
Package ‘a4Base’
January 19, 2026

Type Package

Title Automated Affymetrix Array Analysis Base Package

Version 1.58.0

Date 2020-10-26

Description
Base utility functions are available for the Automated Affymetrix Array Analysis set of packages.

Imports methods, graphics, grid, Biobase, annaffy, mpm, genefilter,
limma, multtest, glmnet, gplots

Depends a4Preproc, a4Core

Suggests Cairo, ALL, hgu95av2.db, nlcv

Enhances gridSVG, JavaGD

License GPL-3

biocViews Microarray

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/a4Base

git_branch RELEASE_3_22

git_last_commit b4398e6

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Willem Talloen [aut],
Tine Casneuf [aut],
An De Bondt [aut],
Steven Osselaer [aut],
Hinrich Goehlmann [aut],
Willem Ligtenberg [aut],
Tobias Verbeke [aut],
Laure Cougnaud [cre]

Maintainer Laure Cougnaud <laure.cougnaud@openanalytics.eu>

1

2 a4palette

Contents
a4palette . 2
addQuantilesColors . 3
boxPlot . 4
combineTwoExpressionSet . 5
computeLogRatio . 6
createExpressionSet . 8
ExpressionSetWithComputation-class . 9
filterVarInt . 10
heatmap.expressionSet . 11
histPvalue . 18
histpvalueplotter . 19
lassoReg . 20
limmaReg . 21
limmaTwoLevels . 21
logReg . 22
nlcvTT . 24
oaColors . 24
oaPalette . 25
plot1gene . 25
plotComb2Samples . 27
plotCombination2genes . 28
plotCombMultSamples . 30
plotLogRatio . 30
probabilitiesPlot . 35
probe2gene . 36
profilesPlot . 37
propDEgenes . 38
propDEgenes-methods . 39
propdegenescalculation . 39
replicates . 40
spectralMap . 41
spectralMap-methods . 42
topTable,limma-method . 43
tTest . 45
volcanoPlot . 46
volcanoPlot-methods . 47
volcanoplotter . 50

Index 52

a4palette Utility function that defines a color palette for use in a4

Description

Utility function that defines a color palette for use in a4

Usage

a4palette(n, alpha = 1, Janssen = FALSE)

addQuantilesColors 3

Arguments

n Number of color levels the palette should provid

alpha alpha transparency level of the colors

Janssen logical. If TRUE, Janssen Pharmaceutical colors are used (with a maximum of 6
possible colors).

Details

For n = 1, "blue" is returned; for n = 2 c("red", "blue") is returned; for n = 3 c("red",
"green", "blue" is returned; for n = 4 c("red", "green", "blue", "purple") is returned and
for n > 2, the output of rainbow(n) is returned.

Value

a character vector of colors

Author(s)

Steven Osselaer, Tobias Verbeke

See Also

rainbow palette in palettes

Examples

op <- par(mfrow = c(2, 3))
for (nGroups in 1:6)
pie(rep(1, nGroups), a4palette(nGroups))
par(op)

addQuantilesColors Compute quantiles for plotGeneDE function

Description

Compute quantiles on mean expression level for plotGeneDE function. Colors of bars in the plot
could then be allocated using buckets defined by those quantiles.

Usage

addQuantilesColors(e, ngroups = 3)

Arguments

e ExpressionSet object to use for computation

ngroups Number of groups to be created

Details

Number of computed quantiles is equal to (ngroups - 1).

4 boxPlot

Value

The ExpressionSet object e is returned, with a new column called colorsQuantilesVector in its slot
featureData

Author(s)

Eric Lecoutre

See Also

plotLogRatio

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALLQ <- addQuantilesColors(ALL)
fData(ALLQ)

}

boxPlot Create a boxplot for a given gene.

Description

Create a boxplot for a given gene. The boxplot displays the expression values (y-axis) by groupss
(x-axis). The raw data are superimposed as dots, jittered for readability of the plot. Optionally, the
dots can be colored by another variable.

Usage

boxPlot(
probesetId = NULL,
geneSymbol = NULL,
object,
groups,
main = NULL,
colvec = NULL,
colgroups = NULL,
probe2gene = TRUE,
addLegend = TRUE,
legendPos = "topleft",
...

)

Arguments

probesetId The probeset ID. These should be stored in the featureNames of the expressionSet
object.

geneSymbol The gene symbol. These should be stored in the column `Gene Symbol` in the
featureData of the expressionSet object.

combineTwoExpressionSet 5

object ExpressionSet object for the experiment

groups String containing the name of the grouping variable. This should be a the name
of a column in the pData of the expressionSet object.

main Main title on top of the graph

colvec Vector of colors to be used for the groups. If not specified, the default colors of
a4palette are used.

colgroups String containing the name of the variable to color the superimposed dots. This
should be a the name of a column in the pData of the expressionSet object

probe2gene Boolean indicating whether the probeset should be translated to a gene symbol
(used for the default title of the plot)

addLegend Boolean indicating whether a legend for the colors of the dots should be added.

legendPos Specify where the legend should be placed. Typically either topright, bottomright,
topleft (the default) or bottomleft

... Possibility to add extra plot options. See par

Value

A plot is drawn to the current device and probesetId are returned invisibly.

Author(s)

Willem Talloen

See Also

plot1gene

Examples

simulated data set
esSim <- simulateData()
boxPlot(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE)
ALL data set
if (require(ALL)){

data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
boxPlot(geneSymbol = 'HLA-DPB1', object = ALL, boxwex = 0.3,

groups = 'BTtype', colgroups = 'BT', legendPos='topright')
}

combineTwoExpressionSet

Combine two ExpressionSet objects

Description

Merge two ExpressionSet objects, checking their attributes.

6 computeLogRatio

Usage

combineTwoExpressionSet(x, y)

Arguments

x An object of class ExpressionSet

y An object of class ExpressionSet

Details

exprs and pData are merged. Other data (such as MIAME or annotation) are those of x.

Value

An object of class ExpressionSet

Author(s)

Eric Lecoutre

See Also

ExpressionSet

Examples

Not run:
prepare and combine two ExpressionSet
data(data.H2009); data(phenoData.H2009)
data(data.SKOV3); data(phenoData.SKOV3)
eH2009 <- prepareExpressionSet(exprs = data.H2009, phenoData = phenoData.H2009, changeColumnsNames = TRUE)
eSKOV3 <- prepareExpressionSet(exprs = data.SKOV3, phenoData = phenoData.SKOV3, changeColumnsNames = TRUE)
newE <- combineTwoExpressionSet(eH2009,eSKOV3)

End(Not run)

computeLogRatio Summary statistics for gene expression

Description

Compute summary statistics per gene of expression data in a ExpressionSet object.

Usage

computeLogRatio(
e,
reference,
within = NULL,
across = NULL,
nReplicatesVar = 3,
...

)

computeLogRatio 7

Arguments

e An object of class ExpressionSe

reference A list with two items: var and level - See details

within Character vector - names of pData columns - See details

across Character vector - names of pData columns - See details

nReplicatesVar Integer - Minimum number of replicates to compute variance

... . . .

Details

Summary statistics (mean, variances and difference to reference or control) will be computed on
the ’exprs’ slot of the ExpressionSet object. The parameters of the computation are specified by
the parameters ’reference’, ’within’ and ’across’.\ The design of the computations is such that the
differences and pooled variances are calculated against the sample(s) that was(were) chosen as
reference. The reference is specified by the level of a certain variable in the phenoData slot (e.g.:
column ’control’ and level ’WT’ of the phenoData slot or a boolean (’ref’) variable with 0 or 1) –
the list object of ’var’ and ’level’ together determine the reference group. \

All groups determined by combining the reference$var and across variables will be compared
to the reference group. Two different approaches to obtain necessary computations:

• Prepare a boolean variable that reflects only the reference group and specify all groupings
in the across arguments. E.g.: reference=list(var = 'boolean', level = 1), across =
c('compound','dose')

• Add an extra column to the phenoData slot that contains all combinations, with a specific one
for the reference group: for example, pData(e)['refvar'] <- paste(pData(e)['compound'],
pData(e)['dose'],sep='.') so as to use reference = list(var = 'refvar', level ='comp1.dose1')
as argument for reference.

\

Sometimes computations need to be conducted within groups, and are thus nested. For example,
when comparing treament values of different cell lines, each will have gene expression values for
its own reference. The parameter ’within’ allows to define such subgroups, for which computations
will be done separately and combined afterwards. Both parameters ’within’ and ’across’ can be a
vector of column names, whose unique combinations will be used for groupings.

Value

Returns an object of class ExpressionSet with pData inherited from the submitted ExpressionSet ob-
ject, supplemented by the computed statistics in the ’exprs’ slot and info thereof in the ’phenoData’
slot.

Author(s)

Eric Lecoutre

See Also

plotLogRatio

8 createExpressionSet

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
ALL2 <- ALL[,ALL$BT != 'T1'] # omit subtype T1 as it only contains one sample
ALL2$BTtype <- as.factor(substr(ALL2$BT,0,1)) # create a vector with only T and B

Test for differential expression between B and T cells
tTestResult <- tTest(ALL, "BTtype", probe2gene = FALSE)
topGenes <- rownames(tTestResult)[1:20]

plot the log ratios versus subtype B of the top genes
LogRatioALL <- computeLogRatio(ALL2, reference=list(var='BT',level='B'))
a <- plotLogRatio(e=LogRatioALL[topGenes,],openFile=FALSE, tooltipvalues=FALSE, device='pdf',
colorsColumnsBy=c('BTtype'), main = 'Top 20 genes most differentially between T- and B-cells',
orderBy = list(rows = "hclust"),
probe2gene = TRUE)

}

createExpressionSet combine gene expression and phenotype data onto a ExpressionSet
object

Description

Basically a wrapper for new('ExpressionSet',...), this function gathers gene expression and
phenotype data, after having checked their compatibility.

