Package ‘cicero’

January 19, 2026
Type Package

Title Predict cis-co-accessibility from single-cell chromatin
accessibility data

Version 1.28.0

Description Cicero computes putative cis-regulatory maps from single-cell chromatin
accessibility data. It also extends monocle 2 for use in chromatin accessibility
data.

Depends R (>= 3.5.0), monocle, Gviz (>= 1.22.3)
License MIT + file LICENSE
Encoding UTF-8

Imports assertthat (>= 0.2.0), Biobase (>= 2.37.2), BiocGenerics (>=
0.23.0), data.table (>= 1.10.4), dplyr (>= 0.7.4), ENN (>=
1.1), GenomicRanges (>= 1.30.3), ggplot2 (>=2.2.1), glasso (>=
1.8), grDevices, igraph (>= 1.1.0), IRanges (>= 2.10.5), Matrix
(>= 1.2-12), methods, parallel, plyr (>= 1.8.4), reshape2 (>=
1.4.3), S4Vectors (>= 0.14.7), stats, stringi, stringr (>=
1.2.0), tibble (>= 1.4.2), tidyr, VGAM (>= 1.0-5), utils

RoxygenNote 7.2.3

Suggests AnnotationDbi (>= 1.38.2), knitr, markdown, rmarkdown,
rtracklayer (>= 1.36.6), testthat, vdiffr (>= 0.2.3), covr

VignetteBuilder knitr

biocViews Sequencing, Clustering, CellBasedAssays, ImmunoOncology,
GeneRegulation, GeneTarget, Epigenetics, ATACSeq, SingleCell

LazyData true

git_url https://git.bioconductor.org/packages/cicero
git_branch RELEASE_3_22

git_last_commit bcae37f

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Hannah Pliner [aut, cre],
Cole Trapnell [aut]

Maintainer Hannah Pliner <hpliner@uw.edu>

2 cicero-package

Contents
cicero-package L e 2
aggregate_by_cell_bin 3
aggregate_nearby_peaks L 3
annotate_cds_by_site L. 4
assemble_CONNECHiONS o o v o e 5
build_gene_activity_matrixo 6
cell_data e e e e e e e 7
cicero_data L e s 8
COMPAre_CONNECHONS . . . « v v v v v e e ettt e e e e e e e e e e e e 8
df for_coords e 9
estimate_distance_parameter L. .ol e e 10
find_overlapping_ccans 12
find_overlapping_coordinates oL 13
GENETALE_CCANS .+« .« v v v v e v e e e e e e e e e e e e e e e e e e e 13
generate_cicero_modelso L 14
gene_annotation_sampleo 16
human.hgl9.genome 17
make_atac_cdS e 17
make _CiCero_CAS 18
make_sparse_matrix e e e e 19
normalize_gene_activities L. 20
plot_accessibility_in_pseudotime Lo 21
plot_connections e 21
ranges_for_coords L e e e e 24
TUN_CICETO . . &t v v v e e e e e e e e e e e e e e e e e 25

Index 27

cicero-package cicero
Description
Cicero computes putative cis-regulatory maps from single-cell chromatin accessibility data. It also
extends monocle 2 for use in chromatin accessibility data.
Author(s)

Maintainer: Hannah Pliner <hpliner@uw.edu>

Authors:

* Cole Trapnell <coletrap@uw.edu>

aggregate_by_cell_bin 3

aggregate_by_cell_bin Aggregate count CDS by groups of cells

Description

Aggregates a CDS based on an indicator column in the pData table

Usage
aggregate_by_cell _bin(cds, group_col)

Arguments
cds A CDS object to be aggregated
group_col The name of the column in the pData table that indicates the cells assignment to
its aggregate bin.
Details

This function takes an input CDS object and collapses cells based on a column in the pData table
by summing the values within the cell group.

Value

A count cds aggregated by group_col

Examples

data("cicero_data")

#input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#pData(input_cds)$cell_subtype <- rep(1:10, times=20)
#binned_input_lin <-aggregate_by_cell_bin(input_cds, "cell_subtype”)

aggregate_nearby_peaks
Make an aggregate count cds by collapsing nearby peaks

Description

Make an aggregate count cds by collapsing nearby peaks

Usage
aggregate_nearby_peaks(cds, distance = 1000)

Arguments

cds A CellDataSet (CDS) object. For example, output of make_atac_cds

distance The distance within which peaks should be collapsed

4 annotate_cds_by_site
Details
This function takes an input CDS object and collapses features within a given distance by summing
the values for the collapsed features. Ranges of features are determined by their feature name, so
the feature names must be in the form "chr1:1039013-2309023".
Value
A CDS object with aggregated peaks.
Examples

data("cicero_data")
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
agg_cds <- aggregate_nearby_peaks(input_cds, distance = 10000)

annotate_cds_by_site

Add feature data columns to fData

Description

Annotate the sites of your CDS with feature data based on coordinate overlap.

