Package ‘SharedObject’

January 20, 2026

Type Package

Title Sharing R objects across multiple R processes without memory
duplication

Version 1.24.0
Date 2023-8-9

Description This package is developed for facilitating parallel computing in R.
It is capable to create an R object in the shared memory space and share the data across multi-
ple R processes.
It avoids the overhead of memory dulplication and data transfer, which make sharing big data ob-
ject across many clusters possible.

License GPL-3

LinkingTo BH, Rcpp

Depends R (>=3.6.0)

Imports Rcpp, methods, stats, BiocGenerics

biocViews Infrastructure

BugReports https://github.com/Jiefei-Wang/SharedObject/issues
Suggests testthat, parallel, knitr, rmarkdown, BiocStyle
RoxygenNote 7.1.1

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

SystemRequirements GNU make, C++11

Encoding UTF-8

git_url https://git.bioconductor.org/packages/SharedObject
git_branch RELEASE_3_22

git_last_commit e673c87

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Jiefei Wang [aut, cre],
Martin Morgan [aut]

Maintainer Jiefei Wang <szwjf08@gmail.com>

https://github.com/Jiefei-Wang/SharedObject/issues

2 getLastIndex

Contents
getLastIndex e 2
1saaltrep e 4
is.shared L 4
listSharedObjects e 5
pkgeonfig 6
share L L e 7
SharedObject e 9
sharedObjectPkgOptions e 10
sharedObjectProperties 11
unshare e e e 12

Index 14

getLastIndex Functions to manipulate shared memory
Description

These functions are designed for package developers only, they can allocate, open, close and destroy
shared memory without touching C++ code. Normal users should not use these functions unless
dealing with memory leaking

Usage

getlLastIndex()

allocateSharedMemory(size, name = "")

mapSharedMemory (id)

unmapSharedMemory (id)

freeSharedMemory (id)

hasSharedMemory (id)

getSharedMemorySize(id)

initialSharedObjectPackageData()

releaseSharedObjectPackageData()

Arguments

size

The size of the shared memory that you want to allocate

name, id The name of the shared memory

getLastIndex 3

Details

Quick explanation
getLastIndex: the ID of the last created shared memory.

allocateSharedMemory: allocate a shared memory of a given size, the memory ID is returned by
the function

mapSharedMemory: map the shared memory to the current process memory space
unmapSharedMemory: unmap the shared memory(without destroying it)

freeSharedMemory: free the shared memory. This function will only unmap the shared memory
on Windows.

hasSharedMemory: whether the memory exist?

getSharedMemorySize: get the actual size of the shared memory, it may be larger than the size that
you required.

Details

A complete lifecycle of a shared memory involves four steps: allocating, mapping, unmapping and
freeing the shared memory.

The shared memory can be created by allocateSharedMemory. The function allocateSharedMemory
will return the ID of the shared memory. After creating the shared memory, it can be mapped to
the current process by mapSharedMemory. The return value is an external pointer to the shared
memory. Once the shared memory is no longer needed, it can be unmapped and destroyed by
unmapSharedMemory and freeSharedMemory respectively.

Value

getLastIndex: An interger ID served as a hint of the last created shared memory ID.
allocateSharedMemory: character ID(s) that can be used to find the shared memory
mapSharedMemory: External pointer(s) to the shared memory

unmapSharedMemory: No return value

freeSharedMemory: No return value

hasSharedMemory: Logical value(s) indicating whether the shared memory exist

getSharedMemorySize: A numeric value

See Also

listSharedObjects

Examples

size <- 10L
unnamed shared memory
id <- allocateSharedMemory(size)

hasSharedMemory (id)
ptr <- mapSharedMemory(id)
ptr

getSharedMemorySize(id)
unmapSharedMemory (id)
freeSharedMemory(id)
hasSharedMemory (id)

4 is.shared

named shared memory
name <- "SharedObjectExample
if ('hasSharedMemory(name)){
allocateSharedMemory(size, name = name)
hasSharedMemory (name)
ptr <- mapSharedMemory(name)
ptr
getSharedMemorySize (name)
unmapSharedMemory (name)
freeSharedMemory (name)
hasSharedMemory (name)

n

is.altrep Whether an object is an ALTREP object

Description

Whether an object is an ALTREP object

Usage

is.altrep(x)

