
Package ‘annotatr’
January 19, 2026

Title Annotation of Genomic Regions to Genomic Annotations

Version 1.36.0

Date 2025-06-21

Description Given a set of genomic sites/regions (e.g. ChIP-seq peaks, CpGs, differentially methy-
lated CpGs or regions, SNPs, etc.) it is often of interest to investigate the intersecting ge-
nomic annotations. Such annotations include those relating to gene models (promot-
ers, 5'UTRs, exons, introns, and 3'UTRs), CpGs (CpG islands, CpG shores, CpG shelves), or reg-
ulatory sequences such as enhancers. The annotatr package provides an easy way to summa-
rize and visualize the intersection of genomic sites/regions with genomic annotations.

Depends R (>= 3.4.0)

Imports AnnotationDbi, AnnotationHub, dplyr, GenomicFeatures (>=
1.61.4), GenomicRanges (>= 1.61.1), Seqinfo, ggplot2 (>=
3.5.0), IRanges, methods, readr, regioneR, reshape2, rlang,
rtracklayer (>= 1.69.1), S4Vectors (>= 0.23.10), stats, utils

Suggests GenomeInfoDb, BiocStyle, devtools, knitr, org.Dm.eg.db,
org.Gg.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db,
rmarkdown, roxygen2, testthat,
TxDb.Dmelanogaster.UCSC.dm3.ensGene,
TxDb.Dmelanogaster.UCSC.dm6.ensGene,
TxDb.Drerio.UCSC.danRer10.refGene,
TxDb.Drerio.UCSC.danRer11.refGene,
TxDb.Ggallus.UCSC.galGal5.refGene,
TxDb.Hsapiens.UCSC.hg19.knownGene,
TxDb.Hsapiens.UCSC.hg38.knownGene,
TxDb.Mmusculus.UCSC.mm9.knownGene,
TxDb.Mmusculus.UCSC.mm10.knownGene,
TxDb.Mmusculus.UCSC.mm39.knownGene,
TxDb.Rnorvegicus.UCSC.rn4.ensGene,
TxDb.Rnorvegicus.UCSC.rn5.refGene,
TxDb.Rnorvegicus.UCSC.rn6.refGene,
TxDb.Rnorvegicus.UCSC.rn7.refGene

VignetteBuilder knitr

BugReports https://www.github.com/rcavalcante/annotatr/issues

License GPL-3

LazyData true

RoxygenNote 7.3.3

1

https://www.github.com/rcavalcante/annotatr/issues

2 Contents

Encoding UTF-8

biocViews Software, Annotation, GenomeAnnotation, FunctionalGenomics,
Visualization

git_url https://git.bioconductor.org/packages/annotatr

git_branch RELEASE_3_22

git_last_commit 6850c77

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Raymond G. Cavalcante [aut, cre],
Maureen A. Sartor [ths]

Maintainer Raymond G. Cavalcante <rcavalca@umich.edu>

Contents
annotate_regions . 3
annotations . 4
annotatr . 4
annotatr_cache . 5
build_ah_annots . 6
build_annotations . 6
build_cpg_annots . 7
build_enhancer_annots . 8
build_gene_annots . 8
build_hmm_annots . 9
build_lncrna_annots . 9
builtin_annotations . 10
builtin_genomes . 10
check_annotations . 11
expand_annotations . 11
get_cellline_from_code . 12
get_cellline_from_shortcut . 12
get_orgdb_name . 13
get_txdb_name . 13
plot_annotation . 14
plot_categorical . 15
plot_coannotations . 17
plot_numerical . 19
plot_numerical_coannotations . 21
randomize_regions . 23
read_annotations . 24
read_regions . 25
reformat_hmm_codes . 26
subset_order_tbl . 27
summarize_annotations . 27
summarize_categorical . 28
summarize_numerical . 29
tidy_annotations . 31

Index 32

annotate_regions 3

annotate_regions A function to intersect user region data with annotation data

Description

Annotate genomic regions to selected genomic annotations while preserving the data associated
with the genomic regions.

Usage

annotate_regions(
regions,
annotations,
minoverlap = 1L,
ignore.strand = TRUE,
quiet = FALSE

)

Arguments

regions The GRanges object returned by read_regions().

annotations A character vector of annotations to build. Valid annotation codes are listed
with builtin_annotations(). The "basicgenes" shortcut builds the follow-
ing regions: 1-5Kb upstream of TSSs, promoters, 5UTRs, exons, introns, and
3UTRs. The "cpgs" shortcut builds the following regions: CpG islands, shores,
shelves, and interCGI regions. NOTE: Shortcuts need to be appended by the
genome, e.g. hg19_basicgenes. Custom annotations whose names are of the
form [genome]_custom_[name] should also be included. Custom annotations
should be read in and converted to GRanges with read_annotations(). They
can be for a supported_genome(), or for an unsupported genome.

minoverlap A scalar, positive integer, indicating the minimum required overlap of regions
with annotations.

ignore.strand Logical indicating whether strandedness should be respected in findOverlaps().
Default FALSE.

quiet Print progress messages (FALSE) or not (TRUE).

Value

A GRanges where the granges are from the regions, and the mcols include the mcols from the
regions and a column with the annotation GRanges.

Examples

r_file = system.file('extdata', 'test_read_multiple_data_nohead.bed', package='annotatr')
extraCols = c(pval = 'numeric', mu1 = 'integer', mu0 = 'integer', diff_exp = 'character')
r = read_regions(con = r_file, extraCols = extraCols, rename_score = 'coverage')

Get premade CpG annotations
data('annotations', package = 'annotatr')

a = annotate_regions(

4 annotatr

regions = r,
annotations = annotations,
ignore.strand = TRUE)

annotations example_annotations data

Description

A GRanges of precomputed annotations for CpG features. Created by doing build_annotations(genome='hg19',
annotations = 'hg19_cpgs').