Usage

createExpressionSet(
exprs = matrix(nrow = 0, ncol = 0),
phenoData = AnnotatedDataFrame(),
varMetadata = NULL,
dimLabels = c("rowNames", "colNames"),
featureData = NULL,
experimentData = MIAME(),
annotation = character(0),
changeColumnsNames = TRUE,
...

)

Arguments

exprs gene expression matrix

phenoData phenotype data associated with exprs columns, as a matrix or data.frame

varMetadata optional metadata on phenotype data

dimLabels see ExpressionSet

featureData see ExpressionSet

experimentData see ExpressionSet

ExpressionSetWithComputation-class 9

annotation see ExpressionSet
changeColumnsNames

Change exprs columns names – see details
... ...

Details

If changeColumnsNames is TRUE, then the procedure is the following: first one checks if phenoData
contains a column named ’colNames’. If so, content will be used to rename exprs colums. On the
other case, one uses combinations of phenoData columns to create new names. In any case, old
columns names are stored within a column named ’oldcolnames’ in the pData.

Value

An object of class ExpressionSet

Author(s)

Eric Lecoutre

See Also

ExpressionSet

Examples

simulate expression data of 10 features (genes) measured in 4 samples
x <- matrix(rnorm(40), ncol = 4)
colnames(x) <- paste("sample", 1:4, sep = "_")
rownames(x) <- paste("feature", 1:10, sep = "_")
simulate a phenodata with two variables
ToBePheno <- data.frame(Gender = rep(c('Male','Female'), 2),

Treatment = rep(c('Trt','Control'), each=2))
rownames(ToBePheno) <- paste("sample", 1:4, sep = "_")
eset <- createExpressionSet(exprs = x, phenoData = ToBePheno)

ExpressionSetWithComputation-class

Class "ExpressionSetWithComputation"

Description

This class adds statistical information to the exprs of the ExpressionSet as well as descriptive infor-
mation to the pData of the ExpressionSet

Slots

assayData Object of class "AssayData"
phenoData Object of class "AnnotatedDataFrame"
featureData Object of class "AnnotatedDataFrame"
experimentData Object of class "MIAME"
annotation Object of class "character"
.__classVersion__ Object of class "Versions"

10 filterVarInt

Objects from the Class

Objects can be created by calls of the form new("ExpressionSetWithComputation", assayData,
phenoData, featureData, experimentData, annotation, exprs, ...).

Extends

• Class ExpressionSet, directly.

• Class eSet, by class "ExpressionSet", distance 2.

• Class VersionedBiobase, by class "ExpressionSet", distance 3.

• Class Versioned, by class "ExpressionSet", distance 4.

Methods

No methods defined with class "ExpressionSetWithComputation" in the signature.

Author(s)

Tobias Verbeke

See Also

ExpressionSet, computeLogRatio

filterVarInt Filtering on Intensity and Variance

Description

Function to filter on intensity and variance as typically used in gene expression studies

Usage

filterVarInt(
object,
IntCutOff = log2(100),
IntPropSamples = 0.25,
VarCutOff = 0.5

)

Arguments

object ExpressionSet object

IntCutOff cut-off value used for the intensity filt

IntPropSamples proportion of samples used by the intensity filter; by default IntPropSamples
is set to 0.25.

VarCutOff cut-off value used for the variance filter

heatmap.expressionSet 11

Details

The intensity filter implies that (by default) the intensity levels must be greater than log2(100) in at
least 25 percent of the samples. The variance filter requires that the features have an interquartile
range (IQR) greater than 0.5. Note that the IQR is quite insensitive to outliers such that genes with
outlying expression values in a few samples are excluded as long as their overall variation is small.

Value

Object of class ExpressionSet containing only the features that pass the variance and intensity filter.

Author(s)

Willem Talloen

References

Gentleman, R. et al. (2005). Bioinformatics and Computational Biology Solutions using R and
BioConductor, New York: Springer. Goehlmann, H. and W. Talloen (2009). Gene Expression
Studies Using Affymetrix Microarrays, Chapman \& Hall/CRC, p. 128.

See Also

pOverA, filterfun

Examples

if (require(ALL)){
data(ALL, package = "ALL")
fALL <- filterVarInt(ALL)
fALL

}

heatmap.expressionSet Image plot of an expressionSet

Description

Grid version of heatmap function adapted to expressionSet objects with some specific requirements
such as the possibility to display subgroups, define colors, adapt text graphical parameters (sizes...).
The function also suggests a size appropriate for a device to generate a complete plot with all
elements.

Usage

heatmap.expressionSet(
eset,
col.groups = pData(phenoData(eset))[, "subGroup"],
col.orderBy = order(pData(phenoData(eset))[, "subGroup"]),
col.groups.sep.width = unit(8, "points"),
col.labels = sampleNames(eset),
col.labels.sep.width = unit(10, "points"),
col.labels.gpar = gpar(cex = 1),

12 heatmap.expressionSet

col.labels.max.nchar = 20,
colors.pergroup = FALSE,
colors.groups = NULL,
colors.groups.min = rgb(1, 1, 1),
colors.max = rgb(1, 0, 0),
colors.min = rgb(1, 1, 1),
colors.nbreaks = 128,
colors.palette = NULL,
cell.gpar = gpar(lty = 0),
row.groups.sep.height = unit(15, "points"),
row.labels.sep.height = unit(10, "points"),
row.col.groups.display = ifelse(length(unique(col.groups)) > 1, TRUE, FALSE),
row.col.groups.display.height = unit(6, "points"),
row.labels.gpar = gpar(cex = 1, col = "black"),
row.labels.max.nchar = 45,
row.labels = list("SYMBOL", "GENENAME"),
row.labels.sep = " - ",
row.groups = rep(1, nrow(exprs(eset))),
row.order = "none",
row.groups.hclust = FALSE,
row.groups.hclust.n = 4,
distfun = dist,
hclustfun = function(d) { hclust(d, method = "ward") },
values.min = 0,
values.max = 16,
title.gpar = gpar(cex = 1.4),

title.main = "This is the title possibly being very long - it will be splited on several lines or even displayed with dots at the end -- see there (does it work? addendum)",
title.just = c("right", "top"),
title.maxlines = 4,
title.cutpoint = 40,
subtitle.gpar = gpar(cex = 1),
subtitle.main = "This is subtitle",
subtitle.maxlines = 4,
subtitle.just = title.just,
subtitle.cutpoint = 40,
margin.top = unit(2, "lines"),
margin.left = unit(2, "lines"),
margin.right = unit(2, "lines"),
margin.bottom = unit(2, "lines"),
legend.display = TRUE,
legend.range = "full",
legend.data.display = ifelse(legend.range == "full", TRUE, FALSE),
legend.gpar = gpar(cex = 1),
legend.width = unit(250, "points"),
legend.height = unit(40, "points"),
...

)

Arguments

eset expressionSet object

heatmap.expressionSet 13

col.groups Vector specifying sub-groups for individual. Sub-groups are treated separately
and can thus on plot have different colors.

col.orderBy Vector specifying ordering for individual. In case there are sub-groups, individ-
ual must first be ordered by sub-groups, but an additional variable gives a way
to sort individual within sub-groups.

col.groups.sep.width

Object of class unit (grid package). Width used to visually separate sub-groups
of individuals. This can be unit(0,"points") for example for no separation.

col.labels Character vector for columns labels (individuals), by default taken from pheno-
Data.

col.labels.sep.width

Object of class gpar. Parameters to be used for labels (cex,...).
col.labels.gpar

Object of class gpar. Parameters to be used for labels (cex,...).
col.labels.max.nchar

Integer. Number of maximum characters to be used for labels truncation
colors.pergroup

Boolean. If TRUE, separate colors are used to color image matrix. Colors de-
fined for groups are used.

colors.groups Vector. Colors to be used for each group of individual. If NULL (default), colors
are taken from column "sampleColor" of expressionSet phenoData.

colors.groups.min

Character vector of length 1 corresponding to a valid color. If colors.groups are
provided, a shading if done between color.group and this color (default: white).

colors.max Character vector of length 1 corresponding to a valid color. See colors details.

colors.min Character vector of length 1 corresponding to a valid color. See colors details.

colors.nbreaks Integer. Number of cutpoints used to split the color palette/shading.

colors.palette Character vector of valid color names.

cell.gpar Object of class gpar (grid package). Parameters used to format cells, for example
to add border (gpar(lty=1)).

row.groups.sep.height

Object of class unit (grid package). Height between rows sub-groups.
row.labels.sep.height

Object of class unit (grid package). Height between image plot zone and rows
labels

row.col.groups.display

Boolean. Display or not colored band for subgroups of individuals.
row.col.groups.display.height

Object of class unit (grid package). If row.col.groups.display is TRUE then
height used for the displayed band.

row.labels.gpar

Object of class gpar (grid package). Parameters to be used for labels (cex,...).
row.labels.max.nchar

Integer. Number of maximum characters to be used for labels truncation.

row.labels Character vector or list. If vector, direct labels to be used. If list, elements of the
list will be taken from featureData and collapsed using row.labels.sep.

row.labels.sep In case labels are taken from featureData (list for row.labels), separator used to
paste the provided columns.