Arguments

X an R object

Value

A logical value

is.shared Test whether an object is shared

Description

Test whether an object is shared

Usage
is.shared(x, ..., depth = @, showAttributes = FALSE)

S4 method for signature 'ANY'

is.shared(x, ..., depth = 0@, showAttributes = FALSE)
Arguments
X An R object
e For generalization purpose only
depth Whether to recursively check the element of x. This parameter only works for

container objects(e.g. 1ist and environment), see details.
showAttributes Whether to check the attributes of x, default FALSE.

listSharedObjects 5

Details

When depth=0, the is.shared function return a single logical value indicating whether x is shared
or contains any shared objects. When depth>@ and x is a container(e.g. 1ist), the function will re-
cursively check each element of x and return a list with each elements corresponding to the elements
in x. The depth parameter determines the depth of the checking procedure.

if showAttributes = TRUE, the attributes of the object will also be checked. The check result is
returned as attributes of the return value by appending Shared to the end of the original attribute
names. Note that showAttributes has no effect on an S4 object for the attributes of an S4 object
are used to store the slots and should not be treated as the attributes of an object.

Value

a single logical value or a list.

Examples

x1 <- share(1:10)
is.shared(x1)

x2 <- share(list(a=1:10, b = list(d = letters, e = runif(10))))
is.shared(x2, depth=0)

is.shared(x2, depth=0, showAttributes = TRUE)

is.shared(x2, depth=1)

is.shared(x2, depth=2)

listSharedObjects List all shared Objects

Description

List all shared Objects

Usage

listSharedObjects(end = NULL, start = NULL)

Arguments
end the end value of the ID. The default is NULL. See details.
start the start value of the ID. The default is NULL. See details.
Details

The parameter start and end specify the range of the ID. If not specified, all IDs will be listed.

On Ubuntu or some other linux systems, the shared objects can be found in the folder /dev/shm.
The function can find all shared objects if the folder exists.

On Windows, since there is no easy way to find all shared objects. the function will guess the range
of the shared object IDs and search for all IDs within the range. Therefore, if there are too many
shared objects(over 4 billions) ,the object id can be out of the searching range and the result may
not be complete. Furthermore, there will be no named shared memory in the returned list.

Note that the size in the return value is the true memory size that is reserved for the shared object,
so it might be larger than the object size.

6 pkgconfig

Value

A data.frame object with shared object id and size

See Also

getLastIndex, allocateSharedMemory, mapSharedMemory, unmapSharedMemory, freeSharedMemory,
hasSharedMemory, getSharedMemorySize

Examples

x <- share(runif(10))
Automatically determine the search range
listSharedObjects()

specify the search range
listSharedObjects(start = 10, end = 20)

Search from @ to 20
listSharedObjects(20)

pkgconfig Find path of the shared memory header file

Description

This function will return the path of the shared memory header or the flags that are used to compile
the package for the developers who want to use C++ level implementation of the SharedObject
package

Usage

pkgconfig(x)

Arguments

X Character, "PKG_LIBS" or "PKG_CPPFLAGS"

Value

path to the header or compiler flags

Examples

SharedObject: : :pkgconfig("PKG_LIBS")
SharedObject: : : pkgconfig("PKG_CPPFLAGS")

share 7

share Create a shared object

Description

This function will create a shared object for the object x. The behavior of the shared object is exactly
the same as x, but the data of the shared object is allocated in the shared memory space. Therefore,
a shared object can be easily exported to the other R workers without duplicating the data, which
can reduce the memory consumption and the overhead of data transmission.

Usage

share(x, ...)

S4 method for signature 'ANY'
share(
X,

copyOnWrite,
sharedSubset,
sharedCopy,
sharedAttributes,
mustWork,
minLength

Arguments

X An R object that will be shared, see details.

e For generalization purpose.

copyOnWrite, sharedSubset, sharedCopy
The parameters controlling the behavior of a shared object, see details.

sharedAttributes
Whether to share the attributes of the object x (default TRUE). Note that attribute
class and names will never be shared.

mustWork Whether to throw an error if x is not sharable (e.g. x is a function). This param-
eter has no effect on the object’s attributes and S4 object.

minLength The minimum length of a shared object(default 3). If length(x) is smaller than
the minimum length, it would not be shared. This parameter can be used to
reduce the memory fragmentation.

Details

The function returns a shared object corresponding to the argument x if it is sharable. There should
be no different between x and the return value except that the latter one is shared. The attributes of
x will also be shared if possible.

