
Package ‘cbpManager’
January 19, 2026

Type Package

Title Generate, manage, and edit data and metadata files suitable for
the import in cBioPortal for Cancer Genomics

Version 1.18.0

Date 2021-03-16

Description This R package provides an R Shiny application that enables the user to generate,
manage, and edit data and metadata files suitable for the import in cBioPortal for Cancer Ge-
nomics.
Create cancer studies and edit its metadata. Upload mutation data of a patient that will be con-
catenated to the data_mutation_extended.txt file of the study.
Create and edit clinical patient data, sample data, and timeline data. Create custom time-
line tracks for patients.

License AGPL-3 + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

URL https://arsenij-ust.github.io/cbpManager/index.html

BugReports https://github.com/arsenij-ust/cbpManager/issues

Depends shiny, shinydashboard

Imports utils, DT, htmltools, vroom, plyr, dplyr, magrittr, jsonlite,
rapportools, basilisk, reticulate, shinyBS, shinycssloaders,
rintrojs, rlang, markdown

Suggests knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0)

StagedInstall no

Collate 'basilisk.R' 'dynamicTable.R' 'modulesResourceButtons.R'
'cbpManager-pkg.R' 'functions.R' 'global.R' 'cbpManager.R'
'shinyAppServer.R' 'shinyAppUI.R'

biocViews ImmunoOncology, DataImport, DataRepresentation, GUI,
ThirdPartyClient, Preprocessing, Visualization

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/cbpManager

git_branch RELEASE_3_22

1

https://arsenij-ust.github.io/cbpManager/index.html
https://github.com/arsenij-ust/cbpManager/issues

2 Contents

git_last_commit 5565444

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Arsenij Ustjanzew [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-1014-4521>),

Federico Marini [aut] (ORCID: <https://orcid.org/0000-0003-3252-7758>)

Maintainer Arsenij Ustjanzew <arsenij.ustjanzew@gmail.com>

Contents
addColumn_Server . 3
addColumn_UI . 3
addRowRc_Server . 4
addRowRc_UI . 4
addRow_Server . 5
addRow_UI . 6
cBioPortalToDataFrame . 6
cbpManager . 7
cbpManager-pkg . 7
check_input_dates . 8
convertDataFrame . 9
create_name . 9
deleteColumn_Server . 10
deleteColumn_UI . 10
deleteRowRc_Server . 11
deleteRowRc_UI . 11
deleteRow_Server . 12
deleteRow_UI . 12
editRowRc_Server . 13
editRowRc_UI . 13
editRow_Server . 14
editRow_UI . 15
fncols . 15
generateOncotreeUIwidgets . 16
generateUIwidgets . 16
getSampleIDs . 17
importPatientData . 18
IsDate . 18
saveResource_Server . 19
saveResource_UI . 20
saveTimeline_Server . 20
saveTimeline_UI . 21
setupConda_cbpManager . 21
shinyAppServer . 22
shinyAppUI . 22
updateOncotreeUIwidgets . 23
validateResourceDefinition . 23
validateResourcePatient . 24
validateResourceSample . 24

https://orcid.org/0000-0002-1014-4521
https://orcid.org/0000-0003-3252-7758

addColumn_Server 3

validateResourceStudy . 25
ValidationDependencies . 25
writeLogfile . 26

Index 27

addColumn_Server Server logic of module for adding a column

Description

Server logic of module for adding a column

Usage

addColumn_Server(input, output, session, data)

Arguments

input Shiny input

output Shiny output

session Shiny session

data source data as data.frame

Value

reactive data.frame of modified source data

addColumn_UI UI elements of module for adding a column

Description

UI elements of module for adding a column

Usage

addColumn_UI(id, label = "Add column")

