Package ‘crisprDesign’

January 19, 2026

Title Comprehensive design of CRISPR gRNAs for nucleases and base
editors

Version 1.12.0

Description Provides a comprehensive suite of functions to design and anno-
tate CRISPR guide RNA (gRNAs) sequences. This
includes on- and off-target search, on-target efficiency scoring, off-
target scoring, full gene and TSS
contextual annotations, and SNP annotation (human only). It currently sup-
port five types of CRISPR
modalities (modes of perturbations): CRISPR knockout, CRISPR activation, CRISPR inhibition,
CRISPR base editing, and CRISPR knockdown. All types of CRISPR nucleases are sup-
ported, including
DNA- and RNA-target nucleases such as Cas9, Cas12a, and Cas13d. All types of base editors are
also supported. gRNA design can be performed on reference genomes, transcriptomes,
and custom DNA and RNA sequences. Both unpaired and paired gRNA designs are enabled.

Depends R (>=4.2.0), crisprBase (>=1.1.3)

Imports AnnotationDbi, BiocGenerics, Biostrings (>= 2.77.2), BSgenome
(>=1.77.1), crisprBowtie (>= 0.99.8), crisprScore (>= 1.1.6),
GenomelnfoDb (>= 1.45.7), GenomicFeatures (>= 1.61.4),
GenomicRanges (>= 1.61.1), IRanges, Matrix, MatrixGenerics,
methods, rtracklayer (>= 1.69.1), S4Vectors, Seqinfo, stats,
txdbmaker (>= 1.5.6), utils, VariantAnnotation (>= 1.55.1)

Suggests biomaRt, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Mmusculus.UCSC.mm10, BiocStyle, crisprBwa (>= 0.99.7),
knitr, rmarkdown, Rbowtie, Rbwa, RCurl, testthat

biocViews CRISPR, FunctionalGenomics, GeneTarget
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

BugReports https://github.com/crisprVerse/crisprDesign/issues

URL https://github.com/crisprVerse/crisprDesign
LazyData true

git_url https://git.bioconductor.org/packages/crisprDesign
git_branch RELEASE_3_22


https://github.com/crisprVerse/crisprDesign/issues
https://github.com/crisprVerse/crisprDesign

2 Contents

git_last_commit 143cOce
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-19

Author Jean-Philippe Fortin [aut, cre],
Luke Hoberecht [aut]

Maintainer Jean-Philippe Fortin <fortin946@gmail.com>

Contents
addCompositeSCOTes . . . . . . . i e e e e e e 3
addConservationScores . . . . . . . ..o e e e 4
addCrispraiScores . . . . . . . ... e 6
addDistanceToTss . . . . . . . . . o e e 7
addEditedAlleles . . . . . . . ... 8
addEditingSites . . . . . .. 9
addExonTable . . . . . . . . ... 10
addGeneAnnotation . . . . . . .. ... e 11
addIsoformAnnotation . . . . . ... Lo e 14
addNtCs . . . . . e 15
addOffTargetScores . . . . . . . . . . . e 16
addOnTargetScores . . . . . . . . . .. e e e e 17
addOpsBarcodes . . . . . . . ... 19
addPamScores . . . . . ... oL 19
addPfamDomains . . . . . . . . . L e 20
addReinitiationFlag . . . . . . . . ... 21
addRepeats . . . . . .. 22
addRestrictionEnzymes . . . . .. ... oo L 0oL 23
addSequenceFeatures . . . . . . . ... L 25
addSNPAnnotation . . . . . . . . . .. e 26
addSpacerAlignments . . . . . . ... ... e e 28
addTssAnnotation . . . . . . . . . L. e e e e e 33
addTxTable . . . . . . . . . e 34
completeSpacers . . . . ... e e 35
convertToMinMaxGRanges . . . . . . . . . . . .. . . 37
convertToProtospacerGRanges . . . . . . . . . ... . ... .. ... ... ... 38
crisprNuclease . . . . . . . . . . e 38
designCompleteAnnotation . . . . . . . . . . . ... e 44
designOpsLibrary . . . . . . . . . ... 46
findSpacerPairs . . . . . . . ... 47
findSpacers . . . . . .. 49
flattenGuideSet . . . . . . . . L L. 51
getBarcodeDistanceMatrix . . . . . ... L. Lo 52
getConsensusIsoform . . . . . . . . . .. L 53
getMrnaSequences . . . ... .. Lo e e e e 54
getPreMrnaSequences . . . . . . ... Lo 55
getTssObjectFromTxObject . . . . . . . . . . . . . 55
getTxDb . . . . . e 56
getTxInfoDataFrame . . . . . . . . . . .. .. ... .. 57

grlistExample . . . . . . . .. 58



addCompositeScores 3

grRepeatsExample . . . . . . ... 59
GuideSet2DataFrames . . . . . . . . . ... 59
guideSetExample . . . . . . . ... 60
guideSetExampleFullAnnotation . . . . . . . . ... ... ... ... 60
guideSetExampleWithAlignments . . . . . . . ... ... ... 0oL 61
pamOrientation . . . . . . ... L e e e e e e 61
preparePfamTable . . . . . . . . ... 63
queryTss . . . o o e 64
queryTxObject . . . . . . . . . 65
rankSpacers . . . ... L L 66
TEEXPOTLS . v v v v e o e e e e e e e e e e e e e e e e e e e e 67
removeRepeats . . . . . ... L 67
removeSpacersWithSecondaryTargets . . . . . . . .. . ... ... ... ... 68
tssObjectExample . . . . . . . . . L 69
TxDb2GRangesList . . . . . . . . . .. e 70
updateOpsLibrary . . . . . . . . .. 71
validateOpsLibrary . . . . . . . . . . . L 72
Index 74
addCompositeScores Add on-target composite score to a GuideSet object.
Description

Add on-target composite score to a GuideSet object.

Usage

addCompositeScores(object, ...)

## S4 method for signature 'GuideSet'

addCompositeScores(
object,
methods = c("azimuth”, "rulesetl1”, "ruleset3", "lindel”, "deepcpfl1”, "deephf”,
"deepspcas9”, "enpamgb”, "casrxrf”, "crisprater”, "crisprscan”, "crispra”, "crispri”),
scoreName = "score_composite”

)

## S4 method for signature 'PairedGuideSet'

addCompositeScores(
object,
methods = c("azimuth”, "rulesetl”, "ruleset3”, "lindel”, "deepcpfl1”, "deephf”,
"deepspcas9”, "enpamgb”, "crisprater”, "crisprscan”, "casrxrf"”, "crispra”, "crispri”),
scoreName = "score_composite”

)

## S4 method for signature 'NULL'
addCompositeScores(object)



4 addConservationScores
Arguments
object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
methods Character vector specifying method names for on-target efficiency prediction
algorithms to be used to create the composite score. Note that the specified
scores must be added first to the object using addOnTargetScores.
scoreName String specifying the name of the composite score to be used as a columm name.
Users can choose whatever they like. Default is "score_composite".
Details
The function creates a composite score across a specified list of on-target scores by first transform-
ing each individual score into a rank, and then taking the average rank across all specified methods.
This can improve on-target activity prediction robustness. A higher score indicates higher on-target
activity.
Value
guideSet with column specified by scoreName appended in mcols(guideSet).
Author(s)
Jean-Philippe Fortin
See Also
addOnTargetScores to add on-target scores.
Examples
gs <- findSpacers("CCAACATAGTGAAACCACGTCTCTATAAAGAATAAAAAATTAGCCGGGTTA")
gs <- addOnTargetScores(gs, methods=c("ruleset1”, "crisprater”))
gs <- addCompositeScores(gs, methods=c("ruleset1”, "crisprater”))
addConservationScores Add on-target composite score to a GuideSet object.
Description
Add on-target composite score to a GuideSet object.
Usage

addConservationScores(object, ...)

## S4 method for signature 'GuideSet'
addConservationScores(

object,

conservationFile,
nucExtension = 9,



addConservationScores

fun = c("mean”, "max"),
scoreName = "score_conservation”

## S4 method for signature 'PairedGuideSet'
addConservationScores(

object,

conservationFile,

nucExtension = 9,

fun = c("mean”, "max"),
scoreName = "score_conservation”

## S4 method for signature 'NULL'
addConservationScores(object)

Arguments
object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
conservationFile
String specifing the BigWig file containing conservation scores.
nucExtension
nucleotides in total.
fun
the targeted region. Must be either "mean" (default) or "max".
scoreName
Details

The function creates a conservation score for each gRNA by using the max, or average, conservation
score in the genomic region where the cut occurs. A BigWig file storing conservation stores must
be provided. Such files can be downloaded from the UCSC genome browser. See vignette for more

information.

Value

guideSet with column specified by scoreName appended in mcols(guideSet).

Author(s)

Jean-Philippe Fortin

Number of nucleotides to include on each side of the cut site to calculate the
conservation score. 9 by default. The region will have (2*nucExtension + 1)

String specifying the function to use to calculate the final conservation score in

String specifying the name of the conservation score to be used as a columm
name. Users can choose whatever they like. Default is "score_conservation".



addCrispraiScores

addCrispraiScores Add CRISPRa/CRISPRi on-target scores to a GuideSet object.

Description

Add CRISPRa/CRISPRi on-target scores to a GuideSet object. Only available for SpCas9, and for
hg38 genome. Requires crisprScore package to be installed.

Usage

addCrispraiScores(object, ...)

## S4 method for signature 'GuideSet'

addCrispraiScores(
object,
gr,
tssObject,
geneCol = "gene_id",

modality = c("CRISPRi"”, "CRISPRa"),
chromatinFiles = NULL,

fastaFile = NULL
)
## S4 method for signature 'PairedGuideSet'
addCrispraiScores(
object,
gr,
tssObject,
geneCol = "gene_id",
modality = c("CRISPRi"”, "CRISPRa"),
chromatinFiles = NULL,
fastaFile = NULL
)

## S4 method for signature 'NULL'
addCrispraiScores(object)

Arguments

object

gr
tssObject

geneCol

modality
chromatinFiles

fastaFile

A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
A GRanges object derived from queryTss used to produce the guideSet object.

A GRanges object containing TSS coordinates and annotation. The following
columns must be present: "ID", promoter”, "tx_id" and "gene_symbol".

String specifying which column of the tssObject should be used for a unique
gene identified. "gene_id" by default.

String specifying which modality is used. Must be either "CRISPRi" or "CRISPRa".

Named character vector of length 3 specifying BigWig files containing chro-
matin accessibility data. See crisprScore vignette for more information.

String specifying fasta file of the hg38 genome.



addDistanceToTss 7

Value

guideSet with an added column for the CRISPRai score.

Author(s)
Jean-Philippe Fortin

See Also

addOnTargetScores to add other on-target scores.

addDistanceToTss Add distance to TSS for a specificed TSS id

Description

Add distance to TSS for a specificed TSS id.
Usage
addDistanceToTss(object, ...)

## S4 method for signature 'GuideSet'
addDistanceToTss(object, tss_id)

## S4 method for signature 'PairedGuideSet'
addDistanceToTss(object, tss_id)

Arguments
object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
tss_id String specifiying TSS id to calculate the distance. The column tssAnnotation(object)$tss_id
will be used to search for the TSS id.
Value

A A GuideSet object or a PairedGuideSet object with an additional metadata column called distance_to_tss
reporting the distance (in nucleotides) between the TSS position of the TSS specified by tss_id

and the protospacer position. The pam_site coordinate is used as the representative position of
protospacer sequences.

Note that a TSS annotation must be available in the object. A TSS annotation can be added using
addTssAnnotation.

Author(s)

Jean-Philippe Fortin

See Also

addTssAnnotation to add TSS annotation.



8 addEditedAlleles

Examples

data(guideSetExampleFullAnnotation)
tss_id <- "ENSG0Q000120645_P1"

gs <- guideSetExampleFullAnnotation
gs <- addDistanceToTss(gs, tss_id)

addEditedAlleles To add edited alleles for a CRISPR base editing GuideSet

Description

To add edited alleles for a CRISPR base editing GuideSet.

Usage

addEditedAlleles(
guideSet,
baseEditor,
editingWindow = NULL,
nMaxAlleles = 100,
addFunctionalConsequence = TRUE,
addSummary = TRUE,
txTable = NULL,
verbose = TRUE

)

Arguments
guideSet A GuideSet object.
baseEditor A BaseEditor object.

editingWindow A numeric vector of length 2 specifying start and end positions of the editing
window with respect to the PAM site. If NULL (default), the editing window of
the BaseEditor object will be considered.

nMaxAlleles Maximum number of edited alleles to report for each gRNA. Alleles from high
to low scores. 100 by default.
addFunctionalConsequence

Should variant classification of the edited alleles be added? TRUE by default. If
TRUE, txTable must be provided.

addSummary Should a summary of the variant classified by added to the metadata columns of
the guideSet object? TRUE by default.
txTable Table of transcript-level nucleotide and amino acid information needed for vari-
ant classification. Usually returned by getTxInfoDataFrame.
verbose Should messages be printed to console? TRUE by default.
Value

The original guideSet object with an additional metadata column (editedAlleles) storing the
annotated edited alelles. The edited alleles are always reported from 5’ to 3’ direction on the strand
corresponding to the gRNA strand.



addEditingSites

Author(s)

Jean-Philippe Fortin

Examples

data(BE4max, package="crisprBase")
data(grListExample, package="crisprDesign")
library(BSgenome.Hsapiens.UCSC.hg38)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38
gr <- queryTxObject(grListExample,
featureType="cds",
queryColumn="gene_symbol",
queryValue="IQSEC3")
gs <- findSpacers(gr[1],
crisprNuclease=BE4max,
bsgenome=bsgenome)
gs <- unique(gs)
gs <- gs[1:2] # For the sake of time

# Getting transcript info:

txid="ENST0Q0000538872"

txTable <- getTxInfoDataFrame(tx_id=txid,
txObject=grListExample,
bsgenome=bsgenome)

#Adding alelles:

editingWindow <- c(-20,-8)

gs <- addEditedAlleles(gs,
baseEditor=BE4max,
txTable=txTable,

editingWindow=editingWindow)

addEditingSites

Add optimal editing site for base editing gRNAs.

Description

Add optimal editing site for base editing gRNAs.

Usage

addeEditingSites(object, ...)

## S4 method for signature 'GuideSet'
addEditingSites(object, substitution)

## S4 method for signature 'PairedGuideSet'
addEditingSites(object, substitution)

## S4 method for signature 'NULL'
addEditingSites(object)



10 addExonTable

Arguments

object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
substitution String indicating which substitution should be used to estimate the optimal edit-
ing position. E.g. "C2T" will return the optimal editing position for C to T
editing.
Value

An updated object with a colum editing_site added to mcols(object).

Author(s)

Jean-Philippe Fortin

addExonTable Add a gene-specific exon table to a GuideSet object.

Description

Add a gene-specific exon table to a GuideSet object.
Add a gene-specific exon table to a GuideSet object.