14 heatmap.expressionSet

row.groups Boolean specifying whether rows are split into sub-groups.
row.order Either a vector of indices to be used to reorder features (rows) or "none" or

"hclust" to use clustering.
row.groups.hclust

Boolean. If row.order equals "hclust", one can ask to split features into sub-
groups based on a cut of the clustering dendogram.

row.groups.hclust.n

Integer. If row.order equals "hclust" and row.groups.hclust is TRUE, number of
sub-groups.

distfun Function. For row.order equals "hclust", metric function.
hclustfun Function. For row.order equals "hclust", clustering function.
values.min Minimum value for the data range. Values that are inferior are assigned to that

value. That ensures a maximal cutpoint for the coloring scale.
values.max Maximum value for the data range. Values that are superior are assigned to that

value. That ensures a maximal cutpoint for the coloring scale.
title.gpar Object of class gpar (grid package). Parameters to be used for the main title

(cex,...).
title.main Character vector. Main title to be displayed.
title.just Title justification, one of "center","left","right" (first letter of the word can also

be used).
title.maxlines Maximum number of lines for the title split.
title.cutpoint Integer. Maximum number of characters a line must have. Title is split into lines

according to that cutpoint.
subtitle.gpar Object of class gpar (grid package). Parameters to be used for the subtitle (cex,

col,...).
subtitle.main Character vector. Subtitle. The subtitle will be split into lines following same

rules as used for main title.
subtitle.maxlines

Maximum number of lines for the subtitle split.
subtitle.just Subtitle justification, one of "center","left","right" (first letter of the word can

also be used).
subtitle.cutpoint

Integer. Maximum number of characters a line must have. Subtitle is split into
lines according to that cutpoint.

margin.top Object of class unit (grid package). Top margin.
margin.left Object of class unit (grid package). Left margin.
margin.right Object of class unit (grid package). Right margin.
margin.bottom Object of class unit (grid package). Bottom margin.
legend.display Boolean. Display or not the legend. Legend is positionned in upper right corner.
legend.range Character: "full" (default) or "data". If full, color scale legend ranges from

values.min to values.max. If "data", range is c(min(data),max(data)).
legend.data.display

Boolean. Display or not color scale legend.
legend.gpar Object of class gpar (grid package). Parameters to be used for color scale legend

axis (cex,...).
legend.width Object of class unit (grid package). Width for the color scale legend.
legend.height Object of class unit (grid package). Height for the color scale legend.
... Additional parameters the function may have. Not used currently

heatmap.expressionSet 15

Value

The function suggests a size (width, height) for the graphic returned as a vector. A typical usage
will be to call the function a first time to get those values and call it again with an output device

Colors

There are several ways to specify colors used for the image zone. The usual way is to have a
shading from colors.groups.min to a color per group (typically the same). By default, a shading is
indeed proposed between white (for colors.groups.min) and a same color shared by groups (red for
colors.groups.max). The number of possible colors in the shading is determined by colors.nbreaks.
In case one asks for distinct colors for groups, only a single value for colors.groups.min is allowed.
By default, subgroups colors are taken from phenoData ("sampleColor" column), consequence of
colors.groups being NULL. Colors for groups are overided by providing a vector of valid colors
for this colors.groups argument. An additional and flexible way to determine colors is to provide a
complete palette of possible colors, as a character vector of valid colors (argument colors.palette).
Note that in this case the argument colors.nbreaks has no effect as the number of possible values is
the length of the palette.

Author(s)

Eric Lecoutre <eric.lecoutre@gmail.com>

Examples

Not run:
library(RColorBrewer)
library(dichromat)

library(Biobase)
library(grid)
pdf.directory=getwd()

load(file.path(getwd(),"expressionSetRma.Rda")) #expressionSetRma

eset <- expressionSetRma[100:130,pData(phenoData(expressionSetRma))[,"sample"]%in%c(1:10,41:50)] # ARG
!!
exprs(eset)[1,5] <- 13.8
exprs(eset)[10,7] <- 0.5
eset2 <- expressionSetRma[200:250,] # ARG
eset3 <- expressionSetRma[1000:1009,pData(phenoData(expressionSetRma))[,"sample"]%in%c(1:3,41:46)] # ARG
eset4 <- expressionSetRma[100:230,pData(phenoData(expressionSetRma))[,"sample"]%in%c(1:20,31:50)] # ARG

eset5 <- expressionSetRma[1:400,] # ARG

eset <- eset2

pdf(file.path(pdf.directory,"eset.pdf"))
size <- heatmap.expressionSet(eset,subtitle.main=" ")
dev.off()
pdf(file.path(pdf.directory,"eset.pdf"),width=size[1],height=size[2])
heatmap.expressionSet(eset,subtitle.main=" ")
dev.off()

16 heatmap.expressionSet

pdf(file.path(pdf.directory,"eset2.pdf"))
size <- heatmap.expressionSet(

eset2,
colors.nbreaks = 20,
colors.pergroup=TRUE,
legend.range="data",
row.col.groups.display=FALSE,
cell.gpar=gpar(lwd=0.5),
legend.height=unit(50,"points"),
title.just=c("center","center"),
title.maxlines=2,
col.groups.sep.width=unit(0,"points"),
row.labels=featureNames(eset),
subtitle.main="This is subtitle",
row.order="hclust",row.groups.hclust=FALSE,
title.gpar=gpar(cex=2),
subtitle.gpar=gpar(cex=1.5)

)
dev.off()
pdf(file.path(pdf.directory,"eset2.pdf"),width=size[1],height=size[2])
size <- heatmap.expressionSet(

eset2,
colors.nbreaks = 20,
colors.pergroup=TRUE,
legend.range="data",
row.col.groups.display=FALSE,
cell.gpar=gpar(lwd=0.5),
legend.height=unit(50,"points"),
title.just=c("center","center"),
title.maxlines=2,
col.groups.sep.width=unit(0,"points"),
row.labels=featureNames(eset),
subtitle.main="This is subtitle",
row.order="hclust",row.groups.hclust=FALSE,
title.gpar=gpar(cex=2),
subtitle.gpar=gpar(cex=1.5)

)
dev.off()

pdf(file.path(pdf.directory,"eset3.pdf"))
size <- heatmap.expressionSet(

eset3,
row.labels.gpar=gpar(cex=0.4,col=c(rep("red",2),rep("black",49))), # col will correctly be a vector only if no group...
col.labels.gpar=gpar(cex=0.6),
colors.nbreaks = 20,
colors.pergroup=TRUE,
legend.range="data",
row.col.groups.display=FALSE,
cell.gpar=gpar(lwd=0.5),
legend.height=unit(50,"points"),
title.just=c("center","center"),

heatmap.expressionSet 17

title.maxlines=2,
col.groups.sep.width=unit(0,"points"),
row.labels=featureNames(eset),
subtitle.main="Essai subtitle",
row.order="hclust",row.groups.hclust=FALSE,
interactive=FALSE

)
dev.off()

pdf(file.path(pdf.directory,"eset3.pdf"),width=size[1],height=size[2])
size <- heatmap.expressionSet(

eset3,
row.labels.gpar=gpar(cex=0.4,col=c(rep("red",2),rep("black",49))), # col will correctly be a vector only if no group...
col.labels.gpar=gpar(cex=0.6),
colors.nbreaks = 20,
colors.pergroup=TRUE,
legend.range="data",
row.col.groups.display=FALSE,
cell.gpar=gpar(lwd=0.5),
legend.height=unit(50,"points"),
title.just=c("center","center"),
title.maxlines=2,
col.groups.sep.width=unit(0,"points"),
row.labels=featureNames(eset),
subtitle.main="Essai subtitle",
row.order="hclust",row.groups.hclust=FALSE,
interactive=FALSE

)
dev.off()

pdf(file.path(pdf.directory,"eset4.pdf"))
size <- heatmap.expressionSet(

eset4,
legend.range="data",
colors.palette = dichromat(rich.colors(190)[1:128]),
row.col.groups.display=TRUE,
title.just=c("left","top"),
title.maxlines=2,
row.labels=featureNames(eset),
subtitle.main="",
row.order="hclust",row.groups.hclust=FALSE,

)
dev.off()

pdf(file.path(pdf.directory,"eset4.pdf"),width=size[1],height=size[2])
size <- heatmap.expressionSet(

eset4,
legend.range="data",
colors.palette = dichromat(rich.colors(190)[1:128]),
row.col.groups.display=TRUE,
title.just=c("left","top"),
title.maxlines=2,
row.labels=featureNames(eset),
subtitle.main="",
row.order="hclust",row.groups.hclust=FALSE,

18 histPvalue

)
dev.off()

pdf(file.path(pdf.directory,"eset5.pdf"))
size <- heatmap.expressionSet(eset5,row.order="hclust",row.groups.hclust=FALSE)
dev.off()

pdf(file.path(pdf.directory,"eset5.pdf"),width=size[1],height=size[2])
heatmap.expressionSet(eset5,row.order="hclust",row.groups.hclust=FALSE)
dev.off()

End(Not run)

histPvalue Plot the Distribution of P Values

Description

This function displays the distribution of the p values using a histogram; the horizontal line repre-
sents a uniform distribution based on the p value distribution between 0.5 and 1. This represents
the hypothetical p value distribution arising just by chance. This uniform distribution is used to
estimate the proportion of differentially expressed genes.

Usage

histPvalue(object, ...)

S4 method for signature 'limma'
histPvalue(object, ...)

S4 method for signature 'MArrayLM'
histPvalue(object, coef, ...)

S4 method for signature 'numeric'
histPvalue(object, ...)

Arguments

object either a numeric vector of p-values, or an object of class tTest, limma or
MArrayLM

... further arguments passed to the method

coef index of the coefficient for which the p values should be plotted; only applies to
the MArrayLM method

Value

The histogram is displayed on the current device.