Arguments

id module id

label label of the button

Value

UI module

4 addRowRc_UI

addRowRc_Server Server logic of Resource tab module for adding a row

Description

Server logic of Resource tab module for adding a row

Usage

addRowRc_Server(
input,
output,
session,
data,
patient_ids = NULL,
sample_ids = NULL,
resource_ids = NULL,
resource_type = c("definition", "sample", "patient", "study")

)

Arguments

input Shiny input

output Shiny output

session Shiny session

data Source data as data.frame

patient_ids Reactive vector of existing patient IDs

sample_ids Reactive data.frame of existing patient IDs and sample IDs

resource_ids Reactive data.frame of data_resource_definition

resource_type The type of the resource. Can be "definition", "sample", "patient", "study"

Value

reactive data.frame of modified source data

addRowRc_UI UI elements of Resource tab module for adding a row

Description

UI elements of Resource tab module for adding a row

Usage

addRowRc_UI(id, label = "Add")

addRow_Server 5

Arguments

id module id

label label of the button

Value

UI module

addRow_Server Server logic of module for adding a row

Description

Server logic of module for adding a row

Usage

addRow_Server(
input,
output,
session,
data,
patient_ids = NULL,
dates_first_diagnosis = NULL,
mode = c("timeline", "timepoint")

)

Arguments

input Shiny input

output Shiny output

session Shiny session

data source data as data.frame

patient_ids reactive vector of existing patient IDs

dates_first_diagnosis

data.frame with dates of the first diagnosis and patient IDs

mode Mode of the timeline data. Controls which columns are displayed.

Value

reactive data.frame of modified source data

6 cBioPortalToDataFrame

addRow_UI UI elements of module for adding a row

Description

UI elements of module for adding a row

Usage

addRow_UI(id, label = "Add")

Arguments

id module id

label label of the button

Value

UI module

cBioPortalToDataFrame Convert the cBioPortal sample- and patient-data file format into a
data.frame

Description

This function takes a file object (from read.table), removes the # symbol, sets the 5th row as the
column names of the data.frame and removes the rows containing the priority, data type and column
name. use read.table as follows: read.table(file, sep='\t', colClasses = 'character',
comment.char = '')

Usage

cBioPortalToDataFrame(data)

Arguments

data The data.frame of a cBioPortal sample/patient data file

Value

data.frame

Examples

df <- data.frame(
V1=c("#attr_1", "#attribute 1", "#STRING", "#1", "ATTRIBUTE_1", "value_1"),
V2=c("attr_2", "attribute 2", "STRING", "1", "ATTRIBUTE_2", "value_2")

)
cbpManager:::cBioPortalToDataFrame(df)

cbpManager 7

cbpManager Launch cbpManager

Description

Launch the cbpManager Shiny application.

Usage

cbpManager(studyDir = NULL, logDir = NULL, returnAppObj = FALSE, ...)

Arguments

studyDir Path to study folder containing studies of cBioPortal.

logDir Path where a logfile should be saved. If NULL, logs are not stored

returnAppObj Logical value, whether to return the app object if set to TRUE. Default behavior:
directly runs the app (FALSE)

... Further parameters that are used by shiny::runApp, e.g. host or port.

Value

shiny application object

Examples

if (interactive()) {
cbpManager()

}

cbpManager-pkg cbpManager

Description

‘cbpManager‘ is an R package that provides an interactive Shiny-based graphical user interface
for...

Author(s)

Arsenij Ustjanzew <arsenij.ustjanzew@gmail.com>

8 check_input_dates

check_input_dates Check the input of dates

Description

Check the input of dates

Usage

check_input_dates(diagnosisDate, startDate = NULL, endDate = NULL)

Arguments

diagnosisDate date of first diagnosis

startDate start date of timeline event

endDate end date of timeline event

Value

Returns a number indicating the warning

Examples

cbpManager:::check_input_dates(
diagnosisDate = "2020-01-01",
startDate = "2020-02-01",
endDate = "2020-03-01"

) #returns 0
cbpManager:::check_input_dates(

diagnosisDate = "2020-01-01",
startDate = "2019-02-01"

