically detect the sequence identifier field under
the assumption of Illumina formatted output.

n (Optional). The number of records (reads) to read in and filter at any one time.
This controls the peak memory requirement so that very large fastq files are
supported. Default is 1e6, one-million reads. See FastqStreamer for details.

OMP (Optional). Default TRUE. Whether or not to use OMP multithreading when
calling FastqStreamer. Set this to FALSE if calling this function within a
parallelized chunk of code (eg. within mclapply).

qualityType (Optional). character(1). The quality encoding of the fastq file(s). "Auto"
(the default) means to attempt to auto-detect the encoding. This parameter is
passed on to readFastq; see information there for details.

20 filterAndTrim

compress (Optional). Default TRUE. Whether the output fastq files should be gzip com-
pressed.

verbose (Optional). Default FALSE. Whether to output status messages.

... (Optional). Arguments passed on to isPhiX or seqComplexity.

Value

integer(2). The number of reads read in, and the number of reads that passed the filter and were
output.

See Also

fastqFilter FastqStreamer trimTails

Examples

testFastqF = system.file("extdata", "sam1F.fastq.gz", package="dada2")
testFastqR = system.file("extdata", "sam1R.fastq.gz", package="dada2")
filtFastqF <- tempfile(fileext=".fastq.gz")
filtFastqR <- tempfile(fileext=".fastq.gz")
fastqPairedFilter(c(testFastqF, testFastqR), c(filtFastqF, filtFastqR), maxN=0, maxEE=2)
fastqPairedFilter(c(testFastqF, testFastqR), c(filtFastqF, filtFastqR), trimLeft=c(10, 20),

truncLen=c(240, 200), maxEE=2, rm.phix=TRUE, rm.lowcomplex=5, kmerSize=2)

filterAndTrim Filter and trim fastq file(s).

Description

Filters and trims an input fastq file(s) (can be compressed) based on several user-definable criteria,
and outputs fastq file(s) (compressed by default) containing those trimmed reads which passed the
filters. Corresponding forward and reverse fastq file(s) can be provided as input, in which case
filtering is performed on the forward and reverse reads independently, and both reads must pass for
the read pair to be output.

Usage

filterAndTrim(
fwd,
filt,
rev = NULL,
filt.rev = NULL,
compress = TRUE,
truncQ = 2,
truncLen = 0,
trimLeft = 0,
trimRight = 0,
maxLen = Inf,
minLen = 20,
maxN = 0,
minQ = 0,

filterAndTrim 21

maxEE = Inf,
rm.phix = TRUE,
rm.lowcomplex = 0,
orient.fwd = NULL,
matchIDs = FALSE,
id.sep = "\\s",
id.field = NULL,
multithread = FALSE,
n = 1e+05,
OMP = TRUE,
qualityType = "Auto",
verbose = FALSE

)

Arguments

fwd (Required). character. The file path(s) to the fastq file(s), or the directory con-
taining the fastq file(s). Compressed file formats such as .fastq.gz and .fastq.bz2
are supported.

filt (Required). character. The path(s) to the output filtered file(s) corresponding
to the fwd input files, or a directory that will contain those files. If containing
directory does not exist, it will be created.

rev (Optional). Default NULL. The file path(s) to the reverse fastq file(s) from
paired-end sequence data corresponding to those provided to the fwd argument,
or the directory containing those fastq file(s). Compressed file formats such as
.fastq.gz and .fastq.bz2 are supported. If NULL, the fwd files are processed as
single-reads.

filt.rev (Optional). Default NULL, but required if rev is provided. The path(s) to the
output filtered file(s) corresponding to the rev input files, or a directory that will
contain those files. If containing directory does not exist, it will be created.

compress (Optional). Default TRUE. If TRUE, the output fastq file(s) are gzipped.
FILTERING AND TRIMMING PARAMETERS ———
Note: When filtering paired reads... If a length 1 vector is provided, the same
parameter value is used for the forward and reverse reads. If a length 2 vector
is provided, the first value is used for the forward reads, and the second for the
reverse reads.

truncQ (Optional). Default 2. Truncate reads at the first instance of a quality score less
than or equal to truncQ.

truncLen (Optional). Default 0 (no truncation). Truncate reads after truncLen bases.
Reads shorter than this are discarded.

trimLeft (Optional). Default 0. The number of nucleotides to remove from the start of
each read. If both truncLen and trimLeft are provided, filtered reads will have
length truncLen-trimLeft.

trimRight (Optional). Default 0. The number of nucleotides to remove from the end of
each read. If both truncLen and trimRight are provided, truncation will be
performed after trimRight is enforced.

maxLen (Optional). Default Inf (no maximum). Remove reads with length greater than
maxLen. maxLen is enforced before trimming and truncation.

minLen (Optional). Default 20. Remove reads with length less than minLen. minLen is
enforced after trimming and truncation.

22 filterAndTrim

maxN (Optional). Default 0. After truncation, sequences with more than maxN Ns will
be discarded. Note that dada does not allow Ns.

minQ (Optional). Default 0. After truncation, reads contain a quality score less than
minQ will be discarded.

maxEE (Optional). Default Inf (no EE filtering). After truncation, reads with higher
than maxEE "expected errors" will be discarded. Expected errors are calculated
from the nominal definition of the quality score: EE = sum(10^(-Q/10))

rm.phix (Optional). Default TRUE. If TRUE, discard reads that match against the phiX
genome, as determined by isPhiX.

rm.lowcomplex (Optional). Default 0. If greater than 0, reads with an effective number of kmers
less than this value will be removed. The effective number of kmers is deter-
mined by seqComplexity using a Shannon information approximation. The
default kmer-size is 2, and therefore perfectly random sequences will approach
an effective kmer number of 16 = 4 (nucleotides) ^ 2 (kmer size).

orient.fwd (Optional). Default NULL. A character string present at the start of valid reads.
Only allows unambiguous nucleotides. This string is compared to the start of
each read, and the reverse complement of each read. If it exactly matches the
start of the read, the read is kept. If it exactly matches the start of the reverse-
complement read, the read is reverse-complemented and kept. Otherwise the
read if filtered out. For paired reads, the string is compared to the start of the
forward and reverse reads, and if it matches the start of the reverse read the
reaads are swapped and kept. The primary use of this parameter is to unify the
orientation of amplicon sequencing libraries that are a mixture of forward and
reverse orientations, and that include the forward primer on the reads.

matchIDs (Optional). Default FALSE. Paired-read filtering only. Whether to enforce
matching between the id-line sequence identifiers of the forward and reverse
fastq files. If TRUE, only paired reads that share id fields (see below) are out-
put. If FALSE, no read ID checking is done. Note: matchIDs=FALSE essentially
assumes matching order between forward and reverse reads. If that matched or-
der is not present future processing steps may break (in particular mergePairs).

id.sep (Optional). Default "\s" (white-space). Paired-read filtering only. The separator
between fields in the id-line of the input fastq files. Passed to the strsplit.

id.field (Optional). Default NULL (automatic detection). Paired-read filtering only. The
field of the id-line containing the sequence identifier. If NULL (the default) and
matchIDs is TRUE, the function attempts to automatically detect the sequence
identifier field under the assumption of Illumina formatted output.

multithread (Optional). Default is FALSE. If TRUE, input files are filtered in parallel via
mclapply. If an integer is provided, it is passed to the mc.cores argument of
mclapply. Note that the parallelization here is by forking, and each process is
loading another fastq file into memory. This option is ignored in Windows, as
Windows does not support forking, with mc.cores set to 1. If memory is an
issue, execute in a clean environment and reduce the chunk size n and/or the
number of threads.

n (Optional). Default 1e5. The number of records (reads) to read in and filter at
any one time. This controls the peak memory requirement so that very large
fastq files are supported. See FastqStreamer for details.

OMP (Optional). Default TRUE. Whether or not to use OMP multithreading when
calling FastqStreamer. Should be set to FALSE if calling this function within
a parallelized chunk of code. If multithread=TRUE, this argument will be co-
erced to FALSE.

getDadaOpt 23

qualityType (Optional). character(1). The quality encoding of the fastq file(s). "Auto"
(the default) means to attempt to auto-detect the encoding. This may fail for
PacBio files with uniformly high quality scores, in which case use "FastqQual-
ity". This parameter is passed on to readFastq; see information there for de-
tails.

verbose (Optional). Default FALSE. Whether to output status messages.

Details

filterAndTrim is a multithreaded convenience interface for the fastqFilter and fastqPairedFilter
filtering functions. Note that error messages and tracking are not handled gracefully when using the
multithreading functionality. If errors arise, it is recommended to re-run without multithreading to
troubleshoot the issue.

Value

Integer matrix. Returned invisibly (i.e. only if assigned to something). Rows correspond to the
input files, columns record the reads.in and reads.out after filtering.

See Also

fastqFilter fastqPairedFilter FastqStreamer

Examples

testFastqs = c(system.file("extdata", "sam1F.fastq.gz", package="dada2"),
system.file("extdata", "sam2F.fastq.gz", package="dada2"))

filtFastqs <- c(tempfile(fileext=".fastq.gz"), tempfile(fileext=".fastq.gz"))
filterAndTrim(testFastqs, filtFastqs, maxN=0, maxEE=2, verbose=TRUE)
filterAndTrim(testFastqs, filtFastqs, truncQ=2, truncLen=200, rm.phix=TRUE, rm.lowcomplex=8)

getDadaOpt Get DADA options

Description

Get DADA options

Usage

getDadaOpt(option = NULL)

Arguments

option (Optional). Character. The DADA option(s) to get.

