
Package ‘cmapR’
January 19, 2026

Type Package

Title CMap Tools in R

Date 2023-04-03

Version 1.22.0

Description The Connectivity Map (CMap) is a massive resource of perturbational
gene expression profiles built by researchers at the Broad Institute and
funded by the NIH Library of Integrated Network-Based Cellular Signatures
(LINCS) program. Please visit https://clue.io for more information.
The cmapR package implements methods to parse, manipulate, and write common
CMap data objects, such as annotated matrices and collections of gene sets.

License file LICENSE

Depends R (>= 4.0)

Imports methods, rhdf5, data.table, flowCore, SummarizedExperiment,
matrixStats

Suggests knitr, testthat, BiocStyle, rmarkdown

VignetteBuilder knitr

biocViews DataImport, DataRepresentation, GeneExpression

URL https://github.com/cmap/cmapR

BugReports https://github.com/cmap/cmapR/issues

LazyData true

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/cmapR

git_branch RELEASE_3_22

git_last_commit 7a01f1e

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Ted Natoli [aut, cre] (ORCID: <https://orcid.org/0000-0002-0953-0206>)

Maintainer Ted Natoli <ted.e.natoli@gmail.com>

1

https://github.com/cmap/cmapR
https://github.com/cmap/cmapR/issues
https://orcid.org/0000-0002-0953-0206

2 Contents

Contents

align_matrices . 3
annotate.gct . 4
append.dim . 5
cdesc_char . 6
check_colnames . 6
check_dups . 7
distil . 7
ds . 8
extract.gct . 8
fix.datatypes . 9
GCT . 10
GCT-class . 11
gene_set . 12
ids . 12
is.wholenumber . 13
kd_gct . 14
lxb2mat . 14
mat . 15
melt.gct . 15
merge.gct . 17
merge_with_precedence . 18
meta . 19
na_pad_matrix . 20
parse.gctx . 20
parse.gmt . 21
parse.gmx . 22
parse.grp . 23
process_ids . 24
rank.gct . 25
read.gctx.ids . 26
read.gctx.meta . 26
robust_zscore . 27
subset.gct . 28
subset_to_ids . 29
threshold . 29
transpose.gct . 30
update.gctx . 30
write.gct . 31
write.gctx . 32
write.gctx.meta . 33
write.tbl . 34
write_gmt . 35
write_grp . 35

Index 37

align_matrices 3

align_matrices Align the rows and columns of two (or more) matrices

Description

Align the rows and columns of two (or more) matrices

Usage

align_matrices(m1, m2, ..., L = NULL, na.pad = TRUE, as.3D = TRUE)

Arguments

m1 a matrix with unique row and column names

m2 a matrix with unique row and column names

... additional matrices with unique row and column names

L a list of matrix objects. If this is given, m1, m2, and ... are ignored

na.pad boolean indicating whether to pad the combined matrix with NAs for rows/columns
that are not shared by m1 and m2.

as.3D boolean indicating whether to return the result as a 3D array. If FALSE, will
return a list.

Value

an object containing the aligned matrices. Will either be a list or a 3D array

Examples

construct some example matrices
m1 <- matrix(rnorm(20), nrow=4)
rownames(m1) <- letters[1:4]
colnames(m1) <- LETTERS[1:5]
m2 <- matrix(rnorm(20), nrow=5)
rownames(m2) <- letters[1:5]
colnames(m2) <- LETTERS[1:4]
m1
m2

align them, padding with NA and returning a 3D array
align_matrices(m1, m2)

align them, not padding and retuning a list
align_matrices(m1, m2, na.pad=FALSE, as.3D=FALSE)

4 annotate.gct

annotate.gct Add annotations to a GCT object

Description

Given a GCT object and either a data.frame or a path to an annotation table, apply the annotations
to the gct using the given keyfield.

Usage

annotate.gct(...)

annotate_gct(g, annot, dim = "row", keyfield = "id")

S4 method for signature 'GCT'
annotate_gct(g, annot, dim = "row", keyfield = "id")

Arguments

... arguments passed on to annotate_gct

g a GCT object

annot a data.frame or path to text table of annotations

dim either ’row’ or ’column’ indicating which dimension of g to annotate

keyfield the character name of the column in annot that matches the row or column
identifiers in g

Value

a GCT object with annotations applied to the specified dimension

See Also

Other GCT utilities: melt.gct(), merge.gct(), rank.gct(), subset.gct()

Examples

gct_path <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
read the GCT file, getting the matrix only
g <- parse_gctx(gct_path, matrix_only=TRUE)
separately, read the column annotations and then apply them using
annotate_gct
cdesc <- read_gctx_meta(gct_path, dim="col")
g <- annotate_gct(g, cdesc, dim="col", keyfield="id")

append.dim 5

append.dim Append matrix dimensions to filename

Description

Append matrix dimensions to filename

Usage

append.dim(...)

append_dim(ofile, mat, extension = "gct")

Arguments

... arguments passed on to append_dim

ofile the file name

mat the matrix

extension the file extension

Details

This is a helper function that most users will not use directly

Value

a character string of the filename with matrix dimensions appended

See Also

Other GCTX parsing functions: GCT, fix.datatypes(), parse.gctx(), process_ids(), read.gctx.ids(),
read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

(filename <- cmapR:::append_dim("my.gctx.filename",
matrix(nrow=10, ncol=15)))

6 check_colnames

cdesc_char An example table of metadata, as would be parsed from or parse.gctx.
Initially all the columns are of type character.