Usage

annotations

Format

A GRanges object with the CpG feature annotations for hg19 and containing mcols:

id The internal ID for the annotation

tx_id All NA, since these are not associated with tx_ids

gene_id All NA, since there are not associated Entrez IDs

symbols All NA, since there are not associated gene symbols

type A character indicating the type of annotation. Including: ’hg19_cpg_islands’, ’hg19_cpg_shores’,
’hg19_cpg_shelves’, and ’hg19_cpg_inter’.

Source

The AnnotationHub resource for hg19 CpG features.

annotatr annotatr: Annotation of Genomic Regions to Functional Annotations

Description

Given a set of genomic sites/regions (e.g. ChIP-seq peaks, CpGs, differentially methylated CpGs
or regions, SNPs, etc.) it is often of interest to investigate the intersecting functional annotations.
Such annotations include those relating to gene models (promoters, 5’UTRs, exons, introns, and
3’UTRs), CpGs (CpG islands, CpG shores, CpG shelves), the non-coding genome, and enhancers.
The annotatr package provides an easy way to summarize and visualize the intersection of genomic
sites/regions with the above functional annotations.

Author(s)

Maintainer: Raymond G. Cavalcante <rcavalca@umich.edu>

Other contributors:

• Maureen A. Sartor <sartorma@med.umich.edu> [thesis advisor]

annotatr_cache 5

See Also

Useful links:

• Report bugs at https://www.github.com/rcavalcante/annotatr/issues

annotatr_cache A global-variable to hold custom annotations loaded in an R session

Description

Code thanks to Martin Morgan. This is a global variable that will store custom annotations that a
user reads in during a session in which annotatr is loaded.

Usage

annotatr_cache

Format

An object of class list of length 3.

Value

An environment to contain custom annotations from read_annotations.

Examples

Example usage
annotatr_cache$set("foo", 1:10)
annotatr_cache$get("foo")

Read in a BED3 file as a custom annotation
file = system.file('extdata', 'test_annotations_3.bed', package='annotatr')
The custom annotation is added to the annotatr_cache environment in this function
read_annotations(con = file, name = 'test', genome = 'hg19')
The result of read_annotations() is not visible in .GlobalEnv, instead
need to use the get method
print(annotatr_cache$get('hg19_custom_test'))
See what is in the annotatr_cache
annotatr_cache$list_env()

https://www.github.com/rcavalcante/annotatr/issues

6 build_annotations

build_ah_annots A helper function to build arbitrary annotatinos from AnnotationHub

Description

A helper function to build arbitrary annotatinos from AnnotationHub

Usage

build_ah_annots(genome, ah_codes, annotation_class)

Arguments

genome The genome assembly.

ah_codes A named character vector giving the AnnotationHub accession number (e.g.
AH23256), and whose name describes what the annotation is (e.g. Gm12878_H3K4me3).

annotation_class

A string to name the group of annotations in ah_codes

Value

A GRanges object stored in annotatr_cache. To view an annotation built with this function, do
annotatr_cache$get(name). To add these annotations to a set of annotations, include '[genome]_[annotation_class]_[name]'
in the call to build_annotations(). See example below.

Examples

Create a named vector for the AnnotationHub accession codes with desired names
h3k4me3_code = c('Gm12878' = 'AH23256')
Fetch ah_codes from AnnotationHub and create annotations annotatr understands
build_ah_annots(genome = 'hg19', ah_codes = h3k4me3_code, annotation_class = 'H3K4me3')
The annotations as they appear in annotatr_cache
annot_name = c('hg19_H3K4me3_Gm12878')
Build the annotations right before annotating any regions
annotations = build_annotations(genome = 'hg19', annotations = annot_name)

build_annotations A function to build annotations from TxDb.* and AnnotationHub re-
sources

Description

Create a GRanges object consisting of all the desired annotations. Supported annotation codes
are listed by builtin_annotations(). The basis for enhancer annotations are FANTOM5 data,
the basis for CpG related annotations are CpG island tracks from AnnotationHub, and the basis for
genic annotations are from the TxDb.* and org.db group of packages.

Usage

build_annotations(genome, annotations)

build_cpg_annots 7

Arguments

genome The genome assembly.
annotations A character vector of annotations to build. Valid annotation codes are listed

with builtin_annotations(). The "basicgenes" shortcut builds the follow-
ing regions: 1-5Kb upstream of TSSs, promoters, 5UTRs, exons, introns, and
3UTRs. The "cpgs" shortcut builds the following regions: CpG islands, shores,
shelves, and interCGI regions. NOTE: Shortcuts need to be appended by the
genome, e.g. hg19_basicgenes. Custom annotations whose names are of the
form [genome]_custom_[name] should also be included. Custom annotations
should be read in and converted to GRanges with read_annotations(). They
can be for a supported_genome(), or for an unsupported genome.

Value

A GRanges object of all the annotations combined. The mcols are id, tx_id, gene_id, symbol,
type. The id column is a unique name, the tx_id column is either a UCSC knownGene transcript
ID (genic annotations) or a Ensembl transcript ID (lncRNA annotations), the gene_id is the Entrez
ID, the symbol is the gene symbol from the org.*.eg.db mapping from the Entrez ID, and the
type is of the form [genome]_[type]_[name].

Examples

Example with hg19 gene promoters
annots = c('hg19_genes_promoters')
annots_gr = build_annotations(genome = 'hg19', annotations = annots)

See vignette for an example with custom annotation

build_cpg_annots A helper function to build CpG related annotations.

Description

Using the AnnotationHub package, extract CpG island track for the appropriate genome and con-
struct the shores, shelves, and interCGI annotations as desired.

Usage

build_cpg_annots(
genome = annotatr::builtin_genomes(),
annotations = annotatr::builtin_annotations()

)

Arguments

genome The genome assembly.
annotations A character vector with entries of the form [genome]_cpg_{islands,shores,shelves,inter}.