Value

Named list of option/value pairs. Returns NULL if an invalid option is requested.

24 getErrors

See Also

setDadaOpt

Examples

getDadaOpt("BAND_SIZE")
getDadaOpt()

getErrors Extract already computed error rates.

Description

Extract already computed error rates.

Usage

getErrors(obj, detailed = FALSE, enforce = TRUE)

Arguments

obj (Required). An R object with error rates. Supported objects: dada-class; list of
dada-class; numeric matrix; named list with $err_out, $err_in, $trans.

detailed (Optional). Default FALSE. If FALSE, an error rate matrix corresponding to
$err_out is returned. If TRUE, a named list with $err_out, $err_in and $trans.
$err_in and $trans can be NULL.

enforce (Optional). Default TRUE. If TRUE, will check validity of $err_out and error if
invalid or NULL.

Value

A numeric matrix of error rates. Or, if detailed=TRUE, a named list with $err_out, $err_in and
$trans.

Examples

fl1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
drp <- derepFastq(fl1)
dd <- dada(drp, err=NULL, selfConsist=TRUE)
err <- getErrors(dd)

getSequences 25

getSequences Get vector of sequences from input object.

Description

This function extracts the sequences from several different data objects, including including dada-class
and derep-class objects, as well as data.frame objects that have both $sequence and $abun-
dance columns. This function wraps the getUniques function, but return only the names (i.e. the
sequences). Can also be provided the file path to a fasta or fastq file, a taxonomy table, or a DNAS-
tringSet object. Sequences are coerced to upper-case characters.

Usage

getSequences(object, collapse = FALSE, silence = TRUE)

Arguments

object (Required). The object from which to extract the sequences.

collapse (Optional). Default FALSE. Should duplicate sequences detected in object be
collapsed together, thereby imposing uniqueness on non-unique input.

silence (Optional). Default TRUE. Suppress reporting of the detection and merger of
duplicated input sequences.

Value

character. A character vector of the sequences.

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1)
getSequences(derep1)[1:5]
getSequences(dada1)[1:5]
getSequences(dada1$clustering)[1:5]

getUniques Get the uniques-vector from the input object.

Description

This function extracts the uniques-vector from several different data objects, including dada-class
and derep-class objects, as well as data.frame objects that have both $sequence and $abundance
columns. The return value is an integer vector named by sequence and valued by abundance. If the
input is already in uniques-vector format, that same vector will be returned.

Usage

getUniques(object, collapse = TRUE, silence = FALSE)

26 inflateErr

Arguments

object (Required). The object from which to extract the uniques-vector.

collapse (Optional). Default TRUE. Should duplicate sequences detected in object be
collapsed together, thereby imposing uniqueness on non-unique input.

silence (Optional). Default FALSE. Suppress reporting of the detection and merger of
duplicated input sequences.

Value

integer. An integer vector named by unique sequence and valued by abundance.

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1)
getUniques(derep1)[1:3]
getUniques(dada1)[1:3]
getUniques(dada1$clustering)[1:3]

inflateErr Inflates an error rate matrix by a specified factor, while accounting for
saturation.

Description

Error rates are "inflated" by the specified factor, while appropriately saturating so that rates cannot
exceed 1. The formula is: new_err_rate <- err_rate * inflate / (1 + (inflate-1) * err_rate)

Usage

inflateErr(err, inflation, inflateSelfTransitions = FALSE)

Arguments

err (Required). A numeric matrix of transition rates (16 rows, named "A2A", "A2C",
...).

inflation (Required). The fold-factor by which to inflate the transition rates.
inflateSelfTransitions

(Optional). Default FALSE. If True, self-transitions (eg. A->A) are also inflated.

Value

An error rate matrix of the same dimensions as the input error rate matrix.

Examples

tperr2 <- inflateErr(tperr1, 2)
tperr3.all <- inflateErr(tperr1, 3, inflateSelfTransitions=TRUE)

isBimera 27

isBimera Determine if input sequence is a bimera of putative parent sequences.

Description

This function attempts to find an exact bimera of the parent sequences that matches the input se-
quence. A bimera is a two-parent chimera, in which the left side is made up of one parent sequence,
and the right-side made up of a second parent sequence. If an exact bimera is found TRUE is re-
turned, otherwise FALSE. Bimeras that are one-off from exact are also identified if the allowOneOff
argument is TRUE.

Usage

isBimera(
sq,
parents,
allowOneOff = FALSE,
minOneOffParentDistance = 4,
maxShift = 16

)

Arguments

sq (Required). A character(1). The sequence being evaluated as a possible
bimera.

parents (Required). Character vector. A vector of possible "parent" sequence that could
form the left and right sides of the bimera.

allowOneOff (Optional). A logical(1). Default is FALSE. If FALSE, sq will be identified
as a bimera if it is one mismatch or indel away from an exact bimera.

minOneOffParentDistance

(Optional). A numeric(1). Default is 4. Only sequences with at least this many
mismatches to sq are considered as possible "parents" when flagging one-off
bimeras. There is no such screen when identifying exact bimeras.

maxShift (Optional). A numeric(1). Default is 16. Maximum shift allowed when align-
ing sequences to potential "parents".

Value

logical(1). TRUE if sq is a bimera of two of the parents. Otherwise FALSE.

See Also

isBimeraDenovo, removeBimeraDenovo

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
sqs1 <- getSequences(derep1)
isBimera(sqs1[[20]], sqs1[1:10])

28 isBimeraDenovo

isBimeraDenovo Identify bimeras from collections of unique sequences.

Description

This function is a wrapper around isBimera for collections of unique sequences (i.e. sequences
with associated abundances). Each sequence is evaluated against a set of "parents" drawn from
the sequence collection that are sufficiently more abundant than the sequence being evaluated. A
logical vector is returned, with an entry for each input sequence indicating whether it was (was not)
consistent with being a bimera of those more abundant "parents".

Usage

isBimeraDenovo(
unqs,
minFoldParentOverAbundance = 2,
minParentAbundance = 8,
allowOneOff = FALSE,
minOneOffParentDistance = 4,
maxShift = 16,
multithread = FALSE,
verbose = FALSE

)

Arguments

unqs (Required). A uniques-vector or any object that can be coerced into one with
getUniques.

minFoldParentOverAbundance

(Optional). A numeric(1). Default is 2. Only sequences greater than this-fold
more abundant than a sequence can be its "parents".

minParentAbundance

(Optional). A numeric(1). Default is 8. Only sequences at least this abundant
can be "parents".

allowOneOff (Optional). A logical(1). Default is FALSE. If FALSE, sequences that have
one mismatch or indel to an exact bimera are also flagged as bimeric.

minOneOffParentDistance

(Optional). A numeric(1). Default is 4. Only sequences with at least this many
mismatches to the potential bimeric sequence considered as possible "parents"
when flagging one-off bimeras. There is no such screen when considering exact
bimeras.

maxShift (Optional). A numeric(1). Default is 16. Maximum shift allowed when align-
ing sequences to potential "parents".

multithread (Optional). Default is FALSE. If TRUE, multithreading is enabled and the num-
ber of available threads is automatically determined. If an integer is provided,
the number of threads to use is set by passing the argument on to mclapply.

verbose (Optional). logical(1) indicating verbose text output. Default FALSE.

isBimeraDenovoTable 29

Value

logical of length the number of input unique sequences. TRUE if sequence is a bimera of more
abundant "parent" sequences. Otherwise FALSE.

See Also

isBimera, removeBimeraDenovo

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1, errorEstimationFunction=loessErrfun, selfConsist=TRUE)
is.bim <- isBimeraDenovo(dada1)
is.bim2 <- isBimeraDenovo(dada1$denoised, minFoldParentOverAbundance = 2, allowOneOff=TRUE)

isBimeraDenovoTable Identify bimeras in a sequence table.

Description

This function implements a table-specific version of de novo bimera detection. In short, bimeric
sequences are flagged on a sample-by-sample basis. Then, a vote is performed for each sequence
across all samples in which it appeared. If the sequence is flagged in a sufficiently high fraction of
samples, it is identified as a bimera. A logical vector is returned, with an entry for each sequence in
the table indicating whether it was identified as bimeric by this consensus procedure.

Usage

isBimeraDenovoTable(
seqtab,
minSampleFraction = 0.9,
ignoreNNegatives = 1,
minFoldParentOverAbundance = 1.5,
minParentAbundance = 2,
allowOneOff = FALSE,
minOneOffParentDistance = 4,
maxShift = 16,
multithread = FALSE,
verbose = FALSE

)

Arguments

seqtab (Required). A sequence table. That is, an integer matrix with colnames corre-
sponding to DNA sequences.

minSampleFraction

(Optional). Default is 0.9. The fraction of samples in which a sequence must be
flagged as bimeric in order for it to be classified as a bimera.