Description

An example table of metadata, as would be parsed from or parse.gctx. Initially all the columns are
of type character.

Usage

cdesc_char

Format

An object of class data.frame with 368 rows and 8 columns.

check_colnames Check whether test_names are columns in the data.frame df

Description

Check whether test_names are columns in the data.frame df

Usage

check_colnames(test_names, df, throw_error = TRUE)

Arguments

test_names a vector of column names to test

df the data.frame to test against

throw_error boolean indicating whether to throw an error if any test_names are not found
in df

Value

boolean indicating whether or not all test_names are columns of df

Examples

check_colnames(c("pert_id", "pert_iname"), cdesc_char) # TRUE
check_colnames(c("pert_id", "foobar"),

cdesc_char, throw_error=FALSE)# FALSE, suppress error

check_dups 7

check_dups Check for duplicates in a vector

Description

Check for duplicates in a vector

Usage

check_dups(x, name = "")

Arguments

x the vector

name the name of the object to print in an error message if duplicates are found

Value

silently returns NULL

Examples

this will throw an erorr, let's catch it
tryCatch(

check_dups(c("a", "b", "c", "a", "d")),
error=function(e) print(e)
)

distil Collapse the rows or columns of a matrix using weighted averaging

Description

This is equivalent to the ’modz’ procedure used in collapsing replicates in traditional L1000 data
processing. The weight for each replicate is computed as its normalized average correlation to the
other replicates in the set.

Usage

distil(m, dimension = "col", method = "spearman")

Arguments

m a numeric matrix where the rows or columns are assumed to be replicates

dimension the dimension to collapse. either ’row’ or ’col’

method the correlation method to use

8 extract.gct

Value

a list with the following elements

values a vector of the collapsed values
correlations a vector of the pairwise correlations
weights a vector of the computed weights

Examples

m <- matrix(rnorm(30), ncol=3)
distil(m)

ds An example of a GCT object with row and column metadata and gene
expression values in the matrix.

Description

An example of a GCT object with row and column metadata and gene expression values in the
matrix.

Usage

ds

Format

An object of class GCT of length 1.

extract.gct Exract elements from a GCT matrix

Description

extract the elements from a GCT object where the values of row_field and col_field are the same.
A concrete example is if g represents a matrix of signatures of genetic perturbations, and you wan
to extract all the values of the targeted genes.

Usage

extract.gct(...)

extract_gct(
g,
row_field,
col_field,
rdesc = NULL,
cdesc = NULL,
row_keyfield = "id",
col_keyfield = "id"

)

fix.datatypes 9

Arguments

... arguments passed on to extract_gct

g the GCT object

row_field the column name in rdesc to search on

col_field the column name in cdesc to search on

rdesc a data.frame of row annotations

cdesc a data.frame of column annotations

row_keyfield the column name of rdesc to use for annotating the rows of g

col_keyfield the column name of cdesc to use for annotating the rows of g

Value

a list of the following elements

mask a logical matrix of the same dimensions as ds@mat indicating which matrix elements have
been extracted

idx an array index into ds@mat representing which elements have been extracted

vals a vector of the extracted values

Examples

get the values for all targeted genes from a
dataset of knockdown experiments
res <- extract_gct(kd_gct, row_field="pr_gene_symbol",

col_field="pert_mfc_desc")
str(res)
stats::quantile(res$vals)

fix.datatypes Adjust the data types for columns of a meta data frame

Description

GCT(X) parsing initially returns data frames of row and column descriptors where all columns are
of type character. This is inconvenient for analysis, so the goal of this function is to try and guess
the appropriate data type for each column.

Usage

fix.datatypes(...)

fix_datatypes(meta)

Arguments

... arguments passed on to fix_datatypes

meta a data.frame

10 GCT

Details

This is a low-level helper function which most users will not need to access directly

Value

meta the same data frame with (potentially) adjusted column types.