Usage
annotate_cds_by_site(
cds,
feature_data,
verbose = FALSE,
maxgap = 0,
all = FALSE,
header = FALSE
)
Arguments
cds A CDS object.

feature_data

Data frame, or a character path to a file of feature data. If a path, the file should
be tab separated. Default assumes no header, if your file has a header, set header
= FALSE. For either a data frame or a path, the file should be in bed-like format,
with the first 3 columns containing chromosome, start and stop respectively. The
remaining columns will be added to the fData table as feature data.

verbose Logical, should progress messages be printed?

maxgap The maximum number of base pairs allowed between the peak and the feature
for the feature and peak to be considered overlapping. Default = 0 (overlapping).
Details in findOverlaps-methods. If maxgap is set to "nearest" then the nearest
feature will be assigned regardless of distance.

all Logical, should all overlapping intervals be reported? If all is FALSE, the largest
overlap is reported.

header Logical, if reading a file, is there a header?

assemble_connections 5

Details

annotate_cds_by_site will add columns to the fData table of a CDS object based on the overlap
of peaks with features in a data frame or file. An "overlap" column will be added, along with any
columns beyond the three required columns in the feature data. The "overlap" column is the number
of base pairs overlapping the fData site. When maxgap is used, the true overlap is still calculated
(overlap will be 0 if the two features only overlap because of maxgap) NA means that there was
no overlapping feature. If a peak overlaps multiple data intervals and all is FALSE, the largest
overlapping interval will be chosen (in a tie, the first entry is taken), otherwise all intervals will be
chosen and annotations will be collapsed using a comma as a separator.

Value

A CDS object with updated fData table.

Examples

data("cicero_data")
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
feat <- data.frame(chr = c("chr18”, "chr18", "chr18"”, "chri18"),
bp1 c (10000, 10800, 50000, 100000),
bp2 = c(10700, 11000, 60000, 110000),
type = c("Acetylated”, "Methylated”, "Acetylated”,
"Methylated”))
input_cds <- annotate_cds_by_site(input_cds, feat)

assemble_connections Combine and reconcile cicero models

Description

Function which takes the output of generate_cicero_models and assembles the connections into
a data frame with cicero co-accessibility scores.

Usage

assemble_connections(cicero_model_list, silent = FALSE)

Arguments

cicero_model_list
A list of cicero output objects, generally, the output of generate_cicero_models.

silent Logical, should the function run silently?

Details

This function combines glasso models computed on overlapping windows of the genome. Pairs
of sites whose regularized correlation was calculated twice are first checked for qualitative con-
cordance (both zero, positive or negative). If they not concordant, NA is returned. If they are
concordant the mean is returned.

6 build_gene_activity_matrix

Value

A data frame of connections with their cicero co-accessibility scores.

See Also

generate_cicero_models

Examples

data("cicero_data")
data("human.hg19.genome")
sample_genome <- subset(human.hgl9.genome, V1 == "chr18")
sample_genome$V2[1] <- 100000
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = 'tSNE',
norm_method = "none")
tsne_coords <- t(reducedDimA(input_cds))
row.names(tsne_coords) <- row.names(pData(input_cds))
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
model_output <- generate_cicero_models(cicero_cds,
distance_parameter = 0.3,
genomic_coords = sample_genome)
cicero_cons <- assemble_connections(model_output)

build_gene_activity_matrix
Calculate initial Cicero gene activity matrix

Description

This function calculates the initial Cicero gene activity matrix. After this function, the activity ma-
trix should be normalized with any comparison matrices using the function normalize_gene_activities.

Usage

build_gene_activity_matrix(
input_cds,
cicero_cons_info,
site_weights = NULL,
dist_thresh = 250000,
coaccess_cutoff = 0.25

Arguments

input_cds Binary sci-ATAC-seq input CDS. The input CDS must have a column in the
fData table called "gene" which is the gene name if the site is a promoter, and
NA if the site is distal.

cell data 7

cicero_cons_info
Cicero connections table, generally the output of run_cicero. This table is a
data frame with three required columns named "Peak1", "Peak2", and "coac-
cess". Peakl and Peak2 contain coordinates for the two compared elements, and
coaccess contains their Cicero co-accessibility score.

site_weights NULL or an individual weight for each site in input_cds.

dist_thresh The maximum distance in base pairs between pairs of sites to include in the gene
activity calculation.

coaccess_cutoff
The minimum Cicero co-accessibility score that should be considered connected.

Value

Unnormalized gene activity matrix.

Examples

data("cicero_data")
data("human.hg19.genome")
sample_genome <- subset(human.hgl9.genome, V1 == "chr18")
sample_genome$V2[1] <- 100000
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- detectGenes(input_cds)
input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = "tSNE',
norm_method = "none")
tsne_coords <- t(reducedDimA(input_cds))
row.names(tsne_coords) <- row.names(pData(input_cds))
cicero_cds <- make_cicero_cds(input_cds,
reduced_coordinates = tsne_coords)
cons <- run_cicero(cicero_cds, sample_genome, sample_num=2)

data(gene_annotation_sample)

gene_annotation_sub <- gene_annotation_sample[,c(1:3, 8)]
names(gene_annotation_sub)[4] <- "gene"

input_cds <- annotate_cds_by_site(input_cds, gene_annotation_sub)
num_genes <- pData(input_cds)$num_genes_expressed

names (num_genes) <- row.names(pData(input_cds))

unnorm_ga <- build_gene_activity_matrix(input_cds, cons)

cell_data Metadata for example cells in cicero_data

Description

Metadata information for cicero_data

Usage

cell_data

8 compare_connections

Format

A data frame with 200 rows and 2 variables:

timepoint Time at cell collection
cell Cell barcode

cicero_data Example single-cell chromatin accessibility data

Description
A dataset containing a subset of a single-cell ATAC-seq dataset collected on Human Skeletal Muscle
Myoblasts. Only includes data from chromosome 18.