Value

A list of GRanges objects.

8 build_gene_annots

build_enhancer_annots A helper function to build enhancer annotations for hg19 and mm10
from FANTOM5.

Description

A helper function to build enhancer annotations for hg19 and mm10 from FANTOM5.

Usage

build_enhancer_annots(genome = c("hg19", "hg38", "mm9", "mm10"))

Arguments

genome The genome assembly.

Value

A GRanges object.

build_gene_annots A helper function to build genic annotations.

Description

Using the TxDb.* group of packages, construct genic annotations consisting of any combination of
1-5kb upstream of a TSS, promoters (< 1kb from TSS), 5UTRs, CDS, exons, first exons, introns,
intron/exon and exon/intron boundaries, 3UTRs, and intergenic.

Usage

build_gene_annots(
genome = annotatr::builtin_genomes(),
annotations = annotatr::builtin_annotations()

)

Arguments

genome The genome assembly.

annotations A character vector with entries of the form [genome]_genes_{1to5kb,promoters,5UTRs,cds,exons,firstexons,introns,intronexonboundaries,exonintronboundaries,3UTRs,intergenic}.

Value

A list of GRanges objects with unique id of the form [type]:i, tx_id being the UCSC knownGene
transcript name, gene_id being the Entrez Gene ID, symbol being the gene symbol from the Entrez
ID to symbol mapping in org.db for that species, and type being the annotation type.

build_hmm_annots 9

build_hmm_annots A helper function to build chromHMM annotations for hg19 from
UCSC Genome Browser.

Description

A helper function to build chromHMM annotations for hg19 from UCSC Genome Browser.

Usage

build_hmm_annots(
genome = c("hg19"),
annotations = annotatr::builtin_annotations()

)

Arguments

genome The genome assembly.

annotations A character vector of valid chromatin state annotatin codes.

Value

A GRanges object.

build_lncrna_annots A helper function to build lncRNA annotations.

Description

Using the AnnotationHub package, retrieve transcript level lncRNA annotations for either human
(GRCh38) or mouse (GRCm38). If the genome is ’hg19’, use the permalink from GENCODE and
rtracklayer::import() to download and process.

Usage

build_lncrna_annots(genome = c("hg19", "hg38", "mm10"))

Arguments

genome The genome assembly.

Value

A GRanges object with id giving the transcript_type from the GENCODE file, tx_id being
the Ensembl transcript ID, gene_id being the Entrez ID coming from a mapping of gene sym-
bol to Entrez ID, symbol being the gene_name from the GENCODE file, and the type being
[genome]_lncrna_gencode.

10 builtin_genomes

builtin_annotations Function listing which annotations are available.

Description

This includes the shortcuts. The expand_annotations() function helps handle the shortcuts.

Usage

builtin_annotations()

Value

A character vector of available annotations.

Examples

builtin_annotations()

builtin_genomes Function returning supported TxDb.* genomes

Description

Function returning supported TxDb.* genomes

Usage

builtin_genomes()

Value

A character vector of genomes for supported TxDb.* packages

Examples

builtin_genomes()

check_annotations 11

check_annotations Function to check for valid annotations

Description

Gives errors if any annotations are not in builtin_annotations() (and they are not in the required
custom format), basicgenes are used, or the genome prefixes are not the same for all annotations.

Usage

check_annotations(annotations)

Arguments

annotations A character vector of annotations possibly using the shortcuts

Value

If all the checks on the annotations pass, returns NULL to allow code to move forward.

expand_annotations Function to expand annotation shortcuts

Description

Function to expand annotation shortcuts

Usage

expand_annotations(annotations)

Arguments

annotations A character vector of annotations, possibly using the shortcut accessors

Value

A vector of data accession-ized names that are ordered from upstream to downstream in the case of
knownGenes and islands to interCGI in the case of cpgs.

12 get_cellline_from_shortcut

get_cellline_from_code

Function to return cell line from chromatin annotation code

Description

Function to return cell line from chromatin annotation code

Usage

get_cellline_from_code(code)

Arguments

code The annotation code, used in build_annotations().

Value

A string of the cell line used in a chromatin annotation code

get_cellline_from_shortcut

Function to return cell line from chromatin annotation shortcut

Description

Function to return cell line from chromatin annotation shortcut

Usage

get_cellline_from_shortcut(shortcut)

Arguments

shortcut The annotation shortcut, used in build_annotations().

Value

A string of the cell line used in a chromatin annotation shortcut

get_orgdb_name 13

get_orgdb_name Function to get correct org.* package name based on genome

Description

Function to get correct org.* package name based on genome

Usage

get_orgdb_name(genome = annotatr::builtin_genomes())

Arguments

genome A string giving the genome assembly.

Value

A string giving the correct org for org.db packages. e.g. hg19 -> Hs.

get_txdb_name Function to get correct TxDb.* package name based on genome

Description

Function to get correct TxDb.* package name based on genome

Usage

get_txdb_name(genome = annotatr::builtin_genomes())

Arguments

genome A string giving the genome assembly.

Value

A string giving the name of the correct TxDb.* package name based on genome.

14 plot_annotation

plot_annotation Plot the number of regions per annotation

Description

Given a GRanges of annotated regions, plot the number of regions with the corresponding genomic
annotations used in annotation_order. If a region is annotated to multiple annotations of the same
annot.type, the region will only be counted once in the corresponding bar plot. For example, if a
region were annotated to multiple exons, it would only count once toward the exon bar in the plot,
but if it were annotated to an exon and an intron, it would count towards both.