Supported types

For the basic R type, the function supports raw, logical,integer, double, complex. character
can be shared, but sharing a character is beneficial only when there are a lot repetitions in the

8 share

elements of the vector. Due to the complicated structure of the character vector, you are not allowed
to set the value of a shared character vector to a value which haven’t presented in the vector before.
It is recommended to treat a shared character vector as read-only.

For the container, the function supports list, pairlist and environment. Note that sharing a
container is equivalent to share all elements in the container, the container itself will not be shared.

The function share is an S4 generic. The default share method works for most S3/S4 objects.
Therefore, there is no need to define a S4 share method for each S3/S4 class unless the S3/S4 class
has a special implementation (e.g. on-disk data). The default method will share all slots the object
contains and the object itself if possible. No error will be given if any of these objects are not
sharable and they will be kept unchanged.

Behavior control

The behavior of a shared object can be controlled through three parameters: copyOnWrite, sharedSubset
and sharedCopy.

copyOnWrite determines Whether a shared object needs to be duplicated when the data of the
shared object is changed. The default value is TRUE, but can be altered by passing copyOnWrite =
FALSE to the function. This parameter can be used to let workers directly write the result back to a
shared object.

Please note that the no-copy-on-write feature is not fully supported by R. When copyOnWrite is
FALSE, a shared object might not behaves as one expects. Please refer to the example code to see
the exceptions.

sharedSubset determines whether the subset of a shared object is still a shared object. The default
value is FALSE, and can be changed by passing sharedSubset = TRUE to the function

At the time of writing, The shared subset feature will cause an unnecessary memory duplication in
R studio. Therefore, for the performance consideration, it is recommended to keep the feature off
in R studio.

sharedCopy determines whether the object is still a shared object after the duplication. Note that
it must be used with copyOnWrite = TRUE. Otherwise, the shared object will never be duplicated.
The default value is FALSE.

Value

A shared object

Examples

For vector
X <= runif(10)
so <- share(x)
X
o)

For matrix

x <= matrix(runif(10), 2, 5)
so <- share(x)

X

o)

For data frame

x <- as.data.frame(matrix(runif(10), 2, 5))
so <- share(x)

X

SharedObject

SO

export the object

library(parallel)

cl <- makeCluster(1)

clusterExport(cl, "so")

check the exported object in the other process
clusterEvalQ(cl, so)

close the connection
stopCluster(cl)

Copy on write

X <- runif(10)

sol <- share(x, copyOnWrite = TRUE)

s02 <- sol

so2[1] <- 10

sol is unchanged since copy-on-write feature is on.
sol

so2

No copy on write

sol <- share(x, copyOnWrite = FALSE)
s02 <- sol

so2[1] <- 10

#so1 is changed

sol

s02

Flaw of no-copy-on-write

The following code changes the value of sol,

highly unexpected! Please use with caution!

-sol

sol

The reason is that the minus function tries to

duplicate sol object, but the duplication function

will return sol itself, so the values in sol get changed.

SharedObject Create an empty shared object

Description

Create an empty shared object with a specific length and attributes.

Usage

SharedObject(
mode = c("raw”, "logical”, "integer”, "numeric”, "complex"),
length,
attrib = list(),

10 sharedObjectPkgOptions

Arguments
mode the type of the shared object
length the length of the shared object
attrib the attributes of the shared object
Parameters that is used to create the shared object, please refer to ?share for
details.
Value
An R vector
Examples

Create an empty shared vector

x1 <- SharedObject(mode = "numeric”, length = 10)

x1

Create an empty shared matrix

x2 <- SharedObject(mode = "numeric”, length = 6,
attrib = list(dim = c(2L,3L)))

x2

sharedObjectPkgOptions
Get or set the global options for the SharedObject package

Description

Get or set the global options for the SharedObject package

Usage
sharedObjectPkgOptions(..., literal = TRUE)
Arguments
The name of the option(s), it can be either symbols or characters. if the argument
is missing, it means getting all option. See examples.
literal Whether the parameters in . . . are always treated as characters.
Value

set: The old package options

get: A list of the package options or a single value

sharedObjectProperties

Examples

Get all options
sharedObjectPkgOptions()

Get copyOnWrite only
sharedObjectPkgOptions(copyOnWrite)
sharedObjectPkgOptions("copyOnWrite")

opt <- "copyOnWrite"
sharedObjectPkgOptions(opt, literal = FALSE)

Set options
sharedObjectPkgOptions(copyOnWrite = FALSE)
Check if we have changed the option
sharedObjectPkgOptions(copyOnWrite)

Restore the default
sharedObjectPkgOptions(copyOnWrite = TRUE)

sharedObjectProperties
Get/Set the properties of a shared object.

