Package ‘annotate’

January 19, 2026

Title Annotation for microarrays

Version 1.88.0

Author R. Gentleman

Description Using R enviroments for annotation.
Depends R (>=2.10), AnnotationDbi (>= 1.27.5), XML

Imports Biobase, DBI, xtable, graphics, utils, stats, methods,
BiocGenerics (>= 0.13.8), httr

Suggests hgu95av2.db, genefilter, Biostrings (>= 2.25.10), IRanges,
rae230a.db, rae230aprobe, tkWidgets, GO.db, org.Hs.eg.db,
org.Mm.eg.db, humanCHRLOC, Rgraphviz, RUnit, BiocStyle, knitr

VignetteBuilder knitr
License Artistic-2.0
LazyLoad yes

Collate AllGenerics.R ACCNUMStats.R Amat.R AnnMaps.R chromLocation.R
compatipleVersions.R findNeighbors.R getData.R getPMInfo.R
getSeq4ACC.R GOhelpers.R homoData.R html.R isValidKey.R
LL2homology.R pmid2MIAME.R pubMedAbst.R query.R read GEOAnn.R
serializeEnv.R blastSequences.R zzz.R test_annotate_package.R

biocViews Annotation, Pathways, GO

git_url https://git.bioconductor.org/packages/annotate
git_branch RELEASE_3_22

git_last_commit bcOd5a0

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Contents

accessionToUID L
ACCNUMSHALS . . . o v oo o e e e e e e e e e e e e e e
annPkgName
agListGOIDs e e
blastSequences

Contents

buildChromLocation 7
buildPubMedAbst 8
chrCats e e 9
chromLocation-class L 11
compatibleVersions oL 12
dropECode e 13
entrezGeneByID L 14
entrezGeneQuery L e 15
filterGOByOntology e 16
findNeighbors 16
genbank L e e 18
getAnnMap L e e 19
getBvidence L. e 20
getGOTerm L e e 21
getONtology e 22
getPMInfo 23
getQueryLink 24
getSEQ e e 25
getSYMBOL e 26
GO2heatmap e 28
GOMNPIOt e e e e 29
hasGOannote L e 30
hgByChroms 31
hgCLengths e 31
hgu95Achroloc 32
hgu95Achrom L 32
hgu9SAIl e 33
hgu95AProbLocs 33
hguOSASYmM e e e 34
homoData-class L e 35
htmlpage 36
HTMLPage-class e e e e e e e 38
isValidKeyo 39
LL2homology o 40
makeAnchor L 41
mapOIgs o e e e e e e e 42
OFZANISIN .« « o v v v v e e et e e e e e e e e e e e e 43
PM.abstGrep oL e e e e e 43
PM.etabst L. e e e e e 44
pPMLttles . . . oL e e e e 45
pmAbstZHTML 46
pmid2MIAME 47
PMIDAmMAt e e 48
pmidQuery 49
pubmed 50
pubMedAbst-class e e e e 51
PWAmat e 52
readGEOANN L 53
serializeEnv Lo L 54
SEtReposSItory L 55
UniGeneQUEry o it e e e e e e e e e 56

updateSymbolsToValidKeys L 57

accessionToUID 3

usedChromGenes e e e 58
Index 60
accessionToUID A function to convert accession values to NCBI UlD:s.
Description

Given one or more accession values, this function will attempt to convert them into NCBI UID
values.

Usage

accessionToUID(...,db=c("genbank"”, "pubmed"))

Arguments
Accession numbers to be transformed.
db Which database this accession number refers to, defaults to Genbank
Details

Utilizes the PubMed tool esearch.fcgi to convert an accession number into a valid NCBI UID num-
ber.

WARNING: The powers that be at NCBI have been known to ban the IP addresses of users who
abuse their servers (currently defined as less then 2 seconds between queries). Do NOT put this
function in a type loop or you may find your access revoked.

Value

Returns either a valid NCBI UID value or NULL (if there was nothing available).

Author(s)
Jeff Gentry

See Also

pubmed, xmlTreeParse

Examples

The two returns from genbank should be the same
xdoc <- genbank(”U@3397",type="accession”,disp="data")
X <- accessionToUID("U@3397",db="genbank")

xdoc <- genbank(x, type="uid"”,disp="data")

Can handle multiple inputs
y <- accessionToUID("M16653","U892893",db="genbank")

4 ACCNUMStats

ACCNUMStats Provides statistics on the types of ids used for the ACCNUM environ-
ment of a given data package

Description

Given a data package name, ACCNUMStats counts how many of the probe ids are mapped to
GenBank Accession numbers, UniGene ids, RefSeq ids, or Image clone ids.

Usage

ACCNUMStats(pkgName)
whatACC(accs)

Arguments

pkgName pkgName a character string for the name of a BioC data package

accs accs a vector of character string for the ids whose type will be determined

Details

The ACCNUM environment of each BioC data package contains mappings between probe ids and
a set of public ids based on which mappings of probe ids to other annotation data can be obtained
using public data sources. The set of ids were provided by a manufacturer or user at the time when
the data package was built. The manufacturer/user provided ids can be of different types of public
ids, such as GenBank Accession number, UniGene ids, etc..

ACCNUMStats counts the number of probes that are mapped to different types of public ids and
have the results presented in a table.

Author(s)

Jianhua Zhang

References

The ACCNUM environment of a platform dependent BioC data package

Examples

library("hgu95av2.db")
ACCNUMStats("hgu95av2")

annPkgName 5

annPkgName Get annotation package name from chip name

Description

This function returns the name of the Bioconductor annotation data package that corresponds to
the specified chip or genome. The type argument is used to request an annotation package with a
particular backing store.

Usage

annPkgName (name, type = c("db"”, "env"))

Arguments
name string specifying the name of the chip or genome. For example, "hgu133plus2”
type Either "db"” or "env". This will determine whether the package name returned
corresponds to the SQLite-based annotation package or environment-based pack-
age, respectively.
Value

a string giving the name of the annotation data package

Author(s)
Seth Falcon

See Also

getAnnMap

Examples

annPkgName ("hgu133plus2”, type="db")
annPkgName ("hgu133plus2”, type="env")

aqListGOIDs List GO Identifiers by GO Ontology

Description

This function returns a character vector of all GO identifiers in the specified ontologies: Biological
Process (BP), Cellular Component (CC), Molecular Function (MF).

Usage

agListGOIDs(ont)

6 blastSequences

Arguments
ont A character vector specifying the two-letter codes of the ontologies from which
all GO IDs will be retrieved. Entries must be one of "BP", "CC", or "MF".
Value

A character vector of GO IDs. The vector will contain all GO IDs in the GO ontologies specified
by the ont argument.

Author(s)

Seth Falcon

Examples

all GO IDs in BP
bp_ids = aqListGOIDs("BP")
length(bp_ids)

all GO IDs in BP or CC
bp_or_cc_ids = aqListGOIDs(c("BP", "CC"))
length(bp_or_cc_ids)

blastSequences Run a blast query to NCBI for either a string or an entrez gene ID and
then return a series of MultipleAlignment objects.

Description
This function sends a query to NCBI as a string of sequence or an entrez gene ID and then returns
a series of MultipleAlignment objects.

Usage

blastSequences(x, database, hitListSize, filter, expect, program,
timeout=40, as=c("DNAMultipleAlignment”, "data.frame”, "XML"))

Arguments

X A sequence as a character vector or an integer corresponding to an entrez gene
ID. Submit multiple sequences as a length-1 character vector, x = ">ID-1\nACATGCTA\n>ID-2\nAAAC

database Which NCBI database to use. If not “blastn”, then set as="XML"

hitListSize Number of hits to keep.

filter Sequence filter; “L” for Low Complexity, “R” for Human Repeats, “m” for Mask
lookup

expect The BLAST ‘expect’ value above which matches will be returned.

program Which program do you want to use for blast.

timeout Approximate maximum length of time, in seconds, to wait for a result.

as character(1) indicating whether the result from the NCBI server should be parsed

to a list of DNAMultipleAlignment instances, represented as a data. frame, or
returned as XML.

buildChromLocation 7

Details

Right now the function only works for "blastn".

The NCBI URL api used by this function is documented at https://www.ncbi.nlm.nih.gov/
blast/Doc/urlapi.html

Value

By default, a series of DNAMultipleAlignment (see MultipleAlignment-class objects. Alter-
natively, a data.frame or XML document returned from the NCBI server. The data.frame is
a ‘long form’ representation of the ‘Iteration’, ‘Hit’ and ‘Hsp’ results returned from the server.
The XML document is the result of the xmlParse function of the XML library, and follows the
format described by https://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd and https:
//www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.mod.dtd.

Author(s)

M. Carlson

Examples

x can be an entrez gene ID
blastSequences (17702, timeout=40, as="data.frame")

if (interactive()) {

or x can be a sequence
blastSequences(x = "GGCCTTCATTTACCCAAAATG")

hitListSize does not promise that you will get the number of
matches you want.. It will just try to get that many.
blastSequences(x = "GGCCTTCATTTACCCAAAATG", hitListSize="20")

buildChromLocation A function to generate an instantiation of a chromLocation class

Description
This function will take the name of a data package and build a chromLocation object representing
that data set.

Usage

buildChromLocation(dataPkg)

Arguments

dataPkg The name of the data package to be used

https://www.ncbi.nlm.nih.gov/blast/Doc/urlapi.html
https://www.ncbi.nlm.nih.gov/blast/Doc/urlapi.html
https://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd
https://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.mod.dtd
https://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.mod.dtd

8 buildPubMedAbst

Details

The requested data set must be available in the user’s . 1ibPaths(), and the function will throw an
error if this is not the case.

If the data package is present, the necessary information will be extracted from the data package
and a chromLocation object will be created.

Value

A chromLocation object representing the specified data set.

Author(s)

Jeff Gentry

Examples

library("hgu95av2.db")
z <- buildChromLocation("hgu95av2")

buildPubMedAbst A function to generate an instantiation of a pubMedAbst class

Description

This function will take in a XML tree object and will create an instance of a pubMedAbst class.
This instance is returned to the caller.

Usage
buildPubMedAbst (xml)
Arguments
xml A XMLTree object that corresponds to a Pubmed abstract.
Value

This function returns an instantiation of a pubMedAbst object to the caller.

Author(s)

Jeff Gentry

See Also

pubmed,genbank

chrCats 9

Examples

X <- pubmed("”9695952","8325638","8422497")
a <- xmlRoot(x)
numAbst <- length(xmlChildren(a))
absts <- list()
for (i in 1:numAbst) {
absts[[i]] <- buildPubMedAbst(al[[i]])
}

chrCats Returns a list of chromosome locations from a MAP environment

Description

The chrCats function takes a data package that contains a MAP environment and returns a list that
contains the locations for each gene (from the chromosome number to more specific locations if
they’re available). For example, the hgu95av2MAP environment gives the location, 14q22-q23, for
Affymetrix identifier: 1114_at. This function will return a list with one named element for 1114_at
and the values it will contain are 14, 14q, 1492, 14g22, and 14q23 since the Affy id is located at
each of those chromosome locations.