Usage

plot_annotation(
annotated_regions,
annotated_random,
annotation_order = NULL,
plot_title,
x_label,
y_label,
quiet = FALSE

)

Arguments

annotated_regions

The GRanges result of annotate_regions().
annotated_random

The GRanges result of annotate_regions() on the randomized regions created
from randomize_regions().

annotation_order

A character vector which doubles as the subset of annotations desired for the
plot as well as the ordering. If NULL, all annotations are displayed.

plot_title A string used for the title of the plot. If missing, no title is displayed.

x_label A string used for the x-axis label. If missing, no x-axis label is displayed.

y_label A string used for the y-axis label. If missing, no y-axis label is displayed.

quiet Print progress messages (FALSE) or not (TRUE).

Value

A ggplot object which can be viewed by calling it, saved with ggplot2::ggsave, or edited.

Examples

##
An example of ChIP-seq peaks with signalValue used for score

Get premade CpG annotations
data('annotations', package = 'annotatr')

plot_categorical 15

chip_bed = system.file('extdata', 'Gm12878_Stat3_chr2.bed.gz', package = 'annotatr')
chip_regions = read_regions(con = chip_bed, genome = 'hg19')

chip_rnd = randomize_regions(regions = chip_regions)

chip_annots = annotate_regions(
regions = chip_regions,
annotations = annotations,
ignore.strand = TRUE)

chip_rnd_annots = annotate_regions(
regions = chip_rnd,
annotations = annotations,
ignore.strand = TRUE)

annots_order = c(
'hg19_cpg_islands',
'hg19_cpg_shores')

p_annots = plot_annotation(annotated_regions = chip_annots,
annotation_order = annots_order)

p_annots_rnd = plot_annotation(annotated_regions = chip_annots,
annotated_random = chip_rnd_annots, annotation_order = annots_order)

plot_categorical Plot a categorical data variable over another

Description

Given a GRanges of annotated regions from annotate_regions(), visualize the the distribution of
categorical data fill in categorical data x. A bar representing the distribution of all fill in x will
be added according to the contents of fill. This is the distribution over all values of x. Additionally,
when annotated_random is not missing, a "Random Regions" bar shows the distribution of random
regions over fill.

Usage

plot_categorical(
annotated_regions,
annotated_random,
x,
fill = NULL,
x_order = NULL,
fill_order = NULL,
position = "stack",
plot_title,
legend_title,
x_label,
y_label,
quiet = FALSE

)

16 plot_categorical

Arguments

annotated_regions

The GRanges result of annotate_regions().
annotated_random

The GRanges result of annotate_regions() on the randomized regions created
from randomize_regions(). Random regions can only be used with fill ==
'annot.type'.

x One of ’annot.type’ or a categorical data column, indicating whether annotation
classes or data classes will appear on the x-axis.

fill One of ’annot.type’, a categorical data column, or NULL, indicating whether an-
notation classes or data classes will fill the bars. If NULL then the bars will be
the total counts of the x classes.

x_order A character vector that subsets and orders the x classes. Default NULL, uses
existing values.

fill_order A character vector that subsets and orders the fill classes. Default NULL, uses
existing values.

position A string which has the same possible values as in ggplot2::geom_bar(...,
position), i.e., ’stack’, ’fill’, ’dodge’, etc.

plot_title A string used for the title of the plot. If missing, no title is displayed.

legend_title A string used for the legend title to describe fills (if fill is not NULL). Default
displays corresponding variable name.

x_label A string used for the x-axis label. If missing, corresponding variable name used.

y_label A string used for the y-axis label. If missing, corresponding variable name used.

quiet Print progress messages (FALSE) or not (TRUE).

Details

For example, if a differentially methylated region has the categorical label hyper, and is annotated
to a promoter, a 5UTR, two exons, and an intron. Each annotation will appear in the All bar once.
Likewise for the hyper bar if the differential methylation status is chosen as x with annot.type
chosen as fill.

Value

A ggplot object which can be viewed by calling it, or saved with ggplot2::ggsave.

Examples

Get premade CpG annotations
data('annotations', package = 'annotatr')

dm_file = system.file('extdata', 'IDH2mut_v_NBM_multi_data_chr9.txt.gz', package = 'annotatr')
extraCols = c(diff_meth = 'numeric', mu1 = 'numeric', mu0 = 'numeric')
dm_regions = read_regions(con = dm_file, extraCols = extraCols, genome = 'hg19',

rename_score = 'pval', rename_name = 'DM_status', format = 'bed')
dm_regions = dm_regions[1:1000]

dm_annots = annotate_regions(
regions = dm_regions,
annotations = annotations,

plot_coannotations 17

ignore.strand = TRUE)

dm_order = c(
'hyper',
'hypo')

cpg_order = c(
'hg19_cpg_islands',
'hg19_cpg_shores',
'hg19_cpg_shelves',
'hg19_cpg_inter')

dm_vn = plot_categorical(
annotated_regions = dm_annots,
x = 'DM_status',
fill = 'annot.type',
x_order = dm_order,
fill_order = cpg_order,
position = 'fill',
legend_title = 'knownGene Annotations',
x_label = 'DM status',
y_label = 'Proportion')

Create randomized regions
dm_rnd_regions = randomize_regions(regions = dm_regions)
dm_rnd_annots = annotate_regions(

regions = dm_rnd_regions,
annotations = annotations,
ignore.strand = TRUE)

dm_vn_rnd = plot_categorical(
annotated_regions = dm_annots,
annotated_random = dm_rnd_annots,
x = 'DM_status',
fill = 'annot.type',
x_order = dm_order,
fill_order = cpg_order,
position = 'fill',
legend_title = 'knownGene Annotations',
x_label = 'DM status',
y_label = 'Proportion')

plot_coannotations Plot pair-wise annotations across regions

Description

All co-occurring annotations associated with a region are computed and displayed as a heatmap.