Usage
addExonTable(
guideSet,
gene_id,
txObject,
valueColumn = "percentCDS",
useConsensusIsoform = FALSE
)
Arguments
guideSet A GuideSet object or a PairedGuideSet object.
gene_id String specifying gene ID.
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList to
provide a gene model annotation.
valueColumn String specifying column in geneAnnotation(guideSet) to use as values in
the output exon table.
useConsensusIsoform
Should a consensus isoform be used to annotate exons? FALSE by default. If
TRUE, the isoform constructed by getConsensusIsoform will be used.
Value

A GuideSet object with a "exonTable" DataFrame stored in mcols(guideSet). The entries in the
DataFrame correspond to the values specified by valueColumn. Rows correspond to gRNAs in the
GuideSet, columns correspond to all exons found in txObject for gene specified by gene_id.



addGeneAnnotation 11

Author(s)
Jean-Philippe Fortin

See Also

addGeneAnnotation to add gene annotation and addTxTable to add a transcript table.

Examples

if (interactive()){

data(guideSetExample, package="crisprDesign")

data(grListExample, package="crisprDesign")

guideSet <- addGeneAnnotation(guideSetExample,

txObject=grListExample)

guideSet <- addExonTable(guideSet,
gene_id="ENSG00000120645",
txObject=grListExample)

guideSet$exonTable

addGeneAnnotation Add gene context annotation to a GuideSet object

Description

Add gene context annotation to spacer sequence stored in a GuideSet object

Usage

addGeneAnnotation(object, ...)

## S4 method for signature 'GuideSet'
addGeneAnnotation(

object,

txObject,

anchor = c("cut_site"”, "pam_site”, "editing_site"),

ignore_introns = TRUE,

ignore.strand = TRUE,

addPfam = FALSE,

mart_dataset = NULL

)
## S4 method for signature 'PairedGuideSet'
addGeneAnnotation(

object,

txObject,

anchor = c("cut_site"”, "pam_site”, "editing_site"),

ignore_introns = TRUE,
ignore.strand = TRUE,
addPfam = FALSE,



12 addGeneAnnotation

mart_dataset = NULL

)
Arguments
object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList to
provide a gene model annotation.
anchor String specifying which relative coordinate of gRNAs should be used to locate

gRNAs within gene. Must be either "cut_site", "pam_site" or "editing_site".
ignore_introns Should gene introns be ignored when annotating? TRUE by default.
ignore.strand Should gene strand be ignored when annotating? TRUE by default.

addPfam Should Pfam domains annotation be added? FALSE by default. If set to TRUE,
biomaRt must be installed.

mart_dataset  String specifying dataset to be used by biomaRt for Pfam domains annotation .
E.g. "hsapiens_gene_ensembl".

Details

For DNA-targeting nucleases, the different columns stored in mcols(guideSet)[["geneAnnotation”]]
are:

* tx_id Transcript ID.

* gene_symbol Gene symbol.

e gene_id Gene ID.

e protein_id Protein ID.

* ID gRNAID.

* pam_site gRNA PAM site coordinate.
* cut_site gRNA cut site coordinate.

e chr gRNA chromosome name.

* strand gRNA strand.

* cut_cds Is the gRNA cut site located within the coding sequence (CDS) of the targeted iso-
form?

* cut_fiveUTRs Is the gRNA cut site located within the S’UTR of the targeted isoform?
* cut_threeUTRs Is the gRNA cut site located within the 3’UTR of the targeted isoform?
* cut_introns Is the gRNA cut site located within an intron of the targeted isoform?

* percentCDS Numeric value to indicate the relative position of the cut site with respect to
the start of the CDS sequence when cut_cds is TRUE. The relative position is expressed as a
percentage from the total length of the CDS.

* percentTx Numeric value to indicate the relative position of the cut site with respect to the
start of the mRNA sequence (therefore including 5° UTR). The relative position is expressed
as a percentage from the total length of the mRNA sequence.

e aminoAcidIndex If cut_cds is TRUE, integer value indicating the amino acid index with re-
spect to the start of the protein.



addGeneAnnotation 13

* downstreamATG Number of potential reinitiation sites (ATG codons) downstream of the gRNA
cut site, within 85 amino acids.

* nIsoforms Numeric value indicating the number of isoforms targeted by the gRNA.

* totalIsoforms Numeric value indicating the total number of isoforms existing for the gene
targeted by the gRNA and specified in gene_id.

* percentIsoforms Numeric value indicating the percentage of isoforms for the gene specified
in gene_id targeted by the gRNA. Equivalent to nIsoforms/totalIsoforms*100.

* isCommonExon Logical value to indicate whether or not the gRNA is targeing an exon common
to all isoforms.

* nCodingIsoforms Numeric value indicating the number of coding isoforms targeted by the
gRNA. 5’ UTRs and 3’ UTRs are excluded.

* totalCodingIsoforms Numeric value indicating the total number of coding isoforms existing
for the gene targeted by the gRNA and specified in gene_id.

* percentCodingIsoforms Numeric value indicating the percentage of coding isoforms for the
gene specified in gene_id targeted by the gRNA. Equivalent to nCodingIsoforms/totalCodingIsoforms*100.
5’ UTRs and 3° UTRs are excluded.

* isCommonCodingExon Logical value to indicate whether or not the gRNA is targeing an exon
common to all coding isoforms.

Value

A GuideSet object with a "geneAnnotation" list column stored in mcols(guideSet). See details
section for a description of the different gene annotation columns.

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

See Also

addTssAnnotation to add TSS annotation, and geneAnnotation to retrieve an existing gene an-
notation.

Examples

data(guideSetExample, package="crisprDesign")

data(grListExample, package="crisprDesign")

guideSet <- addGeneAnnotation(guideSetExample[1:6],
txObject=grListExample)

# To access a gene annotation already added:
ann <- geneAnnotation(guideSet)



14 addIsoformAnnotation

addIsoformAnnotation Add isoform-specific annotation to a GuideSet object

Description

Add isoform-specific annotation to a GuideSet object.
Usage
addIsoformAnnotation(object, ...)

## S4 method for signature 'NULL'
addDistanceToTss(object)

## S4 method for signature 'GuideSet'
addIsoformAnnotation(object, tx_id)

## S4 method for signature 'PairedGuideSet'
addIsoformAnnotation(object, tx_id)

## S4 method for signature 'NULL'
addIsoformAnnotation(object)

Arguments
object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
tx_id String specifiying Ensembl ID for the isoform transcript of interested. E.g.
"ENSTO00000311936".
Value

A A GuideSet object or a PairedGuideSet object.with the following added columns: percentCDS,
percentCodingIsoforms, and isCommonCodingExon. The column values are specific to the tran-
script specified by tx_id. The percentCDS column indicates at what percentage of the coding
sequence the gRNA is cutting. The column percentCodingIsoforms indicates the percentage
of coding isoforms that are targeted by the gRNA. The column isCommonCodingExon indicates
whether or not the exon targetd by the gRNA is common to all isoforms for the gene.

Author(s)

Jean-Philippe Fortin

Examples

data(guideSetExampleFullAnnotation)
tx_id <- "ENST00000538872"

gs <- guideSetExampleFullAnnotation
gs <- addIsoformAnnotation(gs, tx_id)



addNftcs 15

addNtcs Add non-targeting control (NTC) sequences to GuideSet

Description

Add non-targeting control (NTC) sequences to a GuideSet object.

Usage

addNtcs(object, ...)

## S4 method for signature 'GuideSet'
addNtcs(object, ntcs)

## S4 method for signature 'PairedGuideSet'
addNtcs(object, ntcs)

## S4 method for signature 'NULL'

addNtcs(object, ...)
Arguments
object A GuideSet or a PairedGuideSet object.

Additional arguments, currently ignored.

ntcs A named character vector of NTC sequences. Sequences must consist of ap-
propriate DNA or RNA bases, and have the same spacer length as spacers in
object. Vector names are assigned as IDs and seqlevels, and must be unique
and distinct from IDs and seqnames present in object.

Details

NTC sequences are appended as spacers to the GuideSet object. Each NTC sequence is assigned
to its own "chromosome" in the ntc genome, as reflected in the Seqinfo of the resulting GuideSet
object. As placeholder values, NTC ranges are set to @ and strands set to *.

All annotation for NTC spacers appended to object are set to NA or empty list elements. To annotate
NTC spacers, you must call the appropriate function after adding NTCs to the GuideSet object.

Value

The original object with appended ntcs spacers. Pre-existing annotation in object will be set to
NA or empty list elements for appended NTC spacers.

Examples

set.seed(1000)

data(guideSetExample, package="crisprDesign")

ntcs <- vapply(1:4, function(x){
seq <- sample(c("A", "C", "G", "T"), 20, replace=TRUE)
paste@(seq, collapse="")

}, FUN.VALUE=character(1))

names(ntcs) <- paste@("ntc_", 1:4)



16 addOffTargetScores

gs <- addNtcs(guideSetExample, ntcs)
gs

addoffTargetScores Add CFD and MIT scores to a GuideSet object.

Description

Add CFD and MIT off-target scores to a GuideSet object. Both the CFD and MIT methods are
available for the SpCas9 nuclease. The CFD method is also available for the CasRx nuclease.
Other nucleases are currently not supported.

Usage
addOffTargetScores(object, ...)

## S4 method for signature 'GuideSet'

addOffTargetScores(object, max_mm = 2, includeDistance = TRUE, offset = @)

## S4 method for signature 'PairedGuideSet'

addOffTargetScores(object, max_mm = 2, includeDistance = TRUE, offset = 0)

## S4 method for signature 'NULL'

addOffTargetScores(object)

Arguments

object A GuideSet object or a PairedGuideSet object. crisprNuclease(object) must
be either using SpCas9 or CasRx.
Additional arguments, currently ignored.

max_mm The maximimum number of mismatches between the spacer sequence and the
protospacer off-target sequence to be considered in the off-target score calcu-
lations. Off-targets with a number of mismatches greater than max_mm will be
excluded; this is useful if one wants to avoid the aggregated off-target scores to
be driven by a large number of off-targets that have low probability of cutting.

includeDistance

Should a distance penalty for the MIT score be included? TRUE by default.

offset Numeric value specifying an offset to add to the denominator when calcuting
the aggregated score (inverse summation formula). O by default.

Details

See the crisprScore package for a description of the different off-target scoring methods.

Value

A GuideSet or a PairedGuideSet object with added scores. The alignments annotation returned
by alignments(object) will have additional column storing off-target scores. Those scores rep-
resenting the off-target score for each gRNA and off-target pair. For SpCas9, a column containing
an aggregated specificity off-target score for each scoring method is added to the metadata columns
obtained by mcols(object).



addOnTargetScores 17

Author(s)
Jean-Philippe Fortin, Luke Hoberecht

See Also

link{addOnTargetScores} to add on-target scores.

Examples

data(guideSetExampleWithAlignments, package="crisprDesign")
gs <- guideSetExampleWithAlignments
gs <- addOffTargetScores(gs)

addOnTargetScores Add on-target scores to a GuideSet object.

Description

Add on-target scores to a GuideSet object for all methods available in the crisprScore package for
a given CRISPR nuclease. Requires crisprScore package to be installed.

Usage

addOnTargetScores(object, ...)

## S4 method for signature 'GuideSet'
addOnTargetScores(
object,
enzyme = c("WT", "ESP", "HF"),
promoter = c("U6", "T7"),
tracrRNA = c("Hsu2013", "Chen2013"),
directRepeat = "aacccctaccaactggtcggggtttgaaac”,
binaries = NULL,
methods = c("azimuth”, "rulesetl”, "ruleset3”, "lindel”, "deepcpfl1”, "deephf”,

"deepspcas9”, "enpamgb", "casrxrf", "crisprater”, "crisprscan”)
)
## S4 method for signature 'PairedGuideSet'
addOnTargetScores(
object,

enzyme = c("WT", "ESP”, "HF"),

promoter = c("U6", "T7"),

tracrRNA = c("Hsu2013", "Chen2013"),

directRepeat = "aacccctaccaactggtcggggtttgaaac”,

binaries = NULL,

methods = c("azimuth”, "rulesetl”, "ruleset3”, "lindel”, "deepcpf1"”, "deephf”,
"deepspcas9”, "enpamgb", "crisprater”, "crisprscan”, "casrxrf")

)

## S4 method for signature 'NULL'
addOnTargetScores(object)



18

Arguments

object

enzyme

promoter

tracrRNA

directRepeat

binaries

methods

Details

addOnTargetScores

A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.

Character string specifying the Cas9 variant to be used for DeepHF scoring.
Wildtype Cas9 (WT) by default. See details below.

Character string speciyfing promoter used for expressing sgRNAs for wildtype
Cas9 (must be either "U6" or "T7") for DeepHF scoring. "U6" by default.

String specifying which tracrRNA is used for SpCas9 Must be either "Hsu2013"
(default) or "Chen2013". Only used for the RuleSet3 method.

String specifying the direct repeat used in the CasRx construct.

Named list of paths for binaries needed for CasRx-RF. Names of the list must
be "RNAfold", "RNAhybrid", and "RNAplfold". Each list element is a string
specifying the path of the binary. If NULL (default), binaries must be available
on the PATH.

Character vector specifying method names for on-target efficiency prediction
algorithms.

See crisprScore package for a description of each score.

Value

guideSet with columns of on-target scores appended in mcols(guideSet).

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

See Also

addOffTargetScores to add off-target scores.

Examples

if (interactive()){
gs <- findSpacers("CCAACATAGTGAAACCACGTCTCTATAAAGAATAAAAAATTAGCCGGGTTA")
gs <- addOnTargetScores(gs)



addOpsBarcodes 19

addOpsBarcodes Add optical pooled screening (OPS) barcodes

Description

Add optical pooled screening (OPS) barcodes.

Usage
addOpsBarcodes(guideSet, n_cycles = 9, rt_direction = c("5prime”, "3prime"))
Arguments
guideSet A GuideSet object.
n_cycles Integer specifying the number of sequencing cycles used in the in situ sequenc-
ing. This effectively determines the length of the barcodes to be used for se-
quencing.

rt_direction String specifying from which direction the reverse transcription of the gRNA
spacer sequence will occur. Must be either "Sprime" or "3prime". "Sprime" by
default.
Value
The original guideSet object with an additional column opsBarcode stored in mcols(guideSet).
The column is a DNAStringSet storing the OPS barcode.
Author(s)

Jean-Philippe Fortin

Examples

data(guideSetExample, package="crisprDesign"”)
guideSetExample <- addOpsBarcodes(guideSetExample)

addPamScores Add PAM scores to a GuideSet object.

Description

Add PAM scores to a GuideSet object based on the CrisprNuclease object stored in the GuideSet
object. PAM scores indicate nuclease affinity (recognition) to different PAM sequences. A score of
1 indicates a PAM sequence that is fully recognized by the nuclease.



20 addPfamDomains
Usage
addPamScores(object, ...)

## S4 method for signature 'GuideSet'
addPamScores(object)

## S4 method for signature 'PairedGuideSet'
addPamScores(object)

## S4 method for signature 'NULL'

addPamScores(object)
Arguments
object A GuideSet or a PairedGuideSet object.

Additional arguments, currently ignored.

Value

guideSet with an appended score_pam column in mcols(guideSet).