Usage

cicero_data

Format
A data frame with 35137 rows and 3 variables:

Peak Peak information
Cell Cell ID
Count Reads per cell per peak

compare_connections Compare Cicero connections to other datasets

Description
Compare two sets of connections and return a vector of logicals for whether connections in one are
present in the other.

Usage

compare_connections(conns1, conns2, maxgap = 0)

Arguments
conns1 A data frame of Cicero connections, like those output from assemble_connections.
The first two columns must be the coordinates of peaks that are connected.
conns2 A data frame of connections to be searched for overlap. The first two columns
must be coordinates of genomic sites that are connected.
maxgap The number of base pairs between peaks allowed to be called overlapping. See

findOverlaps-methods in the IRanges package for further description.

df _for_coords 9

Value

A vector of logicals of whether the Cicero pair is present in the alternate dataset.

Examples

Not run:
cons$in_dataset <- compare_connections(conns, alt_data)

End(Not run)

df _for_coords Construct a data frame of coordinate info from coordinate strings

Description

Construct a data frame of coordinate info from coordinate strings

Usage

df_for_coords(coord_strings)

Arguments

coord_strings A list of coordinate strings (each like "chr1:500000-1000000")

Details

Coordinate strings consist of three pieces of information: chromosome, start, and stop. These pieces

noonon

of information can be separated by the characters ":", "_", or "-". Commas will be removed, not
used as separators (ex: "chr18:8,575,097-8,839,855" is ok).

Value

data.frame with three columns, chromosome, starting base pair and ending base pair

Examples

df _for_coords(c("chr1:2,039-30,239", "chrX:28884:101293"))

10

estimate_distance_parameter

estimate_distance_parameter

Calculate distance penalty parameter

Description

Function to calculate distance penalty parameter (distance_parameter) for random genomic win-
dows. Used to choose distance_parameter to pass to generate_cicero_models.

estimate_distance_parameter(

Usage
cds,
window = 5e+05,
maxit = 100,
s =0.75,

sample_num = 100,
distance_constraint = 250000,
distance_parameter_convergence = 1e-22,

max_elements

= 200,

genomic_coords = cicero::human.hg19.genome,
max_sample_windows = 500

Arguments

cds
window
maxit
s

sample_num

A cicero CDS object generated using make_cicero_cds.

Size of the genomic window to query, in base pairs.

Maximum number of iterations for distance_parameter estimation.
Power law value. See details for more information.

Number of random windows to calculate distance_parameter for.

distance_constraint

Maximum distance of expected connections. Must be smaller than window.

distance_parameter_convergence

max_elements

genomic_coords

Convergence step size for distance_parameter calculation.

Maximum number of elements per window allowed. Prevents very large models
from slowing performance.

Either a data frame or a path (character) to a file with chromosome lengths. The
file should have two columns, the first is the chromosome name (ex. "chrl") and
the second is the chromosome length in base pairs. See data(human.hg19.genome)
for an example. If a file, should be tab-separated and without header.

max_sample_windows

Maximum number of random windows to screen to find sample_num windows
for distance calculation. Default 500.

estimate_distance_parameter 11

Details

The purpose of this function is to calculate the distance scaling parameter used to adjust the distance-
based penalty function used in Cicero’s model calculation. The scaling parameter, in combination
with the power law value s determines the distance-based penalty.

This function chooses random windows of the genome and calculates a distance_parameter. The
function returns a vector of values calculated on these random windows. We recommend using the
mean value of this vector moving forward with Cicero analysis.

The function works by finding the minimum distance scaling parameter such that no more than
5 distance_constraint have non-zero entries after graphical lasso regularization and such that
fewer than 80 nonzero.

If the chosen random window has fewer than 2 or greater than max_elements sites, the window
is skipped. In addition, the random window will be skipped if there are insufficient long-range
comparisons (see below) to be made. The max_elements parameter exist to prevent very dense
windows from slowing the calculation. If you expect that your data may regularly have this many
sites in a window, you will need to raise this parameter.

Calculating the distance_parameter in a sample window requires peaks in that window that are
at a distance greater than the distance_constraint parameter. If there are not enough exam-
ples at high distance have been found, the function will return the warning "Warning: could not
calculate sample_num distance_parameters - see documentation details”.When looking for
sample_num example windows, the function will search max_sample_windows windows. By de-
fault this is set at 500, which should be well beyond the 100 windows that need to be found. How-
ever, in very sparse datasets, increasing max_sample_windows may help avoid the above warning.
Increasing max_sample_windows may slow performance in sparse datasets. If you are still not able
to get enough example windows, even with a large max_sample_windows paramter, this may mean
your window parameter needs to be larger or your distance_constraint parameter needs to be
smaller. A less likely possibility is that your max_elements parameter needs to be larger. This
would occur if your data is particularly dense.