Usage

plot_coannotations(
annotated_regions,
annotation_order = NULL,

18 plot_coannotations

plot_title,
axes_label,
quiet = FALSE

)

Arguments

annotated_regions

The GRanges result of annotate_regions().
annotation_order

A character vector which doubles as the subset of annotations desired for plot as
well as the ordering. If NULL, all annotations are displayed.

plot_title A string used for the title of the plot. If missing, no plot title label is displayed.

axes_label A string used for the axis labels. If missing, corresponding variable name used.

quiet Print progress messages (FALSE) or not (TRUE).

Details

As with plot_annotation(), the number in each cell is the number of unique regions annotated to
the pair of annotations.

For example, if a region is annotated to both a CpG shore and to two different exons simultaneously,
the region will only be counted once in the CpG shore / exon cell. NOTE, this same region will
count once in both the CpG shore and exon cells on the diagonal.

Value

A ggplot object which can be viewed by calling it, saved with ggplot2::ggsave, or edited.

Examples

Get premade CpG annotations
data('annotations', package = 'annotatr')

dm_file = system.file('extdata', 'IDH2mut_v_NBM_multi_data_chr9.txt.gz', package = 'annotatr')
extraCols = c(diff_meth = 'numeric', mu1 = 'numeric', mu0 = 'numeric')
dm_regions = read_regions(con = dm_file, extraCols = extraCols,

rename_score = 'pval', rename_name = 'DM_status', format = 'bed')
dm_regions = dm_regions[1:1000]

dm_annots = annotate_regions(
regions = dm_regions,
annotations = annotations,
ignore.strand = TRUE)

all_order = c(
'hg19_cpg_islands',
'hg19_cpg_shores',
'hg19_cpg_shelves',
'hg19_cpg_inter')

dm_vs_ca = plot_coannotations(
annotated_regions = dm_annots,
annotation_order = all_order,
axes_label = 'Annotations',

plot_numerical 19

plot_title = 'Co-occurrence of Annotations')

plot_numerical Plot numerical data over regions or regions summarized over annota-
tions

Description

This function produces either histograms over facet, or x-y scatterplots over facet. In the case of
histograms over facets, the All distribution (hollow histogram with red outline) is the distribution of
x over all the regions in the data. The facet specific distributions (solid gray) are the distribution of
x over the regions in each facet. For example, a CpG with associated percent methylation annotated
to a CpG island and a promoter will count once in the All distribution, but will count once each in
the CpG island and promoter facet distributions.

Usage

plot_numerical(
annotated_regions,
x,
y,
facet,
facet_order,
bin_width = 10,
plot_title,
x_label,
y_label,
legend_facet_label,
legend_cum_label,
quiet = FALSE

)

Arguments

annotated_regions

A GRanges returned from annotate_regions(). If the data is not summa-
rized, the data is at the region level. If it is summarized, it represents the aver-
age or standard deviation of the regions by the character vector used for by in
summarize_numerical().

x A string indicating the column of the GRanges to use for the x-axis.
y A string indicating the column of the GRanges to use for the y-axis. If missing,

a a histogram over x will be plotted. If not missing, a scatterplot is plotted.
facet A string, or character vector of two strings, indicating indicating which categor-

ical variable(s) in the GRanges to make ggplot2 facets over. When two facets
are given, the first entry is the vertical facet and the second entry is the horizontal
facet. Default is annot.type.

facet_order A character vector, or list of character vectors if facet has length 2, which gives
the order of the facets, and can be used to subset the column in the GRanges
used for the facet. For example, if facet = 'annot.type', then the annota-
tions maybe subsetted to just CpG annotations. Default is NULL, meaning all
annotations in their default order are used.

20 plot_numerical

bin_width An integer indicating the bin width of the histogram used for score. Default 10.
Select something appropriate for the data. NOTE: This is only used if y is NULL.

plot_title A string used for the title of the plot. If missing, no title is displayed.

x_label A string used for the x-axis label. If missing, no x-axis label is displayed.

y_label A string used for the y-axis label. If missing, no y-axis label is displayed.
legend_facet_label

A string used to label the gray bar portion of the legend. Defaults to "x in facet".
legend_cum_label

A string used to label the red outline portion of the legend. Defaults to "All in
x".

quiet Print progress messages (FALSE) or not (TRUE).

Value

A ggplot object which can be viewed by calling it, or saved with ggplot2::ggsave.

Examples

An example with multi-columned data

Get premade CpG annotations
data('annotations', package = 'annotatr')

dm_file = system.file('extdata', 'IDH2mut_v_NBM_multi_data_chr9.txt.gz', package = 'annotatr')
extraCols = c(diff_meth = 'numeric', mu1 = 'numeric', mu0 = 'numeric')
dm_regions = read_regions(con = dm_file, extraCols = extraCols,

rename_score = 'pval', rename_name = 'DM_status', format = 'bed')
dm_regions = dm_regions[1:1000]

Annotate the regions
dm_annots = annotate_regions(

regions = dm_regions,
annotations = annotations,
ignore.strand = TRUE)

Plot histogram of group 1 methylation rates across the CpG annotations.
NOTE: Overall distribution (everything in \code{facet_order})
is plotted in each facet for comparison.
dm_vs_regions_mu1 = plot_numerical(

annotated_regions = dm_annots,
x = 'mu1',
facet = 'annot.type',
facet_order = c('hg19_cpg_islands','hg19_cpg_shores',

'hg19_cpg_shelves','hg19_cpg_inter'),
bin_width = 5,
plot_title = 'Group 1 Methylation over CpG Annotations',
x_label = 'Group 1 Methylation')

Plot histogram of group 1 methylation rates across the CpG annotations
crossed with DM_status
dm_vs_regions_diffmeth = plot_numerical(

annotated_regions = dm_annots,
x = 'diff_meth',
facet = c('annot.type','DM_status'),

plot_numerical_coannotations 21

facet_order = list(
c('hg19_genes_promoters','hg19_genes_5UTRs','hg19_cpg_islands'),
c('hyper','hypo','none')),

bin_width = 5,
plot_title = 'Group 0 Region Methylation In Genes',
x_label = 'Methylation Difference')