See Also

Other GCTX parsing functions: GCT, append.dim(), parse.gctx(), process_ids(), read.gctx.ids(),
read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

meta data table with all character types
str(cdesc_char)
fixed <- cmapR:::fix_datatypes(cdesc_char)
note how some column classes have changed
str(fixed)

GCT Initialize an object of class GCT

Description

Initialize an object of class GCT

Usage

GCT(
mat = NULL,
rdesc = NULL,
cdesc = NULL,
src = NULL,
rid = NULL,
cid = NULL,
matrix_only = FALSE

)

Arguments

mat a matrix

rdesc a data.frame of row metadata

cdesc a data.frame of column metadata

src path to a GCT file to read

rid vector of character identifiers for rows

cid vector of character identifiers for columns

matrix_only logical indicating whether to read just the matrix data from src

GCT-class 11

Details

If mat is provided, rid and cid are treated as the row and column identifiers for the matrix and are
assigned to the rid and cid slots of the GCT object.

If mat is not provided but src is provided, rid and cid are treated as filters. Data will be read
from the file path provided to src and will then be restricted to the character ids or integer indices
provided to rid and cid. In a similar manner, matrix_only controls whether the row and column
metadata are also read from the src file path.

Value

a GCT object

See Also

Other GCTX parsing functions: append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

an empty object
(g <- GCT())
with a matrix
note we must specify row and column ids
(g <- GCT(mat=matrix(rnorm(100), nrow=10),

rid=letters[1:10], cid=letters[1:10]))
from file
gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
(g <- GCT(src=gct_file))

GCT-class An S4 class to represent a GCT object

Description

The GCT class serves to represent annotated matrices. The mat slot contains said data and the rdesc
and cdesc slots contain data frames with annotations about the rows and columns, respectively

Slots

mat a numeric matrix

rid a character vector of row ids

cid a character vector of column ids

rdesc a data.frame of row descriptors

rdesc a data.frame of column descriptors

src a character indicating the source (usually file path) of the data

See Also

parse_gctx, write_gctx, read_gctx_meta, read_gctx_ids

visit http://clue.io/help for more information on the GCT format

http://clue.io/help

12 ids

gene_set An example collection of gene sets as used in the Lamb 2006 CMap
paper.

Description

An example collection of gene sets as used in the Lamb 2006 CMap paper.

Usage

gene_set

Format

An object of class list of length 8.

Source

Lamb et al 2006 doi:10.1126/science.1132939

ids Extract the or set row or column ids of a GCT object

Description

Extract the or set row or column ids of a GCT object

Usage

ids(g, dimension = "row")

S4 method for signature 'GCT'
ids(g, dimension = "row")

ids(g, dimension = "row") <- value

S4 replacement method for signature 'GCT'
ids(g, dimension = "row") <- value

Arguments

g the GCT object

dimension the dimension to extract/update [’row’ or ’column’]

value a character vector

Value

a vector of row ids

is.wholenumber 13

See Also

Other GCT accessor methods: mat(), meta()

Examples

extract rids
rids <- ids(ds)
extract column ids
cids <- ids(ds, "column")
set rids
ids(ds) <- as.character(1:length(rids))
set cids
ids(ds, "column") <- as.character(1:length(cids))

is.wholenumber Check if x is a whole number

Description

Check if x is a whole number

Usage

is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x number to test

tol the allowed tolerance

Value

boolean indicating whether x is tol away from a whole number value

Examples

is.wholenumber(1)
is.wholenumber(0.5)

14 lxb2mat

kd_gct An example GCT object of knockdown experiments targeting a subset
of landmark genes.

Description

An example GCT object of knockdown experiments targeting a subset of landmark genes.

Usage

kd_gct

Format

An object of class GCT of length 1.

lxb2mat Read an LXB file and return a matrix

Description

Read an LXB file and return a matrix

Usage

lxb2mat(lxb_path, columns = c("RID", "RP1"), newnames = c("barcode_id", "FI"))

Arguments

lxb_path the path to the lxb file

columns which columns in the lxb file to retain

newnames what to name these columns in the returned matrix

Value

a matrix

See Also

Other CMap parsing functions: parse.gmt(), parse.gmx(), parse.grp(), write_gmt(), write_grp()

Examples

lxb_path <- system.file("extdata", "example.lxb", package="cmapR")
lxb_data <- lxb2mat(lxb_path)
str(lxb_data)

mat 15

mat Extract or set the matrix of GCT object

Description

Extract or set the matrix of GCT object

Usage

mat(g)

S4 method for signature 'GCT'
mat(g)

mat(g) <- value

S4 replacement method for signature 'GCT'
mat(g) <- value

Arguments

g the GCT object

value a numeric matrix

Value

a matrix

See Also

Other GCT accessor methods: ids(), meta()

Examples

get the matrix
m <- mat(ds)
set the matrix
mat(ds) <- matrix(0, nrow=nrow(m), ncol=ncol(m))

melt.gct Transform a GCT object in to a long form data.table (aka ’melt’)

Description

Utilizes the melt.data.table function to transform the matrix into long form. Optionally can
include the row and column annotations in the transformed data.table.