Usage

chrCats(data)
createMAPIncMat (data)
createlLLChrCats(data)

Arguments

data the data package (a character string)

Details

This function does a lot of string manipulation and there are a few known errors so I want to discuss
them here in case someone else would like to improve on this function.

The first thing, chrCats, does is only allow one location for each Affymetrix identifier. If the MAP
environment has more than one location for an Affy id, then the first location is taken. Currently, the
hgu95av2MAP environment has only 9 Affy ids (out of 12625) that have more than one location and
the hgu133aMAP environment has only 16 Affy ids (out of 22283) that have more than one location
so this does not affect many identifiers.

Next any spaces are removed from each location as several locations have leading spaces.

Then a for loop (which is not efficient!) is used to look at each location individually and make a
list that will be returned. A few particular strings are looked for in each location and these include
"|"and '-".

Locations that include ' | ' in the string are split based on the ' | ' as though it represents OR. For
example, for Affy id, 32273_at, in hgu95av2MAP the location is given as 5q33I5q31.1 and this
function assumes this means 533 or 5q31.1 so it will return the values 5, 5q, 593, 5933, 5q31, and
5q31.1 for this Affy id.

10 chrCats

The '-' character is assumed to mean BETWEEN. For example, for Affy id, 1138_at, in hgu95av2MAP
the location is given as 2q11-q14 and this function assumes this means the location is somewhere
between 2q11 and 2q14 so it will return the values 2, 2q, 2ql, 2q11, 2q12, 2q13, and 2q14 for this
Afty id.

Now here is the first problem with this function. I do not know how to handle the '-' when the two
strings are not of equal length. For example, for Affy id, 36779_at, in hgu95av2MAP the location
is given as 5q33.3-q34, but I do not know how to treat this BETWEEN because I do not know how
many sub-bands there are between 5q33.3 and 5q34. Is there a 5q33.4 or 5q33.5, etc.? I'm not sure.
SoItreat this '-' asan '|'. This function will return the values 5, 5q, 5q3, 5933, 5q33.3, and 5q34
for this Affy id and most likely, that is incorrect.

1

Another problem I have with the '-' occurs when all of the characters up until the last character
do not match. For example, for Affy id, 38927_i_at, in hgu95av2MAP the location is given as
11q14-g21, but again I’'m not sure how to treat this BETWEEN because I don’t know the number
of sub-bands between 11q14 and 11g21. Does 11q15 exist, etc.? So I again treat this '-' asan ' | .
This function will return the values 11, 11q, 11ql, 11q14, 1192, and 11g21 for this Affy id and this
is probably incorrect.

The problem with '-' also occurs when the location is something like 19cen-q13.1 for Affy id,
34670_at, in hgu95av2MAP. Again I don’t know the number of sub-bands between 19cen and
19q13.1 so I treat this BETWEEN as an OR.

Another problem I have with 'cen' in the location is that sometimes the location looks like:
19p13.2-cen and very rarely it looks like: 5p13.1-5cen. In the second case, the chromosome number
is included after the '-' and before the 'cen'. This only occurs with the location 5p13.1-5cen in
both hgu95av2MAP and hgu133aMAP and all other locations do not include the chromosome number
after the '-'. Currently this function returns the wrong information for that one location. It will
return the values 5, 5p, 5pl, 5p13, 5p13.1, 5p5,and Sp5Scen, but it should return 5, 5p, Spl, 5p13,
5p13.1, and Scen so this one location is an error. All other locations that include 'cen' are correct.
For example, this function returns the values 19, 19p, 19pl, 19p13, 19p13.2, and 19cen for the
location 19p13.2-cen.

This function is very slow because it contains for loops and thus, it would be useful to make it more
efficient. Also, it would be nice at some point for someone with more knowledge on chromosome
location figure out how to improve some of my string manipulation errors.

createlLLChrCats is a wrapper that converts probe IDs to Entrez Gene IDs.

createMAPIncMat is a wrapper that calls createlLLChrCats and then returns an incidence matrix
with rows being the categories and cols the Entrez Gene IDs.

Value

A named list with an element for each Affy id. The name will be the Affy id and the values will be
the locations for that Affy id. If the Affy id had a location of NA in the MAP environment, then a list
element is not returned for that Affy id.

Author(s)
Elizabeth Whalen

Examples

library("hgu95av2.db")
mapValues <- chrCats("hgu95av2")

chromLocation-class 11

chromLocation-class Class chromLocation, a class for describing genes and their chromo-
some mappings.

Description

This class provides chromosomal information provided by a Bioconductor metadata package. By
creating the object once for a particular package, it can be used in a variety of locations without the
need to recomputed values repeatedly.

Creating Objects
new('chromLocation', organism=...., #0bject of class character
dataSource =, #0bject of class character
chromLocs =, #0bject of class list
probesToChrom=...., #0bject of class ANY
chromInfo=...., #0bject of class numeric
geneSymbols =, #0bject of class ANY
)
Slots

organism: Object of class "character”". The organism that these genes correspond to.
dataSource: Object of class "character”. The source of the gene data.

chromLocs: Object of class "list". A list which provides specific location information for every
gene.

probesToChrom: An object with an environment-like API which will translate a probe identifier to
chromosome it belongs to.

chromInfo: A numerical vector representing each chromosome, where the names are the names of
the chromosomes and the values are their lengths

geneSymbols: An environment or an object with environment-like API that maps a probe ID to the
appropriate gene symbol

Methods

chromLengths (chromLocation): Gets the lengths of the chromosome for this organism
chromLocs (chromLocation): Gets the ’chromLocs’ attribute.

chromNames (chromLocation): Gets the name of the chromosomes for this organism
dataSource (chromLocation): Gets the *dataSource’ attribute.

probesToChrom (chromLocation): Gets the *probesToChrom’ attribute.

nChrom (chromLocation): gets the number of chromosomes this organism has
organism (chromLocation): gets the *organism’ attribute.

chromlInfo Gets the ’chromlInfo’ attribute.

geneSymbols Gets the *geneSymbols’ attribute.

See Also

buildChromLocation

12 compatible Versions

Examples

library("hgu95av2.db")
z <- buildChromLocation("hgu95av2")

find the number of chromosomes
nChrom(z)

Find the names of the chromosomes
chromNames(z)

get the organism this object refers to
organism(z)

get the lengths of the chromosomes in this object

chromLengths(z)
compatibleVersions function to check to see if the packages represented by the names
passed have the same version number
Description

This function takes the names of installed R packages and then checks to see if they all have the
same version number.

Usage

compatibleVersions(...)

Arguments

. character strings for the names of R packages that have been installed

Details

If all the package have the same version number, the function returns TRUE. Otherwise, the function
returns FALSE

Value

This function returns TRUE or FALSE depending on whether the packages have the same version
number

Author(s)

Jianhua Zhang

See Also

packageDescription

dropECode 13

Examples

library("hgu95av2.db")
library("GO.db")
compatibleVersions("hgu95av2.db"”, "GO.db")

dropECode Drop GO labels for specified Evidence Codes

Description
Genes are mapped to GO terms on the basis of evidence codes. In some analyses it will be appro-
priate to drop certain sets of annotations based on specific evidence codes.

Usage
dropECode(inlist, code="IEA")

Arguments

inlist A list of GO data

code The set of codes that should be dropped.
Details

A simple use of lapply and sapply to find and eliminate those terms that have the specified evi-
dence codes.

This might be used when one is using to GO to validate a sequence matching experiment (for
example), then all terms whose mapping was based on sequence similarity (say ISS and IEA) should
be removed.

Value
A list of the same length as the input list retaining only those annotations whose evidence codes
were not the ones in the exclusion set code.

Author(s)

R. Gentleman

See Also

getEvidence, getOntology

Examples

library("hgu95av2.db")

bb <- hgu95av2GO[["”39613_at"]]

getEvidence(bb[1:3])

cc <- dropECode(bb[1:3])

if (length(cc))
getEvidence(cc)

14 entrezGeneByID

entrezGeneByID Create a Query String for an Entrez Gene Identifier

Description

Given a set of UniGene identifiers this function creates a set of URLSs that an be used to either open
a browser to the requested location or that can be used as anchors in the construction of HTML
output.

Usage

entrezGeneByID(query)

Arguments

query Entrez Gene identifiers.

Details

Using NCBI we construct appropriate strings for directing a web browser to the Entrez Genes
specified by their IDs.

Value

A character vector containing the query string.

Note

Be very careful about automatically querying this resource. It is considered antisocial behavior by
the owners.

Author(s)

Marc Carlson

References

NCBI, https://www.ncbi.nih.gov/

Examples

ql<-entrezGeneByID(c("100", "1002"))
ql
if(interactive())

browseURL(q1[1])

https://www.ncbi.nih.gov/

entrezGeneQuery 15

entrezGeneQuery Create a Query String for Entrez Genes

Description

Given a set of search terms this function creates a set of URLs that an be used to either open
a browser to the requested location or that can be used as anchors in the construction of HTML
output.

Usage

entrezGeneQuery(query)

Arguments

query The UniGene identifiers.

Details

Using NCBI we construct an appropriate string for directing a web browser to information about
genes of that type at NCBI.

Value

A character vector containing the query string.

Note

Be very careful about automatically querying this resource. It is considered antisocial behavior by
the owners.

Author(s)

Marc Carlson

References

NCBI, https://www.ncbi.nih.gov/

Examples

ql<-entrezGeneQuery(c("leukemia”, "Homo sapiens"”))
ql
if(interactive())

browseURL(q1[1])

https://www.ncbi.nih.gov/

16 findNeighbors

filterGOByOntology Filter GO terms by a specified GO ontology

Description

Given a character vector containing GO identifiers, return a logical vector indicating which GO IDs
are in the specified ontology (BP, CC, or MF).

Usage

filterGOByOntology(goids, ontology = c("BP", "CC", "MF"))

Arguments
goids a character vector of GO IDs
ontology One of "BP", "CC", or "MFE"
Value

A logical vector with length equal to goids. A TRUE indicates that the corresponding GO ID in
goids is a member of the ontology specified by ontology.