Author(s)

Jean-Philippe Fortin

Examples

# Using character vector as input:

data(enAsCas12a, package="crisprBase")

gs <- findSpacers("CCAACATAGTGAAACCACGTCTCTATAAAGAATACAAAAAATTAGCCGGGTGTTA",
canonical=FALSE,
crisprNuclease=enAsCas12a)

gs <- addPamScores(gs)

addPfamDomains Add Pfam domains annotation to GuideSet object

Description

Add Pfam domains annotation to GuideSet object.
Usage
addPfamDomains(object, ...)

## S4 method for signature 'GuideSet'
addPfamDomains(object, pfamTable)

## S4 method for signature 'PairedGuideSet'
addPfamDomains(object, pfamTable)



addReinitiationFlag 21

## S4 method for signature 'NULL'
addPfamDomains (object)

Arguments
object A GuideSet object or a PairedGuideSet object.
e Additional arguments, currently ignored.
pfamTable A DataFrame obtained using preparePfamTable.
Details

In order to call this function, the object must contain a gene annotation by calling first addGeneAnnotation.

Value

An updated object with a colum pfam added to geneAnnotation(object).

Author(s)

Jean-Philippe Fortin

See Also

See preparePfamTable to prepare the Pfam domain DataFrame object, and see addGeneAnnotation
to add a gene annotation to the object.

addReinitiationFlag Add a logical flag for gRNAs leading to potential reinitiation

Description

Add a logical flag for gRNAs leading to potential reinitiation.

Usage

addReinitiationFlag(
guideSet,
tx_id,
grnaLocationUpperLimit = 150,
cdsCutoff = 0.2

)
Arguments
guideSet A GuideSet object.
tx_id String specifiying Ensembl ID for the isoform transcript of interested. E.g.

"ENST00000311936".

grnaLocationUpperLimit
Integer value specifying the number of nucleotides upstream of the start of the
CDS in which to search for problematic gRNAs. Default value is 150. gRNAS
beyond this value will not be flagged.



22 addRepeats

cdsCutoff Numeric value between 0 and 1 to specify the percentage of the CDS in which
to search for problematic gRNAs. Default is 0.20. gRNAS beyond this value
will not be flagged.
Value

The original object with an appended column reinitiationFlag with logical values. A TRUE
value indicates a gRNA in proximity of a potential reinitiation site, and therefore should be avoided.

Author(s)

Jean-Philippe Fortin

addRepeats Annotate a GuideSet object with repeat elements

Description

Add an annotation column to a GuideSet object that identifies spacer sequences overlapping repeat
elements.

Usage
addRepeats(object, ...)

## S4 method for signature 'GuideSet'
addRepeats(object, gr.repeats = NULL, ignore.strand = TRUE)

## S4 method for signature 'PairedGuideSet'
addRepeats(object, gr.repeats = NULL, ignore.strand = TRUE)

## S4 method for signature 'NULL'

addRepeats(object)
Arguments
object A GuideSet object or a PairedGuideSet object.

Additional arguments, currently ignored.
gr.repeats A GRanges object containing repeat elements regions.

ignore.strand Should gene strand be ignored when annotating? TRUE by default.

Value

guideSet with an inRepeats column appended in mcols(guideSet) that signifies whether the
spacer sequence overlaps a repeat element.

Author(s)

Jean-Philippe Fortin, Luke Hoberecht



addRestrictionEnzymes

See Also

link{removeRepeats}.

Examples

data(guideSetExample, package="crisprDesign"”)

data(grRepeatsExample, package="crisprDesign")

guideSet <- addRepeats(guideSetExample,
gr.repeats=grRepeatsExample)

23

addRestrictionEnzymes Restriction enzyme recognition sites in spacer sequences

Description

Add restriction site enzymes annotation.

Usage

addRestrictionEnzymes(object, ...)

## S4 method for signature 'GuideSet'
addRestrictionEnzymes(

object,

enzymeNames = NULL,

patterns = NULL,

includeDefault = TRUE,

flanking5 = "ACCG",

flanking3 = "GTTT"

## S4 method for signature 'PairedGuideSet'
addRestrictionEnzymes(

object,

enzymeNames = NULL,

patterns = NULL,

includeDefault = TRUE,

flanking5 = "ACCG",

flanking3 = "GTTT"

## S4 method for signature 'NULL'
addRestrictionEnzymes(object)

Arguments

object A GuideSet or a PairedGuideSet object.
Additional arguments, currently ignored.

enzymeNames Character vector of enzyme names.



24 addRestrictionEnzymes

patterns Optional named character vector for custom restriction site patterns. Vector
names are treated as enzymes names. See example.

includeDefault Should commonly-used enzymes be included? TRUE by default.

flanking5, flanking3
Character string indicating the 5° or 3’ flanking sequence, respectively, of the
spacer sequence in the lentivial vector.

Details

Restriction enzymes are often used for cloning purpose during the oligonucleotide synthesis of
gRNA lentiviral constructs. Consequently, it is often necessary to avoid restriction sites of the used
restriction enzymes in and around the spacer sequences. addRestrictionEnzymes allows for flag-
ging problematic spacer sequences by searching for restriction sites in the [flanking5][spacer][flanking3]
sequence.

The following enzymes are included when includeDefault=TRUE: EcoRI, Kpnl, BsmBI, Bsal,
Bbsl, Pacl, and Mlul.

Custom recognition sequences in patterns may use the [UPAC nucleotide code, excluding symbols
indicating gaps. Avoid providing enzyme names in patterns that are already included by default
(if includeDefault=TRUE) or given by enzymeNames. Patterns with duplicated enzyme names will
be silently ignored, even if the recognition sequence differs. See example.

Value

Adds a DataFrame indicating whether cutting sites for the specified enzymes are found in the gRNA
cassette (flanking sequences + spacer sequences).

Author(s)
Jean-Philippe Fortin, Luke Hoberecht

See Also

enzymeAnnotation to retrieve existing enzyme annotation from a GuideSet object.

Examples

data(SpCas9, package="crisprBase")
seq <- c("ATTTCCGGAGGCGAATTCGGCGGGAGGAGGAAGACCGG")
guideSet <- findSpacers(seq, crisprNuclease=SpCas9)

# Using default enzymes:
guideSet <- addRestrictionEnzymes(guideSet)

# Using custom enzymes:
guideSet <- addRestrictionEnzymes(guideSet,
patterns=c(enz1="GGTCCAA",
enz2="GGTCG"))

# Avoid duplicate enzyme names
guideSet <- addRestrictionEnzymes(guideSet,
patterns=c(EcoRI="GANNTC")) # ignored



addSequenceFeatures

25

addSequenceFeatures Add spacer sequence feature annotation columns to a GuideSet object

Description

Add spacer sequence feature annotation columns, such as GC content, homopolymers, and hairpin

predictions, to a GuideSet object.

Usage

addSequenceFeatures(object, ...)

## S4 method for signature 'GuideSet'
addSequenceFeatures(

object,

addHairpin = FALSE,

backbone = "AGGCTAGTCCGT",

tp53 = TRUE,

)

## S4 method for signature 'PairedGuideSet'

addSequenceFeatures(
object,
addHairpin = FALSE,
backbone = "AGGCTAGTCCGT",

tp53 = TRUE,
)
## S4 method for signature 'NULL'
addSequenceFeatures(object, ...)
Arguments
object A GuideSet or a PairedGuideSet object.
Additional arguments, currently ignored.
addHairpin Whether to include predicted hairpin formation via sequence complementarity.
FALSE by default. See details.
backbone Backbone sequence in the guide RNA that is susceptible to hairpin formation
with a complementary region in the spacer sequence.
tp53 Should TP53-related toxicity features be added? TRUE by default. See details.
Details

The addHairpin argument set to TRUE will indicates which spacers are predicted to form internal
hairpins. Such hairpins can happen when there is a palindromic sequence within the spacer having
arms of >=4nt and >=50% GC content, and are separated by a loop of >=4nt. Backbone hairpin
formation is predicted when the spacer and backbone share a complementary sequence of >=5nt and



26

addSNPAnnotation

>=50% GC content. The argument backbone allows users to specify the vector backbone sequence
directly downstream of the spacer sequence.

The tp53 argument set to TRUE will add sequence-based features that have been reported to make
SpCas9 gRNAs toxic for cells with wildtype TP53 (see https://doi.org/10.1038/s41467-022-32285-
1). Currently, only one feature is reported and consists of the extended NNGG PAM sequence (1
nucleotide + PAM sequence) for SpCas9. gRNAs with extended CNGG PAM sequences, and in
particular CCGG, should be avoided.

Value

The original object with the following columns appended to mcols(object):

* percentGC — percent GC content
* polyA, polyC, polyG, polyT — presence of homopolymers of 4nt or longer

* selfHairpin— prediction of hairpin formation within the spacer sequence via self-complementarity

if addHairpin is TRUE.
* backboneHairpin — prediction of hairpin formation with the backbone sequence via com-
plementarity if addHairpin is TRUE.

* NNGG — extended PAM sequence for SpCas9 if tp53 is TRUE corresponding to one nucleotide
upstream of the PAM sequence followed by the PAM sequence itself.

Examples

custom_seq <- c("ATTTCCGGAGGCGGAGAGGCGGGAGGAGCG")
data(SpCas9, package="crisprBase")

guideSet <- findSpacers(custom_seq, crisprNuclease=SpCas9)
guideSet <- addSequenceFeatures(guideSet)

addSNPAnnotation Add SNP annotation to a GuideSet object

Description

Add SNP annotation to a GuideSet object. Only available for sgRNAs designed for human genome.

Usage

addSNPAnnotation(object, ...)

## S4 method for signature 'NULL'
addGeneAnnotation(object)

## S4 method for signature 'GuideSet'
addSNPAnnotation(object, vcf, maf = 0.01)

## S4 method for signature 'PairedGuideSet'
addSNPAnnotation(object, vcf, maf = 0.01)

## S4 method for signature 'NULL'
addSNPAnnotation(object)



addSNPAnnotation 27

Arguments
object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
vef Either a character string specfying a path to a VCF file or connection, or a VCF
object.
maf Minimum minor allele frequency to report (for a least one source among 1000Genomes
and TOPMED). Must be between 0 and 1 (exclusive).
Details

The different columns stored in mcols(guideSet)[["snps"]] are:

e ID sgRNA ID.

* rs Reference SNP cluster ID (e.g. rs17852242)

* rs_site Genomic coordinate of the SNP.

* rs_site_rel Position of SNP relative to the PAM site.

* allele_ref DNAString specifying the SNP reference allele.

* allele_minor DNAString specifying the SNP minor allele.

* MAF_1000G Minor allele frequency in the 1000 Genomes project.
* MAF_TOPMED Minor allele frequency in the TOPMed project.

* type Type of SNP ("ins": insertion, "del”: deletion).

* length Length of SNP in nucleotides.

Value

guideSet appended with hasSNP column and snps list-column, both stored in mcols{guideSet}.

See Also

link{snpAnnotation} to retrieve an existing SNP annotation stored in a GuideSet object. See
details section for a description of the different columns.

Examples

vcf <- system.file("extdata”,
file="common_snps_dbsnp151_example.vcf.gz",
package="crisprDesign")

data(guideSetExample, package="crisprDesign"”)

guideSet <- addSNPAnnotation(guideSetExample, vcf=vcf)



28

addSpacerAlignments

addSpacerAlignments

sequences.

Functions for finding and characterizing on- and off-targets of spacer

Description

Functions for finding and characterizing on- and off-targets of spacer sequences.

Usage
addSpacerAlignments(object, ...)
addSpacerAlignmentsIterative(object, ...)

## S4 method for signature 'GuideSet'
addSpacerAlignmentsIterative(

)

object,
aligner = c("bowtie”, "bwa", "biostrings"),
colname = "alignments”,

addSummary = TRUE,

txObject = NULL,

tssObject = NULL,

custom_seq = NULL,

aligner_index = NULL,

bsgenome = NULL,

n_mismatches = 0,

all_alignments = FALSE,

canonical = TRUE,

standard_chr_only = FALSE,
both_strands = TRUE,

anchor = c("cut_site"”, "pam_site"),
annotationType = c("gene_symbol", "gene_id"),
tss_window = NULL,

alignmentThresholds = ¢(n@ = 5, n1 = 100, n2 = 100, n3

## S4 method for signature 'PairedGuideSet'
addSpacerAlignmentsIterative(

object,
aligner = c("bowtie”, "bwa", "biostrings”),
colname = "alignments"”,

addSummary = TRUE,
txObject = NULL,

tssObject = NULL,
custom_seq = NULL,
aligner_index = NULL,
bsgenome = NULL,
n_mismatches = 0,
all_alignments = FALSE,
canonical = TRUE,
standard_chr_only = FALSE,

= 1000, n4 = 1000)



addSpacerAlignments

)

both_strands = TRUE,

anchor = c("cut_site"”, "pam_site"),
annotationType = c("gene_symbol"”, "gene_id"),
tss_window = NULL,

alignmentThresholds = ¢(n@ = 5, n1 = 100, n2 = 100, n3 = 1000, n4

## S4 method for signature 'NULL'
addSpacerAlignmentsIterative(object)

## S4 method for signature 'GuideSet'

addSpacerAlignments(
object,
aligner = c("bowtie”, "bwa", "biostrings”),
colname = "alignments”,

addSummary = TRUE,
txObject = NULL,
tssObject = NULL,
custom_seq = NULL,
aligner_index = NULL,
bsgenome = NULL,
n_mismatches = 0,
n_max_alignments = 1000,
all_alignments = TRUE,
canonical = TRUE,
standard_chr_only = FALSE,
both_strands = TRUE,

anchor = c("cut_site"”, "pam_site"),
annotationType = c("gene_symbol”, "gene_id"),
tss_window = NULL
)
## S4 method for signature 'PairedGuideSet'
addSpacerAlignments(
object,
aligner = c("bowtie”, "bwa", "biostrings”),
colname = "alignments"”,

addSummary = TRUE,

txObject = NULL,

tssObject = NULL,

custom_seq = NULL,

aligner_index = NULL,

bsgenome = NULL,

n_mismatches = 0,

n_max_alignments = 1000,
all_alignments = FALSE,

canonical = TRUE,

standard_chr_only = FALSE,
both_strands = TRUE,

anchor = c("cut_site"”, "pam_site"),
annotationType = c("gene_symbol”, "gene_id"),
tss_window = NULL

1000)

29



30

)

addSpacerAlignments

## S4 method for signature 'NULL'
addSpacerAlignments(object)

getSpacerAlignments(
spacers,
aligner = c("bowtie”, "bwa", "biostrings"),

custom_seq = NULL,

aligner_index

= NULL,

bsgenome = NULL,
n_mismatches = 0,
n_max_alignments = 1000,
all_alignments = TRUE,
crisprNuclease = NULL,
canonical = TRUE,
standard_chr_only = FALSE,
both_strands = TRUE

Arguments

object

aligner

colname

addSummary

txObject

tssObject

custom_seq

aligner_index

bsgenome

n_mismatches

all_alignments

canonical

A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.

Which genomic alignment method should be used? Must be one of "bowtie",
"bwa", and "biostrings". "bowtie" by default. Note that "bwa" is not availble for
Windows machines.

String specifying the columm name storing the alignments in mcols(guideSet).
"alignments" by default.

Should summary columns be added to guideSet? TRUE by default.