16 melt.gct

Usage

melt.gct(...)

melt_gct(
g,
suffixes = NULL,
remove_symmetries = FALSE,
keep_rdesc = TRUE,
keep_cdesc = TRUE,
...

)

S4 method for signature 'GCT'
melt_gct(
g,
suffixes = NULL,
remove_symmetries = FALSE,
keep_rdesc = TRUE,
keep_cdesc = TRUE,
...

)

Arguments

... further arguments passed along to data.table::merge

g the GCT object

suffixes the character suffixes to be applied if there are collisions between the names of
the row and column descriptors

remove_symmetries

boolean indicating whether to remove the lower triangle of the matrix (only
applies if g@mat is symmetric)

keep_rdesc boolean indicating whether to keep the row descriptors in the final result

keep_cdesc boolean indicating whether to keep the column descriptors in the final result

Value

a data.table object with the row and column ids and the matrix values and (optinally) the row and
column descriptors

See Also

Other GCT utilities: annotate.gct(), merge.gct(), rank.gct(), subset.gct()

Examples

simple melt, keeping both row and column meta
head(melt_gct(ds))

update row/colum suffixes to indicate rows are genes, columns experiments
head(melt_gct(ds, suffixes = c("_gene", "_experiment")))

ignore row/column meta

merge.gct 17

head(melt_gct(ds, keep_rdesc = FALSE, keep_cdesc = FALSE))

merge.gct Merge two GCT objects together

Description

Merge two GCT objects together

Usage

S3 method for class 'gct'
merge(...)

merge_gct(g1, g2, dim = "row", matrix_only = FALSE)

S4 method for signature 'GCT,GCT'
merge_gct(g1, g2, dim = "row", matrix_only = FALSE)

Arguments

... arguments passed on to merge_gct

g1 the first GCT object

g2 the second GCT object

dim the dimension on which to merge (row or column)

matrix_only boolean idicating whether to keep only the data matrices from g1 and g2 and
ignore their row and column meta data

Value

a GCT object

See Also

Other GCT utilities: annotate.gct(), melt.gct(), rank.gct(), subset.gct()

Examples

take the first 10 and last 10 rows of an object
and merge them back together
(a <- subset_gct(ds, rid=1:10))
(b <- subset_gct(ds, rid=969:978))
(merged <- merge_gct(a, b, dim="row"))

18 merge_with_precedence

merge_with_precedence Merge two data.frames, but where there are common fields those in
x are retained and those in y are dropped.

Description

Merge two data.frames, but where there are common fields those in x are retained and those in y
are dropped.

Usage

merge_with_precedence(x, y, by, allow.cartesian = TRUE, as_data_frame = TRUE)

Arguments

x the data.frame whose columns take precedence

y another data.frame

by a vector of column names to merge on

allow.cartesian

boolean indicating whether it’s ok for repeated values in either table to merge
with each other over and over again.

as_data_frame boolean indicating whether to ensure the returned object is a data.frame in-
stead of a data.table. This ensures compatibility with GCT object conven-
tions, that is, the rdesc and cdesc slots must be strictly data.frame objects.

Value

a data.frame or data.table object

See Also

data.table::merge

Examples

(x <- data.table::data.table(foo=letters[1:10], bar=1:10))
(y <- data.table::data.table(foo=letters[1:10], bar=11:20,

baz=LETTERS[1:10]))
the 'bar' column from y will be dropped on merge
cmapR:::merge_with_precedence(x, y, by="foo")

meta 19

meta Extract the or set metadata of a GCT object

Description

Extract the or set metadata of a GCT object

Usage

meta(g, dimension = "row")

S4 method for signature 'GCT'
meta(g, dimension = "row")

meta(g, dimension = "row") <- value

S4 replacement method for signature 'GCT'
meta(g, dimension = "row") <- value

Arguments

g the GCT object

dimension the dimension to extract/update [’row’ or ’column’]

value a data.frame

Value

a data.frame

See Also

Other GCT accessor methods: ids(), mat()

Examples

extract rdesc
rdesc <- meta(ds)
extract cdesc
cdesc <- meta(ds, dim="column")
set rdesc
meta(ds) <- data.frame(x=sample(letters, nrow(rdesc), replace=TRUE))
set cdesc
meta(ds, dim="column") <- data.frame(x=sample(letters, nrow(cdesc),

replace=TRUE))

20 parse.gctx

na_pad_matrix Pad a matrix with additional rows/columns of NA values

Description

Pad a matrix with additional rows/columns of NA values

Usage

na_pad_matrix(m, row_universe = NULL, col_universe = NULL)

Arguments

m a matrix with unique row and column names

row_universe a vector with the universe of possible row names

col_universe a vector with the universe of possible column names

Value

a matrix

Examples

m <- matrix(rnorm(10), nrow=2)
rownames(m) <- c("A", "B")
colnames(m) <- letters[1:5]
na_pad_matrix(m, row_universe=LETTERS, col_universe=letters)

parse.gctx Parse a GCTX file into the workspace as a GCT object

Description

Parse a GCTX file into the workspace as a GCT object

Usage

parse.gctx(...)