30 isPhiX

ignoreNNegatives

(Optional). Default is 1. The number of unflagged samples to ignore when
evaluating whether the fraction of samples in which a sequence was flagged as a
bimera exceeds minSampleFraction. The purpose of this parameter is to lower
the threshold at which sequences found in few samples are flagged as bimeras.

minFoldParentOverAbundance

(Optional). Default is 1.5. Only sequences greater than this-fold more abundant
than a sequence can be its "parents". Evaluated on a per-sample basis.

minParentAbundance

(Optional). Default is 2. Only sequences at least this abundant can be "parents".
Evaluated on a per-sample basis.

allowOneOff (Optional). Default is FALSE. If FALSE, sequences that have one mismatch or
indel to an exact bimera are also flagged as bimeric.

minOneOffParentDistance

(Optional). Default is 4. Only sequences with at least this many mismatches to
the potential bimeric sequence considered as possible "parents" when flagging
one-off bimeras. There is no such screen when considering exact bimeras.

maxShift (Optional). Default is 16. Maximum shift allowed when aligning sequences to
potential "parents".

multithread (Optional). Default is FALSE. If TRUE, multithreading is enabled. NOT YET
IMPLEMENTED.

verbose (Optional). Default FALSE. Print verbose text output.

Value

logical of length equal to the number of sequences in the input table. TRUE if sequence is identi-
fied as a bimera. Otherwise FALSE.

See Also

isBimera, removeBimeraDenovo

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
derep2 = derepFastq(system.file("extdata", "sam2F.fastq.gz", package="dada2"))
dd <- dada(list(derep1,derep2), err=NULL, errorEstimationFunction=loessErrfun, selfConsist=TRUE)
seqtab <- makeSequenceTable(dd)
isBimeraDenovoTable(seqtab)
isBimeraDenovoTable(seqtab, allowOneOff=TRUE, minSampleFraction=0.5)

isPhiX Determine if input sequence(s) match the phiX genome.

Description

This function compares the word-profile of the input sequences to the phiX genome, and the reverse
complement of the phiX genome. If enough exactly matching words are found, the sequence is
flagged.

isShiftDenovo 31

Usage

isPhiX(seqs, wordSize = 16, minMatches = 2, nonOverlapping = TRUE, ...)

Arguments

seqs (Required). A character vector of A/C/G/T sequences.

wordSize (Optional). Default 16. The size of the words to use for comparison.

minMatches (Optional). Default 2. The minimum number of words in the input sequences
that must match the phiX genome (or its reverse complement) for the sequence
to be flagged.

nonOverlapping (Optional). Default TRUE. If TRUE, only non-overlapping matching words are
counted.

... (Optional). Ignored.

Value

logical(1). TRUE if sequence matched the phiX genome.

See Also

fastqFilter, fastqPairedFilter

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
sqs1 <- getSequences(derep1)
is.phi <- isPhiX(sqs1)
is.phi <- isPhiX(sqs1, wordSize=20, minMatches=1)

isShiftDenovo Identify sequences that are identical to a more abundant sequence up
to an overall shift.

Description

This function is a wrapper around isShift for collections of unique sequences. Each unique sequence
is evaluated against a set of "parents" drawn from the sequence collection that are more abundant
than the sequence being evaluated.

Usage

isShiftDenovo(unqs, minOverlap = 20, flagSubseqs = FALSE, verbose = FALSE)

32 learnErrors

Arguments

unqs (Required). A uniques-vector or any object that can be coerced into one with
getUniques.

minOverlap (Optional). A numeric(1). Default is 20. Minimum overlap required to call
something a shift.

flagSubseqs (Optional). A logical(1). Default is FALSE. Whether or not to flag strict
subsequences as shifts.

verbose (Optional). logical(1) indicating verbose text output. Default FALSE.

Value

logical of length the number of input unique sequences. TRUE if sequence is an exact shift of a
more abundant sequence. Otherwise FALSE.

See Also

isBimera

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1, errorEstimationFunction=loessErrfun, selfConsist=TRUE)
is.shift <- isShiftDenovo(dada1)
is.shift <- isShiftDenovo(dada1$denoised, minOverlap=50, verbose=TRUE)

learnErrors Learns the error rates from an input list, or vector, of file names or a
list of derep-class objects.

Description

Error rates are learned by alternating between sample inference and error rate estimation until con-
vergence. Sample inferences is performed by the dada function. Error rate estimation is performed
by errorEstimationFunction. The output of this function serves as input to the dada function
call as the err parameter.

Usage

learnErrors(
fls,
nbases = 1e+08,
nreads = NULL,
errorEstimationFunction = loessErrfun,
multithread = FALSE,
randomize = FALSE,
MAX_CONSIST = 10,
OMEGA_C = 0,
qualityType = "Auto",
verbose = FALSE,
...

)

learnErrors 33

Arguments

fls (Required). character. The file path(s) to the fastq file(s), or a directory con-
taining fastq file(s). Compressed file formats such as .fastq.gz and .fastq.bz2 are
supported. A list of derep-class ojects can also be provided.

nbases (Optional). Default 1e8. The minimum number of total bases to use for error
rate learning. Samples are read into memory until at least this number of total
bases has been reached, or all provided samples have been read in.

nreads (Optional). Default NULL. DEPRECATED. Please update your code to use the
nbases parameter.

errorEstimationFunction

(Optional). Function. Default loessErrfun.
errorEstimationFunction is computed on the matrix of observed transitions
after each sample inference step in order to generate the new matrix of estimated
error rates.

multithread (Optional). Default is FALSE. If TRUE, multithreading is enabled and the num-
ber of available threads is automatically determined. If an integer is provided,
the number of threads to use is set by passing the argument on to setThreadOptions.

randomize (Optional). Default FALSE. If FALSE, samples are read in the provided order
until enough reads are obtained. If TRUE, samples are picked at random from
those provided.

MAX_CONSIST (Optional). Default 10. The maximum number of times to step through the self-
consistency loop. If convergence was not reached in MAX_CONSIST steps, the
estimated error rates in the last step are returned.

OMEGA_C (Optional). Default 0. The threshold at which unique sequences inferred to
contain errors are corrected in the final output, and used to estimate the error
rates (see more at setDadaOpt). For reasons of convergence, and because it is
more conservative, it is recommended to set this value to 0, which means that
all reads are counted and contribute to estimating the error rates.

qualityType (Optional). character(1). The quality encoding of the fastq file(s). "Auto"
(the default) means to attempt to auto-detect the encoding. This may fail for
PacBio files with uniformly high quality scores, in which case use "FastqQual-
ity". This parameter is passed on to readFastq; see information there for de-
tails.

verbose (Optional). Default TRUE Print verbose text output. More fine-grained control
is available by providing an integer argument.

• 0: Silence. No text output (same as FALSE).
• 1: Basic text output (same as TRUE).
• 2: Detailed text output, mostly intended for debugging.

... (Optional). Additional arguments will be passed on to the dada function.

Value

A named list with three entries: $err_out: A numeric matrix with the learned error rates. $err_in:
The initialization error rates (unimportant). $trans: A feature table of observed transitions for each
type (eg. A->C) and quality score.

See Also

derepFastq, plotErrors, loessErrfun, dada

34 loessErrfun

Examples

fl1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
fl2 <- system.file("extdata", "sam2F.fastq.gz", package="dada2")
err <- learnErrors(c(fl1, fl2))
err <- learnErrors(c(fl1, fl2), nbases=5000000, randomize=TRUE)
Using a list of derep-class objects
dereps <- derepFastq(c(fl1, fl2))
err <- learnErrors(dereps, multithread=TRUE, randomize=TRUE, MAX_CONSIST=20)

loessErrfun Use a loess fit to estimate error rates from transition counts.

Description

This function accepts a matrix of observed transitions, with each transition corresponding to a row
(eg. row 2 = A->C) and each column to a quality score (eg. col 31 = Q30). It returns a matrix of
estimated error rates of the same shape. Error rates are estimates by a loess fit of the observed
rates of each transition as a function of the quality score. Self-transitions (i.e. A->A) are taken to
be the left-over probability.

Usage

loessErrfun(trans)

Arguments

trans (Required). A matrix of the observed transition counts. Must be 16 rows, with
the rows named "A2A", "A2C", ...

Value

A numeric matrix with 16 rows and the same number of columns as trans. The estimated error rates
for each transition (row, eg. "A2C") and quality score (column, eg. 31), as determined by loess
smoothing over the quality scores within each transition category.

Examples

derep1 <- derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1)
err.new <- loessErrfun(dada1$trans)

makeBinnedQualErrfun 35

makeBinnedQualErrfun Create a function that uses a piecewise linear fit to estimate error rates
from transition counts derived from binned quality score data. The
binned quality scores are defined in the argument to this function call.

Description

Create a function that uses a piecewise linear fit to estimate error rates from transition counts derived
from binned quality score data. The binned quality scores are defined in the argument to this
function call.

Usage

makeBinnedQualErrfun(binnedQ)

Arguments

binnedQ (Required). A vector of the binned quality scores that are present in your se-
quencing data.

Value

This function returns a function. The returned function accepts a matrix of observed transitions,
with each transition corresponding to a row (eg. row 2 = A->C) and each column to a quality score
(eg. col 31 = Q30). That function returns a matrix of estimated error rates of the same shape.

