Package ‘SeqVarTools’

January 20, 2026

Version 1.48.0
Type Package
Title Tools for variant data

Description An interface to the fast-access storage format for VCF
data provided in SeqArray, with tools for common operations and
analysis.

Author Stephanie M. Gogarten, Xiuwen Zheng, Adrienne Stilp
Maintainer Stephanie M. Gogarten <sdmorris@uw.edu>
Depends SeqArray

Imports grDevices, graphics, stats, methods, Biobase, BiocGenerics,
gdsfmt, GenomicRanges, IRanges, S4Vectors, GWASExactHW,
logistf, Matrix, data.table,

Suggests BiocStyle, RUnit, stringr
License GPL-3

URL https://github.com/smgogarten/SeqVarTools
LazyData yes
biocViews SNP, GeneticVariability, Sequencing, Genetics

Collate AllClasses.R AllGenerics.R AllUtilities.R
Methods-SeqVarGDSClass.R Methods-SeqVarData.R
Methods-Iterator.R chromWithPAR.R duplicateDiscordance.R hwe.R
inbreedCoeff.R mendelErr.R pca.R setVariantID.R
alternateAlleleDetection.R refFrac.R regression.R

git_url https://git.bioconductor.org/packages/SeqVarTools
git_branch RELEASE_3_22

git_last_commit cefddfd

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents

SeqVarTools-package e
allele-methods oL

https://github.com/smgogarten/SeqVarTools

2 SeqVarTools-package
alleleFrequency L 4
alternateAlleleDetection Lo 5
applyMethod L 7
chromWithPAR 8
countSingletons e e e e 9
duplicateDiscordance 10
GEtGENOLYPE . .« . v o e e e e e e e e e e e e e 12
getVariableLengthData 14
heterozygosity 15
hwe . . 17
imputedDosage 18
inbreedCoeff L 19
ISSNV o 20
IsVariant L e e e e 21
Iterator 22
meanBySample oL e 24
mendelErr e 25
missingGenotypeRate Lo 26
PCA . o v e e e 27
pedigreeo e e e e e 28
refFrac 29
74 LT () 30
SeqVarData e 32
setVariantIDo oo 33
HEV . L 34
variantInfo L 35

Index 37

SeqVarTools-package Tools for Variant Analysis
Description
This package provides tools for data exploration and analysis of variants, extending the functionality
of the package SeqArray.

Details

SeqArray provides an alternative to the Variant Call Format (VCF) for storage of variants called
from sequencing data, enabling efficient storage, fast access to subsets of the data, and rapid com-
putation.

SeqVarTools provides an interface to the SeqArray storage format with tools for many common
tasks in variant analysis and integration with basic S4 classes in Bioconductor.

Author(s)

Stephanie M. Gogarten, Xiuwen Zheng

Maintainer: Stephanie M. Gogarten <sdmorris@u.washington.edu>

allele-methods 3

allele-methods Extract allele information from a GDS object

Description

Extract reference and alternate alleles and allele counts from a GDS object.

Usage

S4 method for signature 'SeqVarGDSClass'
refChar (gdsobj)

S4 method for signature 'SeqgVarGDSClass'
altChar(gdsobj, n=0)

S4 method for signature 'SeqgVarGDSClass'

nAlleles(gdsobj)
Arguments
gdsobj A SeqVarGDSClass object with VCF data.
n An integer indicating which alternate allele to return. n=@ returns a comma-

separated string of all alternate alleles.

Details
These methods parse the "allele" field of a GDS object.

Value

refChar returns a character vector of reference alleles.

altChar returns a character vector of alternate alleles. If n=0, multiple alternate alleles are repre-
sented as a comma-separated string. If n>0@, only the nth alternate allele is returned.

nAlleles returns an integer vector of the number of alleles (reference and alternate) for each vari-
ant.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod

Examples

gds <- seqOpen(seqExampleFileName("gds"))
table(refChar(gds))

table(altChar(gds))

table(altChar(gds, n=1))
table(altChar(gds, n=2), useNA="ifany")
table(nAlleles(gds))

seqClose(gds)

4 alleleFrequency

alleleFrequency Allele frequency

Description

Calculate allele frequency for each variant

Usage

S4 method for signature 'SeqgVarGDSClass'

alleleFrequency(gdsobj, n=0, use.names=FALSE, parallel=FALSE)

S4 method for signature 'SeqVarData'

alleleFrequency(gdsobj, n=0, use.names=FALSE, sex.adjust=TRUE, male.diploid=TRUE,
genome.build=c("hg19"”, "hg38"), parallel=FALSE)

S4 method for signature 'SeqgVarGDSClass'

alleleCount(gdsobj, n=0, use.names=FALSE, parallel=FALSE)

S4 method for signature 'SeqVarData'

alleleCount(gdsobj, n=0, use.names=FALSE, sex.adjust=TRUE, male.diploid=TRUE,
genome.build=c("hg19"”, "hg38"), parallel=FALSE)

S4 method for signature 'SeqVarData'

minorAlleleCount(gdsobj, use.names=FALSE, sex.adjust=TRUE, male.diploid=TRUE,
genome.build=c("hg19"”, "hg38"), parallel=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
n An integer indicating which allele to calculate the frequency of. n=0 is the ref-
erence allele, n=1 is the first alternate allele, and so on.
use.names A logical indicating whether to assign variant IDs as names of the output vector.
sex.adjust Logical for whether to adjust frequency calculations based on sex. If TRUE, X

chromosome frequency (excluding the PAR) will be calculated assuming the
dosage of the specifed allele for males is half that for females. Y chromosome
frequency will be calculated using males only.

male.diploid Logical for whether males on sex chromosomes are coded as diploid.

genome.build A character sting indicating genome build; used to identify pseudoautosomal
regions on the X and Y chromosomes.

parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details.

Details

Frequency or count can be calculated over any allele, specified by the argument n. Default is the
reference allele frequency (n=0).

The SeqVarData method will calculate frequency and count correctly for X and Y chromosomes,
provided a column "sex" is included in the sampleData slot with values "M"/"F" or 1/2. Arguments
given to this method are passed to the parent method for SeqVarGDSClass. If the ploidy of the
"genotype" node in the GDS file is 2, the default assumption is that genotypes for males on sex
chromosomes are coded as diploid, "0/0" or "1/1". If this is not the case, use male.diploid=FALSE.

For multiallelic variants, the minor allele count will be the smaller of the reference allele count or
the sum of all alternate allele counts.

alternateAlleleDetection 5

Value

A numeric vector of allele frequencies.

Author(s)

Stephanie Gogarten

See Also

chromWithPAR, SeqVarGDSClass, applyMethod, heterozygosity

Examples

gds <- seqOpen(seqExampleFileName("”gds"))
head(alleleFrequency(gds))
head(alleleFrequency(gds, n=1))
head(alleleFrequency(gds, n=2))
seqClose(gds)

alternateAlleleDetection
alternateAlleleDetection

Description

Calculate rates of detecting minor alleles given a “gold standard” dataset

Usage

S4 method for signature 'SeqVarData,SeqVarData'
alternateAlleleDetection(gdsobj, gdsobj2,
match.samples.on=c("subject.id"”, "subject.id"), verbose=TRUE)

Arguments
gdsobj A SeqVarData object with VCF data.
gdsobj2 A SeqVarData object with VCF data to be used as the “gold standard”.

match.samples.on

A length-2 character vector indicating the column to be used for matching in
each dataset’s sampleData annotation

verbose A logical indicating whether to print progress messages.

Details

Calculates the accuracy of detecting alternate alleles in one dataset (gdsobj) given a “gold standard”
dataset (gdsobj2). Samples are matched using the match.samples.on argument. The first element
of match.samples.on indicates the column to be used as the subject identifier for the first dataset,
and the second element is the column to be used for the second dataset. Variants are matched on
position and alleles using bi-allelic SNVs only. Genotype dosages are recoded to count the same
allele if the reference allele in one dataset is the alternate allele in the other dataset. If a variant
in one dataset matches to multiple variants in the second dataset, then only the first match will be

6 alternateAlleleDetection

used. If a variant is missing in either dataset for a given sample pair, that sample pair is ignored
for that variant. To exclude certain variants or samples from the calculate, use seqSetFilter to set
appropriate filters on each gds object.