A TxDb object or a GRangesList object obtained using TxDb2GRangesList for
annotating on-target and off-target alignments using gene annotation.

A GRanges object specifying TSS coordinates.

Optional string specifying the target DNA sequence for the search space. This
will limit the off-target search to the specified custom sequence.

String specifying bowtie or BWA index. Must be provided when aligner is
either "bowtie” or "bwa".

A BSgenome object from which to extract sequences if a GRanges object is
provided as input.

Maximum number of mismatches permitted between guide RNA and genomic
DNA.

Should all all possible alignments be returned? FALSE by default.

TRUE returns only those alignments having canonical PAM sequences; FALSE
returns alignments having canonical or noncanonical PAM sequences; NA returns
all alignments regardless of their PAM sequence.

standard_chr_only

Should only standard chromosomes be considered? If TRUE, the function will
attempt to remove scaffold sequences automatically. FALSE by default.



addSpacerAlignments 31

both_strands = When custom_seq is specified, should both strands be considered? TRUE by
default.

anchor The position within the protospacer as determined by CrisprNuclease to use
when annotating with overlapping gene regions.

annotationType Gene identifier to return when annotating alignments with gene and/or promoter
overlaps. Corresponding txObject or tssObject argument must have mcol
column name for selected type.

tss_window Window size of promoters upstream of gene TSS to search for overlap with
spacer sequence. Must be a numeric vector of length 2: upstream limit and
downstream limit. Default is c(-500, 500), which includes 500bp upstream
and downstream of the TSS.

alignmentThresholds

Named numeric vector of the maximum on-target alignments tolerated for addSpacerAlignmentsIte
Thresholds not provided will take default values.
n_max_alignments

Maximum number of alignments to report by bowtie for each spacer. Effectively
set to Inf when allPossible is TRUE.

spacers Character vector of gRNA spacer sequences. All sequences must be equal in
length.

crisprNuclease A CrisprNuclease object.

Details

The columns stored in mcols(guideSet)[["alignments”]] are:

* spacer Spacer sequence of the query gRNA.

* protospacer Protospacer sequence in the target DNA.
* pam PAM sequence.

* pam_site PAM site of the found protospacer.

* n_mismatches Integer value specifying the number of nucleotide mismatches between the
gRNA spacer sequence and the protospacer sequence found in the genome or custom se-
quence.

* canonical Whether the PAM sequence of the found protospacer sequence is canonical.

* cute_site Cut site of the found protospacer.
The following columns are also stored when a txObject is provided:

* cds Character vector specifying gene names of CDS overlapping the found protospacer se-
quence.

» fiveUTRs Character vector specifying gene names of 5’UTRs overlapping the found proto-
spacer sequence.

* threeUTRs Character vector specifying gene names of 3’UTRs overlapping the found proto-
spacer sequence.

* exons Character vector specifying gene names of exons overlapping the found protospacer
sequence.

* introns Character vector specifying gene names of introns overlapping the found protospacer
sequence.

* intergenic Character vector specifying the nearest gene when the found protospacer se-
quence is not located in a gene.



32 addSpacerAlignments

* intergenic_distance Distance in base pairs from the nearest gene when the found proto-
spacer sequence is not located in a gene.

The following columns are also stored when a tssObject is provided:

» promoters Character vector specifying gene names of promoters, as defined by tss_window
relative to the gene TSS, overlapping the found protospacer sequence.

Value

getSpacerAlignments returns a GRanges object storing spacer alignment data, including genomic
coordinates, spacer and PAM sequences, and position of mismatches relative to pam_site.

addSpacerAlignments is similar to getSpacerAlignments, with the addition of adding the align-
ment data to a list-column in mcols(guideSet) specified by colname.

addSpacerAlignmentsIterative is similar to addSpacerAlignments, except that it avoids find-
ing alignments for spacer sequences that have a large number of on-targets and/or off-targets to
speed up the off-target search. The parameters n@_max, n1_max and n2_max specify the maximum
number of on-targets (n0) and off-targets (nl for 1-mismatch off-targets, and n2 for 2-mismatch
off-targets) tolerated before the algorithm stops finding additional off-targets for spacer sequences
that exceed those quotas.

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

Examples

if (interactive()){
# Creating a bowtie index:

library(Rbowtie)
library(BSgenome.Hsapiens.UCSC.hg38)
fasta <- system.file(package="crisprDesign", "fasta/chri2.fa")

outdir <- tempdir()

Rbowtie: :bowtie_build(fasta,
outdir=outdir,
force=TRUE,
prefix="chri12")

bowtieIndex <- file.path(outdir, "chri2")

# Adding spacer alignments with bowtie:

data(guideSetExample, package="crisprDesign")

data(grListExample, package="crisprDesign")

guideSet <- addSpacerAlignments(guideSetExample,
aligner="bowtie",
aligner_index=bowtieIndex,
bsgenome=BSgenome.Hsapiens.UCSC.hg38,
n_mismatches=2,
txObject=grListExample)



addTssAnnotation

33

addTssAnnotation

Add TSS context annotation to a GuideSet object

Description

Add transcription start site (TSS) context annotation to spacer sequences stored in a GuideSet ob-

ject.

Usage

addTssAnnotation(object, ...)

## S4 method for signature 'GuideSet'
addTssAnnotation(

object,
tssObject,

anchor = c("cut_site"”, "pam_site"),

tss_window =

NULL,

ignore.strand = TRUE

)
## S4 method for signature 'PairedGuideSet'
addTssAnnotation(

object,

tssObject,

anchor = c("cut_site"”, "pam_site"),

tss_window = NULL,
ignore.strand = TRUE

)

## S4 method for signature 'NULL'
addTssAnnotation(object)

Arguments

object

tssObject

anchor

tss_window

ignore.strand

A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
A GRanges object containing TSS coordinates and annotation.

A character string specifying which gRNA-specific coordinate to use (cut_site
or pam_site) when searching for overlapping TSS regions. "cut_site" by de-
fault.

A numeric vector of length 2 establishing the window size of the genomic region
around the TSS to include as the "TSS region". The values set the upstream and
downstream limits, respecitvely. The default is c(-500, 500), which includes
500bp upstream (note the negative value) and downstream of the TSS.

If TRUE (default), includes annotation for gRNAs irrespective of their target
strand. Otherwise, only gRNAs targeting the gene strand will be annotated.



34 addTxTable

Details

mcols(guideSet)[["tssAnnotation”]] includes all columns from mcols(tssObject) in addi-
tion to the columns described below.

* chr — gRNA chromosome name.

* anchor_site — Genomic coordinate used to search for overlapping TSS regions.
* strand — Strand the gRNA is located on.

e tss_id — The ID for the TSS in tssObject, if present.

* tss_strand — Strand the TSS is located on, as provided in tssObject

* tss_pos — Genomic coordinate of the TSS, as provided in tssObject.

» dist_to_tss — Distance (in nucleotides) between the gRNA anchor_site and tss_pos.
Negative values indicate gRNA targets upstream of the TSS.

Value

A GuideSet object with a tssAnnotation list column stored in mcols(guideSet). See details
section for descriptions of TSS annotation columns.

Author(s)
Jean-Philippe Fortin, Luke Hoberecht

See Also

addGeneAnnotation to add gene annotation, and tssAnnotation to retrieve an existing TSS an-
notation.

Examples

data(guideSetExample, package="crisprDesign")

data(tssObjectExample, package="crisprDesign")

guideSet <- addTssAnnotation(guideSetExample,
tssObject=tssObjectExample)

# To access TSS annotation:
ann <- tssAnnotation(guideSet)

addTxTable Add a gene-specific transcript table to a GuideSet object.

Description

Add a gene-specific transcript table to a GuideSet object.
Add a gene-specific transcript table to a GuideSet object.

Usage

addTxTable(guideSet, gene_id, txObject, valueColumn = "percentCDS")



completeSpacers

Arguments

guideSet
gene_id

txObject

valueColumn

Value

35

A GuideSet object or a PairedGuideSet object.
String specifying gene ID.

A TxDb object or a GRangesList object obtained using TxDb2GRangesList to
provide a gene model annotation.

String specifying column in geneAnnotation(guideSet) to use as values in
the output transcript table.

A GuideSet object with a "txTable" DataFrame stored in mcols(guideSet). The entries in the
DataFrame correspond to the values specified by valueColumn. Rows correspond to gRNAs in the
GuideSet, columns correspond to all transcripts found in txObject for gene specified by gene_id.

Author(s)

Jean-Philippe Fortin

See Also

addGeneAnnotation to add gene annotation.

Examples

if (interactive()){
data(guideSetExample, package="crisprDesign")
data(grListExample, package="crisprDesign")
guideSet <- addGeneAnnotation(guideSetExample,

txObject=grListExample)

guideSet <- addTxTable(guideSet,

gene_id="ENSG00000120645" ,
txObject=grListExample)

guideSet$txTable

completeSpacers

Get complete spacer information

Description

These functions serve to "fill-in-the-blank" for spacers lacking information.

Usage

getPAMSequence(chr, pam_site, strand, crisprNuclease = NULL, bsgenome = NULL)

getSpacerSequence(

chr,
pam_site,



36

strand,

completeSpacers

crisprNuclease = NULL,
bsgenome = NULL,
spacerLen = NULL

getPAMSiteFromStartAndEnd(

start = NULL,
end = NULL,
strand,

crisprNuclease = NULL,
spacerLen = NULL

Arguments

chr

pam_site
strand
crisprNuclease
bsgenome
spacerlLen

start

end

Details

The chromosome in which the protospacer sequence is located.

Coordinate of the first nucleotide of the PAM sequence.

Either "+" or "-".

A CrisprNuclease object.

A BSgenome object.

Spacer sequence length. If NULL, the information is obtained from crisprNuclease.

Coordinate of the first nucleotide of the spacer sequences. Must be always less
than end.

Coordinate of the last nucleotide of the spacer sequence. Must be always greater
than start.

Functions that return coordinates (getPAMSite, getCutSite, getSpacerRanges) do not check
whether coordinates exceed chromosomal lengths.

The start and end coordinates of a genomic range is strand-independent, and always obeys start

<=end.

Value

A numeric or character vector, depending on the function.

getPAMSequence returns a character vector of PAM sequences.

getSpacerSequence returns a character vector of spacer sequences.

Examples

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")){

library(BSgenome.

Hsapiens.UCSC.hg38)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38
dat <- data.frame(chr='chr4', start=1642343, strand='+")
dat$pam_site <- getPAMSiteFromStartAndEnd(start=dat$start,

strand=dat$strand)

dat$pam <- getPAMSequence(chr=dat$chr,

pam_site=dat$pam_site,
strand=dat$strand,



convertToMinMaxGRanges 37

bsgenome=bsgenome)
dat$spacer <- getSpacerSequence(chr=dat$chr,
pam_site=dat$pam_site,
strand=dat$strand,
bsgenome=bsgenome)

convertToMinMaxGRanges
Convert a GuideSet object into a GRanges containing the range of all
targeting gRNAs.

Description

Convert a GuideSet object into a GRanges object containing the minimum and maximum coordi-
nates for all targeting gRNAs.

Usage
convertToMinMaxGRanges(guideSet, anchor = c("cut_site”, "pam_site”))
Arguments
guideSet A GuideSet object.
anchor A character string specifying which gRNA-specific coordinate to use (cut_site
or pam_site) when definining the min and max coordinates of GuideSet object.
Value

A GRanges object with start and end coordinates corresponding to the minimum and maximum
coordinates of the GuideSet object sites defined by anchor.

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

Examples

data(guideSetExample, package="crisprDesign")
gr <- convertToMinMaxGRanges(guideSetExample)



38 crisprNuclease

convertToProtospacerGRanges
Convert PAM site coordinates to protospacer start and end coordi-
nates

Description

Convert PAM site coordinates to protospacer start and end coordinates.

Usage

convertToProtospacerGRanges(guideSet)

Arguments

guideSet A GuideSet object.

Value
A GuideSet object with start and end coordinates corresponding to the start and end coordinates of
the protospacer sequences.

Author(s)

Jean-Philippe Fortin

Examples

data(guideSetExample, package="crisprDesign")
gr <- convertToProtospacerGRanges(guideSetExample)

crisprNuclease An §4 class to store CRISPR gRNA sequences with modular annota-
tions.

Description

An S4 class to store CRISPR gRNA sequences with modular annotations.

Usage

crisprNuclease(object, ...)
targetOrigin(object, ...)
customSequences(object, ...)
bsgenome(object, ...)

spacers(object, ...)



crisprNuclease

protospacers(object, ...)
pamSites(object, ...)
snps(object, ...)
alignments(object, ...)
onTargets(object, ...)
of fTargets(object, ...)
geneAnnotation(object, ...)
tssAnnotation(object, ...)
enzymeAnnotation(object, ...)
editedAlleles(object, ...)
txTable(object, ...)
exonTable(object, ...)
tssAnnotation(object) <- value
geneAnnotation(object) <- value
enzymeAnnotation(object) <- value
snps(object) <- value
alignments(object) <- value
addCutSites(object, ...)
GuideSet(

ids = NA_character_,

protospacers = NA_character_,

pams = NULL,

seqnames = NA_character_,
pam_site = 0OL,

strand = "x",
CrisprNuclease = NULL,
targetOrigin = c("bsgenome”, "customSequences"”),

bsgenome = NULL,
customSequences = NULL,
seginfo = NULL,
seqlengths = NULL

39



40

## S4 method for signature
targetOrigin(object)

## S4 method for signature
customSequences(object)

## S4 method for signature
bsgenome (object)

## S4 method for signature
crisprNuclease(object)

## S4 method for signature

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

spacers(object, as.character = FALSE,

## S4 method for signature

pams(object, as.character =

## S4 method for signature
pamSites(object)

## S4 method for signature
cutSites(object)

## S4 method for signature
addCutSites(object)

## S4 method for signature
protospacers(
object,
as.character = FALSE,
include.pam = FALSE,
returnAsRna = FALSE
)

## S4 method for signature
spacerLength(object)

## S4 method for signature
prototypeSequence(object)

## S4 method for signature
pamLength(object)

## S4 method for signature
pamSide(object)

## S4 method for signature
snps(object, unlist = TRUE,

## S4 method for signature

'GuideSet'

FALSE, returnAsRna

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

'GuideSet'

use.names

'GuideSet'

returnAsRna = FALSE)

= TRUE)

crisprNuclease



crisprNuclease 41

alignments(object, columnName = "alignments"”, unlist = TRUE, use.names = TRUE)

## S4 method for signature 'GuideSet'
onTargets(object, columnName = "alignments"”, unlist = TRUE, use.names = TRUE)

## S4 method for signature 'GuideSet'
offTargets(
object,
columnName = "alignments”,
max_mismatches = Inf,
unlist = TRUE,
use.names = TRUE

)

## S4 replacement method for signature 'GuideSet'
alignments(object) <- value

## S4 replacement method for signature 'GuideSet'
geneAnnotation(object) <- value

## S4 replacement method for signature 'GuideSet'
tssAnnotation(object) <- value

## S4 replacement method for signature 'GuideSet'
enzymeAnnotation(object) <- value

## S4 replacement method for signature 'GuideSet'
snps(object) <- value

## S4 method for signature 'GuideSet'
geneAnnotation(

object,

unlist = TRUE,

gene_id = NULL,

tx_id = NULL,

gene_symbol = NULL,

use.names = TRUE

)

## S4 method for signature 'GuideSet'
editedAlleles(object, unlist = TRUE, use.names = TRUE)

## S4 method for signature 'GuideSet'
tssAnnotation(

object,

unlist = TRUE,

gene_id = NULL,

gene_symbol = NULL,

use.names = TRUE

)

## S4 method for signature 'GuideSet'



42 crisprNuclease

enzymeAnnotation(object, unlist = TRUE, use.names = TRUE)

## S4 method for signature 'GuideSet'
txTable(object, unlist = TRUE, use.names = TRUE)

## S4 method for signature 'GuideSet'
exonTable(object, unlist = TRUE, use.names = TRUE)

Arguments

object GuideSet object.
Additional arguments for class-specific methods

value Object to replace with

ids Character vector of unique gRNA ids. The ids can be anything, as long as they
are unique.

protospacers Character vector of protospacers sequences.

pams Character vector of PAM sequences.

segnames Character vector of chromosome names.

pam_site Integer vector of PAM site coordinates.

strand Character vector of gRNA strand. Only accepted values are "+" and "-".