Author(s)
Seth Falcon

Examples

haveGO <- suppressWarnings(require(”GO.db"))

if (haveG0) {
ids <- ¢("G0:0001838", "G0O:0001839")
stopifnot(all(filterGOByOntology(ids, "BP")))
stopifnot(!any(filterGOByOntology(ids, "MF")))

} else cat("Sorry, this example requires the GO package\n")

findNeighbors A function to locate neighboring genes within a defined range around
a target gene represented by a Entrez Gene ID

Description

Give a data package with mappings between Entrez Gene IDs and their locations on chromosomes,
this function locates genes that are within a defined range on a given chromosome. If a Entrez Gene
ID is passed as one of the arguments, genes located will be neighbors to the gene represented by the
Entrez Gene ID within a defined range on the chromosome the target gene resides

findNeighbors

Usage

17

findNeighbors(chrLoc, 11ID, chromosome, upBase, downBase, mergeOrNot = TRUE)
checkArgs (111D, chromosome, upBase, downBase)

findChr4LL(11ID, chrEnv, organism)

getValidChr(organism)

getBoundary(loc, base, lower = TRUE)

weightByConfi(foundLLs)

Arguments

chrLoc

111D

chromosome

upBase

downBase

organism

chrEnv

loc

base

lower

mergeOrNot

foundLLs

Details

chrlLoc a character string for the name of the data package that contains map-
pings between Entrez Gene IDs and their locations on chromosomes. For each
chromosome, there assumed to be mappings for the start and end locations of
genes represented by Entrez Gene IDs. The data package needs to be built using
chrLocPkgBuilder of AnnBuilder

111D a character string for the Entrez Gene ID representing a gene whose neigh-
bors are sought. 11ID can be missing

chromosome a character string for the number of the chromosome of interest.
chromosome is only required for locating genes within a range on the chromo-
some

upBase a numeric or character string for the number of base pairs that defines
the upper limit of the range to locate genes. If neighbors of a given gene is
sought, the value will be the distance in number of base pairs from the target
gene upstream, to which search for genes will be conducted. Otherwise, the
value will be the upper limit in number of base pairs from the p arm, to which
search for genes will be conducted

downBase a numeric or character string for the number of base pairs that defines
the lower limit of the range to locate gene. If neighbors of a given gene is
sought, the value will be the distance in number of base pairs from the target
gene downstream, to which search for genes will be conducted. Otherwise, the
value will be the lower limit in number of base pairs from the p arm, to which
search for genes will be conducted

organism a character string for the name of the organism of interest

chrEnv an environment object with keys for Entrez Gene IDs and values for the
chromosomes where genes reside

loc a numeric of character string for the chromosomal location of gene of inter-
est

base either a downBase or upBase

lower a boolean indicating whether the lower or upper boundary of search limit
is sought

mergeOrNot a boolean to indicate whether gene found up and down streams will
be merged (TRUE)

foundLLs a vector of character strings for Entrez Gene IDs

A chrLoc data package can be created using function chrLocPkgBuilder of AnnBuilder, in which
Entrez Gene IDs are mapped to location data on individual chromosomes.

18 genbank

Genes are considered to be neighbors to a given target gene or within a given range when the
transcription of genes start and end within the given range.

findNeighbors, checkArgs, findChr4LL, getValidChr, and getBoundary are accessory functions
called by findNeighbors and may not have real values outside.

Value

The function returns a list of named vectors. The length of the list is one when genes in a given
region are sought but varies depending on whether a given gene can be mapped to one or more
chromosomes when neighboring genes of a target gene are sought. Names of vector can be "Confi-
dent" when a gene can be confidently placed on a chromosome or "Unconfident" when a gene can
be placed on a chromosome but its exact location can not be determined with great confidence.

Author(s)

Jianhua Zhang

References

http://www.genome.ucsc.edu/goldenPath/

Examples

if(require("humanCHRLOC")){

findNeighbors(”"humanCHRLOC"”, "51806", 10, upBase = 600000, downBase = 600000)
Yelse{

print(”"Can not find neighbors without the required data package")

}

genbank A function to open the browser to Genbank with the selected gene.

Description

Given a vector of Genbank accession numbers or NCBI UIDs, the user can either have a browser
display a URL showing a Genbank query for those identifiers, or a XMLdoc object with the same

data.
Usage
genbank(...,disp=c("data", "browser"), type=c("accession”,"uid"),
pmaddress=.efetch("gene"”, disp, type))
Arguments
Vectorized set of Genbank accession numbers or NCBI UIDs
disp Either "Data" or "Browser" (default is data). Data returns a XMLDoc, while
Browser will display information in the user’s browser.
type Denotes whether the arguments are accession numbers or UIDS. Defaults to

accession values.

pmaddress Specific path to the pubmed efetch engine from the NCBI website.

http://www.genome.ucsc.edu/goldenPath/

getAnnMap 19

Details

A simple function to retrieve Genbank data given a specific ID, either through XML or through a
web browser. This function will accept either Genbank accession numbers or NCBI UIDs (defined
as a Pubmed ID or a Medline ID) - although the types must not be mixed in a single call.

WARNING: The powers that be at NCBI have been known to ban the IP addresses of users who
abuse their servers (currently defined as less then 2 seconds between queries). Do NOT put this
function in a tight loop or you may find your access revoked.

Value

If the option "data" is used, an object of type XMLDoc is returned, unless there was an error with
the query in which case an object of type try-error is returned.

If the option "browser" is used, nothing is returned.

Author(s)

R. Gentleman

See Also

pubmed, xmlTreeParse

Examples

Use UIDs to get data in both browser & data forms

if (interactive()) {

disp <- c("data","browser")
} else {

disp <- "data"

3

for (dp in disp)
genbank ("”12345","9997" ,disp=dp, type="uid")

Use accession numbers to retrieve browser info
if (interactive())
genbank ("U03397", "AFQ30427" ,disp="browser")

getAnnMap Get annotation map

Description

This function retrieves a map object from an annotation data package. It is intended to serve as
a common interface for obtaining map objects from both SQLite-based and environment-based
annotation data packages.

Usage

getAnnMap(map, chip, load = TRUE, type = c("db", "env"))

20 getEvidence
Arguments
map a string specifying the name of the map to retrieve. For example, "ENTREZID"
OI' n Go n
chip a string describing the chip or genome
load a logical value. When TRUE, getAnnMap will try to load the annotation data
package if it is not already attached.
type a character vector of one or more annotation data package types. The currently
supported types are "db" and "env"”. If load is TRUE, you can specify both "db"
and "env" and the order will determine which type is tried first. This provides
a fall-back mechanism when the preferred annotation data package type is not
available. If type is missing, then the first matching annotation package found
in the search path will be used, and then the default value of type takes over.
Details
getAnnMap uses the search path (see search) to find an appropriate annotation data package; when
called with chip="hgu95av2", the function will use the first hgu95av2 package on the search path
whether it be db or environment-based. If 1load=TRUE and no suitable package is found on the search
path, then the function will attempt to load an appropriate package. The type argument is used to
determine which type of package (db or env) is loaded first.
Value
If type is "db", an S4 object representing the requested map. If type is "env"”, an R environment
object representing the requested map.
Author(s)
Seth Falcon
Examples
map <- getAnnMap("ENTREZID", "hgu95av2"”, load=TRUE, type=c("env", "db"))
class(map)
getEvidence Get the Evidence codes for a set of GO terms.
Description
For each mapping of a gene to a GO term there are a set of evidence codes that are used. Genes can
be mapped using one, or more evidence codes and this function obtains the evidence codes for all
genes provided in the input list.
Usage
getEvidence(inlist)
Arguments

inlist

A list of GO identifers.

getGOTerm 21

Value

A list of the same length as the input list, each element is a vector of evidence codes.

Author(s)

R. Gentleman

See Also

getOntology, dropECode

Examples

library("hgu95av2.db")
bb <- hgu95av2GO[["39613_at"]]
getEvidence(bb)

getGOTerm Functions to Access GO data.

Description

These functions provide access to data in the GO package. The data are assembled from publically
available data from the Gene Ontology Consortium (GO), www. go.org. Given a list of GO identi-
fiers they access the children (more specific terms), the parents (less specific terms) and the terms
themselves.

Usage

getGOTerm(x)
getGOParents(x)
getGOChildren(x)
getGOOntology (x)

Arguments

X A character vector of valid GO identifiers.

Details

GO consists of three (soon to be more) specific hierarchies: Molecular Function (MF), Biological
Process (BP) and Cellular Component (CC). For more details consult the GO website. For each
GO identifier each of these three hierarchies is searched and depending on the function called the
appropriate values are obtained and returned.

It is possible for a GO identifier to have no children or for it to have no parents. However, it must
have a term associated with it.

www.go.org

22 getOntology

Value

A list of the same length as x. The list contains one entry for each element of x. That entry is itself
a list. With one component named Ontology which has as its value one of MF, BP or CC. The
second component has the same name as the suffix of the call, i.e. Children, Parents, or Term. If
there was no match in any of the ontologies then a length zero list is returned for that element of x.

For getGOOntology a vector of categories (the names of which are the original GO term names).
Elements of this list that are NA indicate term names for which there is no category (and hence they
are not really term names).

Author(s)

R. Gentleman

References

The Gene Ontology Consortium

Examples

library("GO.db")
sG <- sample(keys(GO.db, "GOID"), 8)

gT <- getGOTerm(sG)

gP <- getGOParents(sG)
gC <- getGOChildren(sG)
gcat <- getGOOntology(sG)

getOntology Get GO terms for a specified ontology

Description

Find the subset of GO terms for the specified ontology, for each element of the supplied list of
associations. The input list is typically from one of the chip-specific meta-data files.

Usage
getOntology(inlist, ontology=c("MF", "BP", "CC"))

Arguments

inlist A list of GO associations

ontology The name of the ontology you want returned.
Details

The input list should be a list of lists, each element of inlist is itself a list containing the infor-
mation that maps from a specified ID (usually LocusLink) to GO information. Each element of the
inner list is a list with elements GOID, Ontology and Evidence.

getPMlInfo 23

Value

A list of the same length as the input list. Each element of this list will contain a vector of GOIDs
for those terms that match the requested ontology.

Author(s)

R. Gentleman

See Also

getEvidence, dropECode

Examples

library("hgu95av2.db")

bb <- hgu95av2GO[["39613_at"]]
getOntology(bb)

sapply(bb, function(x) x$0Ontology)

getPMInfo extract publication details and abstract from annotate::pubmed func-
tion output

Description

extract publication details and abstract from annotate::pubmed function output

Usage
getPMInfo(x)

Arguments

X an object of class xmlDocument; assumed to be result of a pubmed() call

Details
uses xmIDOMApply to extract and structure key features of the XML tree returned by anno-
tate::pubmed()

Value

a list with one element per pubmed id processed by pubmed. Each element of the list is in turn a
list with elements for author list, title, journal info, and abstract text.

Note

this should be turned into a method returning an instance of a formal class representing articles.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

24 getQueryLink

Examples

demo <- pubmed("”11780146",
"11886385", "11884611")

getPMInfo(demo)
getQueryLink Functions to create hypertext links that can be placed in a table cell of
a HTML file
Description

Given a vector of ids, the functions will create a vector of hypertext links to a defined public repos-
itories such as LocusLink, UniGene The linkages can be placed in a html file constructed by
htmlpage.