This test is positive if an alternate allele was been detected. Results are returned on an allele level,
such that:

TP, TN, FP, and FN are calculated as follows:

genoData2
aa Ra RR
aa 2TP 1TP + IFP 2FP
genoDatal Ra 1TP+ 1FN 1TN+1TP ITN + 1FP
RR 2FN IFN + 1TN 2TN

where “R” indicates a reference allele and “a” indicates an alternate allele.

Value

A data frame with the following columns:

variant.id.1 variant id from the first dataset

variant.id.?2 matched variant id from the second dataset

n.samples the number of samples with non-missing data for this variant
true.pos the number of alleles that are true positives for this variant
true.neg the number of alleles that are true negatives for this variant
false.pos the number of alleles that are false positives for this variant
false.neg the number of alleles that are false negatives for this variant
Author(s)
Adrienne Stilp
See Also
SeqVarGDSClass
Examples
Not run:

gds1 <- seqOpen(gdsfile.1) # dataset to test, e.g. sequencing
samplel <- data.frame(subject.id=c("a", "b", "c"), sample.id=c("A", "B", "C"), stringsAsFactors=F)
seqDatal <- SeqVarData(gds1, sampleData=samplel)

gds2 <- seqOpen(gdsfile.2) # gold standard dataset, e.g. array genotyping
sample2 <- data.frame(subject.id=c("b", "c", "d"), sample.id=c("B", "C", "D"), stringsAsFactors=F)
segData2 <- SeqVarData(gds2, sampleData=sample2)

res <- alleleDetectionAccuracy(segDatal, seqData2)

End(Not run)

applyMethod 7

applyMethod Apply method to GDS object

Description

Apply a method to a subset of variants and/or samples in a GDS object

Usage

S4 method for signature 'SeqgVarGDSClass,function,character'
applyMethod(gdsobj, FUN, variant, sample=NULL, ...)

S4 method for signature 'SeqVarGDSClass,function,numeric’
applyMethod(gdsobj, FUN, variant, sample=NULL, ...)

S4 method for signature 'SeqVarGDSClass,function,GRanges'
applyMethod(gdsobj, FUN, variant, sample=NULL, ...)

S4 method for signature 'SeqVarGDSClass,function,missing’
applyMethod(gdsobj, FUN, variant, sample=NULL, ...)

Arguments

gdsobj A SeqVarGDSClass object with VCF data.
FUN A method or function to be applied to gdsobj.

variant A vector of variant.id values or a GRanges object defining the variants to be
included in the call to FUN.

sample A vector of sample.id values defining the samples to be included in the call to
FUN.

Additional arguments, passed to FUN.

Details

applyMethod applies a method or function FUN to the subset of variants defined by variant and
samples defined by sample in a GDS object.

If a filter was previously set with seqSetFilter, it will be saved and reset after the call to applyMethod.

Value

The result of the call to FUN.

Author(s)

Stephanie Gogarten

See Also

SeqgVarGDSClass

8 chromWithPAR

Examples

gds <- seqOpen(segExampleFileName("gds"))

variant.id <- seqgGetData(gds, "variant.id")

sample.id <- seqGetData(gds, "sample.id")

applyMethod(gds, getGenotype, variant.id[1:5], sample.id[1:10])

library(GenomicRanges)

chrom <- seqGetData(gds, "chromosome")

pos22 <- seqGetData(gds, "position")[chrom == 22]

ranges <- GRanges(segnames="22", IRanges(min(pos22), max(pos22)))
applyMethod(gds, heterozygosity, ranges, margin="by.sample")
applyMethod(gds, heterozygosity, ranges, margin="by.variant")

seqClose(gds)

chromWithPAR Identify pseudoautosomal region

Description

Flag single nucleotide variants

Usage
S4 method for signature 'SeqgVarGDSClass'
chromWithPAR(gdsobj, genome.build=c("hgl19", "hg38"))
Arguments

gdsobj A SeqVarGDSClass object with VCF data.

genome.build A character sting indicating genome build.

Details

The pseudoautosomal region (PAR) should be treated like the autosomes for purposes of calculating
allele frequency. This method returns a vector where sex chromosome variants are labeled wither
IIXII, ||Y||, Or IIPARII.

Value

A character vector of chromosome, with values "PAR" for the pseudoautosomal region.

Author(s)

Stephanie Gogarten

References

https://www.ncbi.nlm.nih.gov/grc/human

https://www.ncbi.nlm.nih.gov/grc/human

countSingletons 9

countSingletons Count singletons

Description

Count singleton variants for each sample

Usage

S4 method for signature 'SeqgVarGDSClass'
countSingletons(gdsobj, use.names=FALSE)

Arguments

gdsobj A SeqVarGDSClass object with VCF data.

use.names A logical indicating whether to assign variant IDs as names of the output vector.
Details

A singleton variant is a variant in which only one sample has a non-reference allele. For each
sample, countSingletons finds the number of variants for which that sample has the only non-
reference allele.

Value

A vector of the number of singleton variants per sample.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, alleleFrequency

Examples

gds <- seqOpen(seqExampleFileName("gds"))
head(countSingletons(gds))
seqClose(gds)

10 duplicateDiscordance

duplicateDiscordance Duplicate discordance

Description

Find discordance rate for duplicate sample pairs

Usage

S4 method for signature 'SeqVarData,missing'
duplicateDiscordance(gdsobj, match.samples.on="subject.id”, by.variant=FALSE,
all.pairs=TRUE, verbose=TRUE)
S4 method for signature 'SeqVarlterator,missing'
duplicateDiscordance(gdsobj, match.samples.on="subject.id", by.variant=FALSE,
all.pairs=TRUE, verbose=TRUE)
S4 method for signature 'SeqVarData,SeqVarData'
duplicateDiscordance(gdsobj, obj2, match.samples.on=c("subject.id"”, "subject.id"),
match.variants.on=c("alleles”, "position"),
discordance. type=c("genotype”, "hethom"),
by.variant=FALSE, verbose=TRUE)

Arguments
gdsobj A SeqVarData object with VCF data.
obj2 A SeqVarData object with VCF data.

match.samples.on
Character string or vector of strings indicating which column should be used for
matching samples. See details.
match.variants.on
Character string of length one indicating how to match variants. See details.
discordance. type
Character string describing how discordances should be calculated. See details.

by.variant Calculate discordance by variant, otherwise by sample
all.pairs Logical for whether to include all possible pairs of samples (all.pairs=TRUE)
or only the first pair per subject (all.pairs=FALSE).
verbose A logical indicating whether to print progress messages.
Details

For calls that involve only one gds file, duplicate discordance is calculated by matching samples on
common values of a column in sampleData. If all.pairs=TRUE, every possible pair of samples
is included, so there may be multiple pairs per subject. If all.pairs=FALSE, only the first pair for
each subject is used.

For calls that involve two gds files, duplicate discordance is calculated by matching sample pairs
and variants between the two data sets. Only biallelic SN'Vs are considered in the comparison.
Variants can be matched using chromosome and position only (match.variants.on="position")
or by using chromosome, position, and alleles (match.variants.on="alleles"). If matching on
alleles and the reference allele in the first dataset is the alternate allele in the second dataset, the
genotype dosage will be recoded so the same allele is counted before making the comparison. If a

duplicateDiscordance 11

variant in one dataset maps to multiple variants in the other dataset, only the first pair is considered
for the comparison. Discordances can be calculated using either genotypes (discordance. type =
"genotype") or heterozygote/homozygote status (discordance. type = "hethom”). The latter is
a method to calculate discordance that does not require alleles to be measured on the same strand
in both datasets, so it is probably best to also set match.variants.on = "position” if using the
"hethom" option.