Can also use the result of annotate_regions() to plot two numerical
data columns against each other for each region, and facet by annotations.
dm_vs_regions_annot = plot_numerical(

annotated_regions = dm_annots,
x = 'mu0',
y = 'mu1',
facet = 'annot.type',
facet_order = c('hg19_cpg_islands','hg19_cpg_shores',

'hg19_cpg_shelves','hg19_cpg_inter'),
plot_title = 'Region Methylation: Group 0 vs Group 1',
x_label = 'Group 0',
y_label = 'Group 1')

Another example, but using differential methylation status as the facets.
dm_vs_regions_name = plot_numerical(

annotated_regions = dm_annots,
x = 'mu0',
y = 'mu1',
facet = 'DM_status',
facet_order = c('hyper','hypo','none'),
plot_title = 'Region Methylation: Group 0 vs Group 1',
x_label = 'Group 0',
y_label = 'Group 1')

plot_numerical_coannotations

Plot numerical data occurring in pairs of annotations

Description

Plot numerical data associated with regions occurring in annot1, annot2 and in both. As with
plot_numerical(), the result is a plot of histograms or x-y scatterplots.

Usage

plot_numerical_coannotations(
annotated_regions,
x,
y,
annot1,
annot2,
bin_width = 10,
plot_title,
x_label,
y_label,

22 plot_numerical_coannotations

legend_facet_label,
legend_cum_label,
quiet = FALSE

)

Arguments

annotated_regions

A GRanges returned from annotate_regions().

x A string indicating the column of the GRanges to use for the x-axis.

y A string indicating the column of the GRanges to use for the y-axis. If missing,
a histogram over x will be plotted. If not missing, a scatterplot is plotted.

annot1 A string indicating the first annotation type.

annot2 A string indicating the second annotation type.

bin_width An integer indicating the bin width of the histogram used for score. Default 10.
Select something appropriate for the data. NOTE: This is only used if y is NULL.

plot_title A string used for the title of the plot. If missing, no title is displayed.

x_label A string used for the x-axis label. If missing, no x-axis label is displayed.

y_label A string used for the y-axis label. If missing, no y-axis label is displayed.
legend_facet_label

A string used to label the gray bar portion of the legend. Defaults to "x in annot
pair".

legend_cum_label

A string used to label the red outline portion of the legend. Defaults to "All x".

quiet Print progress messages (FALSE) or not (TRUE).

Details

For example, a CpG with associated percent methylation annotated to a CpG island and a promoter
will count once in the All distribution and once in the CpG island / promoter facet distribution.
However, a CpG associated only with a promoter will count once in the All distribution and once in
the promoter / promoter distribution.

Value

A ggplot object which can be viewed by calling it, or saved with ggplot2::ggsave.

Examples

Get premade CpG annotations
data('annotations', package = 'annotatr')

dm_file = system.file('extdata', 'IDH2mut_v_NBM_multi_data_chr9.txt.gz', package = 'annotatr')
extraCols = c(diff_meth = 'numeric', mu1 = 'numeric', mu0 = 'numeric')
dm_regions = read_regions(con = dm_file, extraCols = extraCols,

rename_score = 'pval', rename_name = 'DM_status', format = 'bed')
dm_regions = dm_regions[1:1000]

dm_annots = annotate_regions(
regions = dm_regions,
annotations = annotations,

randomize_regions 23

ignore.strand = TRUE)

dm_vs_num_co = plot_numerical_coannotations(
annotated_regions = dm_annots,
x = 'mu0',
annot1 = 'hg19_cpg_islands',
annot2 = 'hg19_cpg_shelves',
bin_width = 5,
plot_title = 'Group 0 Perc. Meth. in CpG Islands and Promoters',
x_label = 'Percent Methylation')

randomize_regions Randomize Regions

Description

randomize_regions is a wrapper function for regioneR::randomizeRegions() that simplifies
the creation of randomized regions for an input set of regions read with read_regions(). It relies
on the seqlengths of regions in order to build the appropriate genome object for regioneR::randomizeRegions().

Usage

randomize_regions(
regions,
allow.overlaps = TRUE,
per.chromosome = TRUE,
quiet = FALSE

)

Arguments

regions A GRanges object from read_regions.

allow.overlaps A logical stating whether random regions can overlap input regions (TRUE) or
not (FALSE). Default TRUE.

per.chromosome A logical stating whether the random regions should remain on the same chro-
mosome (TRUE) or not (FALSE). Default TRUE.

quiet Print progress messages (FALSE) or not (TRUE).

Details

NOTE: The data associated with the input regions are not passed on to the random regions.

Value

A GRanges object of randomized regions based on regions from read_regions(). NOTE: Data
associated with the original regions is not attached to the randomized regions.

24 read_annotations

Examples

Create random region set based on ENCODE ChIP-seq data
file = system.file('extdata', 'Gm12878_Stat3_chr2.bed.gz', package = 'annotatr')
r = read_regions(con = file, genome = 'hg19')

random_r = randomize_regions(regions = r)

read_annotations Read custom annotations

Description

read_annotations() is a wrapper for the rtracklayer::import() function that creates a GRanges
object matching the structure of annotations built with build_annotations(). The structure is de-
fined by GRanges, with the mcols() with names c('id','gene_id','symbol','type').

Usage

read_annotations(con, name, genome = NA, format, extraCols = character(), ...)