Usage
getQueryLink(ids, repository = "ug"”, ...)
getTDRows (ids, repository = "ug", ...)
getCells(ids, repository = "ug"”, ...)
getQuery4UG(ids, ...)
getQuery4SP(ids, ...)
getQuery4GB(ids, ...)
getQuery40OMIM(ids, ...)
getQuery4Affy(ids, ...)
getQuery4FB(ids,)
getQuery4EN(ids, ...)
getQuery4TR(ids, ...)
getQuery4ENSEMBL (ids, ...)
Arguments
ids A character vector of ids, or alternatively, a list containing character vectors of
ids. These will be used to construct hypertext links. A list should be used in
cases where there are multiple ids per gene.
repository A character string for the name of a public repository. Valid values include "II",
"ug", "gb", "sp", "omim", "affy", "en", and "fb". See the details section for more
information.
Allows end user to pass additional arguments. See details for getQuery4ENSEMBL
for more information.
Details

getQuery4GB constructs hypertext links to GenBank using the provided ids.
getQuery4UG constructs hypertext links to UniGene using the provided ids.
getQuery4Affy constructs hypertext links to Affymetrix using the provided ids.
getQuery4SP constructs hypertext links to SwissProt using the provided ids.
getQuery40MIM constructs hypertext links to OMIM using the provided ids.
getQuery4FB constructs hypertext links to FlyBase using the provided ids.

getSEQ 25

getQuery4EN constructs hypertext links to EntrezGene using the provided ids.
getQuery4TR constructs hypertext links to TAIR using the provided ids.

getQuery4ENSEMBL constructs hypertext links to Ensembl using the provided ids. An additional
’species’ argument must be passed to this function via the ... argument to htmlpage. The form
of the argument must be e.g., species="Homo_sapiens" for human. Note the capitalized genus and
underscore (_) separator.

getQueryLink directs calls to construct hypertext links using the provided ids.
getTDRows constructs each row of the resulting table.
getCells constructs each cell of the resulting table.

Note that some of these functions (getQuery40MIM, getQuery4UG, getQuery4FB) attempt to return
empty cells for ids that don’t make sense, rather than broken links. For the other getQuery4XX
functions, the end user must replace all nonsense ids with " " in order to have an empty cell.

Also note that creating additional links is quite simple. First, define a new ’getQuery4XX()’ func-
tion modeled on the existing functions, then add this function to the getQueryLink function.
Value

Returns a vector of character strings representing the hypertext links.

Author(s)

Jianhua Zhang <jzhang @jimmy.harvard.edu> with further modifications by James W. MacDonald
<jmacdon @med.umich.edu>

getSEQ Queries the NCBI database to obtain the sequence for a given Gen-
Bank Accession number

Description

Given a GenBank Accession number, getSEQ queries the NCBI database for the nucleotide se-

quence.
Usage
getGI (accNum)
getSEQ(gil)
Arguments
accNum accNum a character string for a GenBank Accession number (i.e. M22490)
gi gi a character string or numeric numbers for a GenBank accession number or gi
number. A gi number is a series of digits that are assigned consecutively to each
sequence record processed by NCBI
Details

The NCBI database is queried for the given GenBank Accession number to obtain the nucleotide
sequence in FASTA format. The leading identification line of the sequence data is then dropped to
return only the nucleotide sequence.

getGI returns the gi number corresponding to a given GenBank accession number.

26 getSYMBOL

Value

getSEQ returns a character string of nucleotide sequence

Author(s)

Jianhua Zhang

References

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi

Examples

getSEQ(”M22490")

getSYMBOL Functions to deal with Data Packages

Description

The functions documented here are intended to make it easier to map from a set of manufacturers
identifiers (such as you will get from the chips etc) to other identifiers.

Usage

getSYMBOL (x, data)

getEG(x, data)

getGO(x, data)

getPMID(x, data)

getGOdesc(x, which)

lookUp(x, data, what, load = FALSE)

getUnigAnnItem()
Arguments
X The identifiers to be mapped (usually manufacturer)
data The basename of the meta-data package to be used.
what what a character string for the name of an annotation element of an annotation
data package
which which a character string in the form of MF, BP, CC, or ANY to indicated the

GO categories of interest

load A logical value indicating whether to attempt to load the required annotation
data package if it isn’t already loaded.

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi

getSYMBOL 27

Details

Users must supply the basename of the meta-data package that they want to use to provide the
mappings. The name of the meta-data package is the same as the basename.

Appropriate translations are done. In some cases such as getEG and getSYMBOL there will only be
one match and a vector is returned. In other cases such as getPMID and getGO there may be multiple
matches and a list is returned.

For getGOdesc x contains GO identifiers (not manufacturer identifiers) and the output is a list of
GOTerms objects, if which specifies some subset of the ontologies (MF, BP or CC) then only terms
for that ontology are retained.

lookUp is a general function that can be used to look up matches. All other translation functions
use lookUp

A BioC annotation data package contains annotation data environments whose names are package
name (e. g. hgu95av2) + element name (e. g. PMID). what must be one of the element names for
the given data package.

getUnigAnnItem keeps track of the annotation elements that have one to one mappings.

Value

Either a vector or a list depending on whether multiple values per input are possible.

Author(s)

R. Gentleman

See Also

mget

Examples

library("hgu95av2.db")
library("GO.db")

data(sample.ExpressionSet)
gN <- featureNames(sample.ExpressionSet)[100:105]
lookUp(gN, "hgu95av2"”, "SYMBOL")

Same as lookUp for SYMBOL except the return is a vector
getSYMBOL (gN, "hgu95av2")

gg <- getGO(gN, "hgu95av2")
lookUp(ggl[2]11C[111[L"GOID"]], "GO", "TERM")

Same as lookUp for TERM
getGOdesc(gg[[211L[11I1LL"GOID"]], "ANY")

For BP only
getGOdesc(ggl[211[L11ICL"GOID"]], "BP")
getEG(gN, "hgud95av2")

getPMID(gN, "hgu95av2")

28 GOZ2heatmap

GO2heatmap Compute a heatmap for the specified data, for either a GO category
or a KEGG pathway.

Description

For a given GO category or KEGG pathway, all probes in the supplied data are mapped to the
pathway and a heatmap is produced.

Usage
GO2heatmap(x, eset, data, ...)
KEGG2heatmap(x, eset, data, ...)
Arguments
X The name of the category or pathway.
eset An ExpressionSet providing the data.
data The name of the chip.
Additional parameters to pass to heatmap.
Details

For the given pathway or GO category all matching probes are determined, these are used to subset
the data and heatmap is invoked on that set of data. Extra parameters can be passed through to
heatmap using the ... parameter. The annotation slot of the eset argument is used to determine
the appropriate annotation data to use.

Value

The value returned by heatmap is passed back to the user.

Author(s)

R. Gentleman

See Also

heatmap

Examples

library("hgu95av2.db")
data(sample.ExpressionSet)
KEGG2heatmap("04810", sample.ExpressionSet, "hgu95av2")

GOmnplot 29

GOmnplot A function to plot by group means against each other.

Description

For a two sample comparison, as determined by group, and a specified KEGG pathway or GO
category, per group means are computed and plotted against each other.

Usage
GOmnplot(x, eset, data = "hgul33plus2”, group, ...)
KEGGmnplot(x, eset, data = "hgul33plus2"”, group, ...)
Arguments
X The name of the KEGG pathway or GO category.
eset An ExpressionSet containing the data.
data The name of the chip that was used to provide the data.
group The variable indicating group membership, should have two different values.
Extra parameters to pass to the call to plot.
Details

All probes in eset that map to the given category are determined. Then per group, per probe means
are computed and plotted against each other. Extra parameters can be passed to the plot function
via the dots argument.

Value

The matrix of per group means, for each probe.

Author(s)

R. Gentleman

See Also

KEGG2heatmap

Examples

library("hgu95av2.db")

data(sample.ExpressionSet)

KEGGmnplot ("04810", sample.ExpressionSet, sample.ExpressionSet$sex,
data = "hgu95av2")

30 hasGOannote

hasGOannote Check for GO annotation

Description

Given a GO term, or a vector of GO terms and an ontology this function determines which of the
terms have GO annotation in the specified ontology.

Usage

hasGOannote(x, which="MF")

Arguments
X A character vector, an instance of the GOTerms class or a list of GOTerms.
which One of "MF", "BP" or "CC"

Details

The available GO annotation is searched and a determination of whether a specific GO identifier
has a value in the specified ontology is made.

Value

A logical vector of the same length as x.

Author(s)

R. Gentleman

See Also

get

Examples

library("GO.db")

t1 <- "G0:0003680"
hasGOannote(t1)
hasGOannote(t1, "BP")

hgByChroms 31

hgByChroms A dataset to show the human genome base pair locations per chromo-
some.

Description

The data is described above.

Usage
data(hgByChroms)

Format

A list, with the names consisting of the names of the chromosomes in the human genome (thus 24
elements). Each element consists of a named vector of +/- values - where each value represents the
location of a base pair (the numeric value is the location, while the +/- denotes the strand value),
with the name providing the name of the base pair.

Source

Cheng Li of the Dana-Farber Cancer Institute.

Examples
data(hgByChroms)
hgCLengths A dataset which contains the lengths (in base pairs) of the human
chromosomes.
Description

The data is described above.

Usage
data(hgCLengths)

Format

A vector containing 24 values, each corresponding to the total chromosome length.

Source

UCSC Human Genome Project

Examples

data(hgCLengths)

32 hgu95Achrom

hgu95Achroloc Annotation data for the Affymetrix HGU95A GeneChip

Description

Data, in the form of environments for the Affymetrix U95A chip.

Usage
data(hgu95Achroloc)

Format

These data sets provide environments with mappings from the Affymetrix identifiers to chromoso-
mal location, in bases. The environments function like hashtables and can be accessed using mget.
If the returned value is NA then the current mapping was unable to identify this. Mappings and data
sources are constantly evolving so updating often is recommended.

Source

The AnnBuilder package.

Examples

data(hgu95Achroloc)

data(sample.ExpressionSet)

mget(featureNames(sample.ExpressionSet)[330:340], env=hgu95Achroloc,
ifnotfound=NA)

hgu95Achrom Annotation data for the Affymetrix HGU95A GeneChip

Description

Data, in the form of environments for the Affymetrix U95A chip.

Usage
data(hgu95Achrom)

Format

This data set provides an environment (treat as a hashtable) with mappings from the Affymetrix
identifiers to chromosome number/name. The environment functions like a hashtable and can be
accessed using mget. If the returned value is NA then the current mapping was unable to identify
this. Mappings and data sources are constantly evolving so updating often is recommended.

Source

The AnnBuilder package.

hgu95All 33

Examples

data(hgu95Achrom)
data(sample.ExpressionSet)
mget(featureNames(sample.ExpressionSet)[330:340], env=hgu95Achrom, ifnotfound=NA)

hgu95Al11 Annotation data for the Affymetrix HGU95A GeneChip

Description

Data, in the form of environments for the Affymetrix U95A chip.

Usage

data(hgu95Al1l)

Format

These data sets provide environments with mappings from the Affymetrix identifiers to Entrez Gene
identifiers. The environment functions like a hashtable and can be accessed using mget. If the
returned value is NA then the current mapping was unable to identify this. Mappings and data
sources are constantly evolving so updating often is recommended.

Source

The AnnBuilder package.

Examples

data(hgu95A11)
data(sample.ExpressionSet)
mget (featureNames(sample.ExpressionSet)[330:340], env=hgu95All, ifnotfound=NA)

hgu95AProbLocs chromLocation instance hgu95AProbLocs, an example of a chromLo-
cation object

Description

gives chromosome locations for Affy U95 probes

34 hgu95Asym

Slots

species: Object of class character, value: "Human’
datSource: Object of class character, value

nChrom: Object of class numeric, value: 24
chromNames: Object of class character, value: 1:22, X, Y

chromLocs: Object of class list, value: long: sense and antisense locations associated with affy
identifiers

chromLengths: Object of class numeric,
geneToChrom: Object of class environment

class: Object of class character, value: ’chromLocation’

hgu95Asym Annotation data for the Affymetrix HGU95A GeneChip

Description

Data, in the form of environments for the Affymetrix U95A chip.