The argument match. samples.on can be used to select which column in the sampleData of the in-
put SegVarData object should be used for matching samples. For one gds file, match. samples.on
should be a single string. For two gds files, match.samples.on should be a length-2 vector of
character strings, where the first element is the column to use for the first gds object and the second
element is the column to use for the second gds file.

To exclude certain variants or samples from the calculate, use seqSetFilter to set appropriate
filters on each gds object.

Value
A data frame with the following columns, depending on whether by . variant=TRUE or FALSE:

subject.id currently, this is the sample ID (by.variant=FALSE only)
sample.id.1/variant.id.1

sample id or variant id in the first gds file
sample.id.2/variant.id.2

sample id or variant id in the second gds file
n.variants/n.samples

the number of non-missing variants or samples that were compared

n.concordant the number of concordant variants

n.alt the number of variants involving the alternate allele in either sample

n.alt.conc the number of concordant variants invovling the alternate allele in either sample

n.het.ref the number of mismatches where one call is a heterozygote and the other is a
reference homozygote

n.het.alt the number of mismatches where one call is a heterozygote and the other is an
alternate homozygote

n.ref.alt the number of mismatches where the calls are opposite homozygotes

Author(s)

Stephanie Gogarten, Adrienne Stilp

See Also
SeqVarData, SeqVarIterator
Examples
require(Biobase)
gds <- seqOpen(seqExampleFileName("gds"))
the example file has one sample per subject, but we

will match the first four samples into pairs as an example
sample.id <- seqGetData(gds, "sample.id")

12 getGenotype

samples <- AnnotatedDataFrame(data.frame(data.frame(subject.id=rep(c(”"subj1", "subj2"), times=45),
sample.id=sample.id,
stringsAsFactors=FALSE)))

segData <- SeqVarData(gds, sampleData=samples)

set a filter on the first four samples
seqSetFilter(seqData, sample.id=sample.id[1:4])

disc <- duplicateDiscordance(segData, by.variant=FALSE)
disc

disc <- duplicateDiscordance(seqData, by.variant=TRUE)
head(disc)

recommended to use an iterator object for large datasets
iterator <- SeqVarBlockIterator(segData)

disc <- duplicateDiscordance(iterator, by.variant=FALSE)
disc

seqClose(gds)

getGenotype Get genotype data

Description

Get matrix of genotype values from a GDS object

Usage

S4 method for signature 'SeqVarGDSClass'

getGenotype(gdsobj, use.names=TRUE, parallel=FALSE)

S4 method for signature 'SeqgVarGDSClass'

getGenotypeAlleles(gdsobj, use.names=TRUE, sort=FALSE, parallel=FALSE)
S4 method for signature 'SeqgVarGDSClass'

refDosage(gdsobj, use.names=TRUE, ...)
S4 method for signature 'SeqgVarGDSClass'
altDosage(gdsobj, use.names=TRUE, sparse=FALSE, parallel=FALSE, ...)

S4 method for signature 'SeqVarGDSClass'

expandedAltDosage(gdsobj, use.names=TRUE, sparse=FALSE, parallel=FALSE)
S4 method for signature 'SeqgVarGDSClass,numeric'
alleleDosage(gdsobj, n=0, use.names=TRUE, parallel=FALSE)

S4 method for signature 'SeqVarGDSClass,list'

alleleDosage(gdsobj, n, use.names=TRUE, parallel=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
use.names A logical indicating whether to assign sample and variant IDs as dimnames of
the resulting matrix.
parallel Logical, numeric, or other value to control parallel processing; see seqParallel

for details.

sort Logical for whether to sort alleles lexographically ("G/T" instead of "T/G").

getGenotype 13

sparse Logical for whether to return the alterate allele dosage as a sparse matrix us-
ing the Matrix package. In most cases, setting sparse=TRUE will dramatically
reduce the size of the returned object.

n An integer, vector, or list indicating which allele(s) to return dosage for. n=0 is
the reference allele, n=1 is the first alternate allele, and so on.

Arguments to pass to seqBlockApply, e.g. bsize to set the block size.

Details

In getGenotype, genotypes are coded as in the VCF file, where "0/0" is homozygous reference,
"0/1" is heterozygous for the first alternate allele, "0/2" is heterozygous for the second alternate
allele, etc. Separators are "/" for unphased and "I" for phased. If sort=TRUE, all returned genotypes
will be unphased. Missing genotypes are coded as NA. Only haploid or diploid genotypes (the first
two alleles at a given site) are returned.

If the argument n toalleleDosage is a single integer, the same allele is counted for all variants. If
n is a vector with length=number of variants in the current filter, a different allele is counted for
each variant. If n is a list, more than one allele can be counted for each variant. For example, if
n[[11]=c(1,3), genotypes "0/1" and "0/3" will each have a dosage of 1 and genotype "1/3" will
have a dosage of 2.

Value

getGenotype and getGenotypeAlleles return a character matrix with dimensions [sample,variant]
containing haploid or diploid genotypes.

getGenotype returns alleles as "0", "1", "2", etc. indicating reference and alternate alleles.

getGenotypeAlleles returns alleles as "A", "C", "G", "T". sort=TRUE sorts lexographically,
which may be useful for comparing genotypes with data generated using a different reference se-
quence.

refDosage returns an integer matrix with the dosage of the reference allele: 2 for two copies of the
reference allele ("0/0"), 1 for one copy of the reference allele, and O for two alternate alleles.

altDosage returns an integer matrix with the dosage of any alternate allele: 2 for two alternate
alleles ("1/1", "1/2", etc.), 1 for one alternate allele, and O for no alternate allele (homozygous
reference).

expandedAltDosage returns an integer matrix with the dosage of each alternate allele as a separate
column. A variant with 2 possible alternate alleles will have 2 columns of output, etc.

alleleDosage with an integer argument returns an integer matrix with the dosage of the specified
allele only: 2 for two copies of the allele ("0/0" if n=0, "1/1" if n=1, etc.), 1 for one copy of the
specified allele, and O for no copies of the allele.

alleleDosage with a list argument returns a list of sample x allele matrices with the dosage of each
specified allele for each variant.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, seqGetData, seqSetFilter, alleleFrequency

14 getVariableLengthData

Examples

gds <- seqOpen(segExampleFileName("gds"))
seqSetFilter(gds, variant.sel=1323:1327, sample.sel=1:10)
nAlleles(gds)

getGenotype(gds)

getGenotypeAlleles(gds)

refDosage(gds)

altDosage(gds)

expandedAltDosage(gds)

alleleDosage(gds, n=0)

alleleDosage(gds, n=1)

alleleDosage(gds, n=c(0,1,0,1,0))
alleleDosage(gds, n=list(0,c(0,1),0,c(0,1),1))
seqClose(gds)

getVariablelLengthData Get variable-length data

Description

Get data with multiple values per sample from a GDS object and return as an array

Usage

S4 method for signature 'SeqVarGDSClass,character'
getVariablelLengthData(gdsobj, var.name, use.names=TRUE, parallel=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
var.name Character string with name of the variable, most likely "annotation/format/VARIABLE_NAME".
use.names A logical indicating whether to assign sample and variant IDs as dimnames of
the resulting matrix.
parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details.
Details

Data which are indicated as having variable length (possibly different numbers of values for each
variant) in the VCF header are stored as variable-length data in the GDS file. Each such data object
has two components, "length" and "data." "length" indicates how many values there are for each
variant, while "data" is a matrix with one row per sample and columns defined as all values for
variant 1, followed by all values for variant 2, etc.

getVariablelLengthData converts this format to a 3-dimensional array, where the length of the
first dimension is the maximum number of values in "length," and the remaining dimensions are
sample and variant. Missing values are given as NA. If the first dimension of this array would have
length 1, the result is converted to a matrix.