parse_gctx(fname, rid = NULL, cid = NULL, matrix_only = FALSE)

parse.gmt 21

Arguments

... arguments passed on to parse_gctx

fname path to the GCTX file on disk

rid either a vector of character or integer row indices or a path to a grp file containing
character row indices. Only these indicies will be parsed from the file.

cid either a vector of character or integer column indices or a path to a grp file
containing character column indices. Only these indicies will be parsed from
the file.

matrix_only boolean indicating whether to parse only the matrix (ignoring row and column
annotations)

Details

parse_gctx also supports parsing of plain text GCT files, so this function can be used as a general
GCT parser.

Value

a GCT object

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), process_ids(), read.gctx.ids(),
read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
(ds <- parse_gctx(gct_file))

matrix only
(ds <- parse_gctx(gct_file, matrix_only=TRUE))

only the first 10 rows and columns
(ds <- parse_gctx(gct_file, rid=1:10, cid=1:10))

parse.gmt Read a GMT file and return a list

Description

Read a GMT file and return a list

Usage

parse.gmt(...)

parse_gmt(fname)

22 parse.gmx

Arguments

... arguments passed on to parse_gmt

fname the file path to be parsed

Details

parse_gmt returns a nested list object. The top level contains one list per row in fname. Each of
these is itself a list with the following fields: - head: the name of the data (row in fname) - desc:
description of the corresponding data - len: the number of data items - entry: a vector of the data
items

Value

a list of the contents of fname. See details.

See Also

Visit http://clue.io/help for details on the GMT file format

Other CMap parsing functions: lxb2mat(), parse.gmx(), parse.grp(), write_gmt(), write_grp()

Examples

gmt_path <- system.file("extdata", "query_up.gmt", package="cmapR")
gmt <- parse_gmt(gmt_path)
str(gmt)

parse.gmx Read a GMX file and return a list

Description

Read a GMX file and return a list

Usage

parse.gmx(...)

parse_gmx(fname)

Arguments

... arguments passed on to parse_gmx

fname the file path to be parsed

Details

parse_gmx returns a nested list object. The top level contains one list per column in fname. Each
of these is itself a list with the following fields: - head: the name of the data (column in fname) -
desc: description of the corresponding data - len: the number of data items - entry: a vector of
the data items

http://clue.io/help

parse.grp 23

Value

a list of the contents of fname. See details.

See Also

Visit http://clue.io/help for details on the GMX file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.grp(), write_gmt(), write_grp()

Examples

gmx_path <- system.file("extdata", "lm_probes.gmx", package="cmapR")
gmx <- parse_gmx(gmx_path)
str(gmx)

parse.grp Read a GRP file and return a vector of its contents

Description

Read a GRP file and return a vector of its contents

Usage

parse.grp(...)

parse_grp(fname)

Arguments

... arguments passed on to parse_grp

fname the file path to be parsed

Value

a vector of the contents of fname

See Also

Visit http://clue.io/help for details on the GRP file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.gmx(), write_gmt(), write_grp()

Examples

grp_path <- system.file("extdata", "lm_epsilon_n978.grp", package="cmapR")
values <- parse_grp(grp_path)
str(values)

http://clue.io/help
http://clue.io/help

24 process_ids

process_ids Return a subset of requested GCTX row/colum ids out of the universe
of all ids

Description

Return a subset of requested GCTX row/colum ids out of the universe of all ids

Usage

process_ids(ids, all_ids, type = "rid")

Arguments

ids vector of requested ids. If NULL, no subsetting is performed

all_ids vector of universe of ids

type flag indicating the type of ids being processed

Details

This is a low-level helper function which most users will not need to access directly

Value

a list with the following elements ids: a character vector of the processed ids idx: an integer list of
their corresponding indices in all_ids

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), read.gctx.ids(),
read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
ids <- read_gctx_ids(gct_file)
processed_ids <- cmapR:::process_ids(ids[1:10], ids)
str(processed_ids)

rank.gct 25

rank.gct Convert a GCT object’s matrix to ranks

Description

Convert a GCT object’s matrix to ranks

Usage

rank.gct(...)

rank_gct(g, dim = "col", decreasing = TRUE)

S4 method for signature 'GCT'
rank_gct(g, dim = "col", decreasing = TRUE)

Arguments

... arguments passed on to rank_gct

g the GCT object to rank

dim the dimension along which to rank (row or column)

decreasing boolean indicating whether higher values should get lower ranks

Value

a modified version of g, with the values in the matrix converted to ranks

See Also

Other GCT utilities: annotate.gct(), melt.gct(), merge.gct(), subset.gct()