Author(s)

Willem Talloen and Tobias Verbeke

histpvalueplotter 19

References

Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays,
Chapman \& Hall/CRC, p. 253.

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
tTestResult <- tTest(ALL, "BTtype")
histPvalue(tTestResult[,"p"], addLegend = TRUE)
propDEgenesRes <- propDEgenes(tTestResult[,"p"])

}

histpvalueplotter Workhorse function for the histPvalue function

Description

Workhorse function for the histPvalue function. This function displays the distribution of the p
values using a histogram; the horizontal line represents a uniform distribution based on the p value
distribution between 0.5 and 1. This represents the hypothetical p value distribution arising just
by chance. This uniform distribution is used to estimate the proportion of differentially expressed
genes.

Usage

histpvalueplotter(
pValue,
addLegend = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
...

)

Arguments

pValue numeric vector of p values

addLegend logical; should a legend be added (TRUE) or not (FALSE; default

xlab label for the x axis; defaults to NULL (no label)

ylab label for the y axis; defaults to NULL (no label

main main title for the plot; if NULL (default) no main title is displayed

... further arguments for the hist call; currently none are used

Value

no returned value, a plot is drawn to the current device.

20 lassoReg

Author(s)

Willem Talloen and Tobias Verbeke

See Also

histPvalue, propdegenescalculation

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
tTestResult <- tTest(ALL, "BTtype")
histPvalue(tTestResult[,"p"], addLegend = TRUE, xlab = "Adjusted P Value")
histPvalue(tTestResult[,"p"], addLegend = TRUE, main = "Histogram of Adjusted P Values")
propDEgenesRes <- propDEgenes(tTestResult[,"p"])

}

lassoReg Multiple regression using the Lasso algorithm as implemented in the
glmnet package

Description

Multiple regression using the Lasso algorithm as implemented in the glmnet package. This is a
theoretically nice approach to see which combination of genes predict best a continuous response.
Empirical evidence that this actually works with high-dimensional data is however scarce.

Usage

lassoReg(object, covariate)

Arguments

object object containing the expression measurements; currently the only method sup-
ported is one for ExpressionSet objects

covariate character string indicating the column containing the continuous covariate.

Value

object of class glmnet

Author(s)

Willem Talloen

References

Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays,
Chapman \& Hall/CRC, pp. 211.

limmaReg 21

See Also

lassoClass

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
resultLasso <- lassoReg(object = ALL[1:100,], covariate = "age")
plot(resultLasso, label = TRUE,

main = "Lasso coefficients in relation to degree of penalization.")
featResultLasso <- topTable(resultLasso, n = 15)

}

limmaReg Wrapper for the limma function for the comparison of two groups (two
factor levels)

Description

Wrapper for the limma function for the comparison of two groups (two factor levels)

Usage

limmaReg(object, covariable, probe2gene = TRUE)

Arguments

object object of class ExpressionSet

covariable string indicating the variable defining the continuous covariate

probe2gene logical; if TRUE Affymetrix probeset IDs are translated into gene symbols; if
FALSE no such translation is done

limmaTwoLevels Wrapper for the limma function for the comparison of two groups (two
factor levels)

Description

Wrapper for the limma function for the comparison of two groups (two factor levels)

Usage

limmaTwoLevels(object, group, probe2gene = TRUE)

22 logReg

Arguments

object object of class ExpressionSet

group string indicating the variable defining the two groups to be compared

probe2gene logical; if TRUE Affymetrix probeset IDs are translated into gene symbols; if
FALSE no such translation is done

Value

S4 object of class ’limma’ with the following two components:

MArrayLM S4 object of class MArrayLM as returned by the limma function of the limma
package

geneSymbols character vector of gene symbols; this slot is only populated if probe2gene=TRUE
(and if the ExpressionSet object is appropriately annotated by addGeneInfo for
gene symbols to be extracted)

Note

A ’topTable’ method is defined for ’limma’ objects.

Author(s)

Tobias Verbeke and Willem Talloen

logReg Logistic regression for predicting the probability to belong to a certain
class in binary classification problems

Description

Logistic regression for predicting the probability to belong to a certain class in binary classification
problems.

Usage

logReg(
object,
groups,
probesetId = NULL,
geneSymbol = NULL,
main = NULL,
probe2gene = TRUE,
...

)

logReg 23

Arguments

object ExpressionSet object for the experiment
groups String containing the name of the grouping variable. This should be a the name

of a column in the pData of the expressionSet object.
probesetId The probeset ID. These should be stored in the featureNames of the expressionSet

object.
geneSymbol The gene symbol. These should be stored in the column `Gene Symbol` in the

featureData of the expressionSet object.
main Main title on top of the gra
probe2gene Boolean indicating whether the probeset should be translated to a gene symbol

(used for the default title of the plot)
... Possibility to add extra plot options. See plot

Details

It will always estimate probability scores to belong to the second level of the factor variable. If a
probability score to other level is preferred, then you need to change the order of the levels of the
factor.

Value

A data.frame object with three columns and rownames

rownames The ’sampleNames’ of the expressionSet object
x The expression values for the specified gene for all samples
y The labels of the samples
fit The fitted probability score to belong to one of the two classes.

Author(s)

Willem Talloen

See Also

ROCcurve,probabilitiesPlot

Examples

Not run:
if (require(ALL)){

data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
logRegRes <- logReg(geneSymbol = "HLA-DPB1", object = ALL, groups = "BTtype")
scoresplot
probabilitiesPlot(proportions = logRegRes$fit, classVar = logRegRes$y,

sampleNames = rownames(logRegRes), main = 'Probability of being a T-cell type ALL')
barplot
probabilitiesPlot(proportions = logRegRes$fit, classVar = logRegRes$y, barPlot=TRUE,

sampleNames = rownames(logRegRes), main = 'Probability of being a T-cell type ALL')
}

End(Not run)

24 oaColors

nlcvTT Data to Demonstrate nlcv and Co Functions

Description

Simulated data set used to demonstrate nlcv and accompanying plot functions to study classification
problems

Usage

nlcvTT

Format

The object is of class "nlcv", an object as produced by the nlcv function.

Source

data simulated using: nlcvTT <- nlcv(selBcrAblOrNeg, classVar = 'mol.biol', classdist =
"unbalanced", nRuns = 10, fsMethod = "t.test",verbose = TRUE)

See Also

nlcv

Examples

Not run:
data(nlcvTT)
if (require(nlcv)) # on R-Forge
scoresPlot(nlcvTT, tech = 'svm', nfeat = 25)

End(Not run)

oaColors Pick One or More OA Colors

Description

Pick One or More OA Colors

Usage

oaColors(color = NULL, alpha = 1)

Arguments

color a character vector of color names; possible values are "red", "orange", "yellow",
"green", "cyan", "blue", "pink", "limegreen", "purple", "black", "white", "grey"
or "gray"

alpha transparency level for the color(s)

oaPalette 25

Value

character vector of colors

Author(s)

Tobias Verbeke

oaPalette Generate a Palette of OA Colors

Description

Generate a Palette of OA Colors

Usage

oaPalette(numColors = NULL, alpha = 1)

Arguments

numColors number of colors to be contained in the palette

alpha transparency level of the colors

Value

vector of colors

Author(s)

Jason Waddell

plot1gene Create a Profile Plot for a given Gene

Description

Create a profile plot for a given gene. A profile plot displays the expression values (y-axis) by sam-
ples (x-axis), sorted by group. This is a useful working graph as samples can be directly identified.
For presentation purposes, a boxPlot can also be considered. with jittered for readability of the
plot.

26 plot1gene

Usage

plot1gene(
probesetId = NULL,
geneSymbol = NULL,
object,
groups,
main = NULL,
colvec = NULL,
colgroups = NULL,
probe2gene = TRUE,
sampleIDs = TRUE,
addLegend = TRUE,
legendPos = "topleft",
cex = 1.5,
...

)

Arguments

probesetId The probeset ID. These should be stored in the featureNames of the expressionSet
object.

geneSymbol The gene symbol. These should be stored in the column `Gene Symbol` in the
featureData of the expressionSet object

object ExpressionSet object for the experiment
groups String containing the name of the grouping variable. This should be a name of

a column in the pData of the expressionSet object.
main Main title on top of the graph
colvec Vector of colors to be used for the groups. If not specified, the default colors of

a4palette are used.
colgroups String containing the name of the variable to color the superimposed dots. This

should be a the name of a column in the pData of the expressionSet object
probe2gene Boolean indicating whether the probeset should be translated to a gene symbol

(used for the default title of the plot)
sampleIDs A boolean or a string to determine the labels on the x-axis. Setting it to FALSE

results in no labels (interesting when the labels are unreadable due to large sam-
ple sizes). Setting it to a string will put the values of that particular pData
column as labels. The string should be a name of a column in the pData of the
expressionSet object."

addLegend Boolean indicating whether a legend for the colors of the dots should be added.
legendPos Specify where the legend should be placed. Typically either topright, bottomright,

topleft (the default) or bottomleft
cex character expansion used for the plot symbols; defaults to 1.5
... Further arguments, e.g. to add extra plot options. See par

Value

If a geneSymbol is given that has more than one probeSet, the plots for only the first probeSet
is displayed. A character vector of corresponding probeset IDs is returned invisibly, so that one
can check the profiles of the other related probeset IDs with an extra plot1gene statement If a
probesetId is given, one single profile plot for the probeset is displayed.

plotComb2Samples 27

Author(s)

S. Osselaer, W. Talloen, T. Verbeke

See Also

plotCombination2genes, boxPlot

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
one variable (specified by groups)
plot1gene(geneSymbol = 'HLA-DPB1', object = ALL, groups = "BT",

addLegend = TRUE, legendPos = 'topright')
two variables (specified by groups and colGroups)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
plot1gene(probeset = '1636_g_at', object = ALL, groups = 'BT',

colgroups = 'mol.biol', legendPos='topright', sampleIDs = 'BT')
}

plotComb2Samples Plots the correlation in gene expression between two samples

Description

Plots the correlation in gene expression between two samples. Each dot represents a gene, and the
dots have a density-dependent coloring. Genes with exceptional behavior can be highlighted by
showing their gene symbol.