The returned function has as required input the trans matrix, and returns a numeric matrix with 16
rows and the same number of columns as trans. The estimated error rates for each transition (row,
eg. "A2C") and quality score (column, eg. 31). See ‘loessErrfun‘ for a comparable function to the
one that is returned here.

Examples

derep1 <- derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1)
novaBinnedErrfun <- makeBinnedQualErrfun(c(7, 17, 27, 40))
err.new <- novaBinnedErrfun(dada1$trans)

makeSequenceTable Construct a sample-by-sequence observation matrix.

Description

This function constructs a sequence table (analogous to an OTU table) from the provided list of
samples.

Usage

makeSequenceTable(samples, orderBy = "abundance")

36 makeSpeciesFasta_RDP

Arguments

samples (Required). A list of the samples to include in the sequence table. Samples
can be provided in any format that can be processed by getUniques. Sample
names are propagated to the rownames of the sequence table.

orderBy (Optional). character(1). Default "abundance". Specifies how the sequences
(columns) of the returned table should be ordered (decreasing). Valid values:
"abundance", "nsamples", NULL.

Value

Named integer matrix. A row for each sample, and a column for each unique sequence across all
the samples. Note that the columns are named by the sequence which can make display a little
unwieldy.

See Also

dada, getUniques

Examples

derep1 <- derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
derep2 <- derepFastq(system.file("extdata", "sam2F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, tperr1)
dada2 <- dada(derep2, tperr1)
seqtab <- makeSequenceTable(list(sample1=dada1, sample2=dada2))

makeSpeciesFasta_RDP This function creates the dada2 assignSpecies fasta file for the RDP
from the RDP’s _Bacteria_unaligned.fa file.

Description

THE WAY RDP RELEASES SPECIES LEVEL INFORMATION APPEARS TO HAVE CHANGED
IN RELEASE 19 AS A RESULT, THIS OUTPUT IS NOT CURRENTLY BEING MAINTAINED

Usage

makeSpeciesFasta_RDP(fin, fout, compress = TRUE)

Details

RDP Trainset 18/Release 11.5 ## The RDP documentation does not make clear whether the
updates to the taxonomy from training set release 18 were ## propagated to the current Bacte-
rial alignment. dada2:::makeSpeciesFasta_RDP("~/Desktop/RDP/current_Bacteria_unaligned.fa",
"~/tax/rdp_species_assignment_18.fa.gz") dada2:::tax.check("~/tax/rdp_species_assignment_18.fa.gz",
mode="species")

RDP Trainset 16/Release 11.5 dada2:::makeSpeciesFasta_RDP("~/Desktop/RDP/current_Bacteria_unaligned.fa",
"~/tax/rdp_species_assignment_16.fa.gz")

makeSpeciesFasta_Silva 37

makeSpeciesFasta_Silva

This function creates the dada2 assignSpecies fasta file for Silva from
the SILVA_[VERSION]_SSURef_tax_silva.fasta file (NOT the NR99
file).

Description

Silva release v138.2 dada2:::makeSpeciesFasta_Silva("~/tax/silva/v138_2/SILVA_138.2_SSURef_tax_silva.fasta.gz",
"~/Desktop/silva_v138.2_assignSpecies.fa.gz")

Usage

makeSpeciesFasta_Silva(fin, fout, compress = TRUE)

Details

Output: 352047 sequences with genus/species binomial annotation output.

makeTaxonomyFasta_GG2 This function creates the dada2 assignTaxonomy training fasta from
the GreenGenes2 release files. If ‘include.species‘=TRUE, the 7th
taxonomic level (species) will be output. Otherwise only the first 6
taxonomic levels (down to genus) will output.

Description

Greengenes2 release 2024_09 path <- "~/tax/GG2/2024_09" setwd(path) # download.file("http://ftp.microbio.me/greengenes_release/current/2024.09.backbone.full-
length.fna.qza", "2024.09.backbone.full-length.fna.qza") download.file("http://ftp.microbio.me/greengenes_release/current/2024.09.backbone.tax.qza",
"2024.09.backbone.tax.qza") unzip("2024.09.backbone.full-length.fna.qza") unzip("2024.09.backbone.tax.qza")
fn <- "5b42d9b6-2f24-4f01-b989-9b4dafca7d5e/data/dna-sequences.fasta" txfn <- "b7c3e691-ea51-
4547-94dd-f79f49e41a36/data/taxonomy.tsv"

Usage

makeTaxonomyFasta_GG2(
fn,
txfn,
fout,
include.species = FALSE,
output.binomials = FALSE,
compress = TRUE

)

Details

fn.out <- "~/Desktop/gg2_2024_09_toGenus_trainset.fa.gz" dada2:::makeTaxonomyFasta_GG2(fn,
txfn, fn.out, include.species=FALSE, compress=TRUE) dada2:::tax.check(fn.out)

fn.out.spc <- "~/Desktop/gg2_2024_09_toSpecies_trainset.fa.gz" dada2:::makeTaxonomyFasta_GG2(fn,
txfn, fn.out.spc, include.species=TRUE, compress=TRUE) dada2:::tax.check(fn.out.spc)

38 makeTaxonomyFasta_SilvaNR

makeTaxonomyFasta_RDP This function creates the dada2 assignTaxonomy training fasta from
the speciesrank RDP trainset .fa file The RDP trainset data was down-
loaded from: https://sourceforge.net/projects/rdp-classifier/

Description

RDP Trainset 19 path <- "~/tax/rdp/v19" dada2:::makeTaxonomyFasta_RDP(file.path(path, "train-
set19_072023_speciesrank.fa"), file.path(path, "trainset19_db_taxid.txt"), "~/Desktop/rdp_19_toGenus_trainset.fa.gz",
include.species=FALSE, compress=TRUE) dada2:::tax.check("~/Desktop/rdp_19_toGenus_trainset.fa.gz")

Usage

makeTaxonomyFasta_RDP(fin, fdb, fout, include.species = FALSE, compress = TRUE)

Details

dada2:::makeTaxonomyFasta_RDP(file.path(path, "trainset19_072023_speciesrank.fa"), file.path(path,
"trainset19_db_taxid.txt"), "~/Desktop/rdp_19_toSpecies_trainset.fa.gz", include.species=TRUE, com-
press=TRUE) dada2:::tax.check("~/Desktop/rdp_19_toSpecies_trainset.fa.gz")

makeTaxonomyFasta_SilvaNR

This function creates the dada2 assignTaxonomy training fasta for the
official Silva NR99 release files. If ‘include.species‘=TRUE, a 7th tax-
onomic level (species) will be added based on the Genus species bino-
mial in the Silva taxonomy string (if consistent with the genus assign-
ment).

Description

Silva release v138.2 path <- "~/tax/Silva/v138_2" dada2:::makeTaxonomyFasta_SilvaNR(file.path(path,
"SILVA_138.2_SSURef_NR99_tax_silva.fasta.gz"), file.path(path, "tax_slv_ssu_138.2.txt"), "~/Desk-
top/silva_nr99_v138.2_toGenus_trainset.fa.gz") dada2:::tax.check("~/Desktop/silva_nr99_v138.2_toGenus_trainset.fa.gz")

dada2:::makeTaxonomyFasta_SilvaNR(file.path(path, "SILVA_138.2_SSURef_NR99_tax_silva.fasta.gz"),
file.path(path, "tax_slv_ssu_138.2.txt"), include.species=TRUE, "~/silva_nr99_v138.2_toSpecies_trainset.fa.gz")
dada2:::tax.check("~/Desktop/silva_nr99_v138.2_toSpecies_trainset.fa.gz")

Usage

makeTaxonomyFasta_SilvaNR(
fin,
ftax,
fout,
include.species = FALSE,
compress = TRUE

)

mergePairs 39

mergePairs Merge denoised forward and reverse reads.

Description

This function attempts to merge each denoised pair of forward and reverse reads, rejecting any pairs
which do not sufficiently overlap or which contain too many (>0 by default) mismatches in the
overlap region. Note: This function assumes that the fastq files for the forward and reverse reads
were in the same order.

Usage

mergePairs(
dadaF,
derepF,
dadaR,
derepR,
minOverlap = 12,
maxMismatch = 0,
returnRejects = FALSE,
propagateCol = character(0),
justConcatenate = FALSE,
trimOverhang = FALSE,
verbose = FALSE,
...

)

Arguments

dadaF (Required). A dada-class object, or a list of such objects. The dada-class
object(s) generated by denoising the forward reads.

derepF (Required). character or derep-class. The file path(s) to the fastq file(s),
or a directory containing fastq file(s) corresponding to the the forward reads
of the samples to be merged. Compressed file formats such as .fastq.gz and
.fastq.bz2 are supported. A derep-class object (or list thereof) returned by
link{derepFastq} can also be provided. These derep-class object(s) or fastq
files should correspond to those used as input to the the dada function when
denoising the forward reads.

dadaR (Required). A dada-class object, or a list of such objects. The dada-class
object(s) generated by denoising the reverse reads.

derepR (Required). character or derep-class. The file path(s) to the fastq file(s),
or a directory containing fastq file(s) corresponding to the the reverse reads
of the samples to be merged. Compressed file formats such as .fastq.gz and
.fastq.bz2 are supported. A derep-class object (or list thereof) returned by
link{derepFastq} can also be provided. These derep-class object(s) or fastq
files should correspond to those used as input to the the dada function when de-
noising the reverse reads.

minOverlap (Optional). Default 12. The minimum length of the overlap required for merging
the forward and reverse reads.