) #returns 2
cbpManager:::check_input_dates(

diagnosisDate = "2020-01-01",
endDate = "2019-02-01"

) #returns 2
cbpManager:::check_input_dates(

diagnosisDate = "2020-01-01",
startDate = "2020-03-01",
endDate = "2020-02-01"

) #returns 1

convertDataFrame 9

convertDataFrame Convert the data.frame to the appropriate file format for cBioPortal

Description

Convert the data.frame to the appropriate file format for cBioPortal

Usage

convertDataFrame(df)

Arguments

df data.frame

Value

Data.frame formated for the cBioPortal file format

Examples

cbpManager:::convertDataFrame(
data.frame(

ATTRIBUTE1=c("attr_1", "attribute 1", "STRING", "value_a1"),
ATTRIBUTE2=c("attr_2", "attribute 2", "STRING", "value_b1")

)
)

create_name Sanitize names

Description

This function takes a character string, replaces spaces by underscores and runs make.names.

Usage

create_name(x, toupper = TRUE)

Arguments

x A character string.

toupper If TRUE, the name wil be upper-case; if FALSE, the name will be lower-case.

Value

A sanitized string.

10 deleteColumn_UI

Examples

cbpManager:::create_name("Study name 1") #returns "STUDY_NAME_1"
cbpManager:::create_name("FANCY;name", toupper = FALSE) #returns "fancy.name"

deleteColumn_Server Server logic of module for deleting a column

Description

Server logic of module for deleting a column

Usage

deleteColumn_Server(input, output, session, data, exclude)

Arguments

input Shiny input

output Shiny output

session Shiny session

data source data as data.frame

exclude column names that shoud be excluded from deletion

Value

reactive data.frame of modified source data

deleteColumn_UI UI elements of module for deleting a column

Description

UI elements of module for deleting a column

Usage

deleteColumn_UI(id, label = "Delete column(s)")

Arguments

id module id

label label of the button

Value

UI module

deleteRowRc_Server 11

deleteRowRc_Server Server logic of Resource tab module for deleting a row

Description

Server logic of Resource tab module for deleting a row

Usage

deleteRowRc_Server(
input,
output,
session,
data,
selected_row,
mode = "default",
sample_data = NULL,
patient_data = NULL,
study_data = NULL

)

Arguments

input Shiny input

output Shiny output

session Shiny session

data Source data as data.frame

selected_row Index of the selected row from the table

mode If ’recursive’ the resources bind to the resource definition will be deleted.

sample_data Data of the resource from type ’sample’

patient_data Data of the resource from type ’patient’

study_data Data of the resource from type ’study’

Value

reactive data.frame of modified source data

deleteRowRc_UI UI elements of module for removing a row

Description

UI elements of module for removing a row

Usage

deleteRowRc_UI(id, label = "Delete")

12 deleteRow_UI

Arguments

id Module id
label Label of the button

Value

UI module

deleteRow_Server Server logic of module for removing a row

Description

Server logic of module for removing a row

Usage

deleteRow_Server(input, output, session, data, selected_row)

Arguments

input Shiny input
output Shiny output
session Shiny session
data source data as data.frame
selected_row Index of the selected row from the table

Value

reactive data.frame of modified source data

deleteRow_UI UI elements of module for removing a row

Description

UI elements of module for removing a row

Usage

deleteRow_UI(id, label = "Delete")

Arguments

id module id
label label of the button

Value

UI module

editRowRc_Server 13

editRowRc_Server Server logic of Resource tab module for editing a row

Description

Server logic of Resource tab module for editing a row

Usage

editRowRc_Server(
input,
output,
session,
data,
patient_ids = NULL,
sample_ids = NULL,
resource_ids = NULL,
selected_row = NULL,
resource_type = c("definition", "sample", "patient", "study")

)