Value

An array with dimensions [n, sample, variant] where n is the maximum number of values possible
for a given sample/variant cell. If n=1, a matrix with dimensions [sample,variant].

heterozygosity 15

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, seqGetData

Examples

file <- system.file("extdata”, "gl_chrl.gds", package="SeqVarTools")
gds <- seqOpen(file)

genotype likelihood

gl <- seqGetData(gds, "annotation/format/GL")

names(gl)

gl$length

3 values per variant - likelihood of RR,RA,AA genotypes
dim(gl$data)

85 samples (rows) and 9 variants with 3 values each - 27 columns

gl.array <- getVariablelLengthData(gds, "annotation/format/GL")
dim(gl.array)

3 genotypes x 85 samples x 9 variants

head(gl.array[1,,])

head(gl.array[2,,]1)

head(gl.array[3,,])

seqClose(gds)

heterozygosity Heterozygosity and Homozygosity

Description

Calculate heterozygosity and homozygosity by variant or by sample

Usage

S4 method for signature 'SeqgVarGDSClass'

heterozygosity(gdsobj, margin=c("by.variant”, "by.sample"”),
use.names=FALSE, parallel=FALSE)

S4 method for signature 'SeqgVarGDSClass'

homozygosity(gdsobj, allele=c("any”, "ref", "alt"), margin=c("by.variant”, "by.sample”),
use.names=FALSE, parallel=FALSE)

S4 method for signature 'SeqgVarGDSClass'

hethom(gdsobj, use.names=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
margin Possible values are "by.variant" or "by.sample," indicating whether the calcula-

tion should be done over all samples for each variant, or over all variants for
each sample.

16 heterozygosity

use.names A logical indicating whether to assign variant or samples IDs as names of the
output vector.

non

allele Possible values are "any", "ref," or "alt," indicating which alleles to consider
when calculating homozygosity.

parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details. Only applies if margin="as.variant".

Details

heterozyogosity calulates the fraction of heterozygous genotypes in a GDS object, either by
variant or by sample.

homozygosity calculates the rate of homozygous genotypes in a GDS object, either by sample or
by variant. If allele="any", all homozygous genotypes are considered (reference or any alternate
allele). If allele="ref", only reference homozygotes are considered. If allele="alt", any alter-
nate allele homozygote is considered. For example, "ref" will count "0/0" genotypes only, "alt" will
count "1/1", "2/2", etc. (but not "0/0"), and "any" will count all of the above.

hethom calculates the ratio of heterozygous genotypes to alternate homozygous genotypes by sam-
ple.

Value

A numeric vector of heterozyogity or homozygosity rates. If margin="by.variant”, the vector
will have length equal to the number of variants in the GDS object. If margin="by.sample”, the
vector will have length equal to the number of samples.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, alleleFrequency

Examples

gds <- seqOpen(segExampleFileName("gds"))
head(heterozygosity(gds, margin="by.variant"))
head(homozygosity(gds, allele="any", margin="by.variant"))
head(homozygosity(gds, allele="ref", margin="by.variant"))
head(homozygosity(gds, allele="alt", margin="by.variant"))

Het/Hom Non-Ref by sample
head(hethom(gds))

seqClose(gds)

hwe

17

hwe

Exact test for Hardy-Weinberg equilibrium

Description

Performs an exact test for Hardy-Weinberg equilibrium on Single-Nucleotide Variants

Usage

S4 method for signature 'SeqgVarGDSClass'
hwe (gdsobj, permute=FALSE, parallel=FALSE)

Arguments

gdsobj

permute

parallel

Details

A SeqVarGDSClass object with VCF data.

A logical indicating whether to permute the genotypes to get a set of p-values
under the null hypothesis.

Logical, numeric, or other value to control parallel processing; see seqParallel
for details.

HWE calculations are performed with the HWExact function in the GWASExactHW package.

permute=TRUE will permute the genotypes prior to running the test. This can be useful for obtaining
a set of expected values under the null hypothesis to compare to the observed values.

P values are set to NA for all multiallelic and monomorphic variants.

Value

A data.frame with the following columns:

variant.id
nAA

nAa

naa

afreq

p
f

Author(s)

The unique identifier for the variant
The number of reference homozygotes
The number of heterozygotes

The number of alternate homozygotes
The reference allele frequency

p values for the exact test

The inbreeding coefficient, 1 - observed heterozygosity / expected heterozygos-
ity

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod

18 imputedDosage

Examples

gds <- seqOpen(segExampleFileName("gds"))

autosomal variants only

auto <- seqGetData(gds, "chromosome”) %in% 1:22
var.auto <- seqGetData(gds, "variant.id”)[auto]
hw <- applyMethod(gds, hwe, variant=var.auto)
head(hw)

sum(is.na(hw$p))

range (hw$p, na.rm=TRUE)

seqClose(gds)

imputedDosage Get imputed dosage

Description

Get matrix of imputed dosage values from a GDS object

Usage
S4 method for signature 'SeqgVarGDSClass'
imputedDosage(gdsobj, dosage.field="DS", use.names=TRUE)
Arguments

gdsobj A SeqVarGDSClass object with VCF data.
dosage.field The name of the dosage field in the GDS object (will be prepended with "annotation/format”).

use.names A logical indicating whether to assign sample and variant IDs as dimnames of
the resulting matrix.
Details

Reads dosage from the dosage-specific field in the GDS object, rather than counting alleles from
called genotypes.

Only one dosage value per variant is allowed; the method will return an error if multiple dosages
are present for a single variant.

Value

A numeric matrix of dosage values with dimensions [sample,variant].

Author(s)

Stephanie Gogarten

See Also

refDosage, altDosage

inbreedCoeff 19

Examples

convert VCF to GDS keeping dosage field

vcffile <- system.file("extdata”, "gl_chrl.vcf"”, package="SeqVarTools")

gdsfile <- tempfile()

seqVCF2GDS(vcffile, gdsfile, fmt.import="DS", storage.option="ZIP_RA",
verbose=FALSE)

gds <- seqOpen(gdsfile)
dos <- imputedDosage(gds)
head(dos)

seqClose(gds)
unlink(gdsfile)

inbreedCoeff Inbreeding coefficient

Description

Calculates the inbreeding coefficient by variant or by sample

Usage

S4 method for signature 'SeqgVarGDSClass'
inbreedCoeff(gdsobj, margin=c("by.variant”, "by.sample"), use.names=FALSE,
parallel=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
margin Possible values are "by.variant" or "by.sample," indicating whether the calcula-
tion should be done over all samples for each variant, or over all variants for
each sample.
use.names A logical indicating whether to assign variant or sample IDs as names of the
output vector.
parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details. Only applies if margin="as.variant".
Details

For inbreeding coefficients by variant, calculates 1 - observed heterozygosity / expected heterozy-
gosity.

For individual inbreeding coefficients (margin="by.sample"), calculates Visscher’s estimator de-
scribed in Yang et al. (2010).

Value

Values for the inbreeding coefficient.

Author(s)

Xiuwen Zheng, Stephanie Gogarten

20 isSNV

References

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,
Martin NG, Montgomery GW, Goddard ME, Visscher PM. 2010. Common SNPs explain a large
proportion of the heritability for human height. Nat Genet. 42(7):565-9. Epub 2010 Jun 20.

See Also

SeqVarGDSClass, applyMethod

Examples

gds <- seqOpen(seqExampleFileName("”gds"))
f <- inbreedCoeff(gds, margin="by.variant")
range(f, na.rm=TRUE)

ic <- inbreedCoeff(gds, margin="by.sample")
range(ic)
seqClose(gds)

isSNV Flag single nucleotide variants

Description

Flag single nucleotide variants

Usage

S4 method for signature 'SeqgVarGDSClass'
isSNV(gdsobj, biallelic=TRUE)

Arguments

gdsobj A SeqVarGDSClass object with VCF data.

biallelic A logical indicating whether only biallelic SNV are considered.
Details

If biallelic=TRUE, a variant is considered a single nucleotide variant (SNV) if there is one ref-
erence allele and one alternate allele, each one base in length. If biallelic=FALSE, there may be
multiple alternate alleles, each one base in length.

Setting biallelic=TRUE is considerably faster for large data sets.

Value

A logical vector indicating which variants are SNVs.