Usage

plotComb2Samples(
object,
x,
y,
trsholdX = NULL,
trsholdY = NULL,
probe2gene = TRUE,
...

)

Arguments

object ExpressionSet object for the experiment

x String containing the name of the first sample. This should be a the name of a
column in the exprs data of the expressionSet object.

y String containing the name of the second sample. See x

trsholdX Vector of two values specifying the X-axis thresholds within which genes should
be highlighted by their gene symbol.

28 plotCombination2genes

trsholdY Vector of two values specifying the Y-axis thresholds within which genes should
be highlighted by their gene symbol.

probe2gene Boolean indicating whether the probeset should be translated to a gene symbol
(used for the default title of the plot)

... Possibility to add extra plot options. See par

Value

No returned value, a plot is drawn to the current device.

Author(s)

W. Talloen

See Also

plotCombMultSamples

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
plotComb2Samples(ALL,"84004", "01003",

trsholdX = c(10,12), trsholdY = c(4,6),
xlab = "a B-cell", ylab = "a T-cell")

}

plotCombination2genes Plot a Combination of Two Genes

Description

Plot a Combination of Two Genes

Usage

plotCombination2genes(
probesetId1 = NULL,
probesetId2 = NULL,
geneSymbol1 = NULL,
geneSymbol2 = NULL,
object,
groups,
addLegend = TRUE,
legendPos = "topleft",
probe2gene = TRUE,
colvec = NULL,
...

)

plotCombination2genes 29

Arguments

probesetId1 First probeset id, plotted in the x-axis

probesetId2 Second probeset id, plotted in the y-axis

geneSymbol1 First gene symbol, plotted in the x-axis

geneSymbol2 Second gene symbol, plotted in the y-axi

object ExpressionSet object for the experiment

groups string containing the name of the grouping variable

addLegend Logical value to indicate whether a legend needs to be draw

legendPos Position on the graph where to put the legend

probe2gene should the probeset be translated to a gene symbol (used for the default title of
the plot

colvec a character vector of colors. If not specified it will be automatically generated
by a4palette

... This allows to specify typical arguments in the plot functio

Value

If a gene id is given, the plots for only the first probeset is displayed and a character vector of
corresponding probeset IDs is returned invisibly. It is a list containing

probeset1 Probeset ids measuring ’gene1’

probeset1 Probeset ids measuring ’gene1’

If a probeset id is given, one single profile plot for the probeset is displayed.

Author(s)

W. Talloen, T. Verbeke

See Also

plot1gene

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
aa <- plotCombination2genes(geneSymbol1 = 'HLA-DPB1', geneSymbol2 = 'CD3D',
object = ALL, groups = "BT",
addLegend = TRUE, legendPos = 'topright')

aa
}

30 plotLogRatio

plotCombMultSamples Plots the correlation in gene expression between more than 2 samples

Description

Plots the correlation in gene expression between more than 2 samples

Usage

plotCombMultSamples(exprsMatrix, ...)

Arguments

exprsMatrix ExpressionSet object to plot. For larger datasets, this will typically be a subset
of the data.

... Further arguments, e.g. to add extra plot options. See pairs

Value

no returned value, a plots is drawn in the current device

Author(s)

Willem Talloen

See Also

plotComb2Samples

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
plotCombMultSamples(exprs(ALL)[,c("84004", "11002", "01003")])

}

plotLogRatio Plot a summary gene expression graph

Description

Plot ratios of expression values observed in a treatment versus those of a reference. First the ratios
and variances are computated on the gene expression data.

plotLogRatio 31

Usage

plotLogRatio(
e,
reference,
within = NULL,
across = NULL,
nReplicatesVar = 3,
filename = "Rplots",
device = "svg",
orderBy = list(rows = "hclust", cols = NULL),
colorsColumns = NULL,
colorsColumnsBy = NULL,
colorsColumnsByPalette = c("#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E",

"#E6AB02", "#A6761D", "#666666"),
colorsUseMeanQuantiles = FALSE,
colorsMeanQuantilesPalette = c("orange", "red", "darkred"),
colorsBarsMatrix = NULL,
colorsGenesNames = c("black"),
main = paste("log2 ratio's"),
shortvarnames = NULL,
longvarnames = NULL,
gene.length = 50,
gene.fontsize = 6,
main.fontsize = 9,
columnhead.fontsize = 8,
mx = 1.5,
exp.width = 1.8,
exp.height = 0.2,
log2l.show = TRUE,
log4l.show = FALSE,
quantiles.show = FALSE,
quantiles.compute = c(0.9),
error.show = TRUE,
view.psid = FALSE,
errorLabel = "Error bars show the pooled standard deviation",
closeX11 = FALSE,
openFile = FALSE,
tooltipvalues = FALSE,
probe2gene = TRUE,
...

)

Arguments

e ExpressionSet object to use

reference A list with two items: var and level - See details

within Character vector - names of pData columns - See details

across Character vector - names of pData columns - See details

nReplicatesVar Integer - Minimum number of replicates to compute variance

filename Name of the filename to use. No need to specify extension which will be added
according to device.

32 plotLogRatio

device One of ’pdf’, ’X11’, ’png’, ’svg’. For svg device, one X11 device is also opened.

orderBy See details

colorsColumns A vector of colors to be used for plotting columns; default value is NULL which
ends up with red – see Colors section

colorsColumnsBy

A vector of pData columns which combinations specify different colors to be
used – see Colors section

colorsColumnsByPalette

If colorsColumns is NULL, vector of colors to be used for coloring columns
potentially splitted by colorsColumnsBy

colorsUseMeanQuantiles

Boolean to indicate if the quantile groups computed on averages over all treat-
ments should be used for coloring – see Colors section

colorsMeanQuantilesPalette

if colorsUseMeanQuantiles is TRUE, these colors will be used for the different
groups – see Colors section

colorsBarsMatrix

Matrix of colors to be used for each individual bar; colors are provided for genes
in data order and thus are possibly reordered according to orderBy – see Colors
sectio

colorsGenesNames

Vector of colors to be used for gene names; will be recycled if necessary; colors
are provided for genes in data order and thus are possibly reordered according
to orderBy

main Main title

shortvarnames ector or pData column to be used to display in graph columns. If NULL, those
names will be used from the coded names added to pData during computations
(list of columns values pasted with a dot). Warning: shortvarnames must be
defined in the order columns are present in the ExpressionSet object so that they
will be reordered if one asks to order columns.

longvarnames pData column to be used in SVG tooltip title. If NULL, shortvarnames will be
used. Same warning than shortvarnames about ordering

gene.length Maximum number of characters that will be printed of the gene names

gene.fontsize Font size for the gene names , default =

main.fontsize Font size for the main, default = 9
columnhead.fontsize

Font size for the column headers, default = 8

mx Expansion factor for the width of the bars that represent the expression ratios

exp.width Expansion factor for global graph width, and the space between the plotted
colum

exp.height Expansion factor for global graph height, and the space between the plotted row

log2l.show A logical value. If ’TRUE’, the line for log2 values on each column (when
max(data) > 2) is draw

log4l.show A logical value. If ’TRUE’, the line for log4 values on each column (when
max(data) > 4) is drawn

quantiles.show A logical value. If ’TRUE’, a line is drawn for quantiles computed separately
on each column

plotLogRatio 33

quantiles.compute

A logical value. If ’TRUE’, the vector quantiles will be computed and displayed
provided that quantile.show is TRUE

error.show A logical value. If ’TRUE’, errors bars are displayed on the graph (only for
those columns for which they are available

view.psid A logical value. If ’TRUE’, the genes psid is displayed on the gene name

errorLabel A character vector describing the error bars, printed at the bottom of the figu

closeX11 If device is SVG, do we close the required X11 device at the end?

openFile A logical value. If ’TRUE’, the produced output file is opened

tooltipvalues If device is SVG, one can choose to display each bar separately, with data values
as tooltips. Note however that each bar will be considered as a distinct object
instead of a column, which will takes much more time to create the graph and
produces a much bigger SVG file

probe2gene Boolean indicating whether the probeset should be translated to a gene symbol
(used for the default title of the plot

... ...

Value

The ExpressionSet object with the computated variables is returned.

Ordering

orderBy: A list with two components, rows and cols, each one possibly being NULL (no ordering
on the specific dimension). Ordering on cols can be done according to (a) pData column(s) (for ex-
ample: c('cellline','compound','dose'. Ordering on rows can be done using of the following
values:

• NULLno reordering on rows

• numeric vectoruse the vector values to sort rows

• alphause genes names alphabetice order

• effecttry to assess global gene expression level by taking sum(abs(values)) on specified exprs
columns)

• hclustuse the ordering returned by hclust invoked on specified exprs columns

Colors

The management of colors is very flexible but is a little bit tricky, as a variety of parameters are
available to the user. Basically, combinations of arguments allow to set colors for columns headers
(text), columns as a whole (different colors for the different columns) or for each of the inividual
horizontal bars. By default, everything is red. There are four main different arguments that can be
used and that are applied in a consecutive order. Each one may override a previous argument value.
Below is a list of arguments and their consecutive actions:

• colorsColumns The first way to assign colors is to provide a vector of colors that will be used
for each column (headers and its horizontal bars). This vector is recycled so that providing
one unique value will color all columns, whereas providing a vector of length 2 will alternate
columnns colors.

