
Package ‘SimBu’
January 20, 2026

Title Simulate Bulk RNA-seq Datasets from Single-Cell Datasets

Version 1.12.0

Description SimBu can be used to simulate bulk RNA-seq datasets with known cell type fractions.
You can either use your own single-cell study for the simulation or the sfaira database.
Different pre-defined simulation scenarios exist, as are options to run custom simulations.
Additionally, expression values can be adapted by adding an mRNA bias, which produces more
biologically relevant simulations.

License GPL-3 + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports basilisk, BiocParallel, data.table, dplyr, ggplot2, tools,
Matrix (>= 1.3.3), methods, phyloseq, proxyC, RColorBrewer,
RCurl, reticulate, sparseMatrixStats, SummarizedExperiment,
tidyr

Suggests curl, knitr, matrixStats, rmarkdown, Seurat (>= 5.0.0),
SeuratObject (>= 5.0.0), testthat (>= 3.0.0)

URL https://github.com/omnideconv/SimBu

BugReports https://github.com/omnideconv/SimBu/issues

VignetteBuilder knitr

Config/testthat/edition 3

StagedInstall no

biocViews Software, RNASeq, SingleCell

git_url https://git.bioconductor.org/packages/SimBu

git_branch RELEASE_3_22

git_last_commit c0333a2

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Alexander Dietrich [aut, cre]

Maintainer Alexander Dietrich <alex.dietrich@tum.de>

1

https://github.com/omnideconv/SimBu
https://github.com/omnideconv/SimBu/issues

2 calc_scaling_vector

Contents
calc_scaling_vector . 2
census . 3
census_monocle . 4
check_annotation . 4
check_if_tpm . 5
compare_matrix_with_annotation . 5
dataset . 6
dataset_h5ad . 7
dataset_merge . 8
dataset_seurat . 10
dataset_sfaira . 11
dataset_sfaira_multiple . 13
dmode . 14
download_sfaira . 14
download_sfaira_multiple . 15
filter_matrix . 16
generate_summarized_experiment . 16
h5ad_to_adata . 17
merge_scaling_factor . 18
merge_simulations . 18
plot_simulation . 19
save_simulation . 20
setup_sfaira . 22
sfaira_overview . 22
SimBu . 23
simulate_bulk . 23
simulate_sample . 27

Index 28

calc_scaling_vector Calculate scaling factor for a dataset

Description

Each scaling factor has a default matrix it will try to use (counts or TPM). If the required matrix is
not available, the other one is used and a warning is given.

Usage

calc_scaling_vector(
data,
scaling_factor,
custom_scaling_vector,
scaling_factor_single_cell,
BPPARAM,
run_parallel

)

census 3

Arguments

data dataset object

scaling_factor name of scaling factor; possible are: census, spike_in, read_number, custom
or NONE for no scaling factor

custom_scaling_vector

named vector with custom scaling values for cell-types. Cell-types that do not
occur in this vector but are present in the dataset will be set to 1

scaling_factor_single_cell

boolean: decide if a scaling value for each single cell is calculated (default) or
the median of all scaling values for each cell type is calculated

BPPARAM BiocParallel::bpparam() by default; if specific number of threads x want to be
used, insert: BiocParallel::MulticoreParam(workers = x)

run_parallel boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

a named vector with a scaling value for each cell in the dataset

census Applies the Census count transformation on a count matrix

Description

needs a sparse matrix with cells in columns and genes in rows. You can find the detailed explaination
here: http://cole-trapnell-lab.github.io/monocle-release/docs/#census

Usage

census(
matrix,
exp_capture_rate = 0.25,
expr_threshold = 0,
BPPARAM = BiocParallel::bpparam(),
run_parallel = FALSE

)

Arguments

matrix sparse count matrix; cells in columns, genes in rows
exp_capture_rate

expected capture rate; default=0.25

expr_threshold expression threshold; default=0

BPPARAM BiocParallel::bpparam() by default; if specific number of threads x want to be
used, insert: BiocParallel::MulticoreParam(workers = x)

run_parallel boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

a vector for each cell-type, with a scaling factor which can be used to transform the counts of the
matrix

http://cole-trapnell-lab.github.io/monocle-release/docs/#census

4 check_annotation

Examples

tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
cen <- SimBu::census(tpm)

census_monocle Census calculation as implemented in monocle

Description

Implementation taken from Monocle2: https://github.com/cole-trapnell-lab/monocle-release/blob/master/R/normalization.R#L140