40 mergePairs

maxMismatch (Optional). Default 0. The maximum mismatches allowed in the overlap region.

returnRejects (Optional). Default FALSE. If TRUE, the pairs that that were rejected based on
mismatches in the overlap region are retained in the return data.frame.

propagateCol (Optional). character. Default character(0). The return data.frame will
include values from columns in the $clustering data.frame of the provided
dada-class objects with the provided names.

justConcatenate

(Optional). Default FALSE. If TRUE, the forward and reverse-complemented
reverse read are concatenated rather than merged, with a NNNNNNNNNN (10
Ns) spacer inserted between them.

trimOverhang (Optional). Default FALSE. If TRUE, "overhangs" in the alignment between the
forwards and reverse read are trimmed off. "Overhangs" are when the reverse
read extends past the start of the forward read, and vice-versa, as can happen
when reads are longer than the amplicon and read into the other-direction primer
region.

verbose (Optional). Default FALSE. If TRUE, a summary of the function results are
printed to standard output.

... (Optional). Further arguments to pass on to nwalign. By default, mergePairs
uses alignment parameters that hevaily penalizes mismatches and gaps when
aligning the forward and reverse sequences.

Value

A data.frame, or a list of data.frames.

The return data.frame(s) has a row for each unique pairing of forward/reverse denoised sequences,
and the following columns:

• $abundance: Number of reads corresponding to this forward/reverse combination.

• $sequence: The merged sequence.

• $forward: The index of the forward denoised sequence.

• $reverse: The index of the reverse denoised sequence.

• $nmatch: Number of matches nts in the overlap region.

• $nmismatch: Number of mismatches in the overlap region.

• $nindel: Number of indels in the overlap region.

• $prefer: The sequence used for the overlap region. 1=forward; 2=reverse.

• $accept: TRUE if overlap between forward and reverse denoised sequences was at least
minOverlap and had at most maxMismatch differences. FALSE otherwise.

• $...: Additional columns specified in propagateCol.

A list of data.frames are returned if a list of input objects was provided.

See Also

derepFastq, dada, fastqPairedFilter

mergeSequenceTables 41

Examples

fnF <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
fnR = system.file("extdata", "sam1R.fastq.gz", package="dada2")
dadaF <- dada(fnF, selfConsist=TRUE)
dadaR <- dada(fnR, selfConsist=TRUE)
merger <- mergePairs(dadaF, fnF, dadaR, fnR)
merger <- mergePairs(dadaF, fnF, dadaR, fnR, returnRejects=TRUE, propagateCol=c("n0", "birth_ham"))
merger <- mergePairs(dadaF, fnF, dadaR, fnR, justConcatenate=TRUE)

mergeSequenceTables Merge two or more sample-by-sequence observation matrices.

Description

This function combines sequence tables together into one merged sequences table.

Usage

mergeSequenceTables(
table1 = NULL,
table2 = NULL,
...,
tables = NULL,
repeats = "error",
orderBy = "abundance",
tryRC = FALSE

)

Arguments

table1 (Optional, default=NULL). Named integer matrix. Rownames correspond to
samples and column names correspond to sequences. The output of makeSequenceTable.

table2 (Optional, default=NULL). Named integer matrix. Rownames correspond to
samples and column names correspond to sequences. The output of makeSequenceTable.

... (Optional). Additional sequence tables.
tables (Optional, default=NULL). Either a list of sequence tables, or a list/vector of

RDS filenames corresponding to sequence tables. If provided, table1, table2,
and any additional arguments will be ignored.

repeats (Optional). Default "error". Specifies how merging should proceed in the pres-
ence of repeated sample names. Valid values: "error", "sum". If "sum", then
samples with the same name are summed together in the merged table.

orderBy (Optional). character(1). Default "abundance". Specifies how the sequences
(columns) of the returned table should be ordered (decreasing). Valid values:
"abundance", "nsamples", NULL.

tryRC (Optional). logical(1). Default FALSE. If tryRC=TRUE, sequences whose
reverse complement matches an earlier sequence will be reverse- complemented
and merged together with that earlier sequence. This is most useful when dif-
ferent runs sequenced the same gene region in different or mixed orientations.
Note, this does not guarantee consistent orientatation from e.g. 5’ to 3’ on the
gene, it just ensures that identical sequences in different orientations are merged.

42 names<-,dada,ANY-method

Value

Named integer matrix. A row for each sample, and a column for each unique sequence across all
the samples. Note that the columns are named by the sequence which can make display unwieldy.

See Also

makeSequenceTable

Examples

Not run:
mergetab <- mergeSequenceTables(seqtab1, seqtab2, seqtab3) # unnamed arguments assumed to be sequence tables
input_tables <- list(seqtab1, seqtab2, seqtab3)
mergetab <- mergeSequenceTables(tables=input_tables) # list of sequence tables
files <- c(file1, file2, file3)
mergetab <- mergeSequenceTables(tables=files) # vector of filenames

End(Not run)

names<-,dada,ANY-method

Deactivate renaming of dada-class objects.

Description

Deactivate renaming of dada-class objects.

Usage

S4 replacement method for signature 'dada,ANY'
names(x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.

Value

NULL.

names<-,derep,ANY-method 43

names<-,derep,ANY-method

Deactivate renaming of derep-class objects.

Description

Deactivate renaming of derep-class objects.

Usage

S4 replacement method for signature 'derep,ANY'
names(x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.

Value

NULL.

noqualErrfun Estimate error rates for each type of transition while ignoring quality
scores.

Description

This function accepts a matrix of observed transitions, groups together all observed transitions
regardless of quality scores, and estimates the error rate for that transition as the observed fraction of
those transitions. This can be used in place of the default loessErrfun when calling learnErrors
or link{dada} with the effect that quality scores will be effectively ignored.

Usage

noqualErrfun(trans, pseudocount = 1)

Arguments

trans (Required). A matrix of the observed transition counts. Must be 16 rows, with
the rows named "A2A", "A2C", ...

pseudocount (Optional). Default 1. Added to each type of transition.

Value

A numeric matrix with 16 rows and the same number of columns as trans. The estimated error rates
for each transition (row, eg. "A2C") are identical across all columns (which correspond to quality
scores).

44 nwalign

Examples

fl1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
err.noqual <- learnErrors(fl1, errorEstimationFunction=noqualErrfun)

nwalign Needleman-Wunsch alignment.

Description

This function performs a Needleman-Wunsch alignment between two sequences.

Usage

nwalign(
s1,
s2,
match = getDadaOpt("MATCH"),
mismatch = getDadaOpt("MISMATCH"),
gap = getDadaOpt("GAP_PENALTY"),
homo_gap = NULL,
band = -1,
endsfree = TRUE,
vec = FALSE

)

Arguments

s1 (Required). character(1). The first sequence to align. A/C/G/T only.

s2 (Required). character(1). The second sequence to align. A/C/G/T only.

match (Optional). numeric(1). Default is getDadaOpt("MATCH"). The score of a
match in the alignment.

mismatch (Optional). numeric(1). Default is getDadaOpt("MISMATCH"). The score of
a mismatch in the alignment.

gap (Optional). numeric(1). Default is getDadaOpt("GAP_PENALTY"). The
alignment gap penalty. Should be negative.

homo_gap (Optional). numeric(1). Default NULL (no special homopolymer penalty).
The alignment gap penalty within homopolymer regions. Should be negative.

band (Optional). numeric(1). Default -1 (no banding). The Needleman-Wunsch
alignment can be banded. This value specifies the radius of that band. Set band
= -1 to turn off banding.

endsfree (Optional). logical(1). Default TRUE. Allow unpenalized gaps at the ends of
the alignment.

vec (Optional). logical(1). Default FALSE. Use DADA2’s vectorized aligner
instead of standard DP matrix. Not intended for long sequences (>1kb).

Value

character(2). The aligned sequences.

nwhamming 45

Examples

sq1 <- "CTAATACATGCAAGTCGAGCGAGTCTGCCTTGAAGATCGGAGTGCTTGCACTCTGTGAAACAAGATA"
sq2 <- "TTAACACATGCAAGTCGAACGGAAAGGCCAGTGCTTGCACTGGTACTCGAGTGGCGAACGGGTGAGT"
nwalign(sq1, sq2)
nwalign(sq1, sq2, band=16)

nwhamming Hamming distance after Needlman-Wunsch alignment.

Description

This function performs a Needleman-Wunsch alignment between two sequences, and then counts
the number of mismatches and indels in that alignment. End gaps are not included in this count.

Usage

nwhamming(s1, s2, ...)

Arguments

s1 (Required). character(1). The first sequence to align. A/C/G/T only.

s2 (Required). character(1). The second sequence to align. A/C/G/T only.

... (Optional). Further arguments to pass on to nwalign.

Value

integer(1). The total number of mismatches and gaps, excluding gaps at the beginning and end
of the alignment.

Examples

sq1 <- "CTAATACATGCAAGTCGAGCGAGTCTGCCTTGAAGATCGGAGTGCTTGCACTCTGTGAAACAAGATA"
sq2 <- "TTAACACATGCAAGTCGAACGGAAAGGCCAGTGCTTGCACTGGTACTCGAGTGGCGAACGGGTGAGT"

nwhamming(sq1, sq2)
nwhamming(sq1, sq2, band=16)

PacBioErrfun Estimate error rates from transition counts in PacBio CCS data.