Arguments

input Shiny input

output Shiny output

session Shiny session

data Source data as data.frame

patient_ids Reactive vector of existing patient IDs

sample_ids Reactive data.frame of existing patient IDs and sample IDs

resource_ids Reactive data.frame of data_resource_definition

selected_row Index of the selected row

resource_type The type of the resource. Can be "definition", "sample", "patient", "study"

Value

reactive data.frame of modified source data

editRowRc_UI UI elements of module for editing a row

Description

UI elements of module for editing a row

Usage

editRowRc_UI(id, label = "Edit")

14 editRow_Server

Arguments

id Module id

label Label of the button

Value

UI module

editRow_Server Server logic of module for editing a row

Description

Server logic of module for editing a row

Usage

editRow_Server(
input,
output,
session,
data,
patient_ids = NULL,
dates_first_diagnosis = NULL,
selected_row = NULL,
mode = c("timeline", "timepoint")

)

Arguments

input Shiny input

output Shiny output

session Shiny session

data source data as data.frame

patient_ids reactive vector of existing patient IDs

dates_first_diagnosis

data.frame with dates of the first diagnosis and patient IDs

selected_row the index of the selected row

mode Mode of the timeline data. Controls which columns are displayed.

Value

reactive data.frame of modified source data

editRow_UI 15

editRow_UI UI elements of module for editing a row

Description

UI elements of module for editing a row

Usage

editRow_UI(id, label = "Edit")

Arguments

id module id

label label of the button

Value

UI module

fncols Add empty column to a data.frame, if column does not exist in the
data.frame

Description

Add empty column to a data.frame, if column does not exist in the data.frame

Usage

fncols(data, cname)

Arguments

data data.frame

cname column name

Value

data.frame

Examples

cbpManager:::fncols(data.frame(a=c(1,2,3), b=c(4,5,6)), "new")

16 generateUIwidgets

generateOncotreeUIwidgets

Create shiny UI-widget for specific columns of oncotree entries

Description

Create shiny UI-widget for specific columns of oncotree entries

Usage

generateOncotreeUIwidgets(
colname,
mode = c("add", "edit"),
tab = c("Patient", "Sample")

)

Arguments

colname column name
mode determines the inputId prefix of the UI-widget
tab "Patient", "Sample" - The used tab; sets the html id prefix of the input

Value

A oncotree specific shiny UI-widget

Examples

oncotree <- jsonlite::fromJSON(system.file("extdata", "oncotree.json", package = "cbpManager"))
cancer_type <- unique(oncotree$mainType[which(!is.na(oncotree$mainType))])
cbpManager:::generateOncotreeUIwidgets("CANCER_TYPE", "add")

generateUIwidgets Generate UI input widget

Description

Generate UI input widget

Usage

generateUIwidgets(
colname,
mode = c("add", "edit"),
tab = c("Patient", "Sample", "Mutation"),
data = NULL,
selected_row = NULL,
patientIDs = NULL,
sampleIDs = NULL

)

getSampleIDs 17

Arguments

colname A character string - the name of the column, that will be the label of the input

mode "add" or "edit" - whether to use existing values or not

tab "Patient", "Sample" - The used tab; sets the html id prefix of the input

data A data.frame.

selected_row A number indicating the row number of the selected row in the data.frame.

patientIDs Vector of patient IDs used for drop down menu of the PATIENT_ID column

Value

A sanitized string.

Examples

cbpManager:::generateUIwidgets(colname = "attribute", mode = "add", tab = "Patient")

getSampleIDs Get Sample IDs associated with Patient IDs from the
data_clinical_sample.txt file

Description

Get Sample IDs associated with Patient IDs from the data_clinical_sample.txt file

Usage

getSampleIDs(file_path, patIDs)

Arguments

file_path A character string.

patIDs A character string.