Usage

census_monocle(expr_matrix, exp_capture_rate, expr_threshold)

Arguments

expr_matrix TPM matrix
exp_capture_rate

expected capture rate; default=0.25

expr_threshold expression threshold; default=0

Value

vector with estimated mRNA values per cell in expr_matrix

check_annotation check for correct column names in annotation file and replace them if
necessary

Description

check for correct column names in annotation file and replace them if necessary

Usage

check_annotation(annotation, cell_column = "cell_type", id_column = 1)

Arguments

annotation dataframe; annotation dataframe

cell_column name of cell-type column; default is "cell_type"

id_column name of cell ID column; default is 1, which uses the rownames

Value

annotation dataframe with correct column names

check_if_tpm 5

check_if_tpm Checks, if a matrix is TPM-like (columns sum up to 1e6)

Description

Checks, if a matrix is TPM-like (columns sum up to 1e6)

Usage

check_if_tpm(tpm_matrix, lower_limit = 7e+05)

Arguments

tpm_matrix matrix to check

lower_limit the lowest sum value, a cell may have

Value

boolean

compare_matrix_with_annotation

Check if annotation and matrix have same cells

Description

Otherwise intersection of both is used

Usage

compare_matrix_with_annotation(m, annotation)

Arguments

m matrix, column names are cells

annotation data.frame, rownames are genes, cell names are in ID column

Value

intersected matrix

6 dataset

dataset Build SummarizedExperiment using local annotation and count matrix
R objects

Description

Build SummarizedExperiment using local annotation and count matrix R objects

Usage

dataset(
annotation,
count_matrix = NULL,
tpm_matrix = NULL,
name = "SimBu_dataset",
spike_in_col = NULL,
additional_cols = NULL,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE

)

Arguments

annotation (mandatory) dataframe; needs columns ’ID’ and ’cell_type’; ’ID’ needs to be
equal with cell_names in count_matrix

count_matrix (mandatory) sparse count matrix; raw count data is expected with genes in rows,
cells in columns

tpm_matrix sparse count matrix; TPM like count data is expected with genes in rows, cells
in columns

name name of the dataset; will be used for new unique IDs of cells
spike_in_col which column in annotation contains information on spike_in counts, which can

be used to re-scale counts; mandatory for spike_in scaling factor in simulation
additional_cols

list of column names in annotation, that should be stored as well in dataset object
filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes

with variance below variance_cutoff
variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff (default = 0)

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

Value

Return a SummarizedExperiment object

dataset_h5ad 7

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell_", rep(1:300)),
"cell_type" = c(rep("T cells CD4", 300))

)

ds <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset")

dataset_h5ad Build SummarizedExperiment using a h5ad file for the counts

Description

Build SummarizedExperiment using a h5ad file for the counts

Usage

dataset_h5ad(
h5ad_file_counts,
h5ad_file_tpm = NULL,
cell_id_col = "ID",
cell_type_col = "cell_type",
cells_in_obs = TRUE,
name = "SimBu_dataset",
spike_in_col = NULL,
additional_cols = NULL,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE

)

Arguments

h5ad_file_counts

(mandatory) h5ad file with raw count data

h5ad_file_tpm h5ad file with TPM count data

cell_id_col (mandatory) name of column in Seurat meta.data with unique cell ids; 0 for
rownames

cell_type_col (mandatory) name of column in Seurat meta.data with cell type name

8 dataset_merge

cells_in_obs boolean, if TRUE, cell identifiers are taken from obs layer in anndata object; if
FALSE, they are taken from var

name name of the dataset; will be used for new unique IDs of cells#’ @param spike_in_col
which column in annotation contains information on spike_in counts, which can
be used to re-scale counts; mandatory for spike_in scaling factor in simulation

spike_in_col which column in annotation contains information on spike_in counts, which can
be used to re-scale counts; mandatory for spike_in scaling factor in simulation

additional_cols

list of column names in annotation, that should be stored as well in dataset object

filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes
with variance below variance_cutoff

variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

Value

Return a SummarizedExperiment object

Examples

h5 <- system.file("extdata", "anndata.h5ad", package = "SimBu")
ds_h5ad <- SimBu::dataset_h5ad(
h5ad_file_counts = h5,
name = "h5ad_dataset",
cell_id_col = "id", # this will use the 'id' column of the metadata as cell identifiers
cell_type_col = "group", # this will use the 'group' column of the metadata as cell type info
cells_in_obs = TRUE
) # in case your cell information is stored in the var layer, switch to FALSE

dataset_merge Merge multiple SummarizedExperiment datasets into one

Description

The objects need to have the same number of assays in order to work.

Usage

dataset_merge(
dataset_list,
name = "SimBu_dataset",
spike_in_col = NULL,
additional_cols = NULL,
filter_genes = TRUE,

dataset_merge 9

variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE

)

Arguments

dataset_list (mandatory) list of SummarizedExperiment objects

name name of the new dataset

spike_in_col which column in annotation contains information on spike_in counts, which can
be used to re-scale counts; mandatory for spike_in scaling factor in simulation

additional_cols

list of column names in annotation, that should be stored as well in dataset object

filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes
with variance below variance_cutoff

variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

Value

SummarizedExperiment object

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell_", rep(1:300)),
"cell_type" = c(rep("T cells CD4", 300))

)

ds1 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset1")
ds2 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset2")
ds_merged <- SimBu::dataset_merge(list(ds1, ds2))

10 dataset_seurat

dataset_seurat Build SummarizedExperiment using a Seurat object

Description

Build SummarizedExperiment using a Seurat object

Usage

dataset_seurat(
seurat_obj,
counts_layer,
cell_id_col,
cell_type_col,
assay = NULL,
tpm_layer = NULL,
name = "SimBu_dataset",
spike_in_col = NULL,
additional_cols = NULL,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE

)

Arguments

seurat_obj (mandatory) Seurat object with TPM counts
counts_layer (mandatory) name of assay in Seurat object which contains count data in ’counts’

slot
cell_id_col (mandatory) name of column in Seurat meta.data with unique cell ids
cell_type_col (mandatory) name of column in Seurat meta.data with cell type name
assay name of the Seurat objecy assay that should be used. If NULL (default), the

currently active assay is used
tpm_layer name of assay in Seurat object which contains TPM data in ’counts’ slot
name name of the dataset; will be used for new unique IDs of cells
spike_in_col which column in annotation contains information on spike_in counts, which can

be used to re-scale counts; mandatory for spike_in scaling factor in simulation
additional_cols

list of column names in annotation, that should be stored as well in dataset object
filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes

with variance below variance_cutoff
variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

dataset_sfaira 11

Value

Return a SummarizedExperiment object

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell-", rep(1:300))
colnames(tpm) <- paste0("cell-", rep(1:300))
rownames(counts) <- paste0("gene-", rep(1:1000))
rownames(tpm) <- paste0("gene-", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell-", rep(1:300)),
"cell_type" = c(
rep("T cells CD4", 50),
rep("T cells CD8", 50),
rep("Macrophages", 100),
rep("NK cells", 10),
rep("B cells", 70),
rep("Monocytes", 20)

),
row.names = paste0("cell-", rep(1:300))

)

seurat_obj <- Seurat::CreateSeuratObject(counts = counts, assay = "gene_expression", meta.data = annotation)
SeuratObject::LayerData(seurat_obj, assay = "gene_expression", layer = "data") <- tpm

ds_seurat <- SimBu::dataset_seurat(
seurat_obj = seurat_obj,
counts_layer = "counts",
cell_id_col = "ID",
cell_type_col = "cell_type",
tpm_layer = "data",
name = "seurat_dataset"

)

dataset_sfaira Build SummarizedExperiment using a single sfaira entry ID

Description

Build SummarizedExperiment using a single sfaira entry ID

Usage

dataset_sfaira(
sfaira_id,
sfaira_setup,
name = "SimBu_dataset",
spike_in_col = NULL,

12 dataset_sfaira

additional_cols = NULL,
force = FALSE,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE

)