The parameter s is a constant that captures the power-law distribution of contact frequencies be-
tween different locations in the genome as a function of their linear distance. For a complete dis-
cussion of the various polymer models of DNA packed into the nucleus and of justifiable values
for s, we refer readers to (Dekker et al., 2013) for a discussion of justifiable values for s. We use
a value of 0.75 by default in Cicero, which corresponds to the “tension globule” polymer model
of DNA (Sanborn et al., 2015). This parameter must be the same as the s parameter for gener-
ate_cicero_models.

Further details are available in the publication that accompanies this package. Run citation("cicero")
for publication details.

Value

A list of results of length sample_num. List members are numeric distance_parameter values.

References

* Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013). Exploring the three-dimensional
organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14,
390-403.

» Sanborn, A.L., Rao, S.S.P., Huang, S.-C., Durand, N.C., Huntley, M.H., Jewett, A.I., Bochkov,
L.D., Chinnappan, D., Cutkosky, A., Li, J., et al. (2015). Chromatin extrusion explains key
features of loop and domain formation in wild-type and engineered genomes. Proc. Natl.
Acad. Sci. U. S. A. 112, E6456-E6465.

12 find_overlapping_ccans

See Also

generate_cicero_models

Examples

data("cicero_data")
data("human.hg19.genome")
sample_genome <- subset(human.hgl9.genome, V1 == "chr18")
sample_genome$V2[1] <- 100000
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = 'tSNE',
norm_method = "none")
tsne_coords <- t(reducedDimA(input_cds))
row.names(tsne_coords) <- row.names(pData(input_cds))
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
distance_parameters <- estimate_distance_parameter(cicero_cds,
sample_num=5,
genomic_coords = sample_genome)

find_overlapping_ccans
Find CCAN that overlap each other in genomic coordinates

Description

Find CCANS that overlap each other in genomic coordinates

Usage

find_overlapping_ccans(ccan_assignments, min_overlap = 1)

Arguments

ccan_assignments
A data frame where the first column is the peak and the second is the CCAN
assignment. For example, output of generate_ccans.

min_overlap The minimum base pair overlap to count as overlapping.

Value

A data frame with two columns, CCAN1 and CCAN2. CCAN:Ss in this list are overlapping. The
data frame is reciprocal (if CCAN 2 overlaps CCAN 1, there will be two rows, 1,2 and 2,1).

Examples

c("chr18_1408345_1408845", "chr18_1779830_1780330",
"chr18_1929095_1929595", "chr18_1954501_1954727",
"chr18_2049865_2050884", "chr18_2083726_2084102",
"chr18_2087935_2088622", "chr18_2104705_2105551",
"chr18_2108641_2108907"),

CCAN = c(1,2,2,2,3,3,3,3,2))

ccan_df <- data.frame(peak

find_overlapping_coordinates 13

olap_ccans <- find_overlapping_ccans(ccan_df)

find_overlapping_coordinates
Find peaks that overlap a specific genomic location

Description

Find peaks that overlap a specific genomic location

Usage

find_overlapping_coordinates(coord_list, coord, maxgap = @)

Arguments
coord_list A list of coordinates to be searched for overlap in the form chr_100_2000.
coord The coordinates that you want to find in the form chr1_100_2000.
maxgap The maximum distance in base pairs between coord and the coord_list that
should count as overlapping. Default is 0.
Value

A character vector of the peaks that overlap coord.

Examples

test_coords <- c("chr18_10025_10225", "chr18_10603_11103",
"chr18_11604_13986",
"chr18_157883_158536", "chr18_217477_218555",
"chr18_245734_246234")
find_overlapping_coordinates(test_coords, "chr18:10,100-1246234")

generate_ccans Generate cis-co-accessibility networks (CCANs)

Description

Post process cicero co-accessibility scores to extract modules of sites that are co-accessible.

Usage

generate_ccans(
connections_df,
coaccess_cutoff_override = NULL,
tolerance_digits = 2

)

14 generate_cicero_models

Arguments

connections_df Data frame of connections with columns: Peakl, Peak2, coaccess. Generally,
the output of run_cicero or assemble_connections
coaccess_cutoff_override
Numeric, co-accessibility score threshold to impose. Overrides automatic cal-
culation.
tolerance_digits
The number of digits to calculate cutoff to. Default is 2 (0.01 tolerance)

Details

CCAN:s are calculated by first specifying a minimum co-accessibility score and then using the Lou-

vain community detection algorithm on the subgraph induced by excluding edges below this score.

For this function, either the user can specify the minimum co-accessibility using coaccess_cutoff_override,
or the cutoff can be calculated automatically by optimizing for CCAN number. The cutoff calcula-

tion can be slow, so users may wish to use the coaccess_cutoff_override after initially calculat-

ing the cutoff to speed future runs.

Value

Data frame with two columns - Peak and CCAN. CCAN column indicates CCAN assignment.
Peaks not included in a CCAN are not returned.

