
Package ‘SeqArray’
January 20, 2026

Type Package

Title Data management of large-scale whole-genome sequence variant
calls using GDS files

Version 1.50.0

Date 2025-10-24

Depends R (>= 3.5.0), gdsfmt (>= 1.31.1)

Imports methods, parallel, digest, S4Vectors, IRanges, GenomicRanges,
Seqinfo, Biostrings

LinkingTo gdsfmt

Suggests Biobase, BiocGenerics, BiocParallel, RUnit, Rcpp, SNPRelate,
crayon, knitr, markdown, rmarkdown, Rsamtools,
VariantAnnotation

Description Data management of large-scale whole-genome sequencing variant
calls with thousands of individuals: genotypic data (e.g., SNVs, indels
and structural variation calls) and annotations in SeqArray GDS files
are stored in an array-oriented and compressed manner, with efficient
data access using the R programming language.

License GPL-3

VignetteBuilder knitr

ByteCompile TRUE

LazyData true

URL https://github.com/zhengxwen/SeqArray

BugReports https://github.com/zhengxwen/SeqArray/issues

biocViews Infrastructure, DataRepresentation, Sequencing, Genetics

git_url https://git.bioconductor.org/packages/SeqArray

git_branch RELEASE_3_22

git_last_commit e6376f0

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

1

https://github.com/zhengxwen/SeqArray
https://github.com/zhengxwen/SeqArray/issues

2 Contents

Author Xiuwen Zheng [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1390-0708>),

Stephanie Gogarten [aut],
David Levine [ctb],
Cathy Laurie [ctb]

Maintainer Xiuwen Zheng <zhengx@u.washington.edu>

Contents
SeqArray-package . 3
KG_P1_SampData . 5
seqAddValue . 6
seqAlleleFreq . 7
seqApply . 9
seqAsVCF . 13
seqBED2GDS . 14
seqBlockApply . 15
seqCheck . 18
seqClose-methods . 19
seqDelete . 19
seqDigest . 20
seqEmptyFile . 22
seqExampleFileName . 23
seqExport . 23
seqGDS2SNP . 25
seqGDS2VCF . 26
seqGet2bGeno . 28
seqGetData . 29
seqGetFilter . 32
seqMerge . 33
seqMissing . 35
seqNewVarData . 36
seqNumAllele . 37
seqOpen . 38
seqOptimize . 39
seqParallel . 40
seqParallelSetup . 43
seqRecompress . 44
seqResetVariantID . 46
seqSetFilter-methods . 47
seqSetFilterCond . 51
seqSNP2GDS . 52
seqStorageOption . 53
seqSummary . 55
seqSystem . 57
seqTranspose . 58
seqUnitApply . 59
seqUnitCreate . 61
seqUnitFilterCond . 62
seqUnitSlidingWindows . 63
SeqVarGDSClass . 64

https://orcid.org/0000-0002-1390-0708

SeqArray-package 3

seqVCF2GDS . 66
seqVCF_Header . 69
seqVCF_SampID . 71

Index 72

SeqArray-package Data Management of Large-scale Whole-Genome Sequence Variant
Calls

Description

Data management of large-scale whole-genome sequencing variants.

Details

As the cost of DNA sequencing rapidly decreases, whole-genome sequencing (WGS) is generating
data at an unprecedented rate. Scientists are being challenged to manage data sets that are terabyte-
sized, contain diverse types of data and complex data relationships. Data analyses of WGS requires
a general file format for storing genetic variants including single nucleotide variations (SNVs),
insertions and deletions (indels) and structural variants. The variant call format (VCF) is a generic
and flexible format for storing DNA polymorphisms developed for the 1000 Genomes Project that
is the standard WGS format in use today. VCF is a textual format usually stored in compressed files
that supports rich annotations and relatively efficient data retrieval. However, VCF files are large
and the computational burden associated with all data retrieval from text files can be significant for
a large WGS study with thousands of samples.

To provide an efficient alternative to VCF for WGS data, we developed a new data format and
accompanying Bioconductor package, “SeqArray”. Key features of SeqArray are efficient storage
including multiple high compression options, data retrieval by variant or sample subsets, support
for parallel access and computing, and C++ integration in the R programming environment. The Se-
qArray package provides R functions for efficient block-wise computations, and enables scientists
to develop custom R scripts for exploratory data analysis.