CrisprNuclease CrisprNuclease object.
targetOrigin String specifying the origin of the DNA target. Must be either "bsgenome’ or

’customSequences’.

bsgenome BSgenome object or string specifying BSgenome package name. Must be spec-
ified when targetOrigin is set to "bsgenome".

customSequences
DNAStringSet object. Must be specified when targetOrigin is set to "custom-
Sequences".

seqinfo A Seqinfo object containing informatioon about the set of genomic sequences

present in the target genome.

seqlengths NULL, or an integer vector named with levels(segnames) and containing the
lengths (or NA) for each level in 1evels(segnames).

as.character  Should sequences be returned as a character vector? FALSE by default, in which
case sequences are returned as a DNAStringSet.

returnAsRna Should the sequences be returned as RNA instead of DNA? FALSE by default.
include.pam Should PAM sequences be included? FALSE by default.

unlist Should the annotation be returned as one table instead of a list? TRUE by de-
fault.

use.names Whether to include spacer IDs as (row)names (TRUE), or as a separate column
(FALSE).

columnName Name of the column storing the alignments annotation to be retrieved.

max_mismatches What should be the maximum number of mismatches considered for off-targets?
Inf by default.

gene_id Character vector of Ensembl gene IDs to subset gene annotation data by. If
NULL (default), all genes are considered.

tx_id Character vector of Ensembl transcript IDs to subset gene annotation data by. If
NULL (deafult), all transcript are considered.

gene_symbol Character vector of gene symbols to subset gene annotation data by. If NULL

(default), all genes are considered.



crisprNuclease

Value

A GuideSet object.

Functions

e GuideSet(): Create a GuideSet object

Constructors

Use the constructor 1ink{GuideSet} to create a GuideSet object.

Accessors

crisprNuclease: To get CrisprNuclease object used to design gRNAs.
spacers: To get spacer sequences.

protospacers: To get protospacer sequences.

spacerLength: To get spacer length.

pams: To get PAM sequences.

pamSites: To get PAM site coordinates.

pamLength: To get PAM length.

pamSide: To return the side of the PAM sequence with respect to the protospacer sequence.

prototypeSequence: To get a prototype protospacer sequence.
cutSites: To get cut sites.

alignments: To get genomic alignments annotation.
onTargets: To get on-target alignments annotation
offTargets: To get off-target alignments annotation

snps: Tp get SNP annotation.

geneAnnotation: To get gene annotation.

tssAnnotation: To get TSS annotation.

enzymeAnnotation: To get restriction enzymes annotation.

editedAlleles: To get edited alleles annotation.

Examples

protospacers <- c("AGGTCGTGTGTGGGGGGGGG",
"AGGTCGTGTGTGGGGGGGGG")

pams <- c("AGG", "CGG")

pam_site=c(10,11)

segnames="chr7"

data(SpCas9, package="crisprBase")

CrisprNuclease <- SpCas9

strand=c("+", "-"

ids <- paste@("grna_", seq_along(protospacers))

gr <- GuideSet(ids=ids,
protospacers=protospacers,
pams=pams,
segnames=seqgnames,
CrisprNuclease=CrisprNuclease,
pam_site=pam_site,

43



44 designCompleteAnnotation

strand=strand,
targetOrigin="customSequences”,
customSequences=protospacers)

designCompleteAnnotation
One-step gRNA design and annotation function

Description

One-step gRNA design and annotation function to faciliate the design and generation of genome-
wide gRNA databases for a combination of parameters such as nuclease, organism, and CRISPR
modality.

Usage

designCompleteAnnotation(
queryValue = NULL,
queryColumn = "gene_id",
featureType = "cds”,
modality = c("CRISPRko"”, "CRISPRa", "CRISPRi", "CRISPRkd"),
bsgenome = NULL,
bowtie_index = NULL,
vef = NULL,
crisprNuclease = NULL,
tssObject = NULL,
txObject = NULL,
grRepeats = NULL,
scoring_methods = NULL,
tss_window = NULL,
n_mismatches = 3,
max_mm = 2,
canonical_ontarget = TRUE,
canonical_offtarget = FALSE,
all_alignments = TRUE,
fastaFile = NULL,
chromatinFiles = NULL,
geneCol = "gene_symbol”,
conservationFile = NULL,
nucExtension = 9,
binaries = NULL,
canonicalIsoforms = NULL,
pfamTable = NULL,
verbose = TRUE

Arguments

queryValue Vector specifying the value(s) to search for in txObject[[featureTypel][[queryColumn]]



designCompleteAnnotation 45

queryColumn

featureType

modality

bsgenome

bowtie_index

vef

crisprNuclease
tssObject
txObject

grRepeats

scoring_methods

tss_window

n_mismatches

max_mm

Character string specifying the column in txObject[[featureType]] to search
for queryValue(s).

For CRISPRko, string specifying the type of genomic feature to use to design

non non

gRNAs. Must be of the following: "transcripts”, "exons", "cds", "fiveUTRs",
"threeUTRs" or "introns". The default is "cds".

String specifying the CRISPR modality. Must be one of the following: "CRISPRko",
"CRISPRa", "CRISPRi" or "CRISPRkd". CRISPRkd is reserved for DNA-
targeting nucleases only such as CasRx.

A BSgenome object from which to extract sequences if a GRanges object is
provided as input.

String specifying path to a bowtie index.

Either a character string specfying a path to a VCF file or connection, or a VCF
object.

A CrisprNuclease object.
A GRanges object specifying TSS coordinates.

A TxDDb object or a GRangesList object obtained using TxDb2GRangesList for
annotating on-target and off-target alignments using gene annotation.

A GRanges object containing repeat elements regions.

Character vector to specify which on-target scoring methods should be calcu-
lated. See crisprScore package to obtain available methods.

Vector of length 2 specifying the start and coordinates of the CRISPRa/CRISPRi
target region with respect to the TSS position.

Maximum number of mismatches permitted between guide RNA and genomic
DNA.

The maximimum number of mismatches between a spacer and an off-target to
be accepted when calculating aggregate off-target scores. 2 by default.

canonical_ontarget

Should only canonical PAM sequences be searched for designing gRNAs? TRUE
by default.

canonical_offtarget

all_alignments

fastaFile

chromatinFiles

geneCol

Should only canonical PAM sequences by searched during the off-target search?
TRUE by default.

Should all all possible alignments be returned? TRUE by default.

String specifying fasta file of the hg38 genome. Only used for CRISPRa/i
modality with hg38 genome and SpCas9 nuclease. This is needed to generate
the CRISPRai scores. See the function addCrispraiScores for more details.

Named character vector of length 3 specifying BigWig files containing chro-
matin accessibility data. Only used for CRISPRa/i modality with hg38 genome
and SpCas9 nuclease. This is needed to generate the CRISPRai scores. See the
function addCrispraiScores for more details.

String specifying the column in the tssObject to be used to specify the gene
name for the addCrispraiScores function. "gene_symbol" by default.

conservationFile

String specifing the BigWig file containing conservation scores.



46 designOpsLibrary

nucExtension Number of nucleotides to include on each side of the cut site to calculate the
conservation score. 9 by default. The region will have (2*nucExtension + 1)
nucleotides in total.

binaries Named list of paths for binaries needed for CasRx-RF. Names of the list must
be "RNAfold", "RNAhybrid", and "RNAplfold". Each list element is a string
specifying the path of the binary. If NULL (default), binaries must be available
on the PATH.

canonicalIsoforms
Optional data.frame with 2 columns detailing Ensembl canonical isoforms. First
column must be named "tx_id", and second column must be named "gene_id",
corresponding to Ensembl transcript and gene ids, respectively.

pfamTable A DataFrame obtained using preparePfamTable.
verbose Should messages be printed?
Value

A GuideSet object.

Author(s)

Jean-Philippe Fortin

designOpsLibrary Design gRNA library for optical pooled screening

Description

Design gRNA library for optical pooled screening

Usage
designOpsLibrary(
df,
n_guides = 4,
gene_field = "gene"”,
min_dist_edit = 2,
dist_method = c("hamming"”, "levenshtein"),
splitByChunks = FALSE
)
Arguments
df data.frame containing information about candidate gRNAs from which to build
the OPS library. See details.
n_guides Integer specifying how many gRNAs per gene should be selected. 4 by default.
gene_field String specifying the column in df specifying gene names.

min_dist_edit Integer specifying the minimum distance edit required for barcodes to be con-
sidered dissimilar. Barcodes that have edit distances less than the min_dist_edit
will not be included in the library. 2 by default.



findSpacerPairs 47

dist_method String specifying distance method. Must be either "hamming" (default) or "lev-
enshtein".

splitByChunks Should distances be calculated in a chunk-wise manner? FALSE by default.
Highly recommended when the set of query barcodes is large to reduce memory
footprint.

Value

A subset of the df containing the gRNAs selected for the OPS library.

Author(s)

Jean-Philippe Fortin

Examples

data(guideSetExample, package="crisprDesign"”)
guideSet <- unique(guideSetExample)

guideSet <- addOpsBarcodes(guideSet)

guideSet <- guideSet[1:200]

df <- data.frame(ID=names(guideSet),
spacer=spacers(guideSet, as.character=TRUE),
opsBarcode=as.character(guideSet$opsBarcode))

# Creating mock gene:

df$gene <- rep(paste@("gene",1:10),each=20)
df$rank <- rep(1:20,10)

opsLib <- designOpsLibrary(df)

findSpacerPairs Find pairs of CRISPR gRNA spacers from a pair of genomic regions.

Description

Returns all possible, valid gRNA sequences for a given CRISPR nuclease from either a GRanges
object or a set of sequence(s) contained in either a DNAStringSet, DNAString or character vector
of genomic sequences.

Usage
findSpacerPairs(
x1,
X2,
sortWithinPair = TRUE,
pamOrientation = c("all”, "out”, "in"),

minCutlLength = NULL,
maxCutlLength = NULL,
crisprNuclease = NULL,
bsgenome = NULL,
canonical = TRUE,



48

both_strands
spacer_len =

findSpacerPairs

= TRUE,
NULL,

strict_overlap = TRUE,
remove_ambiguities = TRUE

Arguments

x1

X2

sortWithinPair

pamOrientation

minCutLength

maxCutLength

crisprNuclease
bsgenome
canonical
both_strands

spacer_len

strict_overlap

Either a GRanges, a DNAStringSet, or a DNAString object, or a character vector
of genomic sequences. This specifies the sequence space from which gRNAs in
position 1 of the pairs will be designed. Alternatively, a GuideSet object can be
provided.

Either a GRanges, a DNAStringSet, or a DNAString object, or a character vector
of genomic sequences. This specifies the sequence space from which gRNAs in
position 2 of the pairs will be designed. Alternatively, a GuideSet object can be
provided.

Should gRNAs be sorted by chr and position within a pair? TRUE by default.

String specifying a constraint on the PAM orientation of the pairs. Should be
either "all" (default), "out" (for the so-called PAM-out orientation) or "in" (for
PAM-in orientation).

Integer specifying the minimum cut length allowed (distance between the two
cuts) induced by the gRNA pair. If NULL (default), the argument is ignored.
Note that this parameter is only applicable for pairs of gRNAs targeting the
same chromosome.

Integer specifying the maximum cut length allowed (distance between the two
cuts) induced by the gRNA pair. If NULL (default), the argument is ignored.
Note that this parameter is only applicable for pairs of gRNAs targeting the
same chromosome.

A CrisprNuclease object.
A BSgenome object from which to extract sequences if x is a GRanges object.

Whether to return only guide sequences having canonical PAM sequences. If
TRUE (default), only PAM sequences with the highest weights stored in the
crisprNuclease object will be considered.

Whether to consider both strands in search for protospacer sequences. TRUE by
default.

Length of spacers to return, if different from the default length specified by
crisprNuclease.

Whether to only include gRNAs that cut in the input range, as given by cut_site
(TRUE) or to include all gRNAs that share any overlap with the input range
(FALSE). TRUE by default. Ignored when x is not a GRanges object.

remove_ambiguities

Details

Whether to remove spacer sequences that contain ambiguous nucleotides (not
explicily A, C, G, or T). TRUE by default.

This function returns a PairedGuideSet object that stores gRNA pairs targeting the two genomic
regions provided as input. The gRNAs in position 1 target the first genomic region, and the gRNAs
in position 2 target the second genomic region.



findSpacers 49

This function can be used for the following scenarios:

1. Designing pairs of gRNAs targeting different genes, for instance for dual-promoter Cas9 systems,
or polycystronic Casl2a constructs. This can also be used to target a given gene with multiple
gRNAs for improved efficacy (for instance CRISPRa and CRISPRi)

2. Designing pairs of gRNAs for double nicking systems such as Cas9 D10A.

See vignette for more examples.

Value

A PairedGuideSet object.

Author(s)

Jean-Philippe Fortin

See Also

findSpacers to find unpaired spacer sequences, and the PairedGuideSet object documentation to
understand the output of findSpacerPairs.

Examples

library(GenomicRanges)
library(BSgenome.Hsapiens.UCSC.hg38)
library(crisprBase)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38

# Region 1:
gr1 <- GRanges(c("chri2"),
IRanges(start=22224014, end=22225007))

# Region 2:
gr2 <- GRanges(c("chri13"),
IRanges(start=23224014, end=23225007))

# Pairs targeting the same region:
pairs <- findSpacerPairs(gr1, gr1, bsgenome=bsgenome)

# Pairs targeting two regions:

# The gRNA in position targets gri

# and the gRNA in position 2 targets gr2

pairs <- findSpacerPairs(gr1, gr2, bsgenome=bsgenome)

findSpacers Find CRISPR gRNA spacer sequences from a set of DNA sequences.

Description

Returns all possible, valid gRNA sequences for a given CRISPR nuclease from either a GRanges
object or a set of sequence(s) contained in either a DNAStringSet, DNAString or character vector
of genomic sequences.