Arguments

con A path, URL, connection or BEDFile object. See rtracklayer::import.bed()
documentation.

name A string for the name of the annotations to be used in the name of the object,
[genome]_custom_[name]

genome From rtracklayer::import(): The identifier of a genome, or NA if unknown.
Typically, this is a UCSC identifier like ’hg19’. An attempt will be made to de-
rive the seqinfo on the return value using either an installed BSgenome package
or UCSC, if network access is available.

format From rtracklayer::import(): The format of the output. If not missing,
should be one of ’bed’, ’bed15’, ’bedGraph’ or ’bedpe’. If missing and ’con’
is a filename, the format is derived from the file extension. This argument is
unnecessary when ’con’ is a derivative of ’RTLFile’.

extraCols From rtracklayer::import.bed(): A character vector in the same form as
’colClasses’ from ’read.table’. It should indicate the name and class of each ex-
tra/special column to read from the BED file. As BED does not encode column
names, these are assumed to be the last columns in the file. This enables parsing
of the various BEDX+Y formats.

... Parameters to pass onto the format-specific method of rtracklayer::import().

Value

A GRanges object stored in annotatr_cache. To view a custom annotation, do annotatr_cache$get(name).
To add a custom annotation to the set of annotations, include '[genome]_custom_[name]' in the
call to build_annotations(). See example below.

read_regions 25

Examples

Read in a BED3 file as a custom annotation
file = system.file('extdata', 'test_annotations_3.bed', package='annotatr')
read_annotations(con = file, name = 'test', genome = 'hg19')
build_annotations(genome = 'hg19', annotations = 'hg19_custom_test')

print(annotatr_cache$get('hg19_custom_test'))

read_regions Read genomic regions in BEDX+Y format

Description

read_regions() reads genomic regions by calling the rtracklayer::import() function. This
function can automatically deal with BEDX files from BED3 to BED6. For BED6+Y, the extraCols
argument should be used to correctly interpret the extra columns.

Usage

read_regions(
con,
genome = NA,
format,
extraCols = character(),
rename_name,
rename_score,
...

)

Arguments

con A path, URL, connection or BEDFile object. See rtracklayer::import()
documentation.

genome From rtracklayer::import(): The identifier of a genome, or NA if unknown.
Typically, this is a UCSC identifier like ’hg19’. An attempt will be made to de-
rive the seqinfo on the return value using either an installed BSgenome package
or UCSC, if network access is available.

format From rtracklayer::import(): The format of the output. If not missing,
should be one of ’bed’, ’bed15’, ’bedGraph’ or ’bedpe’. If missing and ’con’
is a filename, the format is derived from the file extension. This argument is
unnecessary when ’con’ is a derivative of ’RTLFile’.

extraCols From rtracklayer::import(): A character vector in the same form as ’col-
Classes’ from ’read.table’. It should indicate the name and class of each ex-
tra/special column to read from the BED file. As BED does not encode column
names, these are assumed to be the last columns in the file. This enables parsing
of the various BEDX+Y formats.

rename_name A string to rename the name column of the BED file. For example, if the name
column actually contains a categorical variable.

26 reformat_hmm_codes

rename_score A string to rename the score column of the BED file. For example, if the score
column represents a quantity about the data besides the score in the BED speci-
fication.

... Parameters to pass onto the format-specific method of rtracklayer::import().

Details

NOTE: The name (4th) and score (5th) columns are so named. If these columns have a particu-
lar meaning for your data, they should be renamed with the rename_name and/or rename_score
parameters.

Value

A GRanges object.

Examples

Example of reading a BED6+3 file where the last 3 columns are non-standard
file = system.file('extdata', 'IDH2mut_v_NBM_multi_data_chr9.txt.gz', package = 'annotatr')
extraCols = c(diff_meth = 'numeric', mu0 = 'numeric', mu1 = 'numeric')
gr = read_regions(con = file, genome = 'hg19', extraCols = extraCols, format = 'bed',

rename_name = 'DM_status', rename_score = 'pval')

reformat_hmm_codes Function to recode classes from chromHMM type column

Description

Function to recode classes from chromHMM type column

Usage

reformat_hmm_codes(hmm_codes)

Arguments

hmm_codes in the original form from UCSC Genome Browser track.

Value

A character vector of chromHMM classes with numbers and underscores removed.

subset_order_tbl 27

subset_order_tbl Function to subset a tbl_df or grouped_df by a column

Description

Function to subset a tbl_df or grouped_df by a column

Usage

subset_order_tbl(tbl, col, col_order)

Arguments

tbl A tbl_df or grouped_df.

col A string indicating which column of of tbl to subset and order

col_order A character vector indicating the order of col.

Value

A modified version of summary with col subsetted by col_order.

summarize_annotations Summarize annotation counts

Description

Given a GRanges of annotated regions, count the number of regions in each annotation type. If
annotated_random is not NULL, then the same is computed for the random regions.

Usage

summarize_annotations(annotated_regions, annotated_random, quiet = FALSE)

Arguments

annotated_regions

The GRanges result of annotate_regions().
annotated_random

The GRanges result of annotate_regions() on the randomized regions created
from randomize_regions().

quiet Print progress messages (FALSE) or not (TRUE).

Details

If a region is annotated to multiple annotations of the same annot.type, the region will only be
counted once. For example, if a region were annotated to multiple exons, it would only count once
toward the exons, but if it were annotated to an exon and an intron, it would count towards both.

28 summarize_categorical

Value

A tbl_df of the number of regions per annotation type.

Examples

An example of ChIP-seq peaks with signalValue

Get premade CpG annotations
data('annotations', package = 'annotatr')

file = system.file('extdata', 'Gm12878_Stat3_chr2.bed.gz', package = 'annotatr')
r = read_regions(con = file, genome = 'hg19')

a = annotate_regions(
regions = r,
annotations = annotations,
ignore.strand = TRUE,
quiet = FALSE)

rnd = randomize_regions(regions = r)

rnd_annots = annotate_regions(
regions = rnd,
annotations = annotations,
ignore.strand = TRUE,
quiet = FALSE)

Summarize the annotated regions without randomized regions
s = summarize_annotations(annotated_regions = a)

Summarize the annotated regions with randomized regions
s_rnd = summarize_annotations(

annotated_regions = a,
annotated_random = rnd_annots)

summarize_categorical Summarize categorical data over groupings of annotated regions

Description

Given a GRanges of annotated regions, count the number of regions when the annotations are
grouped by categorical columns.