Examples

(ranked <- rank_gct(ds, dim="column"))
scatter rank vs. score for a few columns
m <- mat(ds)
m_ranked <- mat(ranked)
plot(m[, 1:3], m_ranked[, 1:3],

xlab="score", ylab="rank")

26 read.gctx.meta

read.gctx.ids Read GCTX row or column ids

Description

Read GCTX row or column ids

Usage

read.gctx.ids(...)

read_gctx_ids(gctx_path, dim = "row")

Arguments

... arguments passed on to read_gctx_ids

gctx_path path to the GCTX file

dim which ids to read (row or column)

Value

a character vector of row or column ids from the provided file

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
row ids
rid <- read_gctx_ids(gct_file)
head(rid)
column ids
cid <- read_gctx_ids(gct_file, dim="column")
head(cid)

read.gctx.meta Parse row or column metadata from GCTX files

Description

Parse row or column metadata from GCTX files

Usage

read.gctx.meta(...)

read_gctx_meta(gctx_path, dim = "row", ids = NULL)

robust_zscore 27

Arguments

... arguments passed on to read_gctx_meta

gctx_path the path to the GCTX file

dim which metadata to read (row or column)

ids a character vector of a subset of row/column ids for which to read the metadata

Value

a data.frame of metadata

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
row meta
row_meta <- read_gctx_meta(gct_file)
str(row_meta)
column meta
col_meta <- read_gctx_meta(gct_file, dim="column")
str(col_meta)
now for only the first 10 ids
col_meta_first10 <- read_gctx_meta(gct_file, dim="column",
ids=col_meta$id[1:10])
str(col_meta_first10)

robust_zscore Compoute robust z-scores

Description

robust zscore implementation takes in a 1D vector, returns 1D vector after computing robust zscores
rZ = (x-med(x))/mad(x)

Usage

robust_zscore(x, min_mad = 1e-06, ...)

Arguments

x numeric vector to z-score

min_mad the minimum allowed MAD, useful for avoiding division by very small numbers

... further options to median, max functions

Value

transformed version of x

28 subset.gct

Examples

(x <- rnorm(25))
(robust_zscore(x))

with min_mad
(robust_zscore(x, min_mad=1e-4))

subset.gct Subset a gct object using the provided row and column ids

Description

Subset a gct object using the provided row and column ids

Usage

S3 method for class 'gct'
subset(...)

subset_gct(g, rid = NULL, cid = NULL)

S4 method for signature 'GCT'
subset_gct(g, rid = NULL, cid = NULL)

Arguments

... arguments passed on to subset_gct

g a gct object
rid a vector of character ids or integer indices for ROWS
cid a vector of character ids or integer indices for COLUMNS

Value

a GCT object

See Also

Other GCT utilities: annotate.gct(), melt.gct(), merge.gct(), rank.gct()

Examples

first 10 rows and columns by index
(a <- subset_gct(ds, rid=1:10, cid=1:10))

first 10 rows and columns using character ids
use \code{ids} to extract the ids
rid <- ids(ds)
cid <- ids(ds, dimension="col")
(b <- subset_gct(ds, rid=rid[1:10], cid=cid[1:10]))

identical(a, b) # TRUE

subset_to_ids 29

subset_to_ids Do a robust data.frame subset to a set of ids

Description

Do a robust data.frame subset to a set of ids

Usage

subset_to_ids(df, ids)

Arguments

df data.frame to subset

ids the ids to subset to

Value

a subset version of df

threshold Threshold a numeric vector

Description

Threshold a numeric vector

Usage

threshold(x, minval, maxval)

Arguments

x the vector

minval minium allowed value

maxval maximum allowed value

Value

a thresholded version of x

Examples

x <- rnorm(20)
threshold(x, -0.1, -0.1)

30 update.gctx

transpose.gct Transpose a GCT object

Description

Transpose a GCT object

Usage

transpose.gct(...)

transpose_gct(g)

S4 method for signature 'GCT'
transpose_gct(g)

Arguments

... arguments passed on to transpose_gct

g the GCT object

Value

a modified verion of the input GCT object where the matrix has been transposed and the row and
column ids and annotations have been swapped.

Examples

transpose_gct(ds)

update.gctx Update the matrix of an existing GCTX file

Description

Update the matrix of an existing GCTX file

Usage

S3 method for class 'gctx'
update(...)

update_gctx(x, ofile, rid = NULL, cid = NULL)

write.gct 31

Arguments

... arguments passed on to update_gctx

x an array of data

ofile the filename of the GCTX to update

rid integer indices or character ids of the rows to update

cid integer indices or character ids of the columns to update

Details

Overwrite the rows and columns of ofile as indicated by rid and cid respectively. rid and cid
can either be integer indices or character ids corresponding to the row and column ids in ofile.