Examples

Not run:

data("cicero_data")

set.seed(18)

data("human.hg19.genome")

sample_genome <- subset(human.hgl9.genome, V1 == "chr18")

sample_genome$V2[1] <- 100000

input_cds <- make_atac_cds(cicero_data, binarize = TRUE)

input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = 'tSNE',
norm_method = "none")

tsne_coords <- t(reducedDimA(input_cds))

row.names(tsne_coords) <- row.names(pData(input_cds))

cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)

cicero_cons <- run_cicero(cicero_cds, sample_genome, sample_num = 2)

ccan_assigns <- generate_ccans(cicero_cons)

End(Not run)

generate_cicero_models
Generate cicero models

Description

Function to generate graphical lasso models on all sites in a CDS object within overlapping genomic
windows.

generate_cicero_models 15

Usage

generate_cicero_models(
cds,
distance_parameter,
s = 0.75,
window = 5e+05,
max_elements = 200,
genomic_coords = cicero::human.hg19.genome

Arguments

cds A cicero CDS object generated using make_cicero_cds.

distance_parameter
Distance based penalty parameter value. Generally, the mean of the calculated
distance_parameter values from estimate_distance_parameter.

s Power law value. See details.
window Size of the genomic window to query, in base pairs.

max_elements Maximum number of elements per window allowed. Prevents very large models
from slowing performance.

genomic_coords Either a data frame or a path (character) to a file with chromosome lengths. The
file should have two columns, the first is the chromosome name (ex. "chrl") and
the second is the chromosome length in base pairs. See data(human.hg19.genome)
for an example. If a file, should be tab-separated and without header.

Details

The purpose of this function is to compute the raw covariances between each pair of sites within
overlapping windows of the genome. Within each window, the function then estimates a regularized
correlation matrix using the graphical LASSO (Friedman et al., 2008), penalizing pairs of distant
sites more than proximal sites. The scaling parameter, distance_parameter, in combination with
the power law value s determines the distance-based penalty.

The parameter s is a constant that captures the power-law distribution of contact frequencies be-
tween different locations in the genome as a function of their linear distance. For a complete
discussion of the various polymer models of DNA packed into the nucleus and of justifiable val-
ues for s, we refer readers to (Dekker et al., 2013) for a discussion of justifiable values for s.
We use a value of 0.75 by default in Cicero, which corresponds to the “tension globule” polymer
model of DNA (Sanborn et al., 2015). This parameter must be the same as the s parameter for
estimate_distance_parameter.

Further details are available in the publication that accompanies this package. Run citation("cicero”)
for publication details.

Value

A list of results for each window. Either a glasso object, or a character description of why the win-
dow was skipped. This list can be directly input into assemble_connections to create a reconciled
list of cicero co-accessibility scores.

16 gene_annotation_sample

References

* Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013). Exploring the three-dimensional
organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14,
390-403.

* Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9, 432-441.

* Sanborn, A.L., Rao, S.S.P,, Huang, S.-C., Durand, N.C., Huntley, M.H., Jewett, A.I., Bochkov,
LD., Chinnappan, D., Cutkosky, A., Li, J., et al. (2015). Chromatin extrusion explains key
features of loop and domain formation in wild-type and engineered genomes. Proc. Natl.
Acad. Sci. U. S. A. 112, E6456-E6465.

See Also

estimate_distance_parameter

Examples

data("cicero_data")
data("human.hg19.genome")
sample_genome <- subset(human.hg19.genome, V1 == "chri18")
sample_genome$V2[1] <- 100000
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = 'tSNE',
norm_method = "none")
tsne_coords <- t(reducedDimA(input_cds))
row.names(tsne_coords) <- row.names(pData(input_cds))
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
model_output <- generate_cicero_models(cicero_cds,
distance_parameter = 0.3,
genomic_coords = sample_genome)

gene_annotation_sample
Example gene annotation information

Description

Gencode gene annotation data from chromosome 18 of the human genome (hg19).

Usage

gene_annotation_sample

Format
A data frame with 15129 rows and 8 variables:

chromosome Chromosome

start Exon starting base

human.hg19.genome

17

end Exon ending base

strand Exon mapping direction

feature Feature type

gene Gene ID

transcript Transcript ID

symbol Gene symbol

human.hg19.genome Chromosome lengths from human genome hgl9

Description

A list of the chromosomes in hg19 and their lengths in base pairs.

Usage

human.hg19.genome

Format

A data frame with 93 rows and 2 variables:

V1 Chromosome

V2 Chromosome length, base pairs

make_atac_cds

Make ATAC CDS object

Description

This function takes as input a data frame or a path to a file in a sparse matrix format and returns a
properly formatted CellDataSet (CDS) object.

Usage

make_atac_cds(input, binarize = FALSE)

Arguments

input

binarize

Either a data frame or a path to input data. If a file, it should be a tab-delimited
text file with three columns and no header. For either a file or a data frame, the
first column is the peak coordinates in the form "chr10_100013372_100013596",
the second column is the cell name, and the third column is an integer that rep-
resents the number of reads from that cell overlapping that peak. Zero values do
not need to be included (sparse matrix format).

Logical. Should the count matrix be converted to binary?

18 make_cicero_cds

Value

A CDS object containing your ATAC data in proper format.