Usage

summarize_categorical(
annotated_regions,
by = c("annot.type", "annot.id"),
quiet = FALSE

)

summarize_numerical 29

Arguments

annotated_regions

The GRanges result of annotate_regions().

by A character vector to group the data in as.data.frame(annotated_regions)
by and tally over. Default is c('annot.type', 'annot.id').

quiet Print progress messages (FALSE) or not (TRUE).

Details

If a region is annotated to multiple annotations of the same annot.type, the region will only be
counted once. For example, if a region were annotated to multiple exons, it would only count once
toward the exons, but if it were annotated to an exon and an intron, it would count towards both.

Value

A grouped dplyr::tbl_df of the counts of groupings according to the by vector.

Examples

Get premade CpG annotations
data('annotations', package = 'annotatr')

r_file = system.file('extdata', 'test_read_multiple_data_nohead.bed', package='annotatr')
extraCols = c(pval = 'numeric', mu1 = 'integer', mu0 = 'integer', diff_exp = 'character')
r = read_regions(con = r_file, genome = 'hg19', extraCols = extraCols, rename_score = 'coverage')

a = annotate_regions(
regions = r,
annotations = annotations,
ignore.strand = TRUE)

sc = summarize_categorical(
annotated_regions = a,
by = c('annot.type', 'name'),
quiet = FALSE)

summarize_numerical Summarize numerical data over groupings of annotated regions

Description

Given a GRanges of annotated regions, summarize numerical data columns based on a grouping.

Usage

summarize_numerical(
annotated_regions,
by = c("annot.type", "annot.id"),
over,
quiet = FALSE

)

30 summarize_numerical

Arguments

annotated_regions

The GRanges result of annotate_regions().

by A character vector of the columns of as.data.frame(annotated_regions) to
group over. Default is c(annot.type, annot.id).

over A character vector of the numerical columns in as.data.frame(annotated_regions)
to count, take the mean, and take the sd over after grouping according to the
by column. NOTE: If more than one value is used, the naming scheme for
the resuling dplyr::tbl summary columns are COLNAME_n, COLNAME_mean,
COLNAME_sd. If over has length one, then the column names are n, mean, sd.

quiet Print progress messages (FALSE) or not (TRUE).

Details

NOTE: We do not take the distinct values of seqnames, start, end, annot.type as in the other
summarize_*() functions because in the case of a region that intersected two distinct exons, using
distinct() would destroy the information of the mean of the numerical column over one of the
exons, which is not desirable.

Value

A grouped dplyr::tbl_df, and the count, mean, and sd of the cols by the groupings.

Examples

Test on a very simple bed file to demonstrate different options

Get premade CpG annotations
data('annotations', package = 'annotatr')

r_file = system.file('extdata', 'test_read_multiple_data_nohead.bed', package='annotatr')
extraCols = c(pval = 'numeric', mu1 = 'integer', mu0 = 'integer', diff_exp = 'character')
r = read_regions(con = r_file, genome = 'hg19', extraCols = extraCols, rename_score = 'coverage')

a = annotate_regions(
regions = r,
annotations = annotations,
ignore.strand = TRUE)

Testing over normal by
sn1 = summarize_numerical(

annotated_regions = a,
by = c('annot.type', 'annot.id'),
over = c('coverage', 'mu1', 'mu0'),
quiet = FALSE)

Testing over a different by
sn2 = summarize_numerical(

annotated_regions = a,
by = c('diff_exp'),
over = c('coverage', 'mu1', 'mu0'))

tidy_annotations 31

tidy_annotations Function to tidy up annotation accessors for visualization

Description

Function to tidy up annotation accessors for visualization

Usage

tidy_annotations(annotations)

Arguments

annotations A character vector of annotations, in the order they are to appear in the visual-
ization.

Value

A list of mappings from original annotation names to names ready for visualization.

Index

∗ datasets
annotations, 4
annotatr_cache, 5

annotate_regions, 3
annotations, 4
annotatr, 4
annotatr-package (annotatr), 4
annotatr_cache, 5

build_ah_annots, 6
build_annotations, 6
build_cpg_annots, 7
build_enhancer_annots, 8
build_gene_annots, 8
build_hmm_annots, 9
build_lncrna_annots, 9
builtin_annotations, 10
builtin_genomes, 10

check_annotations, 11

expand_annotations, 11

get_cellline_from_code, 12
get_cellline_from_shortcut, 12
get_orgdb_name, 13
get_txdb_name, 13

plot_annotation, 14
plot_categorical, 15
plot_coannotations, 17
plot_numerical, 19
plot_numerical_coannotations, 21

randomize_regions, 23
read_annotations, 24
read_regions, 25
reformat_hmm_codes, 26

subset_order_tbl, 27
summarize_annotations, 27
summarize_categorical, 28
summarize_numerical, 29

tidy_annotations, 31

32

	annotate_regions
	annotations
	annotatr
	annotatr_cache
	build_ah_annots
	build_annotations
	build_cpg_annots
	build_enhancer_annots
	build_gene_annots
	build_hmm_annots
	build_lncrna_annots
	builtin_annotations
	builtin_genomes
	check_annotations
	expand_annotations
	get_cellline_from_code
	get_cellline_from_shortcut
	get_orgdb_name
	get_txdb_name
	plot_annotation
	plot_categorical
	plot_coannotations
	plot_numerical
	plot_numerical_coannotations
	randomize_regions
	read_annotations
	read_regions
	reformat_hmm_codes
	subset_order_tbl
	summarize_annotations
	summarize_categorical
	summarize_numerical
	tidy_annotations
	Index