Value

silently returns NULL

Examples

Not run:
m <- matrix(rnorm(20), nrow=10)
update by integer indices
update_gctx(m, ofile="my.gctx", rid=1:10, cid=1:2)
update by character ids
row_ids <- letters[1:10]
col_ids <- LETTERS[1:2]
update_gctx(m, ofile="my.gctx", rid=row_ids, cid=col_ids)

End(Not run)

write.gct Write a GCT object to disk in GCT format

Description

Write a GCT object to disk in GCT format

Usage

write.gct(...)

write_gct(ds, ofile, precision = 4, appenddim = TRUE, ver = 3)

Arguments

... arguments passed on to write_gct

ds the GCT object

ofile the desired output filename

precision the numeric precision at which to save the matrix. See details.

appenddim boolean indicating whether to append matrix dimensions to filename

ver the GCT version to write. See details.

32 write.gctx

Details

Since GCT is text format, the higher precision you choose, the larger the file size. ver is assumed
to be 3, aka GCT version 1.3, which supports embedded row and column metadata in the GCT file.
Any other value passed to ver will result in a GCT version 1.2 file which contains only the matrix
data and no annotations.

Value

silently returns NULL

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gctx()

Examples

note this will create a GCT file in your current directory
write_gct(ds, "dataset", precision=2)

write.gctx Write a GCT object to disk in GCTX format

Description

Write a GCT object to disk in GCTX format

Usage

write.gctx(...)

write_gctx(
ds,
ofile,
appenddim = TRUE,
compression_level = 0,
matrix_only = FALSE,
max_chunk_kb = 1024

)

Arguments

... arguments passed on to write_gctx

ds a GCT object

ofile the desired file path for writing

appenddim boolean indicating whether the resulting filename will have dimensions appended
(e.g. my_file_n384x978.gctx)

compression_level

integer between 1-9 indicating how much to compress data before writing. Higher
values result in smaller files but slower read times.

write.gctx.meta 33

matrix_only boolean indicating whether to write only the matrix data (and skip row, column
annotations)

max_chunk_kb for chunking, the maximum number of KB a given chunk will occupy

Value

silently returns NULL

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gct()

Examples

note this will create a GCT file in your current directory
write_gctx(ds, "dataset")

write.gctx.meta Write a data.frame of meta data to GCTX file

Description

Write a data.frame of meta data to GCTX file

Usage

write.gctx.meta(...)

write_gctx_meta(ofile, df, dimension = "row")

Arguments

... arguments passed on to write_gctx_meta

ofile the desired file path for writing

df the data.frame of annotations

dimension the dimension to annotate (row or column)

Value

silently returns NULL

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx(), write.gct()

34 write.tbl

Examples

Not run:
assume ds is a GCT object
write_gctx_meta("/my/file/path", cdesc_char, dimension="col")

End(Not run)

write.tbl Write a data.frame to a tab-delimited text file

Description

Write a data.frame to a tab-delimited text file

Usage

write.tbl(...)

write_tbl(tbl, ofile, ...)

Arguments

... additional arguments passed on to write.table

tbl the data.frame to be written

ofile the desired file name

Details

This method simply calls write.table with some preset arguments that generate a unquoated,
tab-delimited file without row names.

Value

silently returns NULL

See Also

write.table

Examples

Not run:
write_tbl(cdesc_char, "col_meta.txt")

End(Not run)

write_gmt 35

write_gmt Write a nested list to a GMT file

Description

Write a nested list to a GMT file

Usage

write_gmt(lst, fname)

Arguments

lst the nested list to write. See details.

fname the desired file name

Details

lst needs to be a nested list where each sub-list is itself a list with the following fields: - head: the
name of the data - desc: description of the corresponding data - len: the number of data items -
entry: a vector of the data items

Value

silently returns NULL

See Also

Visit http://clue.io/help for details on the GMT file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.gmx(), parse.grp(), write_grp()

Examples

Not run:
write_gmt(gene_set, "gene_set.gmt")

End(Not run)

write_grp Write a vector to a GRP file

Description

Write a vector to a GRP file

Usage

write_grp(vals, fname)

http://clue.io/help

36 write_grp

Arguments

vals the vector of values to be written

fname the desired file name

Value

silently returns NULL

See Also

Visit http://clue.io/help for details on the GRP file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.gmx(), parse.grp(), write_gmt()

Examples

Not run:
write_grp(letters, "letter.grp")

End(Not run)

http://clue.io/help

Index

∗ CMap parsing functions
lxb2mat, 14
parse.gmt, 21
parse.gmx, 22
parse.grp, 23
write_gmt, 35
write_grp, 35

∗ GCT accessor methods
ids, 12
mat, 15
meta, 19

∗ GCT utilities
annotate.gct, 4
melt.gct, 15
merge.gct, 17
rank.gct, 25
subset.gct, 28

∗ GCT utilties
transpose.gct, 30

∗ GCTX parsing functions
append.dim, 5
fix.datatypes, 9
GCT, 10
parse.gctx, 20
process_ids, 24
read.gctx.ids, 26
read.gctx.meta, 26
write.gct, 31
write.gctx, 32
write.gctx.meta, 33