Examples

data("cicero_data")
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)

make_cicero_cds Create cicero input CDS

Description

Function to generate an aggregated input CDS for cicero. run_cicero takes as input an aggregated
cicero CDS object. This function will generate the CDS given an input CDS (perhaps generated
by make_atac_cds) and a value for k, which is the number of cells to be aggregated per bin. The
default value for k is 50.

Usage

make_cicero_cds(
cds,
reduced_coordinates,
k = 50,
summary_stats = NULL,
size_factor_normalize = TRUE,
silent = FALSE,
return_agg_info = FALSE

Arguments

cds Input CDS object.

reduced_coordinates
A data frame with columns representing the coordinates of each cell in reduced
dimension space (generally 2-3 dimensions). row. names (reduced_coordinates)
should match the cell names in the CDS object. If dimension reduction was done
using monocle, tSNE coordinates can be accessed by t(reducedDimA(cds)),
and DDRTree coordinates can be accessed by t(reducedDimS(cds)).

k Number of cells to aggregate per bin.

summary_stats Which numeric pData(cds) columns you would like summarized (mean) by
bin in the resulting CDS object.

size_factor_normalize
Logical, should accessibility values be normalized by size factor?

silent Logical, should warning and info messages be printed?

return_agg_info
Logical, should a list of the assignments of cells to aggregated bins be output?

When TRUE, this function returns a list of two items, first, the aggregated CDS
object and second, a data.frame with the binning information.

make_sparse_matrix 19

Details

Aggregation of similar cells is done using a k-nearest-neighbors graph and a randomized "bag-
ging" procedure. Details are available in the publication that accompanies this package. Run
citation("cicero") for publication details. KNN is calculated using knn. index

Value

Aggregated CDS object. If return_agg_info is TRUE, a list of the aggregated CDS object and a
data.frame of aggregation info.

Examples

Not run:
data("cicero_data")

input_cds <- make_atac_cds(cicero_data, binarize = TRUE)

input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = 'tSNE',
norm_method = "none")

tsne_coords <- t(reducedDimA(input_cds))

row.names(tsne_coords) <- row.names(pData(input_cds))

cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)

End(Not run)

make_sparse_matrix Make a symmetric square sparse matrix from data frame

Description

Convert a data frame into a square sparse matrix (all versus all)

Usage

make_sparse_matrix(data, i.name = "Peak1”, j.name = "Peak2", x.name = "value")
Arguments

data data frame

i.name name of i column

j.name name of j column

X.name name of value column
Value

sparse matrix

20 normalize_gene_activities

normalize_gene_activities
Normalize gene activities

Description

Normalize the output of build_gene_activity_matrix. Inputis either one or multiple gene activ-
ity matrices. Any gene activities to be compared amongst each other should be normalized together.

Usage

normalize_gene_activities(activity_matrices, cell_num_genes)

Arguments

activity_matrices
A gene activity matrix, output from build_gene_activity_matrix, or a list of
gene activity matrices to be normalized together.

cell_num_genes A named vector of the total number of accessible sites per cell. Names should
correspond to the cell names in the activity matrices. These values can be found
in the "num_genes_expressed" column of the pData table of the CDS used to
calculate the gene activity matrix.

Value

Normalized activity matrix or matrices.

Examples

data("cicero_data")
data("human.hg19.genome")
sample_genome <- subset(human.hgl9.genome, V1 == "chr18")
sample_genome$V2[1] <- 100000
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- detectGenes(input_cds)
input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = "tSNE',
norm_method = "none")
tsne_coords <- t(reducedDimA(input_cds))
row.names(tsne_coords) <- row.names(pData(input_cds))
cicero_cds <- make_cicero_cds(input_cds,
reduced_coordinates = tsne_coords)
cons <- run_cicero(cicero_cds, sample_genome, sample_num=2)

data(gene_annotation_sample)

gene_annotation_sub <- gene_annotation_sample[,c(1:3, 8)]
names(gene_annotation_sub)[4] <- "gene"

input_cds <- annotate_cds_by_site(input_cds, gene_annotation_sub)
num_genes <- pData(input_cds)$num_genes_expressed

names (num_genes) <- row.names(pData(input_cds))

unnorm_ga <- build_gene_activity_matrix(input_cds, cons)
cicero_gene_activities <- normalize_gene_activities(unnorm_ga, num_genes)

plot_accessibility_in_pseudotime 21

plot_accessibility_in_pseudotime
Plot accessibility by pseudotime

Description

Make a barplot of chromatin accessibility across pseudotime

Usage

plot_accessibility_in_pseudotime(cds_subset, breaks = 10)

Arguments
cds_subset Subset of the CDS object you want to plot. The CDS must have a column in the
pData table called "Pseudotime".
breaks Number of breaks along pseudotime. Controls the coarseness of the plot.
Details

This function plots each site in the CDS subset by cell pseudotime as a barplot. Cells are divided
into bins by pseudotime (number determined by breaks) and the percent of cells in each bin that
are accessible is represented by bar height. In addition, the black line represents the pseudotime-
dependent average accessibility from a smoothed binomial regression.