Author(s)

Stephanie Gogarten

isVariant 21

See Also

SeqVarGDSClass, allele-methods, applyMethod

Examples

gds <- seqOpen(seqExampleFileName("”gds"))
table(isSNV(gds))
seqClose(gds)

isVariant Locate variant samples across sites

Description

Locate which samples are variant for each site in a GDS object

Usage

S4 method for signature 'SeqgVarGDSClass'
isVariant(gdsobj, use.names=FALSE, parallel=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
use.names A logical indicating whether to assign sample and variant IDs as dimnames of
the resulting matrix.
parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details.
Details

Each sample/site cell of the resulting matrix is TRUE if the genotype at that location for that sample
contains an alternate allele. A genotype of "0/0" is not variant, while genotypes "0/1", "1/0", "0/2",
etc. are variant.

Value
A logical matrix with dimensions [sample,site] which is TRUE for cells where the genotype contains
an alternate allele.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, getGenotype

22 Iterator

Examples

gds <- seqOpen(segExampleFileName("gds"))

variant.id <- seqgGetData(gds, "variant.id")

sample.id <- seqGetData(gds, "sample.id")

applyMethod(gds, isVariant, variant.id[1:5], sample.id[1:10])
applyMethod(gds, isVariant, variant.id[1:5], sample.id[1:10], use.names=TRUE)
seqClose(gds)

Iterator Iterators

Description

Extends SeqVarData to provide iterators over variants.

Details

Iterator classes allow for iterating filters over blocks of variants, ranges, or sliding windows.

For SeqVarBlockIterator, each call to iterateFilter will select the next unit of variantBlock
variants.

For SeqVarRangeIterator,eachcall to iterateFilter will select the next range in variantRanges.
SeqVarWindowIterator is an extension of SeqVarRangelterator where the ranges are deter-

mined automatically by sliding a window of size windowSize base pairs by steps of windowShift

across the genome. Only windows containing unique sets of variants are kept.

For SeqVarListIterator, eachcall to iterateFilter will select the next set of ranges in variantRanges.

Any filter set on the object previously will be applied in addition to the selected blocks or ranges.

Constructors

e SegVarBlockIterator(seqData, variantBlock=10000, verbose=TRUE): Returns a SeqVarBlockIterator
object with the filter set to the first block.
seqgData is a SegVarData object.
variantBlock is an integer specifying the number of variants in an iteration block.
verbose is a logical indicator for verbose output.
* SeqVarRangelterator(segData, variantRanges=GRanges(), verbose=TRUE): Returns a
SeqVarRangeIterator object with the filter set to the first range.
seqData is a SeqVarData object.
variantRanges is a GRanges object specifying the ranges for iteration.
verbose is a logical indicator for verbose output.
e SeqVarWindowIterator(segData, windowSize=10000, windowShift=5000, verbose=TRUE):
Returns a SeqVarWindowIterator object with the filter set to the first window.
seqgData is a SeqVarData object.
windowSize is the size in base pairs of the sliding window.
windowShift is the size in base pairs of the step for each consecutive window.
verbose is a logical indicator for verbose output.
e SeqVarListIterator(seqData, variantRanges, verbose=TRUE): Returns a SeqVarRangeIterator
object with the filter set to the first range.
segData is a SeqVarData object.
variantRanges is a GRangesList object specifying the ranges for iteration.
verbose is a logical indicator for verbose output.

Iterator 23
Accessors
e iterateFilter(x): Advance the filter to the next block, range, or set of ranges. Returns
TRUE while there are still variants left to be read, FALSE if the end of iteration is reached.
e lastFilter(x), lastFilter(x)<- value: Get or set the last filter index from the previous
callto iterateFilter.
e variantBlock(x): Get the size of the variant block.
e variantFilter(x): Get the list of variant indices.
* variantRanges(x): Get the variant ranges.
* currentRanges(x): Get the ranges selected in the current iteration.
e currentVariants(x): Get the variants selected in the current iteration. Returns a DataFrame
where the row name is the variant.id, "variant" is the variant position as a 1ink{GRanges},
"range" is the range the variant is from, and any columns in either variantData or the meta-
data columns of currentRanges are included.
* resetIterator(x): Set the filter to the first block, range, or set of ranges (the same variants
that are selected when the iterator object is created).
Author(s)
Stephanie Gogarten
See Also

SeqVarGDSClass, SeqVarData, seqSetFilter

Examples

gds <- seqOpen(seqExampleFileName("gds"))
segData <- SeqVarData(gds)

iterate by blocks

seqSetFilter(segData, variant.sel=seq(1,1000,2))

iterator <- SeqVarBlockIterator(segData, variantBlock=10)
seqGetData(iterator, "variant.id")
iterateFilter(iterator)

seqGetData(iterator, "variant.id")
seqResetFilter(iterator)

iterate by ranges

library(GenomicRanges)

gr <- GRanges(segnames=rep(1,3), ranges=IRanges(start=c(1e6, 2e6, 3e6), width=1e6))
iterator <- SeqVarRangelterator(segData, variantRanges=gr)
granges(iterator)

iterateFilter(iterator) # no variants in the second range
granges(iterator)

iterateFilter(iterator)

granges(iterator)

iterateFilter(iterator)

seqResetFilter(iterator)

iterate by windows
seqSetFilterChrom(segData, include="22")
iterator <- SeqVarWindowIterator(seqgData)
seqGetData(iterator, "variant.id")

24 meanBySample

while (iterateFilter(iterator)) {
print(seqgGetData(iterator, "variant.id"))

}

seqResetFilter(iterator)

iterate by list of ranges

gr <- GRangesList(
GRanges(segnames=rep(22,2), ranges=IRanges(start=c(16e6, 17e6), width=1e6)),
GRanges(seqnames=rep(22,2), ranges=IRanges(start=c(18e6, 20e6), width=1e6)))

iterator <- SeqVarlListlterator(segData, variantRanges=gr)

granges(iterator)

iterateFilter(iterator)

granges(iterator)

iterateFilter(iterator)

resetIterator(iterator)

seqClose(iterator)

meanBySample Mean value by sample

Description

Calculate the mean value of a variable by sample over all variants

Usage

S4 method for signature 'SeqVarGDSClass'
meanBySample(gdsobj, var.name, use.names=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
var.name Character string with name of the variable, most likely "annotation/format/VARIABLE_NAME".
use.names A logical indicating whether to assign sample IDs as names of the output vector.

Details

Mean values by variant can be calculated using seqApply(gdsobj, var.name, mean, na.rm=TRUE).
Currently segApply can only be used with the option margin="by.variant"”. This method pro-
vides a way to calculate mean values by sample.

Value

A numeric vector of mean values.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, seqApply

mendelErr

Examples

25

gds <- seqOpen(segExampleFileName("gds"))
head(meanBySample(gds, "annotation/format/DP", use.names=TRUE))

seqClose(gds)

mendelErr

Mendelian errors

Description

Detect Mendelian errors

Usage

S4 method for signature 'SeqgVarGDSClass'
mendelErr(gdsobj, pedigree, use.names=FALSE,
autosomes=1:22, xchrom="X", ychrom="Y", verbose=TRUE)

Arguments

gdsobj

pedigree

use.names
autosomes
xchrom
ychrom

verbose

Details

A SeqVarGDSClass object with VCF data.

A data.frame with columns (family, individ, father, mother, sex, sample.id).
"sex" column should have values "M"/"F". "sample.id" values should corre-
spond to "sample.id" in gdsobj.

A logical indicating whether to assign variant IDs as names of the output vector.
A vector with chromosome values in gdsobj corresponding to autosomes.

The chromosome value in gdsobj corresponding to the X chromosome.

The chromosome value in gdsobj corresponding to the Y chromosome.

A logical indicating whether to print the number of samples selected for each
trio.

Mendelian errors are detected for each trio in pedigree. Duos (mother or father missing) are
included. The pedigree must have only one sample per individual.

Value

A list with the following elements:

by.variant

by.trio

Author(s)

An integer vector with the number of mendelian errors detected for each variant.
If use.names=TRUE, the vector will be named with variant IDs.

An integer vector with the number of mendelian errors detected for each trio.
The vector will be named with the sample ID of the child in each trio.