∗ datasets
cdesc_char, 6
ds, 8
gene_set, 12
kd_gct, 14

∗ internal
append.dim, 5
fix.datatypes, 9
merge_with_precedence, 18
process_ids, 24
subset_to_ids, 29
write.gctx.meta, 33

align_matrices, 3

annotate.gct, 4, 16, 17, 25, 28
annotate_gct (annotate.gct), 4
annotate_gct,GCT-method (annotate.gct),

4
append.dim, 5, 10, 11, 21, 24, 26, 27, 32, 33
append_dim (append.dim), 5

cdesc_char, 6
check_colnames, 6
check_dups, 7

data.frame, 4, 6, 18, 29
data.table, 15, 16, 18
distil, 7
ds, 8

extract.gct, 8
extract_gct (extract.gct), 8

fix.datatypes, 5, 9, 11, 21, 24, 26, 27, 32, 33
fix_datatypes (fix.datatypes), 9

GCT, 5, 10, 10, 21, 24, 26, 27, 32, 33
GCT-class, 11
gene_set, 12

ids, 12, 15, 19
ids,GCT-method (ids), 12
ids<- (ids), 12
ids<-,GCT-method (ids), 12
is.wholenumber, 13

kd_gct, 14

lxb2mat, 14, 22, 23, 35, 36

mat, 13, 15, 19
mat,GCT-method (mat), 15
mat<- (mat), 15
mat<-,GCT-method (mat), 15
melt.data.table, 15
melt.gct, 4, 15, 17, 25, 28
melt_gct (melt.gct), 15
melt_gct,GCT-method (melt.gct), 15
merge.gct, 4, 16, 17, 25, 28

37

38 INDEX

merge_gct (merge.gct), 17
merge_gct,GCT,GCT-method (merge.gct), 17
merge_with_precedence, 18
meta, 13, 15, 19
meta,GCT-method (meta), 19
meta<- (meta), 19
meta<-,GCT-method (meta), 19

na_pad_matrix, 20

parse.gctx, 5, 10, 11, 20, 24, 26, 27, 32, 33
parse.gmt, 14, 21, 23, 35, 36
parse.gmx, 14, 22, 22, 23, 35, 36
parse.grp, 14, 22, 23, 23, 35, 36
parse_gctx, 11
parse_gctx (parse.gctx), 20
parse_gmt (parse.gmt), 21
parse_gmx (parse.gmx), 22
parse_grp (parse.grp), 23
process_ids, 5, 10, 11, 21, 24, 26, 27, 32, 33

rank.gct, 4, 16, 17, 25, 28
rank_gct (rank.gct), 25
rank_gct,GCT-method (rank.gct), 25
read.gctx.ids, 5, 10, 11, 21, 24, 26, 27, 32,

33
read.gctx.meta, 5, 10, 11, 21, 24, 26, 26, 32,

33
read_gctx_ids, 11
read_gctx_ids (read.gctx.ids), 26
read_gctx_meta, 11
read_gctx_meta (read.gctx.meta), 26
robust_zscore, 27

subset.gct, 4, 16, 17, 25, 28
subset_gct (subset.gct), 28
subset_gct,GCT-method (subset.gct), 28
subset_to_ids, 29

threshold, 29
transpose.gct, 30
transpose_gct (transpose.gct), 30
transpose_gct,GCT-method

(transpose.gct), 30

update.gctx, 30
update_gctx (update.gctx), 30

write.gct, 5, 10, 11, 21, 24, 26, 27, 31, 33
write.gctx, 5, 10, 11, 21, 24, 26, 27, 32, 32,

33
write.gctx.meta, 5, 10, 11, 21, 24, 26, 27,

32, 33, 33
write.table, 34

write.tbl, 34
write_gct (write.gct), 31
write_gctx, 11
write_gctx (write.gctx), 32
write_gctx_meta (write.gctx.meta), 33
write_gmt, 14, 22, 23, 35, 36
write_grp, 14, 22, 23, 35, 35
write_tbl (write.tbl), 34

	align_matrices
	annotate.gct
	append.dim
	cdesc_char
	check_colnames
	check_dups
	distil
	ds
	extract.gct
	fix.datatypes
	GCT
	GCT-class
	gene_set
	ids
	is.wholenumber
	kd_gct
	lxb2mat
	mat
	melt.gct
	merge.gct
	merge_with_precedence
	meta
	na_pad_matrix
	parse.gctx
	parse.gmt
	parse.gmx
	parse.grp
	process_ids
	rank.gct
	read.gctx.ids
	read.gctx.meta
	robust_zscore
	subset.gct
	subset_to_ids
	threshold
	transpose.gct
	update.gctx
	write.gct
	write.gctx
	write.gctx.meta
	write.tbl
	write_gmt
	write_grp
	Index