Value

ggplot object

Examples

Not run:

plot_accessibility_in_pseudotime(input_cds_lin[c("chr18_38156577_38158261",
"chr18_48373358_48374180",
"chr18_60457956_60459080")1)

End(Not run)

plot_connections Plot connections

Description

Plotting function for Cicero connections. Uses plotTracks as its basis

22 plot_connections

Usage

plot_connections(
connection_df,
chr,
minbp,
maxbp,
coaccess_cutoff = 0,
peak_color = "#B4656F",
connection_color = "#7F7CAF",
connection_color_legend = TRUE,
alpha_by_coaccess = FALSE,
connection_width = 2,
connection_ymax = NULL,
gene_model = NULL,
gene_model_color = "#81D2C7",
gene_model_shape = c("smallArrow”, "box"),
comparison_track = NULL,
comparison_coaccess_cutoff = 0,
comparison_peak_color = "#B4656F",
comparison_connection_color = "#7F7CAF",
comparison_connection_color_legend = TRUE,
comparison_connection_width = 2,
comparison_ymax = NULL,
collapseTranscripts = FALSE,
include_axis_track = TRUE,
return_as_list = FALSE,
viewpoint = NULL,
comparison_viewpoint = TRUE,
viewpoint_color = "#FQ544F",
viewpoint_fill = "#EFD8D7",
viewpoint_alpha = 0.5

Arguments

connection_df Data frame of connections, which must include the columns ’Peakl’, *Peak?2’,
and ’coaccess’. Generally, the output of run_cicero or assemble_connections.

chr The chromosome of the region you would like to plot in the form ’chr10’.
minbp The base pair coordinate of the start of the region to be plotted.
maxbp The base pair coordinate of the end of the region to be plotted.

coaccess_cutoff
The minimum cicero co-accessibility score you would like to be plotted. Default
is 0.

peak_color Color for peak annotations - a single color, the name of a column containing

color values that correspond to Peak1, or the name of column containing a char-
acter or factor to base peak colors on.

connection_color
Color for connection lines. A single color, the name of a column containing

color values, or the name of a column containing a character or factor to base
connection colors on.

plot_connections 23

connection_color_legend
Logical, should connection color legend be shown?
alpha_by_coaccess
Logical, should the transparency of connection lines be scaled based on co-
accessibility score?
connection_width
Width of connection lines.
connection_ymax
Connection y-axis height. If NULL, chosen automatically.

gene_model Either NULL or a data.frame. The data.frame should be in a form compatible
with the Gviz function GeneRegionTrack-class (cannot have NA as column
names).
gene_model_color
Color for gene annotations.
gene_model_shape
Shape for gene models, passed to GeneRegionTrack-class. Options described
at GeneRegionTrack-class.
comparison_track
Either NULL or a data frame. If a data frame, a second track of connections will
be plotted based on this data. This data frame has the same requirements as
connection_df (Peakl, Peak2 and coaccess columns).
comparison_coaccess_cutoff
The minimum cicero co-accessibility score you would like to be plotted for the
comparison dataset. Default = 0.
comparison_peak_color
Color for comparison peak annotations - a single color, the name of a column
containing color values that correspond to Peakl, or the name of a column con-
taining a character or factor to base peak colors on.
comparison_connection_color
Color for comparison connection lines. A single color, the name of a column
containing color values, or the name of a column containing a character or factor
to base connection colors on.
comparison_connection_color_legend
Logical, should comparison connection color legend be shown?
comparison_connection_width
Width of comparison connection lines.
comparison_ymax
Connection y-axis height for comparison track. If NULL, chosen automatically.

collapseTranscripts
Logical or character scalar. Can be one in gene, longest, shortest or meta.
Variable is passed to the GeneRegionTrack-class function of Gviz. Deter-
mines whether and how to collapse related transcripts. See Gviz documentation
for details.

include_axis_track
Logical, should a genomic axis be plotted?

return_as_list Logical, if TRUE, the function will not plot, but will return the plot compo-
nents as a list. Allows user to add/customize Gviz components and plot them
separately using plotTracks.

24 ranges_for_coords

viewpoint NULL or Coordinates in form "chr1_10000_10020". Use viewpoint if you would
like to plot cicero connections "4C-seq style". Only connections originating
in the viewpoint will be shown. Ideal for comparisons with 4C-seq data. If
comparison_viewpoint is TRUE, any comparison track will be subsetted as well.

comparison_viewpoint
Logical, should viewpoint apply to comparison track as well?

viewpoint_color
Color for the highlight border.

viewpoint_fill Color for the highlight fill.

viewpoint_alpha
Alpha value for the highlight fill.

Value

A gene region plot, or list of components if return_as_list is TRUE.