Description

This function accepts a matrix of observed transitions from PacBio CCS amplicon sequencing data,
with each transition corresponding to a row (eg. row 2 = A->C) and each column to a quality score
(eg. col 31 = Q30). It returns a matrix of estimated error rates of the same shape. Error rates are
estimates by loessErrfun for quality scores 0-92, and individually by the maximum likelihood
estimate for the maximum quality score of 93.

46 plotComplexity

Usage

PacBioErrfun(trans)

Arguments

trans (Required). A matrix of the observed transition counts. Must be 16 rows, with
the rows named "A2A", "A2C", ...

Value

A numeric matrix with 16 rows and the same number of columns as trans. The estimated error rates
for each transition (row, eg. "A2C") and quality score (column, eg. 31), as determined by loess
smoothing over the quality scores within each transition category.

Examples

derep.PB <- derepFastq(system.file("extdata", "samPB.fastq.gz", package="dada2"))
dada.PB <- dada(derep.PB, errorEstimationFunction=PacBioErrfun, BAND_SIZE=32, selfConsist=TRUE)
err.PB <- PacBioErrfun(dada.PB$trans)

plotComplexity Plot sequence complexity profile of a fastq file.

Description

This function plots a histogram of the distribution of sequence complexities in the form of effective
numbers of kmers as determined by seqComplexity. By default, kmers of size 2 are used, in which
case a perfectly random sequences will approach an effective kmer number of 16 = 4 (nucleotides)
^ 2 (kmer size).

Usage

plotComplexity(
fl,
kmerSize = 2,
window = NULL,
by = 5,
n = 1e+05,
bins = 100,
aggregate = FALSE,
...

)

Arguments

fl (Required). character. File path(s) to fastq or fastq.gz file(s).

kmerSize (Optional). Default 2. The size of the kmers (or "oligonucleotides" or "words")
to use.

window (Optional). Default NULL. The width in nucleotides of the moving window. If
NULL the whole sequence is used.

plotErrors 47

by (Optional). Default 5. The step size in nucleotides between each moving win-
dow tested.

n (Optional). Default 100,000. The number of records to sample from the fastq
file.

bins (Optional). Default 100. The number of bins to use for the histogram.

aggregate (Optional). Default FALSE. If TRUE, compute an aggregate quality profile for
all fastq files provided.

... (Optional). Arguments passed on to geom_histogram.

Value

A ggplot2 object. Will be rendered to default device if printed, or can be stored and further
modified. See ggsave for additional options.

See Also

seqComplexity oligonucleotideFrequency

Examples

plotComplexity(system.file("extdata", "sam1F.fastq.gz", package="dada2"))

plotErrors Plot observed and estimated error rates.

Description

This function plots the observed frequency of each transition (eg. A->C) as a function of the asso-
ciated quality score. It also plots the final estimated error rates (if they exist). The initial input rates
and the expected error rates under the nominal definition of quality scores can also be shown.

Usage

plotErrors(
dq,
nti = c("A", "C", "G", "T"),
ntj = c("A", "C", "G", "T"),
obs = TRUE,
err_out = TRUE,
err_in = FALSE,
nominalQ = FALSE

)

Arguments

dq (Required). An object from which error rates can be extracted. Valid inputs are
coercible by getErrors. This includes the output of the dada and learnErrors
functions.

nti (Optional). Default c("A","C","G","T"). Some combination of the 4 DNA nu-
cleotides.

48 plotQualityProfile

ntj (Optional). Default c("A","C","G","T"). Some combination of the 4 DNA nu-
cleotides.
The error rates from nti->ntj will be plotted. If multiple nti or ntj are chosen,
error rates from each-to-each will be plotted in a grid.

obs (Optional). Default TRUE. If TRUE, the observed error rates are plotted as
points.

err_out (Optional). Default TRUE. If TRUE, plot the output error rates (solid line).

err_in (Optional). Default FALSE. If TRUE, plot the input error rates (dashed line).

nominalQ (Optional). Default FALSE. If TRUE, plot the expected error rates (red line) if
quality scores exactly matched their nominal definition: Q = -10 log10(p_err).

Value

A ggplot2 object. Will be rendered to default device if printed, or can be stored and further
modified. See ggsave for additional options.

See Also

learnErrors, getErrors

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"), verbose = TRUE)
dada1 <- dada(derep1, err = inflateErr(tperr1, 2), errorEstimationFunction = loessErrfun)
plotErrors(dada1)
plotErrors(dada1, "A", "C")
plotErrors(dada1, nti="A", ntj=c("A","C","G","T"), err_in=TRUE, nominalQ=TRUE)

plotQualityProfile Plot quality profile of a fastq file.

Description

This function plots a visual summary of the distribution of quality scores as a function of sequence
position for the input fastq file(s).

Usage

plotQualityProfile(fl, n = 5e+05, aggregate = FALSE)

Arguments

fl (Required). character. File path(s) to fastq or fastq.gz file(s).

n (Optional). Default 500,000. The number of records to sample from the fastq
file.

aggregate (Optional). Default FALSE. If TRUE, compute an aggregate quality profile for
all fastq files provided.

qtables2 49

Details

The distribution of quality scores at each position is shown as a grey-scale heat map, with dark
colors corresponding to higher frequency. The plotted lines show positional summary statistics:
green is the mean, orange is the median, and the dashed orange lines are the 25th and 75th quantiles.

If the sequences vary in length, a red line will be plotted showing the percentage of reads that extend
to at least that position.

Value

A ggplot2 object. Will be rendered to default device if printed, or can be stored and further
modified. See ggsave for additional options.

Examples

plotQualityProfile(system.file("extdata", "sam1F.fastq.gz", package="dada2"))

qtables2 Internal tables function

Description

Internal function to replicate ShortRead::tables functionality while also returning average quals and
a map from reads to uniques

Usage

qtables2(x, qeff = FALSE, handle.zerolen = TRUE)

Arguments

x ShortReadQ. The ShortReadQ-class object to table (or dereplicate).

qeff logical(1). Calculate average quality by first transforming to expected error
rate.

handle.zerolen logical(1). Default TRUE. If TRUE, gracefully excludes zero-length sequences.

Value

List. Matches format of derep-class object.

50 removeBimeraDenovo

rc Reverse complement DNA sequences.

Description

This function reverse complements DNA sequence(s) provided. This function is nothing more
than a concisely-named convenience wrapper for reverseComplement that handles the character
vector DNA sequences generated in the the dada2 package.

Usage

rc(sq)

Arguments

sq (Required). character. The DNA sequence(s) to reverse-complement. DNAString,
or DNAStringSet formats are also accepted.

Value

character. The reverse-complemented DNA sequence(s).

See Also

reverseComplement

Examples

R1492 <- "RGYTACCTTGTTACGACTT"
rc(R1492)
sqs <- getSequences(system.file("extdata", "example_seqs.fa", package="dada2"))
rc(sqs)

removeBimeraDenovo Remove bimeras from collections of unique sequences.

Description

This function is a convenience interface for chimera removal. Two methods to identify chimeras
are supported: Identification from pooled sequences (see isBimeraDenovo for details) and identi-
fication by consensus across samples (see isBimeraDenovoTable for details). Sequence variants
identified as bimeric are removed, and a bimera-free collection of unique sequences is returned.

Usage

removeBimeraDenovo(unqs, method = "consensus", ..., verbose = FALSE)

removePrimers 51

Arguments

unqs (Required). A uniques-vector or any object that can be coerced into one with
getUniques. A list of such objects can also be provided.

method (Optional). Default is "consensus". Only has an effect if a sequence table is
provided.
If "pooled": The samples in the sequence table are all pooled together for bimera
identification (isBimeraDenovo).
If "consensus": The samples in a sequence table are independently checked for
bimeras, and a consensus decision on each sequence variant is made (isBimeraDenovoTable).
If "per-sample": The samples in a sequence table are independently checked for
bimeras, and sequence variants are removed (zeroed-out) from samples inde-
pendently (isBimeraDenovo).

... (Optional). Arguments to be passed to isBimeraDenovo or isBimeraDenovoTable.
The documentation of those methods detail the additional algorithmic parame-
ters that can be adjusted.

verbose (Optional). Default FALSE. Print verbose text output.

Value

A uniques vector, or an object of matching class if a data.frame or sequence table is provided. A
list of such objects is returned if a list of input unqs was provided.

See Also

isBimeraDenovoTable, isBimeraDenovo

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
dada1 <- dada(derep1, err=tperr1, errorEstimationFunction=loessErrfun, selfConsist=TRUE)
out.nobim <- removeBimeraDenovo(dada1)
out.nobim <- removeBimeraDenovo(dada1$clustering, method="pooled", minFoldParentOverAbundance = 2)

removePrimers Removes primers and orients reads in a consistent direction.

Description

Removes primer(s) and orients the reads in input fastq file(s) (can be compressed). Reads that do
not contain the primer(s) are discarded. Intended for use with PacBio CCS data. Faster external
solutions such as cutadapt or trimmomatic are recommended for short-read data.