Arguments

sfaira_id (mandatory) ID of a sfaira dataset

sfaira_setup (mandatory) the sfaira setup; given by setup_sfaira

name name of the dataset; will be used for new unique IDs of cells

spike_in_col which column in annotation contains information on spike_in counts, which can
be used to re-scale counts

additional_cols

list of column names in annotation, that should be stored as well in dataset object

force boolean, if TRUE, datasets without annotation will be downloaded, FALSE oth-
erwise (default)

filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes
with variance below variance_cutoff

variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

Value

dataset object

Examples

setup_list <- SimBu::setup_sfaira(tempdir())
ds <- SimBu::dataset_sfaira(
sfaira_id = "homosapiens_lungparenchyma_2019_10x3v2_madissoon_001_10.1186/s13059-019-1906-x",
sfaira_setup = setup_list,
name = "test_dataset"

)

dataset_sfaira_multiple 13

dataset_sfaira_multiple

Build SummarizedExperiment using multiple sfaira entries

Description

You can apply different filters on the whole data-zoo of sfaria; the resulting single-cell datasets will
be combined into a single dataset which you can use for simulation Note: only datasets in sfaira
with annotation are considered!

Usage

dataset_sfaira_multiple(
organisms = NULL,
tissues = NULL,
assays = NULL,
sfaira_setup,
name = "SimBu_dataset",
spike_in_col = NULL,
additional_cols = NULL,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE

)

Arguments

organisms (mandatory) list of organisms (only human and mouse available)

tissues (mandatory) list of tissues

assays (mandatory) list of assays

sfaira_setup (mandatory) the sfaira setup; given by setup_sfaira

name name of the dataset; will be used for new unique IDs of cells

spike_in_col which column in annotation contains information on spike_in counts, which can
be used to re-scale counts

additional_cols

list of column names in annotation, that should be stored as well in dataset object

filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes
with variance below variance_cutoff

variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

14 download_sfaira

Value

dataset object

Examples

setup_list <- SimBu::setup_sfaira(tempdir())
ds_human_lung <- SimBu::dataset_sfaira_multiple(

sfaira_setup = setup_list,
organisms = "Homo sapiens",
tissues = "lung parenchyma",
assay = "10x 3' v2",
name = "human_lung"

)

dmode use gaussian kernel to calculate the mode of transcript counts

Description

use gaussian kernel to calculate the mode of transcript counts

Usage

dmode(x)

Arguments

x vector of numeric values

Value

most commonly occurring (log-transformed) TPM value

download_sfaira download a specific dataset from sfaira by an ID

Description

download a specific dataset from sfaira by an ID

Usage

download_sfaira(
setup_list,
ids,
force = FALSE,
synapse_user = NULL,
synapse_pw = NULL

)

download_sfaira_multiple 15

Arguments

setup_list the sfaira setup; given by setup_sfaira

ids the IDs of the datasets

force logical; TRUE if you want to force the download, even though no cell-type
annotation exists for this dataset. Default if FALSE

synapse_user character; username for synapse portal (https://www.synapse.org)

synapse_pw character; password for synapse portal (https://www.synapse.org)

Value

matrix, gene names and cell IDs

download_sfaira_multiple

download multiple datasets from sfaira using filters for organism, tis-
sue and/or assay

Description

similar to the filters on the sfaira website (https://theislab.github.io/sfaira-portal/Datasets)

Usage

download_sfaira_multiple(
setup_list,
organisms = NULL,
tissues = NULL,
assays = NULL,
force = FALSE

)

Arguments

setup_list the sfaira setup; given by setup_sfaira

organisms list of organisms (only human and mouse available)

tissues list of tissues

assays list of assays

force logical; TRUE if you want to force to download all datasets, otherwise only the
ones with cell-type annotation will be returned. Default if FALSE

Value

annotated data object, contains count matrix and annotation

https://theislab.github.io/sfaira-portal/Datasets

16 generate_summarized_experiment

filter_matrix filter one (or two) expression matrix by genes

Description

filter one (or two) expression matrix by genes

Usage

filter_matrix(m1, m2 = NULL, filter_genes = TRUE, variance_cutoff = 0)