Description

Get/Set the properties of a shared object.

Usage

sharedObjectProperties(x, ..., literal = TRUE)

S4 method for signature 'ANY'
sharedObjectProperties(x, ..., literal = TRUE)

S4 method for signature 'list'
sharedObjectProperties(x, ..., literal = TRUE)

getCopyOnWrite(x)
getSharedSubset (x)
getSharedCopy (x)
setCopyOnWrite(x, value)
setSharedSubset(x, value)

setSharedCopy(x, value)

12 unshare

Arguments
X A shared object
The name of the property(s), it can be either symbols or characters. if the argu-
ment is missing, it means getting all properties. See examples.
literal Whether the parameters in . . . are always treated as characters.
value The value of the property
Details

For numeric objects, the properties are datald, length, totalSize, dataType, ownData, copyOnWrite,
sharedSubset, sharedCopy.

For character objects, the properties are length, unitSize,totalSize,dataType,uniqueChar,copyOnWrite.

Note that only copyOnWrite, sharedSubset and sharedCopy are mutable. The other attributes are
read-only.

Value

get: The property(s) of a shared object
set: The old property(s)

Examples

For numeric objects
x1 <- share(1:10)

Get attributes

sharedObjectProperties(x1)
sharedObjectProperties(x1, copyOnWrite)
sharedObjectProperties(x1, "copyOnWrite")

props <- "copyOnWrite"

sharedObjectProperties(x1, props, literal = FALSE)
getCopyOnWrite(x1)

Set attributes
sharedObjectProperties(x1, copyOnWrite = FALSE)
setCopyOnWrite(x1, FALSE)

For character objects
x2 <- share(letters)
sharedObjectProperties(x2)

unshare Unshare a shared object

Description

Unshare a shared object. There will be no effect if the object is not shared.

Usage

unshare(x)

unshare

Arguments

X

Value

An unshared object

Examples

x1 <- share(1:10)
x2 <- unshare(x1)
is.shared(x1)
is.shared(x2)

a shared object, or an object that contains a shared object.

13

Index

allocateSharedMemory, 6
allocateSharedMemory (getlLastIndex), 2

freeSharedMemory, 6
freeSharedMemory (getLastIndex), 2

getCopyOnWrite
(sharedObjectProperties), 11

getLastIndex, 2, 6

getSharedCopy (sharedObjectProperties),
11

getSharedMemorySize, 6

getSharedMemorySize (getLastIndex), 2

getSharedSubset
(sharedObjectProperties), 11

hasSharedMemory, 6
hasSharedMemory (getLastIndex), 2

initialSharedObjectPackageData
(getLastIndex), 2

is.altrep, 4

is.shared, 4

is.shared, ANY-method (is.shared), 4

listSharedObjects, 3, 5

mapSharedMemory, 6
mapSharedMemory (getLastIndex), 2

pkgconfig, 6

releaseSharedObjectPackageData
(getLastIndex), 2

setCopyOnWrite
(sharedObjectProperties), 11

setSharedCopy (sharedObjectProperties),
11

setSharedSubset
(sharedObjectProperties), 11

share, 7

share,ANY-method (share), 7

share,data.frame-method (share), 7

share,list-method (share), 7

14

share,matrix-method (share), 7
share,vector-method (share), 7
SharedObject, 9
sharedObjectPkgOptions, 10
sharedObjectProperties, 11
sharedObjectProperties, ANY-method
(sharedObjectProperties), 11
sharedObjectProperties,list-method
(sharedObjectProperties), 11

unmapSharedMemory, 6
unmapSharedMemory (getLastIndex), 2
unshare, 12

unshare, ANY-method (unshare), 12
unshare, list-method (unshare), 12
unshare, vector-method (unshare), 12

	getLastIndex
	is.altrep
	is.shared
	listSharedObjects
	pkgconfig
	share
	SharedObject
	sharedObjectPkgOptions
	sharedObjectProperties
	unshare
	Index