Usage

removePrimers(
fn,
fout,
primer.fwd,
primer.rev = NULL,

52 removePrimers

max.mismatch = 2,
allow.indels = FALSE,
trim.fwd = TRUE,
trim.rev = TRUE,
orient = TRUE,
compress = TRUE,
verbose = FALSE

)

Arguments

fn (Required). character. The path(s) to the input fastq file(s). Can be com-
pressed.

fout (Required). character. The path(s) to the output fastq file(s) corresponding
to the fwd input files. If directory containing the file does not exist, it will be
created. Output files are gzip compressed by default.

primer.fwd (Required). character. The forward primer sequence expected to be at the be-
ginning of the sequenced amplicon. Can contain IUPAC ambiguous nucleotide
codes.

primer.rev (Optional). Default NULL. The reverse primer sequence expected to be at the
end of the sequenced amplicon. Can contain IUPAC ambiguous nucleotide
codes. NOTE: ‘primer.rev‘ should be provided in the orientation that would
appear in a DNA sequence starting at the forward primer and being read to-
wards the reverse primer. Thus, it is often necessary to reverse-complement the
reverse primer sequence before providing it to this function.

max.mismatch (Optional). Default 2. The number of mismatches to tolerate when matching
reads to primer sequences. See vmatchPattern for details.

allow.indels (Optional). Default FALSE. If TRUE, indels ared allowed when matching the
primer sequences to the read. If FALSE, no indels are allowed. Note that when
‘allow.indels=TRUE‘, primer matching is significantly slower, currently about
4x slower.

trim.fwd (Optional). Default TRUE. If TRUE, reads are trimmed to the end of the forward
primer, i.e. the forward primer and any preceding sequence are trimmed off.

trim.rev (Optional). Default TRUE. If TRUE, reads are trimmed to the beginning of the
reverse primer, i.e. the reverse primer and any subsequent sequence are trimmed
off.

orient (Optional). Default TRUE. If TRUE, reads are re-oriented if the reverse com-
plement of the read is a better match to the provided primer sequence(s). This is
recommended for PacBio CCS reads, which come in a random mix of forward
and reverse-complement orientations.

compress (Optional). Default TRUE. If TRUE, the output fastq file(s) are gzipped.

verbose (Optional). Default FALSE. Whether to output status messages.

Value

Integer matrix. Returned invisibly (i.e. only if assigned to something). Rows correspond to the
input files, columns record the number of reads.in and reads.out after discarding reads that didn’t
match the provided primers.

seqComplexity 53

Examples

F27 <- "AGRGTTYGATYMTGGCTCAG"
R1492 <- "RGYTACCTTGTTACGACTT"
fn <- system.file("extdata", "samPBprimers.fastq.gz", package="dada2")
fn.noprime <- tempfile(fileext=".fastq.gz")
removePrimers(fn, fn.noprime, primer.fwd=F27, primer.rev=rc(R1492), orient=TRUE, verbose=TRUE)

seqComplexity Determine if input sequence(s) are low complexity.

Description

This function calculates the kmer complexity of input sequences. Complexity is quantified as the
Shannon richness of kmers, which can be thought of as the effective number of kmers if they were
all at equal frequencies. If a window size is provided, the minimum Shannon richness observed
over sliding window along the sequence is returned.

Usage

seqComplexity(seqs, kmerSize = 2, window = NULL, by = 5, ...)

Arguments

seqs (Required). A character vector of A/C/G/T sequences, or any object coercible
by getSequences.

kmerSize (Optional). Default 2. The size of the kmers (or "oligonucleotides" or "words")
to use.

window (Optional). Default NULL. The width in nucleotides of the moving window. If
NULL the whole sequence is used.

by (Optional). Default 5. The step size in nucleotides between each moving win-
dow tested.

... (Optional). Ignored.

Details

This function can be used to identify potentially artefactual or undesirable low-complexity se-
quences, or sequences with low-complexity regions, as are sometimes observed in Illumina se-
quencing runs. When such artefactual sequences are present, the Shannon kmer richness values
returned by this function will typically show a clear bimodal signal.

Kmers with non-ACGT characters are ignored. Also note that no correction is performed for se-
quence lengths. This is important when using longer kmer lengths, where 4^wordSize approaches
the length of the sequence, as shorter sequences will then have a lower effective richness simply
due to their being too little sequence to sample all the possible kmers.

Value

numeric. A vector of minimum kmer complexities for each sequence.

54 setDadaOpt

See Also

plotComplexity oligonucleotideFrequency

Examples

sq.norm <- "TACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGGAGATTAAGCGTGTTGTGA"
sq.lowc <- "TCCTTCTTCTCCTCTCTTTCTCCTTCTTTCTTTTTTTTCCCTTTCTCTTCTTCTTTTTCTTCCTTCCTTTTTTC"
sq.part <- "TTTTTCTTCTCCCCCTTCCCCTTTCCTTTTCTCCTTTTTTCCTTTAGTGCAGTTGAGGCAGGCGGAATTCGTGG"
sqs <- c(sq.norm, sq.lowc, sq.part)
seqComplexity(sqs)
seqComplexity(sqs, kmerSize=3, window=25)

setDadaOpt Set DADA options

Description

setDadaOpt sets the default options used by the dada(...) function for your current session, much
like par sets the session default plotting parameters. However, all dada options can be set as part of
the dada(...) function call itself by including a DADA_OPTION_NAME=VALUE argument.

Usage

setDadaOpt(...)

Arguments

... (Required). The DADA options to set, along with their new value.

Details

Sensitivity

OMEGA_A: This parameter sets the threshold for when DADA2 calls unique sequences signifi-
cantly overabundant, and therefore creates a new partition with that sequence as the center. Default
is 1e-40, which is a conservative setting to avoid making false positive inferences, but which comes
at the cost of reducing the ability to identify some rare variants.

OMEGA_P: The threshold for unique sequences with prior evidence of existence (see ‘priors‘ ar-
gument). Default is 1e-4.

OMEGA_C: The threshold at which unique sequences inferred to contain errors are corrected in
the final output. The probability that each unique sequence is generated at its observed abundance
from the center of its final partition is evaluated, and compared to OMEGA_C. If that probability is
>= OMEGA_C, it is "corrected", i.e. replaced by the partition center sequence. The special value
of 0 corresponds to correcting all input sequences, and any value > 1 corresponds to performing no
correction on sequences found to contain errors. Default is 1e-40 (same as OMEGA_A).

DETECT_SINGLETONS: If set to TRUE, this removes the requirement for at least two reads with
the same sequences to exist in order for a new ASV to be detected. It also somewhat increases
sensitivity to other low abundance sequences as well, e.g. those present in just 2/3/4/... reads.
Note, this applies to all unique sequences, not just those supported by prior evidence (see ‘priors‘
argument), and so it does make false-positive detections more likely.

setDadaOpt 55

Alignment

MATCH: The score of a match in the Needleman-Wunsch alignment. Default is 4.

MISMATCH: The score of a mismatch in the Needleman-Wunsch alignment. Default is -5.

GAP_PENALTY: The cost of gaps in the Needleman-Wunsch alignment. Default is -8.

HOMOPOLYMER_GAP_PENALTY: The cost of gaps in homopolymer regions (>=3 repeated
bases). Default is NULL, which causes homopolymer gaps to be treated as normal gaps.

BAND_SIZE: When set, banded Needleman-Wunsch alignments are performed. Banding restricts
the net cumulative number of insertion of one sequence relative to the other. The default value
of BAND_SIZE is 16. If DADA is applied to sequencing technologies with high rates of indels,
such as 454 sequencing, the BAND_SIZE parameter should be increased. Setting BAND_SIZE to
a negative number turns off banding (i.e. full Needleman-Wunsch).

Sequence Comparison Heuristics

USE_KMERS: If TRUE, a 5-mer distance screen is performed prior to performing each pairwise
alignment, and if the 5mer-distance is greater than KDIST_CUTOFF, no alignment is performed.
Default is TRUE.

KDIST_CUTOFF: The default value of 0.42 was chosen to screen pairs of sequences that differ
by >10%, and was calibrated on Illumina sequenced 16S amplicon data. The assumption is that
sequences that differ by such a large amount cannot be linked by amplicon errors (i.e. if you
sequence one, you won’t get a read of other) and so careful (and costly) alignment is unnecessary.

GAPLESS: If TRUE, the ordered kmer identity between pairs of sequences is compared to their
unordered overlap. If equal, the optimal alignment is assumed to be gapless. Default is TRUE.
Only relevant if USE_KMERS is TRUE.

GREEDY: The DADA2 algorithm is not greedy, but a very restricted form of greediness can be
turned on via this option. If TRUE, unique sequences with reads less than those expected to be
generated by resequencing just the central unique in their partition are "locked" to that partition.
Modest (~30%) speedup, and almost no impact on output. Default is TRUE.

New Partition Conditions

MIN_FOLD: The minimum fold-overabundance for sequences to form new partitions. Default
value is 1, which means this criteria is ignored.

MIN_HAMMING: The minimum hamming-separation for sequences to form new partitions. De-
fault value is 1, which means this criteria is ignored.

MIN_ABUNDANCE: The minimum abundance for unique sequences form new partitions. Default
value is 1, which means this criteria is ignored.