Arguments

m1 Matrix 1

m2 Matrix 2 (optional)

filter_genes boolean
variance_cutoff

numeric, genes below this variance value are removed

Value

filtered matrix

generate_summarized_experiment

Generate SummarizedExperiment using multiple parameters

Description

Generate SummarizedExperiment using multiple parameters

Usage

generate_summarized_experiment(
annotation,
count_matrix,
tpm_matrix,
name,
spike_in_col,
additional_cols,
filter_genes,
variance_cutoff,
type_abundance_cutoff,
scale_tpm

)

h5ad_to_adata 17

Arguments

annotation (mandatory) dataframe; needs columns ’ID’ and ’cell_type’; ’ID’ needs to be
equal with cell_names in count_matrix

count_matrix (mandatory) sparse count matrix; raw count data is expected with genes in rows,
cells in columns

tpm_matrix sparse count matrix; TPM like count data is expected with genes in rows, cells
in columns

name name of the dataset; will be used for new unique IDs of cells

spike_in_col which column in annotation contains information on spike_in counts, which can
be used to re-scale counts; mandatory for spike_in scaling factor in simulation

additional_cols

list of column names in annotation, that should be stored as well in dataset object

filter_genes boolean, if TRUE, removes all genes with 0 expression over all samples & genes
with variance below variance_cutoff

variance_cutoff

numeric, is only applied if filter_genes is TRUE: removes all genes with
variance below the chosen cutoff

type_abundance_cutoff

numeric, remove all cells, whose cell-type appears less then the given value.
This removes low abundant cell-types

scale_tpm boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to
1e6

Value

Return a SummarizedExperiment object

h5ad_to_adata Use basilisk environment to read h5ad file and access anndata object

Description

Use basilisk environment to read h5ad file and access anndata object

Usage

h5ad_to_adata(h5ad_path, cells_in_obs)

Arguments

h5ad_path path to h5ad file

cells_in_obs boolean, if TRUE, cell identifiers are taken from obs layer in anndata object; if
FALSE, they are taken from var

Value

matrix contained on h5ad file as dgCMatrix

18 merge_simulations

merge_scaling_factor Create scaling vector from custom or pre-defined scaling factor

Description

Create scaling vector from custom or pre-defined scaling factor

Usage

merge_scaling_factor(data, scaling_factor_values, scaling_factor_name)

Arguments

data dataset
scaling_factor_values

named list of scaling values
scaling_factor_name

name of scaling factor method

Value

scaling vector

merge_simulations Combine multiple simulations into one result

Description

we recommend to only merge simulations from the same dataset object, otherwise the count matri-
ces might not correspond on the gene level

Usage

merge_simulations(simulation_list)

Arguments

simulation_list

a list of simulations

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq
datasets. Can hold either one or two assays, depending on how many matrices were present in the
dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector
scaling value for each cell in dataset

plot_simulation 19

Examples

counts <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell_", rep(1:300)),
"cell_type" = c(
rep("T cells CD4", 50),
rep("T cells CD8", 50),
rep("Macrophages", 100),
rep("NK cells", 10),
rep("B cells", 70),
rep("Monocytes", 20)

)
)

dataset <- SimBu::dataset(
annotation = annotation,
count_matrix = counts,
tpm_matrix = tpm,
name = "test_dataset"

)

s1 <- SimBu::simulate_bulk(dataset,
scenario = "even",
scaling_factor = "NONE",
nsamples = 10,
ncells = 100

)

s2 <- SimBu::simulate_bulk(dataset,
scenario = "even",
scaling_factor = "NONE",
nsamples = 10,
ncells = 100

)

s <- SimBu::merge_simulations(list(s1, s2))

plot_simulation Plot the cell-type fractions in your simulated dataset

Description

Plot the cell-type fractions in your simulated dataset

Usage

plot_simulation(simulation)

20 save_simulation

Arguments

simulation a simulation object generated by simulate_bulk

Value

a gpplot2 barplot

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell_", rep(1:300)),
"cell_type" = c(
rep("T cells CD4", 50),
rep("T cells CD8", 50),
rep("Macrophages", 100),
rep("NK cells", 10),
rep("B cells", 70),
rep("Monocytes", 20)

)
)

dataset <- SimBu::dataset(
annotation = annotation,
count_matrix = counts,
tpm_matrix = tpm,
name = "test_dataset"