50 findSpacers

Usage

findSpacers(
X,
crisprNuclease = NULL,
bsgenome = NULL,
canonical = TRUE,
both_strands = TRUE,
spacer_len = NULL,
strict_overlap = TRUE,
remove_ambiguities = TRUE,
remove_duplicates = TRUE

Arguments

X Either a GRanges, a DNAStringSet, or a DNAString object, or a character vector
of genomic sequences. See details.

crisprNuclease A CrisprNuclease object.
bsgenome A BSgenome object from which to extract sequences if x is a GRanges object.

canonical Whether to return only guide sequences having canonical PAM sequences. If
TRUE (default), only PAM sequences with the highest weights stored in the
crisprNuclease object will be considered.

both_strands  Whether to consider both strands in search for protospacer sequences. TRUE by
default.

spacer_len Length of spacers to return, if different from the default length specified by
crisprNuclease.

strict_overlap Whether to only include gRNAs that cut in the input range, as given by cut_site
(TRUE) or to include all gRNAs that share any overlap with the input range
(FALSE). TRUE by default. Ignored when x is not a GRanges object.

remove_ambiguities
Whether to remove spacer sequences that contain ambiguous nucleotides (not
explicily A, C, G, or T). TRUE by default.

remove_duplicates
Whether to remove duplicated protospacer sequences originating from overlap-
ping genomic ranges. TRUE by default.

Details

If x is a GRanges object then a BSgenome must be supplied to bsgenome, from which the genomic
sequence is obtained, unless the bsgenome can be inferred from genome (x), for example, "hg38".
Otherwise, all supplied sequences are treated as the "+" strands of chromosomes in a "custom”
genome.

Ranges or sequences in x may contain names where permitted. These names are stored in region
in the mcols of the output, and as segnames of the output if x is not a GRanges object. If not
NULL, names (x) must be unique, otherwise ranges or sequences are enumerated with the "region_"
prefix.

When x is a GRanges, the * strand is interpreted as both strands. Consequently, the both_strands
argument has no effect on such ranges.



flattenGuideSet 51

Value

A GuideSet object.

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

Examples

# Using custom sequence as input:
my_seq <- c(my_seq="CCAANAGTGAAACCACGTCTCTATAAAGAATACAAAAAATTAGCCGGGTGTTA")
guides <- findSpacers(my_seq)

# Exon-intro region of human KRAS specified
# using a GRanges object:
library(GenomicRanges)
library(BSgenome.Hsapiens.UCSC.hg38)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38

gr_input <- GRanges(c("chri12"),
IRanges(start=25224014, end=25227007))
guideSet <- findSpacers(gr_input, bsgenome=bsgenome)

# Designing guides for enAsCasl12a nuclease:

data(enAsCas12a, package="crisprBase")

guideSet <- findSpacers(gr_input,
canonical=FALSE,
bsgenome=bsgenome,
crisprNuclease=enAsCas12a)

flattenGuideSet Create a list of annotation tables from a GuideSet object

Description

Create a list of annotation tables from a GuideSet object

Usage

flattenGuideSet(guideSet, useSpacerCoordinates = TRUE, primaryOnly = FALSE)

Arguments
guideSet A GuideSet object
useSpacerCoordinates

Should the spacer coordinates be used as start and end coordinates? TRUE by
default. If FALSE, the PAM site coordinate is used for both start and end.

primaryOnly Should only the primary table (on-targets) be returned? FALSE by default.



52 getBarcodeDistanceMatrix

Value

A simple list of tables containing annotations derived from a GuideSet object. The first table ("pri-
mary") is always available, while the other tables will be only available when the annotations were
added to the GuideSet object.

* primary Primary table containing genomic coordinates and sequence information of the gRNA
sequences. Also contains on-target and off-target scores when available.

* alignments Table of on- and off-target alignments.

e geneAnnotation Gene context annotation table.

* tssAnnotation TSS context annotation table.

* enzymeAnnotation Boolean table indicating whether or not recognition motifs of restriction
enzymes are found.

* snps SNP annotation table (human only).

Author(s)

Jean-Philippe Fortin

getBarcodeDistanceMatrix
Get distance between query and target sets of barcodes

Description

Get distance between query and target sets of barcodes

Usage

getBarcodeDistanceMatrix(
queryBarcodes,
targetBarcodes = NULL,
binnarize = TRUE,
min_dist_edit = NULL,
dist_method = c("hamming"”, "levenshtein"),
ignore_diagonal = TRUE,
splitByChunks = FALSE,
n_chunks = NULL

Arguments

queryBarcodes  Character vector of DNA sequences or DNAStringSet.

targetBarcodes Optional character vector of DNA sequences or DNAStringSet. If NULL, dis-
tances will be calculated between barcodes provided in queryBarcodes.

binnarize Should the distance matrix be made binnary? TRUE by default. See details
section.

min_dist_edit Integer specifying the minimum distance edit required for barcodes to be con-
sidered dissimilar when binnarize=TRUE, ignored otherwise.



getConsensuslsoform 53

dist_method String specifying distance method. Must be either "hamming" (default) or "lev-
enshtein".

ignore_diagonal
When targetBarcodes=NULL, should the diagonal distances be set to O to ig-
nore self distances? TRUE by default.

splitByChunks Should distances be calculated in a chunk-wise manner? FALSE by default.
Highly recommended when the set of query barcodes is large to reduce memory
footprint.

n_chunks Integer specifying the number of chunks to be used when splitByChunks=TRUE.
If NULL (default), number of chunks will be chosen automatically.

Value

A sparse matrix of class dgCMatrix or dsCMatrix in which rows correspond to queryBarcodes
and columns correspond to targetBarcodes. If binnarize=TRUE, a value of 0 indicates that
two barcodes have a distance greater of equal to min_dist_edit, otherwise the value is 1. If If
binnarize=FALSE, values represent the actual calculated distances between barcodes.

Author(s)

Jean-Philippe Fortin

Examples

data(guideSetExample, package="crisprDesign")
guideSetExample <- addOpsBarcodes(guideSetExample)
barcodes <- as.character(guideSetExample$opsBarcode)

dist <- getBarcodeDistanceMatrix(barcodes, min_dist_edit=2)

getConsensusIsoform Get the genomic ranges of a consensus isoform

Description

Get the genomic ranges of a consensus isoform. The consensus isoform is taken as the union of
exons across all isoforms where overlapping exons are merged to produce a simplified set through
the reduce method of the GenomicRanges package.

Usage

getConsensusIsoform(gene_id, txObject)

Arguments
gene_id String specifiying Ensembl ID for the gene of interest. E.g. "ENSG00000049618".
ID must be present in txObject$exons$gene_id.
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList to

provide a gene model annotation.



54 getMrnaSequences

Value

A GRanges object.

Author(s)

Jean-Philippe Fortin

Examples

data(grListExample)
gene_id <- "ENSGQ0000120645"
gr <- getConsensusIsoform(gene_id, grListExample)

getMrnaSequences Retrieve mRNA sequences

Description

A function for retrieving mRNA sequences of select transcripts.

Usage

getMrnaSequences(txids, txObject, bsgenome)

Arguments
txids A character vector of Ensembl transcript IDs. IDs not present in txObject will
be silently ignored.
txObject A TxDb object or a GRangesList object obtained from TxDb2GRangesList. De-
fines genomic ranges for txids.
bsgenome A BSgenome object from which to extract mRNA sequences.
Value

A DNAStringSet object of mRNA sequences. Note that sequences are returned as DNA rather than
RNA.

Author(s)

Jean-Philippe Fortin

Examples

library(BSgenome.Hsapiens.UCSC.hg38)
data(grListExample)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38

txids <- c("ENST@0000538872", "ENST00000382841")

out <- getMrnaSequences(txids, grListExample, bsgenome)



getPreMrnaSequences 55

getPreMrnaSequences Retrieve pre-mRNA sequences

Description

A function for retrieving pre-mRNA sequences of select transcripts.

Usage

getPreMrnaSequences(txids, txObject, bsgenome)

Arguments
txids A character vector of Ensembl transcript IDs. IDs not present in txObject will
be silently ignored.
txObject A TxDb object or a GRangesList object obtained from TxDb2GRangesList. De-
fines genomic ranges for txids.
bsgenome A BSgenome object from which to extract pre-mRNA sequences.
Value

A DNAStringSet object of mRNA sequences. Note that sequences are returned as DNA rather than
RNA.

Author(s)

Jean-Philippe Fortin

Examples

library(BSgenome.Hsapiens.UCSC.hg38)

data(grListExample)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38

txids <- c("ENST00000538872", "ENST00000382841")

out <- getPreMrnaSequences(txids, grListExample, bsgenome)

getTssObjectFromTxObject
Extract TSS coordinates from a gene model object

Description

Extract TSS coordinates from a gene model object.

Usage

getTssObjectFromTxObject (txObject)



56 getTxDb

Arguments
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList for
annotating on-target and off-target alignments using gene annotation.
Value

A GRanges object containing TSS coordinates

Author(s)

Jean-Philippe Fortin

Examples

data(grListExample, package="crisprDesign")
tss <- getTssObjectFromTxObject(grListExample)

getTxDb getTxDb

Description

Convenience function for constructing a TxDb object.

Usage
getTxDb(file = NA, organism, release = NA, tx_attrib = "gencode_basic”, ...)
Arguments
file File argument for makeTxDbFromGFF (see help page for makeTxDbFromGFF). If
NA (default), function will return a TxDb object from Ensembl using makeTxDbFromEnsembl.
organism String specifying genus and species name (e.g. "Homo sapiens" for human).
Required if file is not provided. If file is provided, this value can be set to NA
to have organism information as unspecified.
release Ensembl release version; passed to makeTxDbFromEnsembl when file is not
specified. See help page for makeTxDbFromEnsembl.
tx_attrib Argument passed to makeTxDbFromEnsembl when file is not specified. See
help page for makeTxDbFromEnsembl.
Additional arguments passed to either makeTxDbFromGFF (if file is specified)
or makeTxDbFromEnsembl if file is NA.
Value
A TxDb object.
Author(s)

Jean-Philippe Fortin, Luke Hoberecht



getTxInfoDataFrame 57

Examples

if (interactive()){
# To obtain a TxDb for Homo sapiens from Ensembl:
txdb <- getTxDb()

# To obtain a TxDb from a GFF file:
file="https://www.mirbase.org/ftp/CURRENT/genomes/hsa.gff3'
txdb <- getTxDb(file=file)

3
getTxInfoDataFrame To obtain a DataFrame of transcript-specific CDS and mRNA coordi-
nates
Description

To obtain a DataFrame of transcript-specific CDS and mRNA coordinates.

Usage
getTxInfoDataFrame(
tx_id,
txObject,
bsgenome,
extend = 30,
checkCdsLength = TRUE
)
Arguments
tx_id String specifying ENSEMBL Transcript id.
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList.
bsgenome BSgenome object from which to extract sequences if a GRanges object is pro-
vided as input.
extend Integer value specifying how many nucleotides in intron regions should be in-

cluded.
checkCdsLength Should the CDS nucleotide length be a multiple of 3?7 TRUE by default.

Value

A DataFrame containing nucleotide and amino acid information. The columns are:

* chr Character specifying chromosome.

* pos Integer value specifying coordinate in reference genome.

* strand Character specifying strand of transcript.

* nuc Character specifying nucleotide on the strand specified by strand.
* aa Character specifying amino acid.

* aa_number Integer specifying amino acid number from 5’ end.

* exon Integer specifying exon number.



58 grListExample

* pos_plot Integer specifying plot coordinate. Useful for plotting.
* pos_mrna Integer specifying relative mRNA coordinate from the start of the mRNA.
* pos_cds Integer specifying relative CDS coordinate from the start of the CDS.

* region Character specifying gene region: 3UTR, SUTR, CDS, Intron, Upstream (promoter)
or downstream.

Author(s)

Jean-Philippe Fortin

Examples

library(BSgenome.Hsapiens.UCSC.hg38)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38

data("grListExample”)

tx_id <- "ENST00000538872"

df <- getTxInfoDataFrame(tx_id=tx_id,
txObject=grListExample,
bsgenome=bsgenome)

grListExample Example of a TxDb object converted to a GRangesList

Description

Example of a TxDb object converted to a GRangesList object for human gene IQSEC3 (ENSG00000120645).

Usage

data(grListExample, package="crisprDesign")

Format

Named GRangesList with 7 elements: transcripts, exons, cds, fiveUTRs, threeUTRs, introns
and tss.

Details

The full human transcriptome TxDb object was obtained from the Ensembl 104 release using the
getTxDb function and converted to a GRangesList object using the TxDb2GRangesList function
and subsequently subsetted to only contain the IQSEC3 gene (ENSG00000120645) located at the
start of chr12 in the human genome (hg38 build).



grRepeatsExample 59

grRepeatsExample Example of a GRanges object containing repeat elements

Description
Example of a GRanges object containing genomic coordinates of repeat elements found in the
neighborhood of human gene IQSEC3 (ENSG00000120645).

Usage

data(grRepeatsExample, package="crisprDesign")

Format

A GRanges object.

GuideSet2DataFrames Create a list of annotation tables from a GuideSet object

Description

Create a list of annotation tables from a GuideSet object

Usage
GuideSet2DataFrames(guideSet, useSpacerCoordinates = TRUE, primaryOnly = FALSE)

Arguments
guideSet A GuideSet object
useSpacerCoordinates

Should the spacer coordinates be used as start and end coordinates? TRUE by
default. If FALSE, the PAM site coordinate is used for both start and end.

primaryOnly Should only the primary table (on-targets) be returned? FALSE by default.

Value

A simple list of tables containing annotations derived from a GuideSet object. The first table ("pri-
mary") is always available, while the other tables will be only available when the annotations were
added to the GuideSet object.

* primary Primary table containing genomic coordinates and sequence information of the gRNA
sequences. Also contains on-target and off-target scores when available.

* alignments Table of on- and off-target alignments.
e geneAnnotation Gene context annotation table.
e tssAnnotation TSS context annotation table.

* enzymeAnnotation Boolean table indicating whether or not recognition motifs of restriction
enzymes are found.

* snps SNP annotation table (human only).



60 guideSetExampleFullAnnotation

Author(s)
Jean-Philippe Fortin, Luke Hoberecht

Examples

data(guideSetExampleFullAnnotation)
tables <- GuideSet2DataFrames(guideSetExampleFullAnnotation)

guideSetExample Example of a GuideSet object storing gRNA sequences targeting the
CDS of IQSEC3

Description
Example of a GuideSet object storing gRNA sequences targeting the coding sequence of human
gene IQSEC3 (ENSG00000120645) for SpCas9 nuclease.

Usage

data(guideSetExample, package="crisprDesign")

Format

A GuideSet object.

Details

The object was obtained by calling findSpacers on the CDS region of human gene IQSEC3. See
code in inst/scripts/generateGuideSet.R.

guideSetExampleFullAnnotation

Example of a fully-annotated GuideSet object storing gRNA sequences
targeting the CDS of IQSEC3

Description
Example of a fully-annotated GuideSet object storing gRNA sequences targeting the coding se-
quence of human gene IQSEC3 (ENSG00000120645) for SpCas9 nuclease.