MAX_CLUST: The maximum number of partitions. Once this many partitions have been created,
the algorithm terminates regardless of whether the statistical model suggests more real sequence
variants exist. If set to 0 this argument is ignored. Default value is 0.

Self Consistency

MAX_CONSIST: The maximum number of steps when selfConsist=TRUE. If convergence is not
reached in MAX_CONSIST steps, the algorithm will terminate with a warning message. Default
value is 10.

Pseudo-pooling Behavior

PSEUDO_PREVALENCE: When performing pseudo-pooling, all sequence variants found in at
least this many samples are used as priors for a subsequent round of sample inference. Only relevant
if ‘pool="pseudo"‘. Default is 2.

PSEUDO_ABUNDANCE: When performing pseudo-pooling, all denoised sequence variants with
total abundance (over all samples) greater than this are used as priors for a subsequent round of

56 show,derep-method

sample inference. Only relevant if ‘pool="pseudo"‘. Default is Inf (i.e. abundance ignored for this
purpose).

Error Model

USE_QUALS: If TRUE, the dada(...) error model takes into account the consensus quality score of
the dereplicated unique sequences. If FALSE, quality scores are ignored. Default is TRUE.

Technical

SSE: Controls the level of explicit SSE vectorization for kmer calculations. Default 2. Maintained
for development reasons, should have no impact on output.

• 0: No explicit vectorization (but modern compilers will auto-vectorize the code).

• 1: Explicit SSE2.

• 2: Explicit, packed SSE2 using 8-bit integers. Slightly faster than SSE=1.

Value

NULL.

See Also

getDadaOpt

Examples

setDadaOpt(OMEGA_A = 1e-20)
setDadaOpt(MATCH=1, MISMATCH=-4, GAP_PENALTY=-6)
setDadaOpt(GREEDY=TRUE, GAPLESS=TRUE)

show,derep-method method extensions to show for dada2 objects.

Description

See the general documentation of show method for expected behavior.

Usage

S4 method for signature 'derep'
show(object)

S4 method for signature 'dada'
show(object)

Arguments

object Any R object

Value

NULL.

tperr1 57

See Also

show

tperr1 An empirical error matrix.

Description

A dataset containing the error matrix estimated by fitting a piecewise linear model to the errors
observed in the mock community featured in Schirmer 2015 (metaID 35).

Format

A numerical matrix with 16 rows and 41 columns. Rows correspond to the 16 transition (eg. A2A,
A2C, ...) Columns correspond to consensus quality scores 0 to 40.

uniques-vector The named integer vector format used to represent collections of
unique DNA sequences.

Description

The uniques vector is an integer vector that is named by the unique sequence, and valued by
the abundance of that sequence. This format is commonly used within the dada2-package, for
function inputs and outputs. The getUniques function coerces a variety of input objects into the
uniques-vector format, including dada-class and derep-class objects.

See Also

getUniques

uniquesToFasta Write a uniques vector to a FASTA file

Description

A wrapper for writeFastq in the ShortRead package. Default output format is compatible with
uchime.

Usage

uniquesToFasta(unqs, fout, ids = NULL, mode = "w", width = 20000, ...)

58 writeFasta,character-method

Arguments

unqs (Required). A uniques-vector or any object that can be coerced into one with
getUniques.

fout (Required). The file path of the output file.

ids (Optional). character. Default NULL. A vector of sequence ids, one for each
element in unqs. If NULL, a uchime-compatible ID is assigned.

mode (Optional). Default "w". Passed on to writeFasta indicating the type of file
writing mode. Default is "w".

width (Optional). Default 20000. The number of characters per line in the file. Default
is effectively one line per sequence. Passed on to writeFasta.

... Additional parameters passed on to writeFasta.

Value

NULL.

Examples

derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
outfile <- tempfile(fileext=".fasta")
uniquesToFasta(derep1, outfile)
uniquesToFasta(derep1, outfile, ids=paste0("Sequence", seq(length(getSequences(derep1)))))

writeFasta,character-method

Writes a named character vector of DNA sequences to a fasta file.
Values are the sequences, and names are used for the id lines.

Description

Writes a named character vector of DNA sequences to a fasta file. Values are the sequences, and
names are used for the id lines.

Usage

S4 method for signature 'character'
writeFasta(object, file, mode = "w", width = 20000L, ...)

Arguments

object (Required). A named character vector.

file (Required). The output file.

mode (Optional). Default "w". Append with "a".

width (Optional). Default 20000L. Maximum line length before newline.

... (Optional). Additonal arguments passed to writeXStringSet.

Value

NULL.

writeFasta,character-method 59

See Also

writeXStringSet

Index

∗ internal
derepFasta, 13
makeSpeciesFasta_RDP, 36
makeSpeciesFasta_Silva, 37
makeTaxonomyFasta_GG2, 37
makeTaxonomyFasta_RDP, 38
makeTaxonomyFasta_SilvaNR, 38
qtables2, 49

∗ package
dada2-package, 3

addSpecies, 4
assignSpecies, 3–5, 5
assignTaxonomy, 3–5, 6

c,dada-method, 7
c,derep-method, 8
collapseNoMismatch, 8

dada, 3, 10, 12, 16, 18, 22, 32, 33, 36, 39, 40,
47

dada-class, 12
dada2 (dada2-package), 3
dada2-package, 3
derep-class, 13, 32
derepFasta, 13
derepFastq, 3, 12, 13, 14, 33, 40
DNAString, 50
DNAStringSet, 50

errBalancedF, 15
errBalancedR, 15

fastqFilter, 3, 15, 20, 23, 31
fastqPairedFilter, 3, 17, 17, 23, 31, 40
FastqStreamer, 4, 14, 17, 19, 20, 22, 23
filterAndTrim, 3, 20

geom_histogram, 47
getDadaOpt, 23, 56
getErrors, 10, 24, 47, 48
getSequences, 25, 53
getUniques, 5, 6, 25, 25, 28, 32, 36, 51, 57, 58
ggplot, 47–49
ggsave, 47–49

inflateErr, 26
isBimera, 27, 28–30, 32
isBimeraDenovo, 3, 27, 28, 50, 51
isBimeraDenovoTable, 3, 29, 50, 51
isPhiX, 16, 17, 19, 20, 22, 30
isShiftDenovo, 31

learnErrors, 3, 10, 32, 43, 47, 48
list, 13
loess, 34, 46
loessErrfun, 10, 33, 34, 43, 45

makeBinnedQualErrfun, 35
makeSequenceTable, 9, 35, 41, 42
makeSpeciesFasta_RDP, 36
makeSpeciesFasta_Silva, 37
makeTaxonomyFasta_GG2, 37
makeTaxonomyFasta_RDP, 38
makeTaxonomyFasta_SilvaNR, 38
mclapply, 17, 19, 22, 28
mergePairs, 3, 19, 22, 39
mergeSequenceTables, 41
message, 14

names<-,dada,ANY-method, 42
names<-,derep,ANY-method, 43
noqualErrfun, 43
NULL, 8
nwalign, 40, 44, 45
nwhamming, 45

oligonucleotideFrequency, 47, 54

PacBioErrfun, 45
plotComplexity, 46, 54
plotErrors, 33, 47
plotQualityProfile, 48
print, 47–49

qtables2, 49

rc, 50
readFastq, 14, 17, 19, 23, 33
removeBimeraDenovo, 3, 27, 29, 30, 50
removePrimers, 51

60

INDEX 61

reverseComplement, 50

seqComplexity, 16, 19, 20, 22, 46, 47, 53
setDadaOpt, 11, 12, 24, 33, 54
setThreadOptions, 7, 11, 33
show, 56, 57
show,dada-method (show,derep-method), 56
show,derep-method, 56
strsplit, 19, 22

tperr1, 57
trimTails, 17, 20

uniques-vector, 57
uniquesToFasta, 57

vmatchPattern, 52

writeFasta, 58
writeFasta,character-method, 58
writeXStringSet, 58, 59

	dada2-package
	addSpecies
	assignSpecies
	assignTaxonomy
	c,dada-method
	c,derep-method
	collapseNoMismatch
	dada
	dada-class
	derep-class
	derepFasta
	derepFastq
	errBalancedF
	errBalancedR
	fastqFilter
	fastqPairedFilter
	filterAndTrim
	getDadaOpt
	getErrors
	getSequences
	getUniques
	inflateErr
	isBimera
	isBimeraDenovo
	isBimeraDenovoTable
	isPhiX
	isShiftDenovo
	learnErrors
	loessErrfun
	makeBinnedQualErrfun
	makeSequenceTable
	makeSpeciesFasta_RDP
	makeSpeciesFasta_Silva
	makeTaxonomyFasta_GG2
	makeTaxonomyFasta_RDP
	makeTaxonomyFasta_SilvaNR
	mergePairs
	mergeSequenceTables
	names<-,dada,ANY-method
	names<-,derep,ANY-method
	noqualErrfun
	nwalign
	nwhamming
	PacBioErrfun
	plotComplexity
	plotErrors
	plotQualityProfile
	qtables2
	rc
	removeBimeraDenovo
	removePrimers
	seqComplexity
	setDadaOpt
	show,derep-method
	tperr1
	uniques-vector
	uniquesToFasta
	writeFasta,character-method
	Index