)

s <- SimBu::simulate_bulk(dataset,
scenario = "even",
scaling_factor = "NONE",
nsamples = 10,
ncells = 100

)

SimBu::plot_simulation(s)

save_simulation Save the expression matrix of a simulated pseudo-bulk dataset to a file

Description

Save the expression matrix of a simulated pseudo-bulk dataset to a file

save_simulation 21

Usage

save_simulation(simulation, filename, assay = "bulk_counts")

Arguments

simulation the result of simulate_bulk()

filename the filename where to save the expression matrix to

assay name of the assay in simulation to save, default to bulk_counts

Value

write a file

Examples

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell_", rep(1:300)),
"cell_type" = c(

rep("T cells CD4", 50),
rep("T cells CD8", 50),
rep("Macrophages", 100),
rep("NK cells", 10),
rep("B cells", 70),
rep("Monocytes", 20)

)
)

dataset <- SimBu::dataset(
annotation = annotation,
count_matrix = counts,
tpm_matrix = tpm,
name = "test_dataset"

)

s <- SimBu::simulate_bulk(dataset,
scenario = "even",
scaling_factor = "NONE",
nsamples = 10,
ncells = 100

)

save_simulation(s, tempfile())

22 sfaira_overview

setup_sfaira setup the sfaira package

Description

If you want to download datasets from Sfaira, you need to specify a directory where the datasets are
saved into. Additionally, when this function is called for the first time, a conda environment will be
established and sfaira along all of its dependencies are installed. This can take some time but will
be only performed one single time, as the environment can be re-used.

Usage

setup_sfaira(basedir)

Arguments

basedir name of the directory, where the raw files will be downloaded into

Value

list with sfaira file directories; must be used as input for other sfaira based functions

Examples

setup_list <- setup_sfaira(basedir = tempdir())

sfaira_overview Gives an overview of the possible datasets you can use from the sfaira
database

Description

Gives an overview of the possible datasets you can use from the sfaira database

Usage

sfaira_overview(setup_list)

Arguments

setup_list the sfaira setup; given by setup_sfaira

Value

a dataframe with information on each dataset

Examples

setup_list <- setup_sfaira(basedir = tempdir())
all_datasets <- sfaira_overview(setup_list)

SimBu 23

SimBu SimBu: Bias-aware simulation of bulk RNA-seq data with variable cell
type composition

Description

As complex tissues are typically composed of various cell types, deconvolution tools have been
developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-
seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are in-
dispensable. The simulation of ‘pseudo-bulk’ data, generated by aggregating single-cell RNA-seq
(scRNA-seq) expression profiles in pre-defined proportions, offers a scalable and cost-effective way
of generating these gold-standard datasets. SimBu was developed to simulate pseudo-bulk samples
based on various simulation scenarios, designed to test specific features of deconvolution methods.
A unique feature of SimBu is the modelling of cell-type-specific mRNA bias using experimentally-
derived or data-driven scaling factors.

Dataset generation

You will need an annotated scRNA-seq dataset (as matrix file, h5ad file, Seurat object), which is
the baseline for the simulations. Use the dataset_* functions to generate a SummarizedExperiment,
that holds all important information. It is also possible to access scRNA-seq datasets through the
public database Sfaira, by using the functions dataset_sfaira() and dataset_sfaira_multiple().

Simulation

Use the simulate_bulk() function to generate multiple pseudo-bulk samples, which will be returned
as a SummarizedExperiment. You can adapt the cell type fractions in each sample by changing the
scenario parameter.

Visulaization

Inspect the cell type composition of your simulations with the plot_simulation() function.

simulate_bulk Simulate whole pseudo-bulk RNAseq dataset

Description

This function allows you to create a full pseudo-bulk RNAseq dataset. You need to provide a
SummarizedExperiment from which the cells will be sampled for the simulation. Also a scenario
has to be selected, where you can choose how the cells will be sampled and a scaling_factor on
how the read counts will be transformed proir to the simulation.