Usage

data(hgu95Asym)

Format

This data set provides an environment with mappings from the Affymetrix identifiers to gene sym-
bol. The environment functions like a hashtables and can be accessed using mget. If the returned
value is NA then the current mapping was unable to identify this. Mappings and data sources are
constantly evolving so updating often is recommended.

Source

The AnnBuilder package.

Examples

data(hgu95Asym)
data(sample.ExpressionSet)
mget (featureNames(sample.ExpressionSet)[330:340], env=hgu95Asym, ifnotfound=NA)

homoData-class 35

homoData-class Class "homoData"

Description

A class to present data for HomologGene data of a matching sequence

Objects from the Class

Objects can be created by calls of the form new("homoData”, ...).

Slots

homoOrg: Object of class "character” the scientific name of the organism of interest
homoLL: Object of class "numeric” the LocusLink id of the gene of interest

homoType: Object of class "character” the type of similarity. Valid values include B - a recip-
iprocal best best between 3 or more organisms, b - a reciprocal best match, and c - a curated
homology relationship

homoPS: Object of class "numeric” percent similarity value
homoURL: Object of class "character” the URL for curated homology relationship
homoACC: Object of class "character” the accession number

homoHGID: Object of class "numeric” the internal HomologGenelD

Methods

homoPS signature(object = "homoData"): the get function for slot homoPS
homoLL signature(object = "homoData"): the get function for slot homoLL
homoOrg signature(object = "homoData"): the get function for slot homoOrg
homoType signature(object = "homoData"): the get function for slot homoType
homoURL signature(object = "homoData"): the get function for slot homoURL
homoACC signature(object = "homoData"): the get function for slot homoACC
homoHGID signature(object = "homoHGID"): the get function for slot homoHGID

Author(s)

Jianhua Zhang

References

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/README

Examples

new("homoData"”, homoPS = 82.3, homoLL = 2324853, homoOrg = "Homo sapins”,
homoType = "B", homoURL = "", homoHGID = 12345)

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/README

36

htmlpage

htmlpage Functions to build HTML pages

Description

This function is designed to create an HTML table containing both static information as well as
links to various online annotation sources.

Usage
htmlpage(genelist, filename, title, othernames, table.head,
table.center = TRUE, repository = list("en"), ...)
Arguments
genelist A list or data. frame of character vectors containing ids to be made into hyper-
text links. See details for more information.
filename A filename for the resultant HTML table.
title A title for the table.
othernames A list or data.frame of other things to add to the table. These will not be
hyperlinks. The list of othernames can contain vectors, matrices, data. frames
or lists.
table.head A character vector of column headers for the table.

table.center Center the table? Defaults to TRUE.

repository A list of repositories to use for creating the hypertext links. Currently avail-
able repositories include "gb’ (GenBank), ’en’ (EntrezGene), ’omim’ (Online
Mendelian Inheritance in Man), ’sp’ (SwissProt), "affy’ (Affymetrix), ‘ug’ (Uni-
Gene), ’fb’ (FlyBase), ’go’ (Gene Ontology), ’ens’ (Ensembl). Additional repos-
itories can easily be added. See setRepository for more information.

Further arguments to be passed. See details for more information.

Details

This function will accept a list or data.frame of character vectors, each containing different ids
that are to be turned into hyperlinks (e.g., a list containing affy ids, genbank accession numbers,
and Entrez Gene ids). For instances where there are more than one id per gene, use a sub-list of
character vectors. See the vignette "HowTo: Get HTML Output’ for more information. Othernames
should be a list or data. frame. Again, if there are multiple entries for a given gene, use a sub-list.
This is more easily explained using an example - please see the examples section below and the
above mentioned vignette.

In even the simplest case the genelist, othernames and repository have to be lists. A simple character
vector will not suffice.

Note that this function now uses xtable to create the HTML table, and there is the ability to
pass some arguments on to either xtable or print.xtable. One such argument would be ’ap-
pend=TRUE’, which would allow one to put lots of tables in one page, as long as the filename
argument remained the same.

Additionally, the Ensembl repository needs a species argument in order to form a usable URI. This
argument can be passed in the form of e.g., species = "Homo_sapiens”. Note the capitalization of
the genus, and the separation by an underscore (_).

htmlpage 37

Value

This function is used only for the side effect of creating an HTML table.

Author(s)

Robert Gentleman <rgentlem @thcrc.org>, further modifications by James W. MacDonald <jmac-
don@med.umich.edu>

Examples
A very simple example. Two columns, one with links, the other without.

gos <- paste(”GO:000000", 1:9, sep="")
notlinks <- LETTERS[1:9]

htmlpage(list(gos), "simple.html”, "Two column data”, list(notlinks),
c("GO IDs", "Letters"), repository = list("go"))

if(linteractive())
file.remove("simple.html")

A more complex example with multiple links per cell

first we create data to annotate

unigene <- list("Hs.600536",c("Hs.596913","HS.655491"),"Hs.76704")
refseq <- list(c("NM_001030050", "NM_001030047", "NM_001648",
"NM_001030049"), "NM_000860", c("NM_001011645", "NM_000044"))
entrez <- c("354", "3248", "367")

genelist <- list(unigene, refseq, entrez)

now some other data

symb <- c("KLK3","HPGD","AR")
desc <- c("Prostate-specific antigen precursor”,

"15-hydroxyprostaglandin dehydrogenase”,

"Androgen receptor”)
t.stat <- c(40.21, -22.14, 21.56)
p.value <- rep(9,3)
fold.change <- c(3.54, -2.35, 3.18)
expression <- matrix(c(11.78, 11.69, 11.62, 8.17, 5.78, 5.58, 5.68,

8.26, 9.08, 9.28, 9.19, 6.05), ncol=4, byrow=TRUE)

otherdata <- list(symb, desc, t.stat, p.value, fold.change, expression)

table.head <- c("UniGene", "RefSeq", "EntrezGene", "Symbol”,
"Description”, "t-stat”, "p-value”, "fold change”,
paste("Sample”, 1:4))

htmlpage(genelist, "test.html”, "Some gene expression data”, otherdata,
table.head, repository = list("ug","gb","en"))

if(!linteractive())
file.remove("test.html")

38 HTMI Page-class

HTMLPage-class Classes to represent HTML pages

Description

Class HTMLPage and FramedHTMLPage are a pair of experimental classes used to explore concepts
of representing HTML pages using S4 objects.

Slots
fileName: Object of class "character” The filename of the HTML page
pageText: Object of class "character” The text of the HTML page
pageTitle: Object of class "character” The title of the HTML page
topPage: Object of class "HTMLPage" The header page for a FramedHTMLPage
sidePage: Object of class "HTMLPage" The side index page for a FramedHTMLPage
mainPage: Object of class "HTMLPage" The primary page for a FramedHTMLPage

Methods

show signature(object = "HTMLPage"): Describes information about the page
fileName signature(object = "HTMLPage"): Gets the fileName slot
pageText signature(object = "HTMLPage"): Gets the pageText slot
pageTitle signature(object = "HTMLPage"): Gets the pageTitle slot

toFile signature(object = "HTMLPage"): Writes the page out to the file designated by the file-
Name slot

Note

These classes are currently experimental.

FramedHTMLPage is modeled after the framing layout of the Bioconductor website (www.bioconductor.org).

Author(s)

Jeff Gentry

Examples

##---- Should be DIRECTLY executable !! ----

isValidKey 39

isValidKey Get or verify valid IDs for a package or OrgDb object.

Description
These functions either verify that a list of IDs are primary and valid IDs for a package, or else return
all the valid primary IDs from a package

Usage

isValidKey(ids, pkg)
allValidKeys(pkg)

S4 method for signature 'character,character'
isValidKey(ids, pkg)

S4 method for signature 'character,OrgDb'
isValidKey(ids, pkg)

S4 method for signature 'character'
allvalidKeys(pkg)

S4 method for signature 'OrgDb'

allvalidKeys(pkg)
Arguments
ids A character vector containing IDs that you wish to validate.
pkg Either the name of an installed annotation package (e.g., "org.Hs.eg.db"), or an

uninstalled annotation package, e.g., from AnnotationHub.

Details

Every package has some kind of ID that is central to that package. For chip-based packages this
will be some kind of probe, and for the organism based packages it will be something else (usually
an entrez gene ID). isValidKey takes a list of IDs and tests to see whether or not they are present
(valid) in a particular package. allValidKeys simply returns all the valid primary IDs for a package.

Value

isValidKey returns a vector of TRUE or FALSE values corresponding to whether or not the ID is
valid.

allvalidKeys returns a vector of all the valid primary IDs.

Author(s)

Marc Carlson

See Also

updateSymbolsToValidKeys

40 LIL2homology

Examples

Not run:
2 bad IDs and a 3rd that will be valid
ids <- c("15S_rRNA_2","21S_rRNA_4","15S_rRNA")
isValidKey(ids, "org.Sc.sgd")

2 good IDs and a 3rd that will not be valid
ids <- c("5600","7531", "altSymbol")
isValidKey(ids, "org.Hs.eg")

Get all the valid primary id from org.Hs.eg.db
allvValidKeys("org.Hs.eg")

End(Not run)

LL2homology DEFUNCT Functions that find the homology data for a given set of
LocusLink ids or HomoloGenelDs

Description

These functions are DEFUNCT. All this functionality has been replaced by inPARANOID pack-
ages. Given a set of LocusLink ids or NCBI HomoloGenelDs, the functions obtain the homology
data and represent them as a list of sub-lists using the homology data package for the organism
of interest. A sub-list can be of length 1 or greater depending on whether a LocusLink id can be
mapped to one or more HomoloGenelDs.

Usage

LL2homology (homoPkg, 1lids)
HGID2homology (hgid, homoPkg)
ACC2homology(accs, homoPkg)

Arguments
1lids 11ids a vector of character strings or numberic numbers for a set of LocusLink
ids whose homologous genes in other organisms are to be found
hgid hgid a named vector of character strings or numberic numbers for a set of Ho-
moloGenelDs whose homologous genes in other organisms are to be found.
Names of the vector give the code used by NCBI for organisms
accs accs a vector of character strings for a set of GenBank Accession numbers
homoPkg homoPkg a character string for the name of the homology data package for a
given organism, which is a short version of the scientific name of the organism
plus homology (e. g. hsahomology)
Details

The homology data package has to be installed before executing any of the two functions.
Each sub-list has the following elements:

homoOrg - a named vector of a single character string whose value is the scientific name of the
organism and name the numeric code used by NCBI for the organism.

makeAnchor 41

homoLL - an integer for LocusLink id.
homoHGID - an integer for internal HomoloGenelD.

homoACC - a character string for GenBank accession number of the best matching sequence of the
organism.

homoType - a single letter for the type of similarity measurement between the homologous genes.
homoType can be either B (reciprocal best best between three or more organisms), b (reciprocal
best match between two organisms), or ¢ (curated homology relationship between two organisms).

homoPS - a percentage value measured as the percent of identity of base pair alignment between
the homologous sequences.

homoURL - a url to the source if the homology relationship is a curated orthology.