Usage

data(guideSetExampleFullAnnotation, package="crisprDesign")

Format

A GuideSet object.



guideSetExampleWithAlignments 61

Details

The object was obtained by applying all available add* annotation functions in crisprDesign (e.g.
addSequenceFeatures) to a randomly selected 20-guide subset of guideSetExample. See code in
inst/scripts/generateGuideSetFullAnnotation.R.

guideSetExampleWithAlignments

Example of a GuideSet object storing gRNA sequences targeting the
CDS of IQSEC3 with off-target alignments.

Description
Example of a GuideSet object storing gRNA sequences targeting the coding sequence of human
gene IQSEC3 (ENSG00000120645) for SpCas9 nuclease with off-target alignments.

Usage

data(guideSetExampleWithAlignments, package="crisprDesign")

Format

A GuideSet object.

Details

The object was obtained by adding off-target alignments to a randomly selected 20-guide subset of
guideSetExample. See code in inst/scripts/generateGuideSetFullAnnotation.R.

pamOrientation An 84 class to store pairs of CRISPR gRNA sequences.

Description

An S4 class to store pairs of CRISPR gRNA sequences.

Usage
pamOrientation(object, ...)
pamDistance(object, ...)
spacerDistance(object, ...)
cutlLength(object, ...)

PairedGuideSet(GuideSet1 = NULL, GuideSet2 = NULL)

## S4 method for signature 'PairedGuideSet'
pamOrientation(object)



62 pamOirientation

## S4 method for signature 'PairedGuideSet'
pamDistance(object)

## S4 method for signature 'PairedGuideSet'
spacerDistance(object)

## S4 method for signature 'PairedGuideSet'
cutlLength(object)

## S4 method for signature 'PairedGuideSet'
crisprNuclease(object, index = NULL)

## S4 method for signature 'PairedGuideSet'
spacers(object, as.character = FALSE, returnAsRna = FALSE, index = NULL)

## S4 method for signature 'PairedGuideSet'
pams(object, as.character = FALSE, returnAsRna = FALSE, index = NULL)

## S4 method for signature 'PairedGuideSet'
pamSites(object, index = NULL)

## S4 method for signature 'PairedGuideSet'
cutSites(object, index = NULL)

## S4 method for signature 'PairedGuideSet'
protospacers(

object,

as.character = FALSE,

include.pam = FALSE,

returnAsRna = FALSE,

index = NULL

)

## S4 method for signature 'PairedGuideSet'
spacerLength(object, index = NULL)

## S4 method for signature 'PairedGuideSet'
pamLength(object, index = NULL)

## S4 method for signature 'PairedGuideSet'
pamSide(object, index = NULL)

Arguments
object PairedGuideSet object.
Additional arguments for class-specific methods
GuideSet1 A GuideSet object containing gRNAs at the first position of the pairs.
GuideSet?2 A GuideSet object containing gRNAs at the second position of the pairs.
index Integer value indicating gRNA position. Must be either 1, 2, or NULL (default).

If NULL, both positions are returned.



preparePfamTable 63

as.character  Should sequences be returned as a character vector? FALSE by default, in which
case sequences are returned as a DNAStringSet.

returnAsRna Should the sequences be returned as RNA instead of DNA? FALSE by default.
include.pam Should PAM sequences be included? FALSE by default.

Value

A PairedGuideSet object.

Functions

* PairedGuideSet(): Create a PairedGuideSet object

Constructors

Use the constructor 1ink{PairedGuideSet} to create a PairedGuideSet object.

Examples

library(crisprDesign)

data(guideSetExample, package="crisprDesign")
gs <- guideSetExample

gs <- gs[order(BiocGenerics::start(gs))]

gs1 <- gs[1:10]

gs2 <- gs[1:10+10]

pgs <- PairedGuideSet(gsl, gs2)

preparePfamTable Obtain Pfam domains from biomaRt

Description

Obtain Pfam domains from biomaRt for all transcripts found in a gene model object.

Usage

preparePfamTable(txObject, mart_dataset)

Arguments
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList to
provide a gene model annotation.

mart_dataset  String specifying dataset to be used by biomaRt for Pfam domains annotation .
E.g. "hsapiens_gene_ensembl".

Value

A DataFrame object with the following columns:

* ensembl_transcript_id Ensembl transcript ID.

¢ pfam Pfam domain name.

e pfam_start Start amino acid coordinate of the Pfam domain.
e pfam_end End amino acid coordinate of the Pfam domain.



64 queryTss

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

Examples

data(grListExample, package="crisprDesign")

if (interactive()){
pfamTable <- preparePfamTable(grListExample,
mart_dataset="hsapiens_gene_ensembl")

queryTss Convenience function to search for TSS coordinates.

Description

Convenience function to search for TSS coordinates.

Usage

queryTss(tssObject, queryColumn, queryValue, tss_window = NULL)

Arguments
tssObject A GRanges containing genomic positions of transcription starting sites (TSSs).
queryColumn String specifying which column of mcols(tssObject) should be searched for.
queryValue Character vector specifying the values to search for in tssObject[[queryColumn]].
tss_window Numeric vector of length 2 establishing the genomic region to return. The value
pair sets the 5 prime and 3 prime limits, respectively, of the genomic region with
respect to the TSS. Use negative value(s) to set limit(s) upstream of the TSS.
Default is c(-500, 500), which includes 500bp upstream and downstream of
the TSS.
Value

A GRanges object. Searches yielding no results will return an empty GRanges object.

Author(s)

Luke Hoberecht, Jean-Philippe Fortin

See Also

queryTx0Object for querying gene annotations.



queryTxObject 65

Examples

data(tssObjectExample, package="crisprDesign")

queryTss(tssObjectExample,
queryColumn="gene_symbol”,
queryValue="IQSEC3")

queryTxObject Convenience function to search for gene coordinates.

Description

Convenience function to search for gene coordinates.

Usage
queryTxObject(
txObject,
featureType = c("transcripts”, "exons"”, "cds", "fiveUTRs", "threeUTRs", "introns"),
queryColumn,
queryValue
)
Arguments
txObject A TxDb object or a GRangesList object obtained using TxDb2GRangesList.
featureType The genomic feature in txObject to base your query on. Must be one of the
following: "transcripts", "exons", "cds", "fiveUTRs", "threeUTRs" or "introns".
queryColumn Character string specifying the column in txObject[[featureType]] to search
for queryValue(s).
queryValue Vector specifying the value(s) to search for in txObject[[featureTypell[[queryColumn]].
Value

A GRanges object. Searches yielding no results will return an empty GRanges object.

Author(s)
Luke Hoberecht, Jean-Philippe Fortin

See Also

queryTss for querying TSS annotations.

Examples

data(grListExample, package="crisprDesign")

queryTxObject(grListExample,
featureType="cds",
queryColumn="gene_symbol”,
queryValue="IQSEC3")



rankSpacers

rankSpacers Recommended gRNA ranking

Description

Function for ranking spacers using recommended crisprDesign criteria. CRISPRko, CRISPRa and
CRISPRi modalities are supported.

Usage

rankSpacers(
guideSet,
tx_id = NULL,
commonExon = FALSE,
modality = c("CRISPRko", "CRISPRa", "CRISPRi"),
useDistanceToTss = TRUE

)
Arguments

guideSet A GuideSet object.

tx_id Optional string specifying transcript ID to use isoform-specific information for
gRNA ranking.

commonExon Should gRNAs targeting common exons by prioritized? FALSE by default. If
TRUE, tx_id must be provided.

modality String specifying the CRISPR modality. Should be one of the following: "CRISPRko",

"CRISPRa", or "CRISPRi".

useDistanceToTss
Should distance to TSS be used to rank gRNAs for CRISPRa and CRISPRi
applications? TRUE by default. For SpCas9 and human targets, this should be
set to FALSE if addCrispraiScores was used.

Details

For each nuclease, we rank gRNAs based on several rounds of priority. For SpCas9, gRNAs
with unique target sequences and without 1-or 2-mismatch off-targets located in coding regions
are placed into the first round. Then, gRNAs with a small number of one- or two-mismatch off-
targets (less than 5) are placed into the second round. Remaining gRNAs are placed into the third
round. Finally, any gRNAs overlapping a common SNP (human only), containing a polyT stretch,
or with extreme GC content (below 20 are placed into the fourth round.

If tx_id is specified, within each round of selection, gRNAs targeting the first 85 percent of the
specific transcript are prioritized first. If tx_id is specified, and commonExon is set to TRUE, gRNAs
targeting common exons across isoforms are also prioritized. If a conservation score is available,
gRNAs targeting conserved regions (phyloP conservation score greater than 0), are also prioritized.

Within each bin, gRNAs are ranked by a composite on-target activity rank to prioritize active gR-
NAs. The composite on-target activity rank is calculated by taking the average rank across the
DeepHF and DeepSpCas9 scores for CRISPRko. For CRISPRa or CRISPRi, the CRISPRai scores
are used if available.



reexports 67

The process is identical for enAsCas12a, with the exception that the enPAMGDb method is used as
the composite score.

For CasRx, gRNAs targeting all isoforms of a given gene, with no 1- or 2-mismatch off-targets, are
placed into the first round. gRNAs targeting at least 50 percent of the isoforms of a given gene, with
no 1- or 2-mismatch off-targets, are placed into the second round. Remaining gRNAs are placed
into the third round. Within each round of selection, gRNAs are further ranked by the CasRxRF
on-target score.

Value

A GuideSet object ranked from best to worst gRNAs, with a column rank stored in mcols(guideSet)
indicating gRNA rank.

Author(s)

Luke Hoberecht, Jean-Philippe Fortin

Examples

data(guideSetExampleFullAnnotation, package="crisprDesign")
gs <- rankSpacers(guideSetExampleFullAnnotation,

tx_id = "ENST0Q0000538872")
gs

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

S4Vectors mcols

Seqinfo segnames

removeRepeats Remove GuideSet gRNAs that overlap repeat elements

Description

Remove GuideSet gRNAs that overlap repeat elements.



68 removeSpacers WithSecondary Targets
Usage
removeRepeats(object, ...)

## S4 method for signature 'GuideSet'
removeRepeats(object, gr.repeats = NULL, ignore.strand = TRUE)

## S4 method for signature 'PairedGuideSet'
removeRepeats(object, gr.repeats = NULL, ignore.strand

TRUE)

## S4 method for signature 'NULL'
removeRepeats(object)
Arguments

object A GuideSet object or a PairedGuideSet object.
Additional arguments, currently ignored.
gr.repeats A GRanges object containing repeat elements regions.

ignore.strand Should gene strand be ignored when annotating? TRUE by default.

Value
object filtered for spacer sequences not overlapping any repeat elements. An inRepeats column
is also appended in mcols(object).

Author(s)

Jean-Philippe Fortin, Luke Hoberecht

See Also

link{addRepeats}.

Examples

data(guideSetExample, package="crisprDesign")

data(grRepeatsExample, package="crisprDesign")

guideSet <- removeRepeats(guideSetExample,
gr.repeats=grRepeatsExample)

removeSpacersWithSecondaryTargets
Remove gRNAs targeting secondary targets

Description

Remove gRNAs targeting secondary targets



tssObjectExample 69

Usage
removeSpacersWithSecondaryTargets(
guideSet,
genelD,
geneColumn = "gene_id",

ignoreGenesWithoutSymbols = TRUE,
ignoreReadthroughs = TRUE

)
Arguments
guideSet A GuideSet object.
genelD String specifying gene ID of the main gene target.
geneColumn Column in geneAnnotation(guideSet) specifying gene IDs

ignoreGenesWithoutSymbols

Should gene without gene symbols be ignored when removing co-targeting gR-
NAs?

ignoreReadthroughs
Should readthrough genes be ignored when removing co-targeting gRNAs?

Details

The protospacer target sequence of gRNAs can be located in overlapping genes, and this function
allows users to filter out such gRNAs. This ensures remaining gRNAs are targeting only one gene.

Value

A GuideSet object with gRNAs targeting multiple targets removed.

Author(s)

Jean-Philippe Fortin

tssObjectExample Example of a GRanges object containing TSS coordinates

Description

Example of a GRanges containing transcription starting site (TSS) coordinates for human gene
IQSEC3 (ENSG00000120645).

Usage

data(tssObjectExample, package="crisprDesign")

Format

GRanges object of length 2 corresponding to the 2 TSSs of gene IQSEC3.



70 TxDb2GRangesList

Details

The TSS coordinates were obtained from the two transcript stored in the grListExample object for
gene IQSEC3.

TxDb2GRangesList Convert a TxDb object into a GRangesList

Description

Convenience function to reformat a TxDb object into a GRangesList.

Usage

TxDb2GRangesList(
txdb,
standardChromOnly = TRUE,
genome = NULL,
seglevelsStyle = c("UCSC", "NCBI")

)
Arguments
txdb A TxDb object.
standardChromOnly
Should only standard chromosomes be kept? TRUE by default.
genome Optional string specifying genome. e.g. "hg38", to be added to genome (txdb).

seqlevelsStyle String specifying which style should be used for sequence names. "UCSC" by
default (including "chr"). "NCBI" will omit "chr" in the sequence names.
Value
A named GRangesList of length 7 with the following elements: transcripts, exons, introns,
cds, fiveUTRs, threeUTRs and tss.
Author(s)

Jean-Philippe Fortin, Luke Hoberecht

See Also

getTxDb to obtain a TxDb object.

Examples

if (interactive()){
# To obtain a TxDb for Homo sapiens from Ensembl:
txdb <- getTxDb()

# To convert to a GRanges list:
txdb <- TxDb2GRangesList(txdb)



updateOpsLibrary 71

updateOpsLibrary Update OPS library with additional gRNAs

Description

Update OPS library with additional gRNAs

Usage
updateOpsLibrary(
opsLibrary,
df,
n_guides = 4,
gene_field = "gene",
min_dist_edit = 2,
dist_method = c("hamming”, "levenshtein"),
splitByChunks = FALSE
)
Arguments
opsLibrary data.frame obtained from designOpsLibrary.
df data.frame containing information about additional candidate gRNAs to add to
the OPS library.
n_guides Integer specifying how many gRNAs per gene should be selected. 4 by default.
gene_field String specifying the column in df specifying gene names.

min_dist_edit Integer specifying the minimum distance edit required for barcodes to be con-
sidered dissimilar. Barcodes that have edit distances less than the min_dist_edit
will not be included in the library. 2 by default.

dist_method String specifying distance method. Must be either "hamming" (default) or "lev-
enshtein".

splitByChunks Should distances be calculated in a chunk-wise manner? FALSE by default.
Highly recommended when the set of query barcodes is large to reduce memory
footprint.

Value
A data.frame containing the original gRNAs from the input opsLibrary data.frame as well as
additional gRNAs selected from the input data.frame df.