24 simulate_bulk

Usage

simulate_bulk(
data,
scenario = c("even", "random", "mirror_db", "weighted", "pure", "custom"),
scaling_factor = c("NONE", "census", "spike_in", "custom", "read_number",
"expressed_genes", "annotation_column", "epic", "abis", "quantiseq"),

scaling_factor_single_cell = TRUE,
weighted_cell_type = NULL,
weighted_amount = NULL,
pure_cell_type = NULL,
custom_scenario_data = NULL,
custom_scaling_vector = NULL,
balance_even_mirror_scenario = 0.01,
remove_bias_in_counts = FALSE,
remove_bias_in_counts_method = "read-number",
norm_counts = FALSE,
nsamples = 100,
ncells = 1000,
total_read_counts = NULL,
whitelist = NULL,
blacklist = NULL,
seed = NA,
BPPARAM = BiocParallel::bpparam(),
run_parallel = FALSE

)

Arguments

data (mandatory) SummarizedExperiment object

scenario (mandatory) select on of the pre-defined cell-type fraction scenarios; possible
are: even,random,mirror_db,pure,weighted; you can also use the custom sce-
nario, where you need to set the custom_scenario_data parameter.

scaling_factor (mandatory) name of scaling factor; possible are: census, spike_in, read_number,
expressed_genes, custom, epic, abis, quantiseq or NONE for no scaling fac-
tor

scaling_factor_single_cell

boolean: decide if a scaling value for each single cell is calculated (default) or
the median of all scaling values for each cell type is calculated

weighted_cell_type

name of cell-type used for weighted scenario
weighted_amount

fraction of cell-type used for weighted scenario; must be between 0 and 0.99

pure_cell_type name of cell-type for pure scenario
custom_scenario_data

dataframe; needs to be of size nsamples x number_of_cell_types, where each
sample is a row and each entry is the cell-type fraction. Rows need to sum up to
1.

custom_scaling_vector

named vector with custom scaling values for cell-types. Cell-types that do not
occur in this vector but are present in the dataset will be set to 1; mandatory for
custom scaling factor

simulate_bulk 25

balance_even_mirror_scenario

balancing value for the uniform and mirror_db scenarios: increasing it will
result in more diverse simulated fractions. To get the same fractions in each
sample, set to 0. Default is 0.01.

remove_bias_in_counts

boolean; if TRUE the internal mRNA bias that is present in count data will be
removed using the number of reads mapped to each cell. Default to FALSE

remove_bias_in_counts_method

’read-number’ (default) or ’gene-number’; method with which the mRNA bias
in counts will be removed

norm_counts boolean; if TRUE the samples simulated with counts will be normalized to
CPMs, default is FALSE

nsamples numeric; number of samples in pseudo-bulk RNAseq dataset (default = 100)

ncells numeric; number of cells in each dataset (default = 1000)
total_read_counts

numeric; sets the total read count value for each sample

whitelist list; give a list of cell-types you want to keep for the simulation; if NULL, all
are used

blacklist list; give a list of cell-types you want to remove for the simulation; if NULL, all
are used; is applied after whitelist

seed numeric; specifiy a seed for RNG. This effects cell sampling; with a fixed seed
you will always sample the same cells for each sample (seed value is incrased
by 1 for each sample). Default = NA (two simulation runs will sample different
cells).

BPPARAM BiocParallel::bpparam() by default; if specific number of threads x want to be
used, insert: BiocParallel::MulticoreParam(workers = x)

run_parallel boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq
datasets. Can hold either one or two assays, depending on how many matrices were present in the
dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector
scaling value for each cell in dataset

Examples

generate sample single-cell data to work with:

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
"ID" = paste0("cell_", rep(1:300)),
"cell_type" = c(

26 simulate_bulk

rep("T cells CD4", 50),
rep("T cells CD8", 50),
rep("Macrophages", 100),
rep("NK cells", 10),
rep("B cells", 70),
rep("Monocytes", 20)

)
)

dataset <- SimBu::dataset(
annotation = annotation,
count_matrix = counts,
tpm_matrix = tpm,
name = "test_dataset"

)

this creates a basic pseudo-bulk dataset with uniform cell-type distribution
and no additional transformation of the data with 10 samples and 2000 cells each

s <- SimBu::simulate_bulk(dataset,
scenario = "even",
scaling_factor = "NONE",
nsamples = 10,
ncells = 100