Sub-lists with homoType = B or b will not have any value for homoURL and objects with homoType
= ¢ will not have any value for homoPS.
Value

Both functions returns a list of sub-lists containing data for homologous genes in other organisms.

Author(s)

Jianhua Zhang

References

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?=homologene

Examples

Not run:
hsahomology is a defunct package!
if(require("hsahomology")){
1lids <- 1ls(env = hsahomologylLL2HGID)[2:5]
LL2homology ("hsahomology”, 1lids)

End(Not run)

makeAnchor A Function To Generate HTML Anchors

Description
This function will take a set of links and titles and will generate HTML anchor tags out of these
values

Usage

makeAnchor(link, title, toMain = FALSE)

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?=homologene

42 mapOrgs

Arguments
link A vector of URLSs
title A vector of website names
toMain Used for frame pages
Value

A vector of HTML anchor tags

Author(s)
Jeff Gentry

Examples

makeAnchor ("http://www.bioconductor.org”,"Bioconductor™)

mapOrgs Functions to map to organism IDs used by NCBI homology.

Description

These functions help map to organism identifiers used at the NCBI.

Usage

mapOrgs(toMap, what = c("code”, "name"))

getOrgNameNCode ()
Arguments

toMap vect a vector of character strings

what what a character string that can either be "code" or "name".
Details

mapOrgs converts organism codes to scientific names.

Value

mapOrgs returns a vector of character strings.

Author(s)

Jianhua Zhang

References

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/README

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/README

organism 43

organism Convenience function for getting the organism from an object or pack-
age

Description

The most basic organism method just takes a character string (which represents a particular anno-
tation package) and returns the organism that said package is based upon.

Usage
organism(object)
Arguments
object a character string that names a package
Value

The name of the organism used for this package or object

Author(s)

Marc Carlson

Examples

require(hgu95av2.db)
get the organism for this annotation package
organism("hgu95av2")

get the organism this object refers to
(for a ChromLocation object)

z <- buildChromLocation("hgu95av2")
organism(z)

pm.abstGrep An interface to grep for PubMed abstracts.

Description

A user friendly interface to the functionality provided by pubmed.

Usage

pm.abstGrep(pattern, absts, ...)

44 pm.getabst

Arguments
pattern A pattern for the call to grep.
absts A list containing abstracts downloaded using pubmed or equivalent.
Extra arguments passed to grep.
Details

The absts are a list of PubMed XML objects that have been downloaded and parsed. This function
lets the user quickly search the abstracts for any regular expression. The returned value is a logical
vector indicating which of the abstracts contain the regular expression.

Value

The returned value is a logical vector indicating which of the abstracts contain the regular expres-
sion.

Author(s)

Robert Gentleman

See Also

pm.getabst, pm.titles

Examples

library("hgu95av2.db")

hoxad <- "37806_at"

absts <- pm.getabst(hoxa9, "hgu95av2")
pm.abstGrep(”SH3", absts[[1]]1)
pm.abstGrep("autism”, absts[[1]1])

pm.getabst Obtain the abstracts for a set PubMed list.

Description
The data provided by PubMed is reduced to a small set. This set is then suitable for further render-
ing.

Usage

pm.getabst(geneids, basename)

Arguments

geneids The identifiers used to find Abstracts

basename The base name of the annotation package to use.

pm.titles

Details

45

We rely on the annotation in the package associated with the basename to provide PubMed identi-
fiers for the genes described by the gene identifiers. With these in hand we then use the pmfetch
utility to download the PubMed abstracts in XML form. These are then translated (transformed) to

a shorter version containing a small subset of the data provided by PubMed.

This function has the side effect of creating an environment in .GlobalEnv that contains the map-
ping for the requested data. This is done for efficiency — so we don’t continually read in the data

when there are many different queries to be performed.

Value

A list of lists containing objects of class pubMedAbst. There will be one element of the list for each
identifier. Each of these elements is a list containing one abstract (of class pubMedAbst for each

PubMed identifier associated with the gene identifier.

Author(s)

Robert Gentleman

See Also

pm.abstGrep, pm.titles

Examples

library("hgu95av2.db")
hoxa9 <- "37806_at"”
absts <- pm.getabst(hoxa9, "hgu95av2")

pm.titles Obtain the titles of the PubMed abstracts.

Description

This function returns the titles from a list of PubMed abstracts.

Usage

pm.titles(absts)

Arguments

absts The list of PubMed abstracts.

Details

It simply uses sapply.

Value

A character vector of length equal to the number of abstracts. Each element is the title of the

corresponding abstract.

46 pmAbst2HTML

Author(s)

Robert Gentleman

See Also

pm.abstGrep

Examples

library("hgu95av2.db")

hoxa9 <- "37806_at"

absts <- pm.getabst(hoxa9, "hgu95av2")
pm.titles(absts)[[111C[1]1]

pmAbst2HTML HTML Generation for PubMed Abstracts

Description
This function will take a pubMedAbst object, or a list of these objects and generate a web page that
will list the titles of the abstracts and link to their full page on PubMed

Usage
pmAbst2HTML (absts, filename, title, frames = FALSE, table.center = TRUE)

Arguments

absts A list of pubMedAbst (or a single object)

filename The output filename. If frames is FALSE, this is the name of the single output
file and defaults to absts.html. Otherwise, this is taken to be the base of a
set of filenames, and the default base is the empty string. See value for more
information on output files.

title Extra title information for your listing

frames If frames is TRUE, the resulting page will use HTML frames, resulting in a more

complex set of output pages.

table.center If TRUE, will center the listing of abstracts

Details

This function uses the Entrez functionality provided by NCBI to retrieve the abstract URL at the
PubMed site. It will then create a tabular webpage which will list the titles of the abstracts provided
and have them link to the appropriate PubMed page. If frames is TRUE, the table of links will be on
the left hand side of the page and the right hand will link directly to the appropriate PubMed page.

Value

If frames is FALSE, a simple HTML file is created with the name specified by filename.

If frames is TRUE, then there are four HTML files created, of the form XXXtop.html, XXXside.html,
XXXmain.html and XXXindex.html, where XXX is the string provided by filename.

pmid2MIAME 47

Author(s)
Jeff Gentry
See Also
pubMedAbst
Examples
x <- pubmed(”9695952","8325638","8422497")
a <- xmlRoot(x)
numAbst <- length(xmlChildren(a))
absts <- list()
for (i in 1:numAbst) {
absts[[i]] <- buildPubMedAbst(al[i]])
}
First try it w/o frames - using a temporary
file for the output
fname <- tempfile()
pmAbst2HTML (absts, filename=fname)
if (interactive())
browseURL (paste("file://",fname,sep=""))
Now try it w/ frames, using temporary files again.
fnameBase <- tempfile()
pmAbst2HTML (absts, filename=fnameBase, frames=TRUE)
if (interactive())
browseURL (paste(”file://",fnameBase, "index.html"”, sep=""))
pmid2MIAME use web to populate MIAME instance with pubmed details
Description

use web to populate MIAME instance with pubmed details

Usage

pmid2MIAME (pmid)
Arguments

pmid string encoding PMID
Details

uses XML library to decode parts of the query response and load a MIAME object

Value

An instance of class MIAME

48 PMIDAmat

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

if (interactive()) pmid2MIAME("9843569")

PMIDAmat A function to compute the probe to PubMed id incidence matrix.

Description

For a given chip or a given set of genes, it computes the mapping from probes to PubMed id.

Usage

PMIDAmat (pkg, gene=NULL)

Arguments
pkg The package name of the chip for which the incidence matrix should be com-
puted.
gene A character vector of interested probe set ids or NULL (default).
Details

Not much to say, just find which probes are associated with which PubMed ids and return the
incidence matrix, with PubMed ids as rows and probes as columns.

To specify a set of probes to use, let the argument gene to be a vector of probe ids. Bt this way, the
calculations are not involved with non-interested genes/PubMed ids so that the whole process could
finish soon.

Value
A matrix containing zero or one, depending on whether the probe (column) is associated with a
PubMed id (row).

Author(s)

R. Gentleman

Examples

library("hgu95av2.db")
probe <- names(as.list(hgu95av2ACCNUM))
Amat <- PMIDAmat("hgu95av2"”, gene=sample(probe, 10))

pmidQuery 49

pmidQuery A function to query PubMed

Description

Given a PMID, will create a URL which can be used to open a browser and retrieve the specified
information from PubMed.

Usage

pmidQuery(query)
Arguments

query The PubMed ID (or IDs)
Details

Using ublished details from NCBI we construct an appropriate string for directing a web browser
to the information available at the NCBI.

Value

A character string containing the appropriate URL

Author(s)

Jeff Gentry

References

NCBI, https://www.ncbi.nih.gov/

See Also

UniGeneQuery

Examples

a <- "9695952"
pmidQuery(a)

https://www.ncbi.nih.gov/

50 pubmed

pubmed A function to open the browser to Pubmed with the selected gene.

Description

Given a vector of Pubmed identifiers or accession numbers, the user can either have a browser
display a URL showing a Pubmed query for those identifiers, or a XMLdoc object with the same

data.
Usage
pubmed(...,disp=c("data", "browser"), type=c("uid”,"accession"),
pmaddress=.efetch(”"PubMed”, disp, type))
Arguments
Vectorized set of Pubmed ID’s
disp Either "Data" or "Browser" (default is data). Data returns a XMLDoc, while
Browser will display information in the user’s browser.
type Denotes whether the arguments are accession numbers or UIDS. Defaults to
uids.
pmaddress Specific path to the pubmed efetch engine from the NCBI website.
Details

A simple function to retrieve Pubmed data given a specific ID, either through XML or through a
web browser. This function will accept either pubmed accession numbers or NCBI UIDs (defined
as a Pubmed ID or a Medline ID) - although the types must not be mixed in a single call.

WARNING: The powers that be at NCBI have been known to ban the IP addresses of users who
abuse their servers (currently defined as less then 2 seconds between queries). Do NOT put this
function in a tight loop or you may find your access revoked.

Value

If the option "data" is used, an object of type XMLDoc is returned, unless there was an error with
the query in which case an object of type try-error is returned.

If the option "browser" is used, nothing is returned.

Author(s)

R. Gentleman

See Also

genbank, xmlTreeParse

pubMedAbst-class 51

Examples

if(interactive())

opts <- c("data","browser") else

opts <- "data"

for (dp in opts)
pubmed(”11780146","11886385","11884611",disp=dp)

pubMedAbst-class Class pubMedAbst, a class to handle PubMed abstracts, and methods
for processing them.

Description

This is a class representation for PubMed abstracts.