Examples

cicero_cons <- data.frame(

Peakl = c("chr18_10034652_10034983", "chr18_10034652_10034983",
"chr18_10034652_10034983", "chr18_10034652_10034983",
"chr18_10087586_10087901", "chr18_10120685_10127115",
"chr18_10097718_10097934", "chr18_10087586_10087901",
"chr18_10154818_10155215", "chr18_10238762_10238983",
"chr18_10198959_10199183", "chr18_10250985_10251585"),

Peak2 = c("chr18_10097718_10097934", "chr18_10087586_10087901",
"chr18_10154818_10155215", "chr18_10238762_10238983",
"chr18_10198959_10199183", "chr18_10250985_10251585",
"chr18_10034652_10034983", "chr18_10034652_10034983",
"chr18_10034652_10034983", "chr18_10034652_10034983",
"chr18_10087586_10087901", "chr18_10120685_10127115"),

coaccess = c(0.0051121787, 0.0016698617, 0.0006570246,

0.0013466927, 0.0737935011, 0.3264019452,
0.0051121787, 0.0016698617, 0.0006570246,
0.0013466927, 0.0737935011, 0.3264019452))
plot_connections(cicero_cons, chr = "chr18"”,
minbp = 10034652,
maxbp = 10251585,
peak_color = "purple")

ranges_for_coords Construct GRanges objects from coordinate strings

Description

Construct GRanges objects from coordinate strings

Usage

ranges_for_coords(coord_strings, meta_data_df = NULL, with_names = FALSE)

run_cicero 25

Arguments

coord_strings A list of coordinate strings (in the form "chr1:500000-1000000")

meta_data_df A data frame with any meta data columns you want included with the ranges.
Must be in the same order as coord_strings.

with_names logical - should meta data include coordinate string (field coord_string)?

Details

Coordinate strings consist of three pieces of information: chromosome, start, and stop. These pieces
of information can be separated by the characters ":", "_", or "-". Commas will be removed, not

used as separators (ex: "chr18:8,575,097-8,839,855" is ok).

non

Value

GRanges object of the input strings

See Also

GRanges-class

Examples

ran1 <- ranges_for_coords("chr1:2039-30239", with_names = TRUE)
ran2 <- ranges_for_coords(c("chr1:2049-203902", "chrX:489249-1389389"),
meta_data_df = data.frame(dat = c("1", "X")))
ran3 <- ranges_for_coords(c("chr1:2049-203902", "chrX:489249-1389389"),
with_names = TRUE,
meta_data_df = data.frame(dat = c("1", "X"),
stringsAsFactors = FALSE))

run_cicero Run Cicero

Description

A wrapper function that runs the primary functions of the Cicero pipeline with default parameters.
Runs estimate_distance_parameter, generate_cicero_models and assemble_connections.
See the manual pages of these functions for details about their function and parameter options.
Defaults in this function are designed for mammalian data, those with non-mammalian data should
read about parameters in the above functions.

Usage

run_cicero(
cds,
genomic_coords,
window = 5e+05,
silent = FALSE,
sample_num = 100

26

run_cicero

Arguments

cds Cicero CDS object, created using make_cicero_cds

genomic_coords FEither a data frame or a path (character) to a file with chromosome lengths. The

file should have two columns, the first is the chromosome name (ex. "chrl") and
the second is the chromosome length in base pairs. See data(human.hg19.genome)
for an example. If a file, should be tab-separated and without header.

window Size of the genomic window to query, in base pairs.
silent Whether to print progress messages
sample_num How many sample genomic windows to use to generate distance_parameter

Value

parameter. Default: 100.

A table of co-accessibility scores

Examples

data("cicero_data")
data("human.hg19.genome")
sample_genome <- subset(human.hg19.genome, V1 == "chri18")
sample_genome$V2[1] <- 100000
input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
reduction_method = 'tSNE',
norm_method = "none")
tsne_coords <- t(reducedDimA(input_cds))
row.names(tsne_coords) <- row.names(pData(input_cds))
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
cons <- run_cicero(cicero_cds, sample_genome, sample_num = 2)

Index

+ datasets
cell_data, 7
cicero_data, 8
gene_annotation_sample, 16
human.hg19.genome, 17

aggregate_by_cell_bin, 3
aggregate_nearby_peaks, 3
annotate_cds_by_site, 4
assemble_connections, 5, 14, 15,25

build_gene_activity_matrix, 6, 20

cell_data, 7

cicero (cicero-package), 2
cicero-package, 2
cicero_data, 8
compare_connections, 8

df _for_coords, 9

estimate_distance_parameter, 10, 15, 16,
25

find_overlapping_ccans, 12
find_overlapping_coordinates, 13

gene_annotation_sample, 16
generate_ccans, 13
generate_cicero_models, 5, 6, 10, 12, 14, 25

human.hg19.genome, 17
knn.index, 19

make_atac_cds, 3, 17
make_cicero_cds, 10, 15, 18, 26
make_sparse_matrix, 19

normalize_gene_activities, 6, 20

plot_accessibility_in_pseudotime, 21
plot_connections, 21
plotTracks, 21, 23

ranges_for_coords, 24
run_cicero, 7, 14, 25

27

	cicero-package
	aggregate_by_cell_bin
	aggregate_nearby_peaks
	annotate_cds_by_site
	assemble_connections
	build_gene_activity_matrix
	cell_data
	cicero_data
	compare_connections
	df_for_coords
	estimate_distance_parameter
	find_overlapping_ccans
	find_overlapping_coordinates
	generate_ccans
	generate_cicero_models
	gene_annotation_sample
	human.hg19.genome
	make_atac_cds
	make_cicero_cds
	make_sparse_matrix
	normalize_gene_activities
	plot_accessibility_in_pseudotime
	plot_connections
	ranges_for_coords
	run_cicero
	Index