)

use a blacklist to exclude certain cell-types for the simulation
s <- SimBu::simulate_bulk(dataset,

scenario = "even",
scaling_factor = "NONE",
nsamples = 10,
ncells = 2000,
blacklist = c("Monocytes", "Macrophages")

)

use the pure scenario to only have B cells
s <- SimBu::simulate_bulk(dataset,

scenario = "pure",
scaling_factor = "NONE",
nsamples = 10,
ncells = 100,
pure_cell_type = "B cells"

)

simulate a dataset with custom cell-type fraction for each of the 3 samples
fractions <- data.frame(

"B cells" = c(0.2, 0.4, 0.2),
"T cells CD4" = c(0.4, 0.2, 0.1),
"Macrophages" = c(0.4, 0.4, 0.7), check.names = FALSE

)
s <- SimBu::simulate_bulk(dataset,

scenario = "custom",
scaling_factor = "NONE",
nsamples = 3,
ncells = 2000,
custom_scenario_data = fractions

simulate_sample 27

)

simulate_sample simulate single pseudo-bulk sample

Description

function to sample cells according to given cell-type fractions. This creates a single pseudo-bulk
sample by calculating the mean expression value per gene over all sampled cells. Note: if to-
tal_read_counts is used, the cell-fractions are applied to the number of counts, not the number of
cells!

Usage

simulate_sample(
data,
scaling_vector,
simulation_vector,
total_cells,
total_read_counts,
remove_bias_in_counts,
remove_bias_in_counts_method,
norm_counts,
seed

)

Arguments

data SummarizedExperiment object
scaling_vector vector with scaling values for each cell; calculated by the calc_scaling_vector

function
simulation_vector

named vector with wanted cell-types and their fractions
total_cells numeric; number of total cells for this simulation
total_read_counts

numeric; sets the total read count value for each sample
remove_bias_in_counts

boolean; if TRUE (default) the internal mRNA bias that is present in count data
will be removed using the number of reads mapped to each cell

remove_bias_in_counts_method

’read-number’ (default) or ’gene-number’; method with which the mRNA bias
in counts will be removed

norm_counts boolean; if TRUE the samples simulated with counts will be normalized to
CPMs, default is FALSE

seed numeric; fix this value if you want the same cells to be sampled

Value

returns two vectors (one based on counts, one based on tpm; depends on which matrices are present
in data) with expression values for all genes in the provided dataset

Index

∗ internal
calc_scaling_vector, 2
census_monocle, 4
check_annotation, 4
check_if_tpm, 5
compare_matrix_with_annotation, 5
dmode, 14
download_sfaira, 14
download_sfaira_multiple, 15
filter_matrix, 16
generate_summarized_experiment, 16
h5ad_to_adata, 17
merge_scaling_factor, 18
simulate_sample, 27

calc_scaling_vector, 2
census, 3
census_monocle, 4
check_annotation, 4
check_if_tpm, 5
compare_matrix_with_annotation, 5

dataset, 6
dataset_h5ad, 7
dataset_merge, 8
dataset_seurat, 10
dataset_sfaira, 11
dataset_sfaira_multiple, 13
dmode, 14
download_sfaira, 14
download_sfaira_multiple, 15

filter_matrix, 16

generate_summarized_experiment, 16

h5ad_to_adata, 17

merge_scaling_factor, 18
merge_simulations, 18

plot_simulation, 19

save_simulation, 20
setup_sfaira, 12, 13, 15, 22, 22

Seurat, 10
sfaira_overview, 22
SimBu, 23
simulate_bulk, 23
simulate_sample, 27
SummarizedExperiment, 6–11, 13, 17, 18,

23–25, 27

28

	calc_scaling_vector
	census
	census_monocle
	check_annotation
	check_if_tpm
	compare_matrix_with_annotation
	dataset
	dataset_h5ad
	dataset_merge
	dataset_seurat
	dataset_sfaira
	dataset_sfaira_multiple
	dmode
	download_sfaira
	download_sfaira_multiple
	filter_matrix
	generate_summarized_experiment
	h5ad_to_adata
	merge_scaling_factor
	merge_simulations
	plot_simulation
	save_simulation
	setup_sfaira
	sfaira_overview
	SimBu
	simulate_bulk
	simulate_sample
	Index