Stephanie Gogarten

26 missingGenotypeRate

See Also
SeqVarGDSClass, applyMethod

Examples

gds <- seqOpen(seqExampleFileName("”gds"))
data(pedigree)

err <- mendelErr(gds, pedigree)
table(errs$by.variant)

err$by.trio

seqClose(gds)

missingGenotypeRate Missing genotype rate

Description

Calculate missing genotype rate by variant or by sample

Usage

S4 method for signature 'SeqgVarGDSClass'
missingGenotypeRate(gdsobj, margin=c("by.variant”, "by.sample”), use.names=FALSE,
parallel=FALSE)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
margin Possible values are "by.variant" or "by.sample," indicating whether the calcula-
tion should be done over all samples for each variant, or over all variants for
each sample.
use.names A logical indicating whether to assign variant IDs as names of the output vector.
parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details.
Details

Calculates the fraction of missing genotypes in a GDS object, either by variant or by sample.

Value

A numeric vector of missing genotype rates. If margin="by.variant"”, the vector will have length
equal to the number of variants in the GDS object. If margin="by.sample”, the vector will have
length equal to the number of samples.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, getGenotype

pca 27

Examples

gds <- seqOpen(segExampleFileName("gds"))
head(missingGenotypeRate(gds, margin="by.variant"))
head(missingGenotypeRate(gds, margin="by.sample"))
seqClose(gds)

pca Principal Component Analysis

Description
Calculates the eigenvalues and eignevectors of a SeqVarGDSClass object with Principal Component
Analysis

Usage

S4 method for signature 'SeqgVarGDSClass'
pca(gdsobj, eigen.cnt=32)

Arguments

gdsobj A SeqVarGDSClass object with VCF data.

eigen.cnt An integer indicating how many eigenvalues and eignvectors to return.
Details

Calculates the genetic covariance matrix and finds the eigen decomposition.

Value

A list with two elements:

eigenval A vector of length eigen.cnt with eigenvalues
eigenvect A matrix of dimension ("selected samples"”, eigen.cnt).
Author(s)

Xiuwen Zheng, Stephanie Gogarten

References
Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

See Also

SeqVarGDSClass, applyMethod

28 pedigree

Examples

gds <- seqOpen(seqExampleFileName("gds"))
pca <- pca(gds)

pca$eigenval

head(pca$eigenvect)

seqClose(gds)

pedigree Pedigree for example data

Description

Pedigree for example data files in SeqArray.

Usage

pedigree

Format
A data.frame with the following columns.
family Family ID
individ Individual ID
father Father ID
mother Mother ID

sex Sex

sample.id sample.id in VCF/GDS files

Details

There is one trio in the pedigree.

Source

HapMap

Examples

data(pedigree)

head(pedigree)

gds <- seqOpen(seqgExampleFileName("”gds"))
setdiff(seqgGetData(gds, "sample.id"), pedigree$sample.id)
seqClose(gds)

refFrac 29

refFrac Reference allele fraction

Description

Calculate fraction of reference allele reads

Usage

S4 method for signature 'SeqgVarGDSClass'

refFrac(gdsobj, use.names=TRUE, parallel=FALSE)

S4 method for signature 'SeqVarGDSClass'
refFracOverHets(gdsobj, FUN=mean, use.names=TRUE, parallel=FALSE)
S4 method for signature 'SeqVarGDSClass'

refFracPlot(gdsobj, variant.id, highlight=NULL, ...)
Arguments

gdsobj A SeqVarGDSClass object with VCF data.

FUN The function to apply over heterozygote calls (mean or median).

use.names A logical indicating whether to assign variant or samples IDs as names of the
output vector.

parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details.

variant.id A vector of variant.ids to plot.

highlight A list of sample.ids to highlight with sequential integers on each plot

Additional arguments passed to plot.

Details

The variable "annotation/format/AD" (allelic depth) is required to compute the reference allele frac-
tion.

refFracPlot generates plots of total unfiltered depth (sum over "AD" for all alleles) versus ref-
erence allele fraction. Points are color-coded by called genotype: teal = reference homozygote,
orange = heterozygote including the reference allele, fuschia = heterozygote with two alternate al-
leles, purple = alternate homozygote, black = missing. Darker colors indicate a higher density of
points. Vertical black line is at 0.5, vertical orange line is the median reference allele fraction for
ref/alt heterozygotes. Values significantly different from 0.5 (after applying a Bonferroni correc-
tion) are plotted with triangles.

Value

refFrac returns a sample by variant array of the reference allele fraction, defined as ref_depth /
total_depth.

refFracOverHets returns the mean (or other function, e.g. median) of reference allele depth (per
variant) over all samples called as heterozygotes.

Author(s)

Stephanie Gogarten

30 regression

See Also

SeqVarGDSClass, applyMethod

Examples

gdsfile <- system.file("extdata”, "hapmap_exome_chr22.gds", package="SeqVarTools")
gds <- seqOpen(gdsfile)
RF <- refFrac(gds)
dim(RF)
samples <- seqGetData(gds, "sample.id")
refFracPlot(gds, variant.id=5:6,
highlight=1list(samples[2:3], samples[4:5]))
seqClose(gds)

regression Linear or logistic regression

Description

Run linear or logistic regression on variants

Usage

S4 method for signature 'SeqVarData'
regression(gdsobj, outcome, covar=NULL,
model . type=c("linear”, "logistic"”, "firth"),
parallel=FALSE)

Arguments
gdsobj A SeqVarData object
outcome A character string with the name of the column in sampleData(gdsobj) con-
taining the outcome variable
covar A character vector with the name of the column(s) in sampleData(gdsobj)
containing the covariates
model . type the type of model to be run. "linear" uses 1m, "logistic" uses glm with family=binomial(),
and "firth" uses logistf.
parallel Logical, numeric, or other value to control parallel processing; see seqParallel
for details.
Details

regression tests the additive effect of the reference allele.

regression

Value

a data.frame with the following columns (if applicable):

variant.id
n

no

ni

freq
freqo
freql

Est

SE
Wald.Stat
Wald.pval
PPL.Stat
PPL.pval

Author(s)

variant identifier

number of samples with non-missing data

number of controls (outcome=0) with non-missing data
number of cases (outcome=1) with non-missing data
reference allele frequency

reference allele frequency in controls

reference allele frequency in cases

beta estimate for genotype

standard error of beta estimate for the genotype
chi-squared test statistic for association

p-value for association

firth only: profile penalized likelihood test statistic for association

firth only: p-value for association

Stephanie Gogarten

See Also

SeqVarData, seqSetFilter, Im, glm, logistf

Examples

gds <- seqOpen(seqExampleFileName("gds"))

create some phenotype data

library(Biobase)

sample.id <- seqGetData(gds, "sample.id")

n <- length(sample.id)

df <- data.frame(sample.id,
sex=sample(c("M", "F"), n, replace=TRUE),

age=sample(18:
phen=rnorm(n),

70, n, replace=TRUE),

stringsAsFactors=FALSE)
meta <- data.frame(labelDescription=c(”sample identifier”,

n n

sex", "age",

"phenotype”), row.names=names(df))

sample.data <- AnnotatedDataFrame(df, meta)
segData <- SeqVarData(gds, sample.data)

select samples and variants

seqSetFilter(gds, sample.id=sample.id[1:50], variant.id=1:10)
res <- regression(seqData, outcome="phen", covar=c("sex", "age"))
res

seqClose(gds)

31

32 SeqVarData

SeqVarData SeqVarData

Description

Extends SeqVarGDSClass to include annotation for samples and variants.

Details
A SeqVarData object adds an AnnotatedDataFrame for both samples and variants to a SeqVarGDSClass
object.

Note that a SeqVarData object must be created using an unfiltered SeqVarGDSClass object. The
sample. id column in the sampleData AnnotatedDataFrame must exactly match the sample.id
node in the GDS file (and similarly for variant.id in variantData). This enables all subsequent
filters set on the SeqVarData object to apply to the GDS and the annotation simultaneously.