Creating Objects
new('pubMedAbst',
authors=...., #0bject of class vector
pmid=...., #0bject of class character
abstText =...., #0bject of class character
articleTitle=...., #object of class character
journal=...., #0bject of class character
pubDate =...., #0bject of class character
)

Slots

pmid: Object of class "character"” The PubMed ID for this paper.

authors: Object of class "vector” The authors of the paper.

abstText: Object of class "character"” The contained text of the abstract.

articleTitle: Object of class "character” The title of the article the abstract pertains to.
journal: Object of class "character” The journal the article was published in.

pubDate: Object of class "character” The date the journal was published.

Methods

pmid signature(object = "pmid"): An accessor function for pmid

abstText signature(object = "pubMedAbst"”): An accessor function for abstText
articleTitle signature(object = "pubMedAbst"): An accessor function for articleTitle
authors signature(object = "pubMedAbst"”): An accessor function for authors

journal signature(object = "pubMedAbst"): An accessor function for journal

pubDate signature(object = "pubMedAbst"): An accessor function for pubDate

Author(s)
Jeff Gentry

52 PWAmat

See Also

pubmed, genbank

Examples

X <- pubmed("9695952","8325638","8422497")
a <- xmlRoot(x)
numAbst <- length(xmlChildren(a))
absts <- list()
for (i in 1:numAbst) {

absts[[i]] <- buildPubMedAbst(al[il])
}

PWAmat A function to compute the probe to KEGG pathway incidence matrix.

Description

For a given chip we compute the mapping from probes to KEGG pathways.

Usage
PWAmat (data)

Arguments

data The name of the chip for which the incidence matrix should be computed.

Details

Not much to say, just find which probes are in which pathways and return the incidence matrix,
with pathways as rows and probes as columns.

It would be nice to be able to specify a set of probes to use, so that one does not do perform the
calculations using all probes if they are not of interest.

Value

A matrix containing zero or one, depending on whether the probe (row) is in a pathway (column).

Author(s)

R. Gentleman

See Also
KEGG2heatmap, GOmnplot

Examples

library("hgu95av2.db")
Am1 <- PWAmat("hgu95av2")

readGEOAnn 53

readGEOANN Function to extract data from the GEO web site

Description

Data files that are available at GEO web site are identified by GEO accession numbers. Given the
url for the CGI script at GEO and a GEO accession number, the functions extract data from the web
site and returns a matrix containing the data.

Usage

readGEOANN(GEOAccNum, url = "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?")

readIDNAcc(GEOAccNum, url = "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?")

getGPLNames(url ="https://www.ncbi.nlm.nih.gov/geo/query/browse.cgi?")

getSAGEFileInfo(url =
"https://www.ncbi.nlm.nih.gov/geo/query/browse.cgi?view=platforms&prtype=SAGE&dt)

getSAGEGPL (organism = "Homo sapiens”, enzyme = c("NlaIIl”, "Sau3A"))

readUrl(url)
Arguments
url url the url for the CGI script at GEO
GEOAccNum GEOAccNum a character string for the GEO accession number of a desired file (e.
g. GPL97)
organism organism a character string for the name of the organism of interests
enzyme enzyme a character string that can be eighter Nlall or Sau3A for the enzyme
used to create SAGE tags
Details

url is the CGI script that processes user’s request. readGEOAnn invokes the CGI by passing a GEO
accession number and then processes the data file obtained.

readIDNAcc calls readGEOANnn to read the data and the extracts the columns for probe ids and
accession numbers. The GEOAccNum has to be the id for an Affymetrix chip.

getGPLNames parses the html file that lists GEO accession numbers and descriptions of the array
represented by the corresponding GEO accession numbers.

Value

Both readGEOANn and readIDNAcc return a matrix.

getGPLNames returns a named vector of the names of commercial arrays. The names of the vector
are the corresponding GEO accession number.

Author(s)

Jianhua Zhang

References

www.ncbi.nlm.nih.gov/geo

www.ncbi.nlm.nih.gov/geo

54 serializeEnv

Examples

Get array names and GEO accession numbers

#geoAccNums <- getGPLNames()

Read the annotation data file for HG-U133A which is GPL96 based on
examining geoAccNums

#temp <- readGEOAnn(GEOAccNum = "GPL96")

#temp2 <- readIDNAcc(GEOAccNum = "GPL96")

serializeEnv A Function To Serialize Environment

Description

This function will serialize an environment in R to an XML format stored in a compressed file.

Usage

serializeEnv(env, fname)
serializeDataPkgEnvs(pkgDir)

Arguments
env The name of the environment to serialize.
fname The name of the output file.
pkgDir The directory where a data package is
Details

The environment is converted into an XML format and then outputted to a gzipped file (using
gzfile). The values in the environment are serialized (using serialize) in ASCII format although
the keys are stored in plain text.

The format of the XML is very simple, with the primary block being values, which contain blocks
of entries, and each entry having a key and a value. For instance, if we had an environment with
one value in it, the character c with a key of a (e.g. assign("a", "c", env=fo00)), this is what the
output would look like.

<?xml version="1.0"7?>
<values xmlns:bt="http://www.bioconductor.org/RGDBM">
<entry>
<key>
a
</key>
<value>
A\n2\n131072\n66560\n1040\n1\n1033\n1\nc\n
</value>
</entry>
</values>

setRepository 55

Author(s)
Jeff Gentry

See Also

gzfile, serialize

Examples

z <- new.env()

assign("a"”, 1, env=z)
assign("b", 2, env=z)
assign("c", 3, env=z)
serializeEnv(z, tempfile())

setRepository Functions to add arbitrary repositories

Description

These functions allow end users to add arbitrary repositories for use with the htmlpage function.

Usage

setRepository(repository, FUN, ..., verbose=TRUE)
getRepositories()
clearRepository(repository, verbose=TRUE)

Arguments
repository A character name for the repository.
FUN A function to build hyperlinks for the repository. See details for more informa-
tion.
Allows one to pass arbitrary code to underlying functions.
verbose Output warning messages?
Details

These functions allow end users to add, view, and remove repositories for use with the htmlpage

function. getRepositories will output a vector of names for available repositories. clearRepository

can be used to remove a repository if so desired. setRepository can be used to add a repository.
See the examples section for the format of the FUN argument.

Once a new repository has been set, the htmlpage function can be called using the name of the
new repository as a value in the repository argument (e.g., htmlpage(<other args>, repository =
list("newrepositoryname"))

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

56 UniGeneQuery

Examples

A simple fake URI
repofun <- function(ids, ...)
paste("http://www.afakeuri.com/", ids, sep = "")

setRepository(”simple”, repofun)

More complicated, we want to make sure that
NAs get converted to empty cells

repofun <- function(ids, ...){

bIDs <- which(is.na(ids))

out <- paste("http://www.afakeuri.com/", ids, sep = "")
out[bIDs] <- " "

out

3

setRepository("”complex”, repofun)

More complicated URI where we need to pass more information

An example is Ensembl, which requires a species as part of the URI
Since htmlpage() has an '...' argument, we can pass arbitrary

arguments to this function that will be passed down to our

repfun. Here we assume the argument species="Homo_sapiens” has been
included in the call to htmlpage().

repofun <- function(ids, ...){
if(!is.null(list(...)$species))
species <- list(...)$species
else
stop("To make links for Ensembl, you need to pass a 'species' argument.”,
call. = FALSE)
out <- paste("http://www.ensembl.org/", species, "/Search/Summary?species=",
species, ";idx=;g=", ids, sep = "")
out

}

setRepository(”species_arg”, repofun)

UniGeneQuery Create a Query String for a UniGene Identifier

Description

Given a set of UniGene identifiers this function creates a set of URLs that an be used to either open
a browser to the requested location or that can be used as anchors in the construction of HTML
output.

Usage

UniGeneQuery(query, UGaddress="UniGene/", type="CID")

updateSymbolsTo ValidKeys 57

Arguments
query The UniGene identifiers.
UGaddress The address of UniGene, within the NCBI repository.
type What type of object is being asked for; eithe CID or UGID
Details

Using published details from NCBI we construct an appropriate string for directing a web browser
to the information available at the NCBI for that genomic product (usually an EST).
Value

A character vector containing the query string.

Note

Be very careful about automatically querying this resource. It is considered antisocial behavior by
the owners.

Author(s)

Robert Gentleman

References

NCBI, https://www.ncbi.nih.gov/

Examples

g1<-UniGeneQuery(c("Hs.293970", "Hs.155650"))
ql
if(interactive())

browseURL(q1[1])

updateSymbolsToValidKeys
Take a list of symbols and translate them into the best possible ID for
a package.

Description

Given a list of gene symbols and a package, find a valid ID for that package. If there isn’t a valid
ID, then return the original symbol.

Usage

updateSymbolsToValidKeys(symbols, pkg)

https://www.ncbi.nih.gov/

58 usedChromGenes

Arguments
symbols A character vector containing gene symbols that you wish to try and translate
into valid IDs.
pkg The package name of the chip for which we wish to validate IDs.
Details

This is a convenience function for getting from a possibly varied list of gene symbols mapped onto
something that is a nice concrete ID such as an entrez gene ID. When such an ID cannot be found,
the original symbol will come back to prevent the loss of any information.

Value
This function returns a vector of IDs corresponding to the symbols that were input. If the symbols
don’t have a valid ID, then they come back instead.

Author(s)

Marc Carlson

See Also

isValidKey

Examples

Not run:
one "bad” ID, one that can be mapped onto a valid ID, and a 3rd
which already is a valid ID
syms <- c("15S_rRNA_2","21S_rRNA_4","15S_rRNA")
updateSymbolsToValidKeys(syms, "org.Sc.sgd")

3 symbols and a 4th that will NOT be valid
syms <- c("MAPK11","P38B","FLJ45465", "altSymbol")
updateSymbolsToValidKeys(syms, "org.Hs.eg")

End(Not run)

usedChromGenes A function to select used genes on a chromosome from an Expression-
Set.

Description
Given an instance of an ExpressionSet, a chromLocation object and the name of a chromosome
this function returns all genes represented in the ExpressionSet on the specified chromosome.
Usage

usedChromGenes(eSet, chrom, specChrom)

usedChromGenes 59

Arguments
eSet An instance of an ExpressionSet object.
chrom The name of the chromosome of interest.
specChrom An instance of a chromLocation object.
Value

Returns a vector of gene names that represent the genes from the ExpressionSet that are on the
specified chromosome.