34 plotLogRatio

• colorsColumnsByTo be used when the experiment involves groupings for pData, for exam-
ple dose, cellline or treatment. In order to see the effects of such variables, one can color
columns using combinations of those. The argument is a vector of pData columns such as
c('cellline','dose'). Unique combinations will be computed and a color will be assigned
for each group of columns. The vector that is provided with the argument colorsColumnsByPalette
is used to assign colors. If the argument colorColumnsBy is not NULL then it overrides the
previous argument colorsColumns.

• colorsUseMeanQuantiles A logical value. The default plotGeneDE displays for each gene
the expression value difference between treatment and reference, but does not reveal any infor-
mation about the expression levels in these conditions. Parameter colorsUseMeanQuantiles
allows to color the horizontal bars according to expression level that is derived from quantiles
computed on averages of the complete ExpressionSet object. As it involves the expression
data of all probesets, computations must be done before subsetting the ExpressionSet object
and the plotGeneDEting. The function addQuantilesColors computes quantiles and corre-
sponding mean expression level intervals. If colorsUseMeanQuantiles ’TRUE’, previous
coloring parameters are overriden. The parameter colorsMeanQuantilesPalette is used
to assign colors for average-quantiles-groups. Note that columns headers are still given by
previous arguments.

• colorsBarsMatrixThe most flexible way to assign colors as the matrix will be used to color
each bar of the plot individually. A check is done to ensure that the number of rows and
columns are not less than the number of probesets and columns. If not NULL, this parameter
overrides the previous ones.

Author(s)

Hinrich Goehlmann and Eric Lecoutre

See Also

computeLogRatio,addQuantilesColors

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
ALL2 <- ALL[,ALL$BT != 'T1'] # omit subtype T1 as it only contains one sample
ALL2$BTtype <- as.factor(substr(ALL2$BT,0,1)) # create a vector with only T and B

Test for differential expression between B and T cells
tTestResult <- tTest(ALL, "BTtype", probe2gene = FALSE)
topGenes <- rownames(tTestResult)[1:20]

plot the log ratios versus subtype B of the top genes
LogRatioALL <- computeLogRatio(ALL2, reference=list(var='BT',level='B'))
a <- plotLogRatio(e=LogRatioALL[topGenes,],openFile=FALSE, tooltipvalues=FALSE, device='pdf',
colorsColumnsBy=c('BTtype'), main = 'Top 20 genes most differentially between T- and B-cells',
orderBy = list(rows = "hclust"), probe2gene = TRUE)

Not run:
a <- plotLogRatio(e=LogRatioALL[topGenes,],openFile=TRUE, tooltipvalues=FALSE, device='pdf',
colorsColumnsBy=c('BTtype'), main = 'Top 20 genes most differentially between T- and B-cells',
orderBy = list(rows = "hclust", cols = "sex"), probe2gene = TRUE)

probabilitiesPlot 35

End(Not run)
}

probabilitiesPlot Function to plot the probabilities to belong to a certain class in binary
classification problems.

Description

Function to plot the probabilities to belong to a certain class in binary classification problems. These
probabilities are often calculated using a logistic regression model. The class membership of the
samples is displayed using a colored strip (with legend below the plot).

Usage

probabilitiesPlot(
proportions,
classVar,
sampleNames,
plot = TRUE,
barPlot = FALSE,
layout = TRUE,
main = NULL,
sub = NULL,
...

)

Arguments

proportions A vector containing the calculated probabilities to belong to a certain class in
binary classification problems. These probabilities are often calculated using a
logistic regression model.

classVar A vector containing the class where the sample belongs t

sampleNames A vector with the names of the samp

plot logical. If FALSE, nothing is plotted

barPlot Should a barplot be drawn (TRUE) or a scatterplot like MCREstimate-type scores
plot (the default, FALSE

layout boolean indicating whether mcrPlot should prespecify a layout for a single plot
(default, TRUE) or whether the user takes care of the layout (FALSE)

main Main title for the scores plot; if not supplied, ’Scores Plot’ is used as a defaul

sub Subtitle for the scores plot; if not supplied, the classification technique and the
chosen number of features are displayed

... Additional graphical parameters to pass to the plot functio

Value

no returned value, a plot is drawn in the current device.

36 probe2gene

Author(s)

Willem Talloen and Tobias Verbeke

See Also

logReg

Examples

Not run:
if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
logRegRes <- logReg(geneSymbol = "HLA-DPB1", object = ALL, groups = "BTtype")
scoresplot
probabilitiesPlot(proportions = logRegRes$fit, classVar = logRegRes$y,
sampleNames = rownames(logRegRes), main = 'Probability of being a T-cell type ALL')

barplot
probabilitiesPlot(proportions = logRegRes$fit, classVar = logRegRes$y, barPlot=TRUE,
sampleNames = rownames(logRegRes), main = 'Probability of being a T-cell type ALL')

}

End(Not run)

probe2gene Translate Affymetrix probeset IDs into gene symbols

Description

Auxiliary function for (currently) spectralMap allowing the conversion of Affy probeset IDs to gene
symbols

Usage

probe2gene(probesetIds, chipPkg)

Arguments

probesetIds Affymetrix probeset IDs

chipPkg string indicating the annotation package for the chip

Value

Vector containing the respective gene symbols

Author(s)

Tobias Verbeke

See Also

spectralMap, lassoClass, ...

profilesPlot 37

Examples

if (require(ALL)){
data(ALL, package = "ALL")
chip <- annotation(ALL)
chipAnnotationPkg <- paste(chip, "db", sep = ".")
res <- probe2gene(featureNames(ALL), chipAnnotationPkg)
head(res)

}

profilesPlot Plot expression profiles of multiple genes or probesets Plot expression
profiles of multiple genes or probesets. Each line depicts a gene, and
the color legend can be used to identify the gene.

Description

Plot expression profiles of multiple genes or probesets Plot expression profiles of multiple genes or
probesets. Each line depicts a gene, and the color legend can be used to identify the gene.

Usage

profilesPlot(
object,
probesetIds,
sampleIDs = TRUE,
addLegend = TRUE,
legendPos = "topleft",
colvec = NULL,
orderGroups = NULL,
...

)

Arguments

object ExpressionSet object for the experiment
probesetIds The probeset ID. These should be stored in the featureNames of the expressionSet

object.
sampleIDs A boolean or a string to determine the labels on the x-axis. Setting it to FALSE

results in no labels (interesting when the labels are unreadable due to large sam-
ple sizes). Setting it to a string will put the values of that particular pData
column as labels. The string should be a name of a column in the pData of the
expressionSet object

addLegend Boolean indicating whether a legend for the colors of the dots should be added.
legendPos Specify where the legend should be placed. Typically either topright, bottomright,

topleft (the default) or bottomleft
colvec Vector of colors to be used for the groups. If not specified, the default colors of

a4palette are used
orderGroups String containing the name of the grouping variable to order the samples in the

x-axis accordingly. This should be a name of a column in the pData of the
expressionSet object.

... Possibility to add extra plot options. See par

38 propDEgenes

Value

No returned value, a plot is drawn in the current device.

Author(s)

W. Talloen

See Also

plot1gene, boxPlot

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
myGeneSymbol <- c("LCK") # a gene
probesetPos <- which(myGeneSymbol == featureData(ALL)$SYMBOL)
myProbesetIds <- featureNames(ALL)[probesetPos]
profilesPlot(object = ALL, probesetIds = myProbesetIds,

orderGroups = "BT", sampleIDs = "BT")
}

propDEgenes Generic function to compute the proportion of differentially expressed
genes that are present

Description

Generic function to compute the proportion of differentially expressed genes that are present

Usage

propDEgenes(object, ...)

Arguments

object object of class propDEgene

... further arguments for the method (currently none implemented)

Value

numeric of length one giving the proportion of differentially expressed genes

Author(s)

Willem Talloen and Tobias Verbeke

propDEgenes-methods 39

propDEgenes-methods Generic function to compute the proportion of differentially expressed
genes that are present

Description

Generic function to compute the proportion of differentially expressed genes that are present

Usage

S4 method for signature 'limma'
propDEgenes(object, ...)

S4 method for signature 'numeric'
propDEgenes(object, ...)

Arguments

object object of class propDEgene

... further arguments for the method (currently none implemented)

Value

numeric of length one giving the proportion of differentially expressed genes

Methods

limma

propDEgenes method for a limma object numeric

object = "limma"object = "numeric" propDEgenes method for a numeric vector, i.e. a vector of P
Values

Author(s)

Willem Talloen and Tobias Verbeke

propdegenescalculation

Estimation of proportion of differentially expressed genes

Description

Estimation of proportion of differentially expressed genes. This estimation is based on a histogram
of the p-values. More specifically, based on the horizontal line representing a uniform distribution
based on the p value distribution between 0.5 and 1. This represents the hypothetical p value dis-
tribution arising just by chance. All genes with small p-values above this line reflect the expected
number of differentially expressed genes not by chance.