Constructor

* SeqVarData(gds, sampleData, variantData): Returns a SeqVarData object.
gds can be either the filename of a sequencing GDS file or an existing SeqVarGDSClass object.

sampleData must be an AnnotatedDataFrame with a column sample.id matching sample.id
in the GDS file. If this argument is missing, a data frame with O columns will be created.

variantData must be an AnnotatedDataFrame with a column variant.id matching variant.id
in the GDS file. If this argument is missing, a data frame with O columns will be created.

Accessors

* sampleData(x), sampleData(x)<- value: Get or set the AnnotatedDataFrame with sample
data. If a sample filter has been applied with seqSetFilter, only selected samples will be
returned. value must include all samples.

e variantData(x), variantData(x)<- value: Get or set the AnnotatedDataFrame with vari-
ant data. If a variant filter has been applied with seqSetFilter, only selected variants will be
returned. value must include all variants.

* granges(x): Return a GRanges object with the columns of variantData as metadata columns.

» validateSex(x): Return the contents of a column named "sex" in sampleData(x), provided
the contents are valid (values either "M"/"F" or 1/2, or NA). If the column is missing or invalid,
return NULL.

See SeqVarGDSClass for additional methods.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, seqVCF2GDS, seqgOpen, seqGetData, seqSetFilter, seqApply, seqClose

setVariantID 33

Examples

gds <- seqOpen(segExampleFileName("gds"))

create sample annotation

library(Biobase)

sample.id <- seqGetData(gds, "sample.id")

sex <- sample(c("M","F"), length(sample.id), replace=TRUE)

phenotype <- rnorm(length(sample.id), mean=10)

samp <- data.frame(sample.id, sex, phenotype, stringsAsFactors=FALSE)

meta <- data.frame(labelDescription=c("unique sample identifier”,
"sex (M=male, f=female)", "example phenotype”),
row.names=names(samp), stringsAsFactors=FALSE)

sample.data <- AnnotatedDataFrame(samp, meta)

seqData <- SeqVarData(gds, sample.data)

head(validateSex(segData))

add another annotation column

sample.data$site <- sample(letters, length(sample.id), replace=TRUE)
varMetadata(sample.data)["site”, "labelDescription”] <- "study site”
sampleData(seqData) <- sample.data

set a filter

seqSetFilter(segData, sample.id=sample.id[1:10])

nrow(sampleData(segData))

seqClose(seqData)

setVariantID Change the variant ID of a GDS file

Description

Replace the variable "variant.id" in a GDS file with a user-supplied unique vector of the same length.

Usage

setVariantID(gdsfile, variant.id)

Arguments
gdsfile A character string with the file path of a GDS file.
variant.id A vector with the new variant IDs.

Details

A VCF file created by seqVCF2GDS creates a variable "variant.id" containing sequential integers to
identify each variant. setVariantID allows the user to replace these values with something more
meaningful. The replacement values in variant.id must be unique and have the same length as
the original "variant.id" vector.

Using character values for variant.id may affect performance for large datasets.

34

Author(s)

titv

Stephanie Gogarten

See Also

SeqVarGDSClass, seqVCF2GDS

Examples

oldfile <- system.file("extdata”, "gl_chrl.gds", package="SeqgVarTools")
newfile <- tempfile()
file.copy(oldfile, newfile)

gds <- seqOpen(newfile)
rsID <- seqGetData(gds, "annotation/id")

seqClose(gds)

setVariantID(newfile, rsID)
gds <- seqOpen(newfile)
seqGetData(gds, "variant.id")
head(getGenotype(gds))

seqClose(gds)

unlink(newfile)

titv

Transition/Transversion Ratio

Description

Calculate transition/transversion ratio overall or by sample

Usage

S4 method for signature 'SeqgVarGDSClass'
titv(gdsobj, by.sample=FALSE, use.names=FALSE)

Arguments

gdsobj
by.sample

use.names

Details

A SeqVarGDSClass object with VCF data.

A logical indicating whether TiTv should be calculated by sample or overall for
the entire GDS object.

A logical indicating whether to assign sample IDs as names of the output vector
(if by . sample=TRUE).

If by.sample=FALSE (the default), titv calulates the transition/transversion ratio (TiTv) over all

samples.

If by. sample=TRUE, titv calculates TiTv over all variant genotypes (heterozygous or homozygous
non-reference) for each sample.

variantInfo 35

Value

A single value for TiTv if by.sample=FALSE. If by.sample=TRUE, a numeric vector containing
TiTv for each sample.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass, applyMethod, isVariant

Examples

gds <- seqOpen(seqExampleFileName("gds"))
titv(gds)
titv(gds, by.sample=TRUE)

apply to a subset of variants

library(GenomicRanges)

chrom <- seqGetData(gds, "chromosome")

pos22 <- seqGetData(gds, "position”)[chrom == 22]

ranges <- GRanges(seqgnames="22", IRanges(min(pos22), max(pos22)))
applyMethod(gds, titv, ranges)

seqClose(gds)

variantInfo Variant info

Description

Return basic variant info as a data.frame.

Usage

S4 method for signature 'SeqgVarGDSClass'
variantInfo(gdsobj, alleles=TRUE, expanded=FALSE)
S4 method for signature 'SeqgVarGDSClass'
expandedVariantIndex(gdsobj)

Arguments
gdsobj A SeqVarGDSClass object with VCF data.
alleles A logical value for whether to include ref and alt alleles
expanded A logical value for whether to expand multi-allelic variants with one row per
alternate allele.
Details

Variants can be represented in collapsed form, with one row per variant, or in expanded form, with
one row per alternate allele for multiallelic variants.

36 variantInfo

Value

variantInfo returns a data.frame with variant.id, chromosome, and position for each variant. If
alleles=TRUE, the data.frame includes ref and alt. If expanded=TRUE, the data.frame includes
allele.index, which is 1 for the first alternate allele, 2 for the second alternate, etc.

expandedVariantIndex returns an index to transform a vector or matrix from collapsed to ex-
panded form.

Author(s)

Stephanie Gogarten

See Also

SeqVarGDSClass

Examples

gds <- seqOpen(segExampleFileName("gds"))
seqSetFilter(gds, variant.sel=1323:1327)
variantInfo(gds, alleles=TRUE)
variantInfo(gds, alleles=TRUE, expanded=TRUE)
expandedVariantIndex(gds)

seqClose(gds)

Index

* classes
Iterator, 22
SeqVarData, 32

* datasets
pedigree, 28

* manip
allele-methods, 3
alleleFrequency, 4
alternateAlleleDetection, 5
applyMethod, 7
countSingletons, 9
duplicateDiscordance, 10
getGenotype, 12
getVariablelLengthData, 14
heterozygosity, 15
hwe, 17
imputedDosage, 18
inbreedCoeff, 19
isVariant, 21
meanBySample, 24
mendelErr, 25
missingGenotypeRate, 26
pca, 27
refFrac, 29
regression, 30
setVariantID, 33
titv, 34

+ methods
Iterator, 22
SeqVarData, 32

+ package
SeqVarTools-package, 2

allele-methods, 3

alleleCount (alleleFrequency), 4

alleleCount,SegVarData-method
(alleleFrequency), 4

alleleCount, SeqVarGDSClass-method
(alleleFrequency), 4

alleleDosage (getGenotype), 12

alleleDosage, SeqVarGDSClass, list-method
(getGenotype), 12

alleleDosage, SeqVarGDSClass, numeric-method
(getGenotype), 12

37

alleleFrequency, 4,9, 13,16

alleleFrequency, SeqVarData-method
(alleleFrequency), 4

alleleFrequency, SeqVarGDSClass-method
(alleleFrequency), 4

altChar (allele-methods), 3

altChar,SeqVarGDSClass-method
(allele-methods), 3

altDosage, I8

altDosage (getGenotype), 12

altDosage, SeqVarGDSClass-method
(getGenotype), 12

alternateAlleleDetection, 5

alternateAlleleDetection, SeqVarData, SeqVarData-method
(alternateAlleleDetection), 5