Value

vector with Sample IDs

Examples

cbpManager:::getSampleIDs(
system.file("study/testpatient/data_clinical_sample.txt", package = "cbpManager"),
patIDs = "Testpatient")

18 IsDate

importPatientData Import patient data into current study data.frames

Description

Import patient data into current study data.frames

Usage

importPatientData(
mode = c("patient", "sample", "mutations", "timelines"),
file_name,
file_path,
patIDs,
data,
associatedSampleIDs = NULL

)

Arguments

mode Defines the type of imported data

file_name Filename of source data

file_path Filepath with filename of source data

patIDs PATIENT_IDs of patients that should be imported

data Source data, to be subsetted according to patIDs
associatedSampleIDs

The sample IDs associated to the patIDs

Value

data.frame

IsDate Check if input is in the appropriate date format

Description

Check if input is in the appropriate date format

Usage

IsDate(mydate, date.format = "%Y-%m-%d")

Arguments

mydate date

date.format string describig the date format

saveResource_Server 19

Value

boolean

Examples

cbpManager:::IsDate("2020-02-20")
cbpManager:::IsDate("20.01.2020", date.format = "%d.%m.%Y")

saveResource_Server Server logic of module for saving the resource data

Description

Server logic of module for saving the resource data

Usage

saveResource_Server(
input,
output,
session,
data,
study_id,
data_filename,
meta_filename,
resource_type = c("SAMPLE", "DEFINITION", "PATIENT", "STUDY")

)

Arguments

input Shiny input

output Shiny output

session Shiny session

data Source data as data.frame

study_id The current study ID

data_filename File name of the data file

meta_filename file name of the meta file

resource_type The type of the resource. Can be "definition", "sample", "patient", "study"

Value

boolean value; TRUE if function was used.

20 saveTimeline_Server

saveResource_UI UI elements of module for saving the resource data

Description

UI elements of module for saving the resource data

Usage

saveResource_UI(id, label = "Save")

Arguments

id module id

label label of the button

Value

UI module

saveTimeline_Server Server logic of module for saving the source data

Description

Server logic of module for saving the source data

Usage

saveTimeline_Server(input, output, session, data, study_id)

Arguments

input Shiny input

output Shiny output

session Shiny session

data source data as data.frame

study_id the current study ID

Value

boolean value; TRUE if function was used.

saveTimeline_UI 21

saveTimeline_UI UI elements of module for saving the data

Description

UI elements of module for saving the data

Usage

saveTimeline_UI(id, label = "Save")

Arguments

id module id

label label of the button

Value

UI module

setupConda_cbpManager Install conda environment with basilisk before launching the app

Description

Install conda environment with basilisk before launching the app

Usage

setupConda_cbpManager()

Value

Nothing to return

Examples

Not run:
setupConda_cbpManager()

End(Not run)

22 shinyAppUI

shinyAppServer Shiny app server function

Description

Shiny app server function

Usage

shinyAppServer(input, output, session)

Arguments

input provided by shiny

output provided by shiny

session provided by shiny

Value

nothing to return

shinyAppUI Shiny app server object create the shiny application user interface

Description

Shiny app server object create the shiny application user interface

Usage

shinyAppUI

Format

An object of class shiny.tag of length 3.

updateOncotreeUIwidgets 23

updateOncotreeUIwidgets

Updates UI-widgets for specific columns of oncotree entries

Description

Updates UI-widgets for specific columns of oncotree entries

Usage

updateOncotreeUIwidgets(
session,
row_last_clicked,
mode = c("add", "edit"),
tab = c("Patient", "Sample")

)

Arguments

session Shiny session
row_last_clicked

the index of the row last clicked in the oncotree_table
mode determines the inputId prefix of the UI-widget
tab "Patient", "Sample" - The used tab; sets the html id pr

Value

nothing to return

validateResourceDefinition

Validate resource_definition input

Description

Validate resource_definition input

Usage

validateResourceDefinition(values, resourceDf, mode = "add")