40 replicates

Usage

propdegenescalculation(pValue)

Arguments

pValue a vector of p-values

Value

proportion of differential genes

Author(s)

Willem Talloen and Tobias Verbeke

See Also

histPvalue

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))

tTestResult <- tTest(ALL, "BTtype")
histPvalue(tTestResult[,"p"], addLegend = TRUE)
propDEgenesRes <- propDEgenes(tTestResult[,"p"])

}

replicates computes replicates across a vector

Description

Given a vector, returns the replicates in order

Usage

replicates(x)

Arguments

x character or numeric vector

Value

numeric vector

Author(s)

Henrique Dallazuanna

spectralMap 41

References

R-help mailing list

See Also

rle

Examples

x <- c('a','b','a','a','b','a','c','c','c')
data.frame(val=x,rep=replicates(x))

spectralMap Generic function to draw a spectral map, according to JnJ Standards

Description

Generic function to draw a spectral map, according to JnJ Standards

Usage

spectralMap(object, groups, ...)

Arguments

object object of class ExpressionSet

groups string indicating the name of the column in the phenoData that defines the
groups

... further arguments to be passed to the methods

Value

Object of class plot.mpm, i.e. the S3 output object of the plot.mpm function of the mpm package

Note

Coloring of groups on the spectralMap uses the a4 palette as produced by a4palette

Author(s)

Tobias Verbeke

References

Wouters, L., Goehlmann, H., Bijnens, L., Kass, S.U., Molenberghs, G., Lewi, P.J. (2003). Graphical
exploration of gene expression data: a comparative study of three multivariate methods. Biometrics
59, 1131-1140. Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix
Microarrays, Chapman \& Hall/CRC, pp. 148 - 153.

See Also

plot.mpm

42 spectralMap-methods

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
spectralMap(object = ALL, groups = "BT", legendPos = 'bottomright')
spectralMap(object = ALL, groups = "BT",
plot.mpm.args = list(label.tol = 10, rot = c(-1, 1), sub = "", lab.size = 0.65,

dim = c(1,2), sampleNames = FALSE, zoom = c(1,5), col.size = 2,
do.smoothScatter = TRUE))

spectralMap(object = ALL, groups = "BT",
plot.mpm.args = list(label.tol = 10, rot = c(-1, 1), sub = "", lab.size = 0.65,

dim = c(1,2), sampleNames = as.character(pData(ALL)$BT),
zoom = c(1,5), col.size = 2, do.smoothScatter = TRUE))

}

spectralMap-methods Methods for Function spectralMap according to JnJ Standards

Description

Methods for spectralMap

Usage

S4 method for signature 'ExpressionSet,character'
spectralMap(
object,
groups,
makeLognormal = TRUE,
mpm.args = list(row.weight = "mean", col.weight = "constant", logtrans = TRUE),
plot.mpm.args = list(zoom = c(1, 2), label.tol = 10, rot = c(-1, 1), sub = "",
lab.size = 0.85, col.group = pData(object)[, groups], colors = c("wheat", "darkgrey",
a4palette(nlevels(pData(object)[, groups]))), col.size = 2, do.smoothScatter = TRUE),
probe2gene = TRUE,
addLegend = TRUE,
legendPos = "topleft",
...

)

Arguments

object object of class ExpressionSet

groups string indicating the name of the column in the phenoData that defines the
groups

makeLognormal boolean indicating whether one wants to exponentiate the data to make them
lognormally shaped (TRUE; the default) or not (FALSE)

mpm.args list of arguments that can be passed to the mpm function

plot.mpm.args list of arguments that can be passed to the plot.mpm function that actually draws
the plot

probe2gene boolean indicating whether one wants to display the gene symbols for the la-
beled points (TRUE) or not (FALSE; the default)

topTable,limma-method 43

addLegend Boolean indicating whether a legend for the colors of the dots should be added.

legendPos Specify where the legend should be placed. Typically either topright,

... further arguments to be passed to the methods, currently not used.

Value

the plot is returned invisibly

Author(s)

Tobias Verbeke

topTable,limma-method Methods for topTable

Description

Methods for topTable. topTable extracts the top n most important features for a given classification
or regression procedure

Usage

S4 method for signature 'limma'
topTable(
fit,
n = 10,
coef = 2,
genelist = fit$genes,
eb = fit[c("t", "p.value", "lods")],
adjust.method = "BH",
sort.by = "B",
resort.by = NULL,
p.value = 1,
lfc = 0

)

S4 method for signature 'MArrayLM'
topTable(
fit,
n,
coef = 2,
genelist = fit$genes,
eb = fit[c("t", "p.value", "lods")],
adjust.method = "BH",
sort.by = "B",
resort.by = NULL,
p.value = 1,
lfc = 0

)

S4 method for signature 'tTest'

44 topTable,limma-method

topTable(fit, n)

S4 method for signature 'fTest'
topTable(fit, n)

Arguments

fit object resulting from a classification or regression procedure

n number of features that one wants to extract from a table that ranks all features
according to their importance in the classification or regression model; defaults
to 10 for limma objects

coef column number or column name specifying which coefficient or contrast of the
linear model is of interest. For topTable, can also be a vector of column sub-
scripts, in which case the gene ranking is by F-statistic for that set of contrasts.

genelist data frame or character vector containing gene information. For topTable only,
this defaults to fit$genes.

eb subset of fit containing Empirical Bayesian estimates, so columns: ’t’, ’p-
value’ and ’lods’ by default. For expert use only.

adjust.method method used to adjust the p-values for multiple testing. Options, in increasing
conservatism, include "none", "BH", "BY" and "holm". See p.adjust for the
complete list of options. A NULL value will result in the default adjustment
method, which is "BH".

sort.by character string specifying which statistic to rank the genes by. Possible values
for topTable are "logFC", "AveExpr", "t", "P", "p", "B" or "none". (Permit-
ted synonyms are "M" for "logFC", "A" or "Amean" for "AveExpr", "T" for "t"
and "p" for "P".) Possible values for topTableF are "F" or "none". topTreat
accepts the same values as topTable except for "B".

resort.by character string specifying statistic to sort the selected genes by in the output
data.frame. Possibilities are the same as for sort.by.

p.value cutoff value for adjusted p-values. Only genes with lower p-values are listed.

lfc minimum absolute log2-fold-change required. topTable and topTableF in-
clude only genes with (at least one) absolute log-fold-change greater than lfc.
topTreat does not remove genes but ranks genes by evidence that their log-
fold-change exceeds lfc.

Methods

glmnet

glmnet objects are produced by lassoClass or lassoReg limma

fit = "glmnet", n = "numeric"fit = "limma", n = "numeric" limma objects are produced by limma2Groups
MarrayLM

fit = "limma", n = "numeric" MarrayLM objects are produced by lmFit of the limma package
pamClass

fit = "pamClass", n = "numeric" pamClass objects are produced by pamClass rfClass

fit = "rfClass", n = "numeric" rfClass objects are produced by rfClass tTest

fit = "tTest", n = "numeric" tTest objects are produced by tTest fTest

fit = "fTest", n = "numeric" fTest objects are produced by fTest

tTest 45

See Also

• topTable-methods for: glmnet, lognet and elnet

• topTable,pamClass-method

• topTable,rfClass-method

tTest Use t Test to Compare Two Groups

Description

Use a (modified) t test to compare two groups

Usage

tTest(object, groups, probe2gene = TRUE)

Arguments

object ExpressionSet object

groups string indicating the name of the variable of the phenoData containing the group
information

probe2gene logical; if TRUE Affymetrix probeset IDs are translated into gene symbols; if
FALSE no such translation is conducted

Details

For multiple testing the mt.rawp2adjp function of package multtest is used.

Value

Object of class "tTest", a data frame with the following columns

gSymbol Gene Symbol

p p-value of the difference between the groups

logRatio Log ratio of the expression between the groups

pBH p-value of the difference between the groups, with Benjamini-Hochberg multi-
plicity correction

tStat Student t-statistic of the different between groups

Author(s)

Willem Talloen, Tobias Verbeke

See Also

rowttests in rowFtests

46 volcanoPlot

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
tTestRes <- tTest(object = ALL, groups = "BTtype", probe2gene = TRUE)
volcanoPlot(tTestRes)

}

volcanoPlot Draw a Volcano Plot

Description

Generic function to draw a volcano plot. A volcano plot is a graph that allows to simultaneously
assess the P values (statistical significance) and log ratios (biological difference) of differential
expression for the given genes.

Usage

volcanoPlot(x, y, pointLabels, ...)

Arguments

x either an object of class ’tTest’, of class ’limma’ or a numeric vector of log
ratios, i.e. the log of the fold change values; the names of the logRatio vector
will be used to display the names of the most interesting gene

y should not be given if an object of class ’tTest’ or ’limma’ is passed as argument
’x’; if ’x’ is a numeric vector of log ratios, ’y’ should be given and should be a
numeric vector of P-values indicating the statistical significance

pointLabels Labels for points on the volcano plot that are interesting taking into account both
the x and y dimensions; typically this is a vector of gene symbols; most methods
can access the gene symbols directly from the object passed as ’x’ argument; the
argument allows for custom labels if needed

... further arguments to specific methods

Value

The volcano plot is drawn to the current device.

Author(s)

Tobias Verbeke, based on code by Willem Talloen

References

Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays,
Chapman \& Hall/CRC, pp. 148 - 153.

See Also

See volcanoplotter

volcanoPlot-methods 47

Examples

if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
tTestRes <- tTest(object = ALL, groups = "BTtype", probe2gene = TRUE)
volcanoPlot(tTestRes)

}

volcanoPlot-methods Draw a Volcano Plot

Description

This function draws a volcano plot, a graph that allows to simultaneously assess the statistical and
biological significance of differential expression for the given genes.