Author(s)

Jean-Philippe Fortin



72 validateOpsLibrary

Examples

data(guideSetExample, package="crisprDesign"”)
guideSet <- unique(guideSetExample)

guideSet <- addOpsBarcodes(guideSet)
guideSet1 <- guideSet[1:200]

guideSet2 <- guideSet[201:400]

df1 <- data.frame(ID=names(guideSet1),
spacer=spacers(guideSet1, as.character=TRUE),
opsBarcode=as.character(guideSet1$opsBarcode))
df2 <- data.frame(ID=names(guideSet2),
spacer=spacers(guideSet2, as.character=TRUE),
opsBarcode=as.character(guideSet2%$opsBarcode))

# Creating mock gene:

df1$gene <- rep(paste@("gene"”,1:10),each=20)
df2$gene <- rep(paste@(”gene"”,1:10+10),each=20)
df1$rank <- rep(1:20,10)

df2$rank <- rep(1:20,10)

opsLib <- designOpsLibrary(df1)

opsLib <- updateOpsLibrary(opsLib, df2)

validateOpsLibrary Validate gRNA library for optical pooled screening

Description

Validate gRNA library for optical pooled screening

Usage
validateOpsLibrary(
df,
min_dist_edit = 2,
dist_method = c("hamming”, "levenshtein")
)
Arguments
df data.frame containing information about candidate gRNAs from which to build

the OPS library. See details.

min_dist_edit Integer specifying the minimum distance edit required for barcodes to be con-
sidered dissimilar.

dist_method String specifying distance method. Must be either "hamming" (default) or "lev-
enshtein".

Value

The original df is all checks pass. Otherwise, a stop error.



validateOpsLibrary

Author(s)
Jean-Philippe Fortin

Examples

data(guideSetExample, package="crisprDesign"”)

guideSet <- unique(guideSetExample)

guideSet <- addOpsBarcodes(guideSet)

df <- data.frame(ID=names(guideSet),
spacer=spacers(guideSet, as.character=TRUE),
opsBarcode=as.character(guideSet$opsBarcode))

df$gene <- rep(paste@("gene”,1:40),each=20)

df$rank <- rep(1:20,40)

opsLib <- designOpsLibrary(df)

opsLib <- validateOpsLibrary(opsLib)

73



Index

+ datasets
grListExample, 58
grRepeatsExample, 59
guideSetExample, 60
guideSetExampleFullAnnotation, 60
guideSetExampleWithAlignments, 61
tssObjectExample, 69

+ internal
reexports, 67

addCompositeScores, 3
addCompositeScores,GuideSet-method
(addCompositeScores), 3
addCompositeScores,NULL-method
(addCompositeScores), 3
addCompositeScores,PairedGuideSet-method
(addCompositeScores), 3
addConservationScores, 4
addConservationScores,GuideSet-method
(addConservationScores), 4
addConservationScores,NULL-method
(addConservationScores), 4
addConservationScores,PairedGuideSet-method
(addConservationScores), 4
addCrispraiScores, 6
addCrispraiScores,GuideSet-method
(addCrispraiScores), 6
addCrispraiScores,NULL-method
(addCrispraiScores), 6
addCrispraiScores,PairedGuideSet-method
(addCrispraiScores), 6
addCutSites (crisprNuclease), 38
addCutSites,GuideSet-method
(crisprNuclease), 38
addDistanceToTss, 7
addDistanceToTss,GuideSet-method
(addDistanceToTss), 7
addDistanceToTss,NULL-method
(addIsoformAnnotation), 14
addDistanceToTss,PairedGuideSet-method
(addDistanceToTss), 7
addEditedAlleles, 8
addEditingSites, 9

74

addEditingSites,GuideSet-method
(addEditingSites), 9
addEditingSites,NULL-method
(addEditingSites), 9
addEditingSites,PairedGuideSet-method
(addEditingSites), 9
addExonTable, 10
addGeneAnnotation, 11, 11, 21, 34, 35
addGeneAnnotation,GuideSet-method
(addGeneAnnotation), 11
addGeneAnnotation,NULL-method
(addSNPAnnotation), 26
addGeneAnnotation,PairedGuideSet-method
(addGeneAnnotation), 11
addIsoformAnnotation, 14
addIsoformAnnotation,GuideSet-method
(addIsoformAnnotation), 14
addIsoformAnnotation,NULL-method
(addIsoformAnnotation), 14
addIsoformAnnotation,PairedGuideSet-method
(addIsoformAnnotation), 14
addNtcs, 15
addNtcs,GuideSet-method (addNtcs), 15
addNtcs,NULL-method (addNtcs), 15
addNtcs,PairedGuideSet-method
(addNtcs), 15
addOffTargetScores, 16, I8
addOffTargetScores,GuideSet-method
(addOffTargetScores), 16
addOffTargetScores,NULL-method
(addOffTargetScores), 16
addOffTargetScores,PairedGuideSet-method
(addOffTargetScores), 16
addOnTargetScores, 4, 7, 17
addOnTargetScores,GuideSet-method
(addOnTargetScores), 17
addOnTargetScores,NULL-method
(addOnTargetScores), 17
addOnTargetScores,PairedGuideSet-method
(addOnTargetScores), 17
addOpsBarcodes, 19
addPamScores, 19
addPamScores,GuideSet-method



INDEX 75

(addPamScores), 19 addSpacerAlignmentsIterative,NULL-method
addPamScores,NULL-method (addSpacerAlignments), 28
(addPamScores), 19 addSpacerAlignmentsIterative,PairedGuideSet-method
addPamScores,PairedGuideSet-method (addSpacerAlignments), 28
(addPamScores), 19 addTssAnnotation, 7, 13, 33
addPfamDomains, 20 addTssAnnotation,GuideSet-method
addPfamDomains, GuideSet-method (addTssAnnotation), 33
(addPfamDomains), 20 addTssAnnotation,NULL-method
addPfamDomains,NULL-method (addTssAnnotation), 33
(addPfamDomains), 20 addTssAnnotation,PairedGuideSet-method
addPfamDomains,PairedGuideSet-method (addTssAnnotation), 33
(addPfamDomains), 20 addTxTable, /7, 34
addReinitiationFlag, 21 alignments (crisprNuclease), 38
addRepeats, 22 alignments,GuideSet-method
addRepeats, GuideSet-method (crisprNuclease), 38
(addRepeats), 22 alignments<- (crisprNuclease), 38
addRepeats,NULL-method (addRepeats), 22 alignments<-,GuideSet-method
addRepeats,PairedGuideSet-method (crisprNuclease), 38
(addRepeats), 22

BaseEditor, 8

addRestrictionEnzymes, 23 BSgenome, 30, 36, 42, 45, 48, 50, 54, 55, 57
addRestrictionEnzymes,GuideSet-method bsgenome (crispruclease), 38

(addRestrictionEnzymes), 23 bsgenome , GuideSet-method
addRestrictionEnzymes,NULL-method (crisprNuclease), 38

(addRestrictionEnzymes), 23
addRestrictionEnzymes,PairedGuideSet-method completeSpacers, 35

(addRestrictionEnzymes), 23 convertToMinMaxGRanges, 37
addSequenceFeatures, 25 convertToProtospacerGRanges, 38
addSequenceFeatures,GuideSet-method CrisprNuclease, 19, 31, 36, 42, 43,45, 48, 50

(addSequenceFeatures), 25 crisprNuclease, 38
addSequenceFeatures,NULL-method crisprNuclease,GuideSet-method

(addSequenceFeatures), 25 (crisprNuclease), 38
addSequenceFeatures,PairedGuideSet-method crisprNuclease,PairedGuideSet-method

(addSequenceFeatures), 25 (pamOrientation), 61
addSNPAnnotation, 26 customSequences (crisprNuclease), 38
addSNPAnnotation, GuideSet-method customSequences, GuideSet-method

(addSNPAnnotation), 26 (crisprNuclease), 38
addSNPAnnotation, NULL-method cutLength (pamOrientation), 61

(addSNPAnnotation), 26 cutLength,PairedGuideSet-method
addSNPAnnotation,PairedGuideSet-method (pamOrientation), 61

(addSNPAnnotation), 26 cutSites,GuideSet-method
addSpacerAlignments, 28, 32 (crisprNuclease), 38

cutSites,PairedGuideSet-method
(pamOrientation), 61

addSpacerAlignments,GuideSet-method
(addSpacerAlignments), 28

addSpacerAlignments,NULL-method
(addSpacerAlignments), 28

addSpacerAlignments,PairedGuideSet-method

DataFrame, 21, 46, 63
designCompleteAnnotation, 44
designOpsLibrary, 46

(adQSpacerAlignmeqts),ZS DNAString, 47-50
addSpacerAlignmentsIterative, 31, 32 DNAStringSet, 42, 47-50, 54, 55, 63
addSpacerAlignmentsIterative

(addSpacerAlignments), 28 editedAlleles (crisprNuclease), 38

addSpacerAlignmentsIterative,GuideSet-method editedAlleles,GuideSet-method
(addSpacerAlignments), 28 (crisprNuclease), 38



76

enzymeAnnotation, 24

enzymeAnnotation (crisprNuclease), 38

enzymeAnnotation, GuideSet-method
(crisprNuclease), 38

enzymeAnnotation<- (crisprNuclease), 38

enzymeAnnotation<-,GuideSet-method
(crisprNuclease), 38

exonTable (crisprNuclease), 38

exonTable,GuideSet-method
(crisprNuclease), 38

findSpacerPairs, 47
findSpacers, 49, 49, 60
flattenGuideSet, 51

geneAnnotation, /13
geneAnnotation (crisprNuclease), 38
geneAnnotation,GuideSet-method
(crisprNuclease), 38
geneAnnotation<- (crisprNuclease), 38
geneAnnotation<-,GuideSet-method
(crisprNuclease), 38
getBarcodeDistanceMatrix, 52
getConsensusIsoform, 53
getMrnaSequences, 54
getPAMSequence (completeSpacers), 35
getPAMSiteFromStartAndEnd
(completeSpacers), 35
getPreMrnaSequences, 55
getSpacerAlignments, 32
getSpacerAlignments
(addSpacerAlignments), 28
getSpacerSequence (completeSpacers), 35
getTssObjectFromTxObject, 55
getTxDb, 56, 58, 70
getTxInfoDataFrame, 8, 57
GRanges, 6, 22, 30, 32, 33,45, 47-50, 57, 59,

64, 65, 68, 69
GRangesList, 10, 12, 30, 35, 45, 53-58, 63,
65,70

grListExample, 58

grRepeatsExample, 59

GuideSet, 3-8, 10-27, 30, 33-35, 37, 38, 42,
43,48, 51, 60-62, 66-69

GuideSet (crisprNuclease), 38

GuideSet-class (crisprNuclease), 38

GuideSet2DataFrames, 59

guideSetExample, 60

guideSetExampleFullAnnotation, 60

guideSetExampleWithAlignments, 61

makeTxDbFromEnsembl, 56
makeTxDbFromGFF, 56

INDEX

mcols, 67
mcols (reexports), 67

offTargets (crisprNuclease), 38
of fTargets,GuideSet-method
(crisprNuclease), 38
onTargets (crisprNuclease), 38
onTargets,GuideSet-method
(crisprNuclease), 38

PairedGuideSet, 4-7, 10, 12, 14-16, 18,
20-23, 25, 27, 30, 33, 35, 48, 49, 62
63,68
PairedGuideSet (pamOrientation), 61
PairedGuideSet-class (pamOrientation),
61
pamDistance (pamOrientation), 61
pamDistance,PairedGuideSet-method
(pamOrientation), 61
pamLength,GuideSet-method
(crisprNuclease), 38
pamLength,PairedGuideSet-method
(pamOrientation), 61
pamOrientation, 61
pamOrientation,PairedGuideSet-method
(pamOrientation), 61
pams,GuideSet-method (crisprNuclease),
38
pams,PairedGuideSet-method
(pamOrientation), 61
pamSide, GuideSet-method
(crisprNuclease), 38
pamSide,PairedGuideSet-method
(pamOrientation), 61
pamSites (crisprNuclease), 38
pamSites,GuideSet-method
(crisprNuclease), 38
pamSites,PairedGuideSet-method
(pamOrientation), 61
preparePfamTable, 21, 46, 63
protospacers (crisprNuclease), 38
protospacers,GuideSet-method
(crisprNuclease), 38
protospacers,PairedGuideSet-method
(pamOrientation), 61
prototypeSequence,GuideSet-method
(crisprNuclease), 38

queryTss, 64, 65
queryTxObject, 64, 65

rankSpacers, 66
reexports, 67



INDEX

removeRepeats, 67
removeRepeats,GuideSet-method
(removeRepeats), 67
removeRepeats,NULL-method
(removeRepeats), 67
removeRepeats,PairedGuideSet-method
(removeRepeats), 67
removeSpacersWithSecondaryTargets, 68

Seqinfo, 15, 42

segnames, 67

segnames (reexports), 67

snps (crisprNuclease), 38

snps,GuideSet-method (crisprNuclease),
38

snps<- (crisprNuclease), 38

snps<-,GuideSet-method
(crisprNuclease), 38

spacerDistance (pamOrientation), 61

spacerDistance,PairedGuideSet-method
(pamOrientation), 61

spacerlLength,GuideSet-method
(crisprNuclease), 38

spacerLength,PairedGuideSet-method
(pamOrientation), 61

spacers (crisprNuclease), 38

spacers,GuideSet-method
(crisprNuclease), 38

spacers,PairedGuideSet-method
(pamOrientation), 61

targetOrigin (crisprNuclease), 38

targetOrigin,GuideSet-method
(crisprNuclease), 38

tssAnnotation, 34

tssAnnotation (crisprNuclease), 38

tssAnnotation,GuideSet-method
(crisprNuclease), 38

tssAnnotation<- (crisprNuclease), 38

tssAnnotation<-,GuideSet-method
(crisprNuclease), 38

tssObjectExample, 69

TxDb, 10, 12, 30, 35, 45, 53-58, 63, 65, 70

TxDb2GRangeslist, 10, 12, 30, 35, 45, 53-58,
63, 65,70

txTable (crisprNuclease), 38

txTable,GuideSet-method
(crisprNuclease), 38

updateOpsLibrary, 71

validateOpsLibrary, 72
VCF, 27,45

77



	addCompositeScores
	addConservationScores
	addCrispraiScores
	addDistanceToTss
	addEditedAlleles
	addEditingSites
	addExonTable
	addGeneAnnotation
	addIsoformAnnotation
	addNtcs
	addOffTargetScores
	addOnTargetScores
	addOpsBarcodes
	addPamScores
	addPfamDomains
	addReinitiationFlag
	addRepeats
	addRestrictionEnzymes
	addSequenceFeatures
	addSNPAnnotation
	addSpacerAlignments
	addTssAnnotation
	addTxTable
	completeSpacers
	convertToMinMaxGRanges
	convertToProtospacerGRanges
	crisprNuclease
	designCompleteAnnotation
	designOpsLibrary
	findSpacerPairs
	findSpacers
	flattenGuideSet
	getBarcodeDistanceMatrix
	getConsensusIsoform
	getMrnaSequences
	getPreMrnaSequences
	getTssObjectFromTxObject
	getTxDb
	getTxInfoDataFrame
	grListExample
	grRepeatsExample
	GuideSet2DataFrames
	guideSetExample
	guideSetExampleFullAnnotation
	guideSetExampleWithAlignments
	pamOrientation
	preparePfamTable
	queryTss
	queryTxObject
	rankSpacers
	reexports
	removeRepeats
	removeSpacersWithSecondaryTargets
	tssObjectExample
	TxDb2GRangesList
	updateOpsLibrary
	validateOpsLibrary
	Index