Arguments

values List of input values
resourceDf data.frame of data_resource_definition
mode The mode of the function (’add’ or ’edit’)

Value

boolean

24 validateResourceSample

validateResourcePatient

Validate resource_patient input

Description

Validate resource_patient input

Usage

validateResourcePatient(values)

Arguments

values List of input values

Value

boolean

validateResourceSample

Validate resource_sample input

Description

Validate resource_sample input

Usage

validateResourceSample(values)

Arguments

values List of input values

Value

boolean

validateResourceStudy 25

validateResourceStudy Validate resource_study input

Description

Validate resource_study input

Usage

validateResourceStudy(values)

Arguments

values List of input values

Value

boolean

ValidationDependencies

Validation Dependencies

Description

Vector defining a set of Python dependencies and versions required to operate with the validation
scripts for cBioPortal

Usage

.validation_dependencies

Format

A character vector containing the pinned versions of all Python packages on which the import
validation depends.

26 writeLogfile

writeLogfile Write a line to a logfile containing the date, time, username (from
Shinyproxy), and the name of the modified file.

Description

Write a line to a logfile containing the date, time, username (from Shinyproxy), and the name of the
modified file.

Usage

writeLogfile(outdir, modified_file, log_filename = "cbpManager_logfile.txt")

Arguments

outdir directory, where the logfile should be saved

modified_file Name of the modified file

log_filename Name of the logfile

Value

Nothing to return

Examples

cbpManager:::writeLogfile(tempdir(), "data_clinical_patient.txt")

Index

∗ datasets
shinyAppUI, 22
ValidationDependencies, 25

.validation_dependencies
(ValidationDependencies), 25

addColumn_Server, 3
addColumn_UI, 3
addRow_Server, 5
addRow_UI, 6
addRowRc_Server, 4
addRowRc_UI, 4

cBioPortalToDataFrame, 6
cbpManager, 7
cbpManager-pkg, 7
check_input_dates, 8
convertDataFrame, 9
create_name, 9

deleteColumn_Server, 10
deleteColumn_UI, 10
deleteRow_Server, 12
deleteRow_UI, 12
deleteRowRc_Server, 11
deleteRowRc_UI, 11

editRow_Server, 14
editRow_UI, 15
editRowRc_Server, 13
editRowRc_UI, 13

fncols, 15

generateOncotreeUIwidgets, 16
generateUIwidgets, 16
getSampleIDs, 17

importPatientData, 18
IsDate, 18

saveResource_Server, 19
saveResource_UI, 20
saveTimeline_Server, 20
saveTimeline_UI, 21

setupConda_cbpManager, 21
shinyAppServer, 22
shinyAppUI, 22

updateOncotreeUIwidgets, 23

validateResourceDefinition, 23
validateResourcePatient, 24
validateResourceSample, 24
validateResourceStudy, 25
ValidationDependencies, 25

writeLogfile, 26

27

	addColumn_Server
	addColumn_UI
	addRowRc_Server
	addRowRc_UI
	addRow_Server
	addRow_UI
	cBioPortalToDataFrame
	cbpManager
	cbpManager-pkg
	check_input_dates
	convertDataFrame
	create_name
	deleteColumn_Server
	deleteColumn_UI
	deleteRowRc_Server
	deleteRowRc_UI
	deleteRow_Server
	deleteRow_UI
	editRowRc_Server
	editRowRc_UI
	editRow_Server
	editRow_UI
	fncols
	generateOncotreeUIwidgets
	generateUIwidgets
	getSampleIDs
	importPatientData
	IsDate
	saveResource_Server
	saveResource_UI
	saveTimeline_Server
	saveTimeline_UI
	setupConda_cbpManager
	shinyAppServer
	shinyAppUI
	updateOncotreeUIwidgets
	validateResourceDefinition
	validateResourcePatient
	validateResourceSample
	validateResourceStudy
	ValidationDependencies
	writeLogfile
	Index