Usage

S4 method for signature 'tTest,missing,missing'
volcanoPlot(
x,
y,
pointLabels,
topPValues = 10,
topLogRatios = 10,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

)

S4 method for signature 'tTest,missing,character'
volcanoPlot(
x,
y,
pointLabels,
topPValues = 10,
topLogRatios = 10,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

48 volcanoPlot-methods

)

S4 method for signature 'limma,missing,missing'
volcanoPlot(
x,
y,
pointLabels,
topPValues = 10,
topLogRatios = 10,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

)

S4 method for signature 'limma,missing,character'
volcanoPlot(
x,
y,
pointLabels,
topPValues = 10,
topLogRatios = 10,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

)

S4 method for signature 'numeric,numeric,character'
volcanoPlot(
x,
y,
pointLabels,
topPValues = 10,
topLogRatios = 10,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

)

volcanoPlot-methods 49

S4 method for signature 'numeric,numeric,missing'
volcanoPlot(
x,
y,
pointLabels,
topPValues = 10,
topLogRatios = 10,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

)

Arguments

x either an object of class ’tTest’, of class ’limma’ or a numeric vector of log
ratios, i.e. the log of the fold change values; the names of the logRatio vector
will be used to display the names of the most interesting gene

y should not be given if an object of class ’tTest’ or ’limma’ is passed as argument
’x’; if ’x’ is a numeric vector of log ratios, ’y’ should be given and should be a
numeric vector of P-values indicating the statistical significance

pointLabels Labels for points on the volcano plot that are interesting taking into account both
the x and y dimensions; typically this is a vector of gene symbols; most methods
can access the gene symbols directly from the object passed as ’x’ argument; the
argument allows for custom labels if needed

topPValues top n points that will be included in the points to label based on their low P
Values

topLogRatios top n points that will be included in the points to label based on their high abso-
lute values of the log ratio

smoothScatter use color saturation to indicate dots that are in densely populated regions of the
graph; defaults to TRUE

xlab label for the x axis (string)

ylab label for the y axis (string)

main main title for the graph (string)

sub subtitle for the graph (string)

newpage should the graph be drawn to a new grid page? Defaults to TRUE. This argument
is useful for including several volcano plots in one layout.

additionalPointsToLabel

Entrez IDs of genes of interest, that will be highlighted on the plot; the color of
highlighting is determined by the ’additionalLabelColor’ argument.

additionalLabelColor

Color used to highlight the ’additionalPointsToLabel’; defaults to "red"

50 volcanoplotter

Details

The set of genes for which labels are displayed is the union of the set of genes that have lowest P-
values (topPValues) and the set of genes that display the highest absolute values for the log ratios
(topLogRatios).

Value

The volcano plot is drawn to the current device.

Author(s)

Tobias Verbeke, based on code by Willem Talloen

volcanoplotter Workhorse function for the different volcanoPlot methods

Description

Workhorse function for the different volcanoPlot methods. A volcano plot is a graph that allows to
simultaneously assess the P values (statistical significance) and log ratios (biological difference) of
differential expression for the given genes.

Usage

volcanoplotter(
logRatio,
pValue,
pointLabels,
topPValues = 10,
topLogRatios = 10,
logTransformP = TRUE,
smoothScatter = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
newpage = TRUE,
additionalPointsToLabel = NULL,
additionalLabelColor = "red"

)

Arguments

logRatio numeric vector of log ratios

pValue numeric vector of P values

pointLabels Labels for points on the volcano plot that are interesting taking into account both
the x and y dimensions; typically this is a vector of gene symbols; most methods
can access the gene symbols directly from the object passed as ’x’ argument; the
argument allows for custom labels if needed

volcanoplotter 51

topPValues top n points that will be included in the points to label based on their low P
Values

topLogRatios top n points that will be included in the points to label based on their high abso-
lute values of the log ratio

logTransformP if TRUE (default) -log10(pValue) is used for the plot instead of the raw P values

smoothScatter use color saturation to indicate dots that are in densely populated regions of the
graph; defaults to TRUE

xlab label for the x axis (string)

ylab label for the y axis (string)

main main title for the graph (string)

sub subtitle for the graph (string)

newpage should the graph be drawn to a new grid page? Defaults to TRUE. This argument
is useful for including several volcano plots in one layout.

additionalPointsToLabel

Entrez IDs of genes of interest, that will be highlighted on the plot; the color of
highlighting is determined by the ’additionalLabelColor’ argument.

additionalLabelColor

Color used to highlight the ’additionalPointsToLabel’; defaults to "red"

Value

a volcanoplot is drawn to the current device

Author(s)

Tobias Verbeke

Index

∗ classes
ExpressionSetWithComputation-class,

9
∗ datasets

nlcvTT, 24
∗ data

combineTwoExpressionSet, 5
computeLogRatio, 6
createExpressionSet, 8

∗ dplot
a4palette, 2
computeLogRatio, 6
histPvalue, 18
plot1gene, 25
volcanoPlot, 46
volcanoPlot-methods, 47
volcanoplotter, 50

∗ hplot
spectralMap, 41
spectralMap-methods, 42

∗ htest
propDEgenes, 38
propDEgenes-methods, 39
tTest, 45

∗ manip
computeLogRatio, 6
filterVarInt, 10
probe2gene, 36
replicates, 40
topTable,limma-method, 43

∗ methods
spectralMap-methods, 42
topTable,limma-method, 43

∗ models
limmaTwoLevels, 21

a4palette, 2
addQuantilesColors, 3, 34

boxPlot, 4, 27, 38

combineTwoExpressionSet, 5
computeLogRatio, 6, 10, 34
createExpressionSet, 8

eSet, 10
ExpressionSet, 6, 8–10
ExpressionSetWithComputation-class, 9

filterfun, 11
filterVarInt, 10

gpar, 13

heatmap.expressionSet, 11
histPvalue, 18, 20, 40
histPvalue,limma-method (histPvalue), 18
histPvalue,MArrayLM-method

(histPvalue), 18
histPvalue,numeric-method (histPvalue),

18
histpvalueplotter, 19

lassoClass, 21, 36
lassoReg, 20
limmaReg, 21
limmaTwoLevels, 21
logReg, 22, 36

nlcv, 24
nlcvTT, 24

oaColors, 24
oaPalette, 25

p.adjust, 44
pairs, 30
palettes, 3
par, 5, 26, 28, 37
plot, 23
plot.mpm, 41
plot1gene, 5, 25, 29, 38
plotComb2Samples, 27, 30
plotCombination2genes, 27, 28
plotCombMultSamples, 28, 30
plotLogRatio, 4, 7, 30
pOverA, 11
probabilitiesPlot, 23, 35
probe2gene, 36
profilesPlot, 37

52

INDEX 53

propDEgenes, 38
propDEgenes,limma

(propDEgenes-methods), 39
propDEgenes,limma-method

(propDEgenes-methods), 39
propDEgenes,numeric

(propDEgenes-methods), 39
propDEgenes,numeric-method

(propDEgenes-methods), 39
propDEgenes-methods, 39
propdegenescalculation, 20, 39

replicates, 40
rle, 41
ROCcurve, 23
rowFtests, 45

spectralMap, 36, 41
spectralMap,ExpressionSet,character

(spectralMap-methods), 42
spectralMap,ExpressionSet,character-method

(spectralMap-methods), 42
spectralMap-methods, 42

topTable,fTest (topTable,limma-method),
43

topTable,fTest-method
(topTable,limma-method), 43

topTable,limma (topTable,limma-method),
43

topTable,limma-method, 43
topTable,MArrayLM

(topTable,limma-method), 43
topTable,MArrayLM-method

(topTable,limma-method), 43
topTable,tTest (topTable,limma-method),

43
topTable,tTest-method

(topTable,limma-method), 43
topTable-methods

(topTable,limma-method), 43
tTest, 45

Versioned, 10
VersionedBiobase, 10
volcanoPlot, 46
volcanoPlot,ExpressionSet,character

(spectralMap-methods), 42
volcanoPlot,limma,missing,character

(volcanoPlot-methods), 47
volcanoPlot,limma,missing,character-method

(volcanoPlot-methods), 47
volcanoPlot,limma,missing,missing

(volcanoPlot-methods), 47

volcanoPlot,limma,missing,missing-method
(volcanoPlot-methods), 47

volcanoPlot,numeric,numeric,character
(volcanoPlot-methods), 47

volcanoPlot,numeric,numeric,character-method
(volcanoPlot-methods), 47

volcanoPlot,numeric,numeric,missing
(volcanoPlot-methods), 47

volcanoPlot,numeric,numeric,missing-method
(volcanoPlot-methods), 47

volcanoPlot,tTest,character
(volcanoPlot-methods), 47

volcanoPlot,tTest,missing
(volcanoPlot-methods), 47

volcanoPlot,tTest,missing,character-method
(volcanoPlot-methods), 47

volcanoPlot,tTest,missing,missing-method
(volcanoPlot-methods), 47

volcanoPlot-methods, 47
volcanoplotter, 46, 50

	a4palette
	addQuantilesColors
	boxPlot
	combineTwoExpressionSet
	computeLogRatio
	createExpressionSet
	ExpressionSetWithComputation-class
	filterVarInt
	heatmap.expressionSet
	histPvalue
	histpvalueplotter
	lassoReg
	limmaReg
	limmaTwoLevels
	logReg
	nlcvTT
	oaColors
	oaPalette
	plot1gene
	plotComb2Samples
	plotCombination2genes
	plotCombMultSamples
	plotLogRatio
	probabilitiesPlot
	probe2gene
	profilesPlot
	propDEgenes
	propDEgenes-methods
	propdegenescalculation
	replicates
	spectralMap
	spectralMap-methods
	topTable,limma-method
	tTest
	volcanoPlot
	volcanoPlot-methods
	volcanoplotter
	Index