AnnotatedDataFrame, 32

applyMethod, 3, 5,7, 9, 13, 15-17, 20, 21, 24,
26, 27, 30, 35

applyMethod, SeqVarGDSClass, function, character-method
(applyMethod), 7

applyMethod, SeqVarGDSClass, function, GRanges-method
(applyMethod), 7

applyMethod, SeqVarGDSClass, function,missing-method
(applyMethod), 7

applyMethod, SeqVarGDSClass, function, numeric-method
(applyMethod), 7

chromWithPAR, 5, 8

chromWithPAR, SeqVarGDSClass-method
(chromWithPAR), 8

countSingletons, 9

countSingletons, SeqVarGDSClass-method
(countSingletons), 9

currentRanges (Iterator), 22

currentRanges, SeqVarBlockIterator-method
(Iterator), 22

currentRanges,SeqVarListIterator-method
(Iterator), 22

currentRanges, SeqVarRangeIterator-method
(Iterator), 22

currentVariants (Iterator), 22

currentVariants,SeqVarBlockIterator-method
(Iterator), 22

38

currentVariants, SeqVarIterator-method
(Iterator), 22

DataFrame, 23
duplicateDiscordance, 10

INDEX

inbreedCoeff, SeqVarGDSClass-method
(inbreedCoeff), 19

isSNV, 20

isSNV, SeqVarGDSClass-method (isSNV), 20

isVariant, 21, 35

duplicateDiscordance, SeqVarData,missing-methotlsVariant, SeqVarGDSClass-method

(duplicateDiscordance), 10

(isVariant), 21

duplicateDiscordance, SeqVarData, SeqVarData-methedateFilter (Iterator), 22

(duplicateDiscordance), 10

duplicateDiscordance,SeqVarIterator,missing-method

(duplicateDiscordance), 10

expandedAltDosage (getGenotype), 12

expandedAltDosage, SeqVarGDSClass-method
(getGenotype), 12

expandedVariantIndex (variantInfo), 35

expandedVariantIndex, SeqVarGDSClass-method
(variantInfo), 35

getGenotype, 12, 21, 26

getGenotype, SeqVarGDSClass-method
(getGenotype), 12

getGenotypeAlleles (getGenotype), 12

getGenotypeAlleles, SeqVarGDSClass-method
(getGenotype), 12

getVariablelengthData, 14

iterateFilter,SeqVarIterator-method
(Iterator), 22
Iterator, 22

lastFilter (Iterator), 22

lastFilter,SeqVarIterator-method
(Iterator), 22

lastFilter<- (Iterator), 22

lastFilter<-,SeqVarlterator,numeric-method
(Iterator), 22

1m, 30, 31

logistf, 30, 31

Matrix, /3

meanBySample, 24

meanBySample, SeqVarGDSClass-method
(meanBySample), 24

mendelErr, 25

getVariablelengthData, SeqVarGDSClass, charactememgébldr, SeqvarGDSClass-method

(getVariablelLengthData), 14

glm, 30, 31

GRanges, 22, 32

granges (SeqVarData), 32

granges, SeqVarData-method (SegVarData),
32

GRangeslList, 22

GWASExactHW, 17

heterozygosity, 5, 15

heterozygosity, SeqVarGDSClass-method
(heterozygosity), 15

hethom (heterozygosity), 15

hethom, SeqVarGDSClass-method
(heterozygosity), 15

homozygosity (heterozygosity), 15

homozygosity, SeqVarGDSClass-method
(heterozygosity), 15

hwe, 17

hwe, SeqVarGDSClass-method (hwe), 17

HWExact, 17

imputedDosage, 18

imputedDosage, SeqVarGDSClass-method
(imputedDosage), 18

inbreedCoeff, 19

(mendelErr), 25
minorAlleleCount (alleleFrequency), 4
minorAlleleCount,SegVarData-method
(alleleFrequency), 4
minorAlleleCount, SeqVarGDSClass-method
(alleleFrequency), 4
missingGenotypeRate, 26
missingGenotypeRate, SeqVarGDSClass-method
(missingGenotypeRate), 26

nAlleles (allele-methods), 3
nAlleles, SeqVarGDSClass-method
(allele-methods), 3

pca, 27

pca, SeqVarGDSClass-method (pca), 27
pedigree, 28

plot, 29

refChar (allele-methods), 3

refChar,SeqVarGDSClass-method
(allele-methods), 3

refDosage, 18

refDosage (getGenotype), 12

refDosage, SeqVarGDSClass-method
(getGenotype), 12

INDEX

refFrac, 29

refFrac,SeqVarGDSClass-method
(refFrac), 29

refFracOverHets (refFrac), 29

refFracOverHets, SeqVarGDSClass-method
(refFrac), 29

refFracPlot (refFrac), 29

refFracPlot,SeqVarGDSClass-method
(refFrac), 29

regression, 30

regression, SeqVarData-method
(regression), 30

resetlterator (Iterator), 22

resetIterator,SeqVarIterator-method
(Iterator), 22

sampleData, 10, 11

sampleData (SeqVarData), 32

sampleData, SeqVarData-method
(SeqgVarData), 32

sampleData<- (SeqVarData), 32

sampleData<-, SeqVarData,AnnotatedDataF rame-methbtantData<-,SegvarData, AnnotatedDataFrame-method

(SeqgVarData), 32
segApply, 24, 32
SegArray, 2
seqBlockApply, 13
seqClose, 32
seqGetData, 13, 15, 32
seqOpen, 32
seqParallel, 4, 12, 14, 16, 17, 19, 21, 26, 29,
30
seqSetFilter, 6, 7,11, 13,23, 31, 32
SeqVarBlockIterator (Iterator), 22
SeqVarBlockIterator-class (Iterator), 22
SeqVarData, 4, 5, 10, 11, 22, 23, 30, 31, 32
SeqVarData-class (SeqVarData), 32
SeqVarGDSClass, 3-9, 12-21, 23-27, 29, 30,
32, 34-36
SeqVarlterator, 11
SeqVarIterator (Iterator), 22
SeqVarIterator-class (Iterator), 22
SeqVarListIterator (Iterator), 22
SeqVarListIterator-class (Iterator), 22
SeqVarRangelterator (Iterator), 22
SeqVarRangelterator-class (Iterator), 22
SeqgVarTools (SeqVarTools-package), 2
SeqVarTools-package, 2
SeqVarWindowIterator (Iterator), 22
SeqVarWindowIterator-class (Iterator),
22
seqVCF2GDS, 32-34
setVariantID, 33
show, SeqVarData-method (SeqVarData), 32

39

show, SeqVarIterator-method (Iterator),
22

show, SeqVarListIterator-method
(Iterator), 22

show, SeqVarRangeIterator-method
(Iterator), 22

titv, 34
titv,SeqVarGDSClass-method (titv), 34

validateSex (SeqVarData), 32
validateSex, SeqVarData-method
(SeqVarData), 32

variantBlock (Iterator), 22

variantBlock, SeqVarBlockIterator-method
(Iterator), 22

variantData, 23

variantData (SeqVarData), 32

variantData, SeqVarData-method
(SeqgVarData), 32

variantData<- (SeqVarData), 32

(SeqVarData), 32

variantFilter (Iterator), 22

variantFilter,SeqVarIterator-method
(Iterator), 22

variantInfo, 35

variantInfo, SeqVarGDSClass-method
(variantInfo), 35

variantRanges (Iterator), 22

variantRanges,SeqVarListIterator-method
(Iterator), 22

variantRanges, SeqVarRangelterator-method
(Iterator), 22

	SeqVarTools-package
	allele-methods
	alleleFrequency
	alternateAlleleDetection
	applyMethod
	chromWithPAR
	countSingletons
	duplicateDiscordance
	getGenotype
	getVariableLengthData
	heterozygosity
	hwe
	imputedDosage
	inbreedCoeff
	isSNV
	isVariant
	Iterator
	meanBySample
	mendelErr
	missingGenotypeRate
	pca
	pedigree
	refFrac
	regression
	SeqVarData
	setVariantID
	titv
	variantInfo
	Index