Author(s)
Jeff Gentry

Examples

data(sample.ExpressionSet)
data(hgu95AProbLocs)
usedChromGenes(sample.ExpressionSet, "1", hgu95AProbLocs)

Index

* classes
chromLocation-class, 11
homoData-class, 35
HTMLPage-class, 38
pubMedAbst-class, 51

x datasets
hgByChroms, 31
hgCLengths, 31
hgu95Achroloc, 32
hgu95Achrom, 32
hgu95A11, 33
hgu95Asym, 34

+ data
chrCats, 9

x interface
accessionToUID, 3
entrezGeneByID, 14
entrezGeneQuery, 15
genbank, 18
pmidQuery, 49
pubmed, 50
UniGeneQuery, 56
usedChromGenes, 58

* manip
annPkgName, 5
aqlListGOIDs, 5
dropECode, 13
filterGOByOntology, 16
findNeighbors, 16
getAnnMap, 19
getEvidence, 20
getGOTerm, 21
getOntology, 22
getQuerylLink, 24
getSYMBOL, 26
GO2heatmap, 28
GOmnplot, 29
hasGOannote, 30
htmlpage, 36
isValidKey, 39
mapOrgs, 42
organism, 43
pm.abstGrep, 43

60

pm.getabst, 44
pm.titles, 45
PMIDAmat, 48
PWAmat, 52
readGEOANN, 53
setRepository, 55
updateSymbolsToValidKeys, 57

+ methods
hgu95AProbLocs, 33

* misc
ACCNUMStats, 4
compatibleVersions, 12
getSEQ, 25
LL2homology, 40

+ models
getPMInfo, 23
pmid2MIAME, 47

+ utilities
buildChromLocation, 7
buildPubMedAbst, 8
makeAnchor, 41
pmAbst2HTML, 46
serializeEnv, 54

abstText (pubMedAbst-class), 51

abstText, pubMedAbst-method
(pubMedAbst-class), 51

ACC2homology (LL2homology), 40

accessionToUID, 3

ACCNUMStats, 4

allvalidKeys (isValidKey), 39

allvalidKeys, character-method
(isValidKey), 39

allvalidKeys,OrgDb-method (isValidKey),
39

annPkgName, 5

aqlListGOIDs, 5

articleTitle (pubMedAbst-class), 51

articleTitle, pubMedAbst-method
(pubMedAbst-class), 51

authors (pubMedAbst-class), 51

authors, pubMedAbst-method
(pubMedAbst-class), 51

INDEX

blastSequences, 6
buildChromLocation, 7, 11
buildPubMedAbst, 8

checkArgs (findNeighbors), 16
chrCats, 9
chromInfo (chromLocation-class), 11
chromInfo,chromLocation-method
(chromLocation-class), 11
chromLengths (chromLocation-class), 11
chromLengths, chromLocation-method
(chromLocation-class), 11
chromLocation (chromLocation-class), 11
chromLocation-class, 11
chromLocs (chromLocation-class), 11
chromLocs, chromLocation-method
(chromLocation-class), 11
chromNames (chromLocation-class), 11
chromNames, chromLocation-method
(chromLocation-class), 11
clearRepository (setRepository), 55
compatibleVersions, 12
createlLLChrCats (chrCats), 9
createMAPIncMat (chrCats), 9

dataSource (chromLocation-class), 11

dataSource, chromLocation-method
(chromLocation-class), 11

dropECode, 13, 21, 23

entrezGeneByID, 14
entrezGeneQuery, 15

fileName (HTMLPage-class), 38

fileName,HTMLPage-method
(HTMLPage-class), 38

filterGOByOntology, 16

findChr4LL (findNeighbors), 16

findNeighbors, 16

FramedHTMLPage (HTMLPage-class), 38

FramedHTMLPage ,HTMLPage-method
(HTMLPage-class), 38

FramedHTMLPage-class (HTMLPage-class),
38

genbank, 8, 18, 50, 52

geneSymbols (chromLocation-class), 11

geneSymbols, chromLocation-method
(chromLocation-class), 11

get, 30

getAnnMap, 5, 19

getBoundary (findNeighbors), 16

getCells, 25

getCells (getQueryLink), 24
getEG (getSYMBOL), 26
getEvidence, 13, 20, 23

getGI (getSEQ), 25

getGO (getSYMBOL), 26
getGOChildren (getGOTerm), 21
getGOdesc (getSYMBOL), 26
getGO0Ontology (getGOTerm), 21
getGOParents (getGOTerm), 21
getGOTerm, 21

getGPLNames, 53

getGPLNames (readGEOAnn), 53
getOntology, 13,21, 22
getOrgNameNCode (mapOrgs), 42
getPMID (getSYMBOL), 26
getPMInfo, 23

getQuery4Affy, 24
getQuery4Affy (getQuerylLink), 24
getQuery4EN, 25

getQuery4EN (getQuerylLink), 24
getQuery4ENSEMBL, 24, 25
getQuery4ENSEMBL (getQuerylLink), 24
getQuery4FB, 24

getQuery4FB (getQuerylLink), 24
getQuery4GB, 24

getQuery4GB (getQuerylLink), 24
getQuery40MIM, 24

getQuery40MIM (getQuerylLink), 24
getQuery4SP, 24

getQuery4SP (getQuerylLink), 24
getQuery4TR, 25

getQuery4TR (getQuerylLink), 24
getQuery4UG, 24

getQuery4UG (getQueryLink), 24
getQuerylLink, 24, 25
getRepositories (setRepository), 55
getSAGEFileInfo (readGEOANN), 53
getSAGEGPL (readGEOANN), 53
getSEQ, 25

getSYMBOL, 26

getTDRows, 25

getTDRows (getQuerylLink), 24
getUnigAnnItem (getSYMBOL), 26
getValidChr (findNeighbors), 16
GO2heatmap, 28

GOmnplot, 29, 52

gzfile, 54, 55

hasGOannote, 30

heatmap, 28

hgByChroms, 31

hgCLengths, 31

HGID2homology (LL2homology), 40

61

62

hgu95Achroloc, 32
hgu95Achrom, 32
hgu95A11, 33
hgu95AProbLocs, 33
hgu95Asym, 34
homoACC (homoData-class), 35
homoACC, homoData-method
(homoData-class), 35
homoData (homoData-class), 35
homoData-class, 35
homoHGID (homoData-class), 35
homoHGID, homoData-method
(homoData-class), 35
homoLL (homoData-class), 35
homoLL , homoData-method
(homoData-class), 35
homoOrg (homoData-class), 35
homoOrg , homoData-method
(homoData-class), 35
homoPS (homoData-class), 35
homoPS, homoData-method
(homoData-class), 35
homoType (homoData-class), 35
homoType, homoData-method
(homoData-class), 35
homoURL (homoData-class), 35
homoURL , homoData-method
(homoData-class), 35
HTMLPage (HTMLPage-class), 38
htmlpage, 24, 36
HTMLPage ,HTMLPage-method
(HTMLPage-class), 38
HTMLPage-class, 38

initialize,FramedHTMLPage-method
(HTMLPage-class), 38

isValidKey, 39, 58

isValidKey, character,character-method
(isValidKey), 39

isValidKey, character,OrgDb-method
(isValidKey), 39

journal (pubMedAbst-class), 51
journal, pubMedAbst-method
(pubMedAbst-class), 51

KEGG2heatmap, 29, 52
KEGG2heatmap (GO2heatmap), 28

KEGG2heatmap, character,eSet, character-method

(GO2heatmap), 28

INDEX

KEGGmnplot,character,eSet,character-method

(GOmnplot), 29

KEGGmnplot,character,matrix,character-method

(GOmnplot), 29

lapply, I3
LL2homology, 40
lookUp (getSYMBOL), 26

mainPage (HTMLPage-class), 38

mainPage, FramedHTMLPage-method
(HTMLPage-class), 38

mainPage,HTMLPage-method
(HTMLPage-class), 38

makeAnchor, 41

map0rgs, 42

mget, 27

MIAME, 47

nChrom (chromLocation-class), 11
nChrom, chromLocation-method
(chromLocation-class), 11

organism, 43

organism, character-method (organism), 43

organism, chromLocation-method
(chromLocation-class), 11

orgNameNCode (homoData-class), 35

packageDescription, 12

pageText (HTMLPage-class), 38

pageText,HTMLPage-method
(HTMLPage-class), 38

pageTitle (HTMLPage-class), 38

pageTitle,HTMLPage-method
(HTMLPage-class), 38

pm.abstGrep, 43, 45, 46

pm.getabst, 44, 44

pm.titles, 44, 45, 45

pmAbst2HTML, 46

pmid (pubMedAbst-class), 51

pmid, pubMedAbst-method
(pubMedAbst-class), 51

pmid2MIAME, 47

PMIDAmat, 48

pmidQuery, 49

probesToChrom (chromLocation-class), 11

probesToChrom, chromLocation-method
(chromLocation-class), 11

pubDate (pubMedAbst-class), 51

KEGG2heatmap, character,matrix, character-methopubDate, pubMedAbst-method

(GO2heatmap), 28
KEGGmnplot (GOmnplot), 29

(pubMedAbst-class), 51
pubmed, 3, 8, 19, 50, 52

INDEX

pubMedAbst (pubMedAbst-class), 51

pubMedAbst, pubMedAbst-method
(pubMedAbst-class), 51

pubMedAbst-class, 51

PWAmat, 52

readGEOANN, 53, 53
readIDNAcc, 53

readIDNAcc (readGEOANn), 53
readUrl (readGEOAnn), 53

sapply, 13

serialize, 54, 55

serializeDataPkgEnvs (serializeEnv), 54

serializeEnv, 54

setRepository, 55

show, chromLocation-method
(chromLocation-class), 11

show, FramedHTMLPage-method
(HTMLPage-class), 38

show, homoData-method (homoData-class),
35

show,HTMLPage-method (HTMLPage-class),
38

show, pubMedAbst-method
(pubMedAbst-class), 51

sidePage (HTMLPage-class), 38

sidePage, FramedHTMLPage-method
(HTMLPage-class), 38

sidePage,HTMLPage-method
(HTMLPage-class), 38

toFile (HTMLPage-class), 38
toFile, FramedHTMLPage-method
(HTMLPage-class), 38
toFile,HTMLPage-method
(HTMLPage-class), 38
topPage (HTMLPage-class), 38
topPage, FramedHTMLPage-method
(HTMLPage-class), 38
topPage,HTMLPage-method
(HTMLPage-class), 38

UniGeneQuery, 49, 56
updateSymbolsToValidKeys, 39, 57
usedChromGenes, 58

weightByConfi (findNeighbors), 16
whatACC (ACCNUMStats), 4

xmlTreeParse, 3, 19, 50

63

	accessionToUID
	ACCNUMStats
	annPkgName
	aqListGOIDs
	blastSequences
	buildChromLocation
	buildPubMedAbst
	chrCats
	chromLocation-class
	compatibleVersions
	dropECode
	entrezGeneByID
	entrezGeneQuery
	filterGOByOntology
	findNeighbors
	genbank
	getAnnMap
	getEvidence
	getGOTerm
	getOntology
	getPMInfo
	getQueryLink
	getSEQ
	getSYMBOL
	GO2heatmap
	GOmnplot
	hasGOannote
	hgByChroms
	hgCLengths
	hgu95Achroloc
	hgu95Achrom
	hgu95All
	hgu95AProbLocs
	hgu95Asym
	homoData-class
	htmlpage
	HTMLPage-class
	isValidKey
	LL2homology
	makeAnchor
	mapOrgs
	organism
	pm.abstGrep
	pm.getabst
	pm.titles
	pmAbst2HTML
	pmid2MIAME
	PMIDAmat
	pmidQuery
	pubmed
	pubMedAbst-class
	PWAmat
	readGEOAnn
	serializeEnv
	setRepository
	UniGeneQuery
	updateSymbolsToValidKeys
	usedChromGenes
	Index