Webpage: https://github.com/zhengxwen/SeqArray, http://bioconductor.org/packages/
SeqArray/

Author(s)

Xiuwen Zheng <zhengx@u.washington.edu>

Examples

the file of VCF
vcf.fn <- seqExampleFileName("vcf")
vcf.fn
or vcf.fn <- "C:/YourFolder/Your_VCF_File.vcf"

parse the header
seqVCF_Header(vcf.fn)

get sample id
seqVCF_SampID(vcf.fn)

convert

https://github.com/zhengxwen/SeqArray
http://bioconductor.org/packages/SeqArray/
http://bioconductor.org/packages/SeqArray/

4 SeqArray-package

seqVCF2GDS(vcf.fn, "tmp.gds", storage.option="ZIP_RA")
seqSummary("tmp.gds")

list the structure of GDS variables
f <- seqOpen("tmp.gds")
f

seqClose(f)
unlink("tmp.gds")

##

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

get 'sample.id
(samp.id <- seqGetData(f, "sample.id"))
"NA06984" "NA06985" "NA06986" ...

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

get 'chromosome'
table(seqGetData(f, "chromosome"))

get 'allele'
head(seqGetData(f, "allele"))
"T,C" "G,A" "G,A" ...

set sample and variant filters
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)])
set.seed(100)
seqSetFilter(f, variant.id=sample(variant.id, 10))

get genotypic data
seqGetData(f, "genotype")

get annotation/info/DP
seqGetData(f, "annotation/info/DP")

get annotation/info/AA, a variable-length dataset
seqGetData(f, "annotation/info/AA")
$length <- indicating the length of each variable-length data
[1] 1 1 1 1 1 1 ...
$data <- the data according to $length
[1] "T" "C" "T" "C" "G" "C" ...

get annotation/format/DP, a variable-length dataset
seqGetData(f, "annotation/format/DP")
$length <- indicating the length of each variable-length data
[1] 1 1 1 1 1 1 ...
$data <- the data according to $length

KG_P1_SampData 5

variant
sample [,1] [,2] [,3] [,4] [,5] [,6] ...
[1,] 25 25 22 3 4 17 ...

read multiple variables variant by variant
seqApply(f, c(geno="genotype", phase="phase", qual="annotation/id"),

FUN=function(x) print(x), as.is="none")

get the numbers of alleles per variant
head(seqApply(f, "allele",

FUN=function(x) length(unlist(strsplit(x,","))), as.is="integer"))
or
head(seqGetData(f, "$num_allele"))

##

remove the sample and variant filters
seqResetFilter(f)

calculate the frequency of reference allele,
a faster version could be obtained by C coding
af <- seqApply(f, "genotype", FUN=function(x) mean(x==0L, na.rm=TRUE),

as.is="double")
length(af)
summary(af)

close the GDS file
seqClose(f)

KG_P1_SampData Simulated sample data for 1000 Genomes Phase 1

Description

An AnnotatedDataFrame with columns sample.id, sex, age, and phenotype, where the identifiers in
sample.id match those in the SeqArray file.

Usage

KG_P1_SampData

Value

An AnnotatedDataFrame

6 seqAddValue

seqAddValue Add values to a GDS File

Description

Add or modify the values in a GDS file with hash code

Usage

seqAddValue(gdsfile, varnm, val, desp=character(), replace=FALSE, compress="LZMA_RA",
packed=TRUE, packed.idx=TRUE, use_float32=TRUE, verbose=TRUE, verbose.attr=TRUE)

Arguments

gdsfile character for file name, or a SeqVarGDSClass object

varnm the variable name, e.g., "sample.id", "variant.id", "chromosome", "annotation/info/NEW_VARIABLE"

val the R value can be integers, real numbers, characters, factor, logical, raw vari-
able, data.frame or a list; a list of vectors is used for variable-length annotation
data; or NULL for adding a new folder

desp variable description

replace if TRUE, replace the existing variable silently if possible

compress the compression method can be "" (no compression), see add.gdsn

packed TRUE, pack data if there is any missing value

packed.idx TRUE, store the index variable using integers with the fewest bits if possible

use_float32 if TRUE, use 32 bits instead of 64 bits to store floating numeric values (i.e.,
double)

verbose if TRUE, show information

verbose.attr if TRUE, show attribute information in a GDS node

Value

Return none.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS, seqNewVarData

Examples

the file of GDS
gds.fn <- seqExampleFileName("gds")
file.copy(gds.fn, "tmp.gds", overwrite=TRUE)

display
(f <- seqOpen("tmp.gds", readonly=FALSE))

seqAlleleFreq 7

show(index.gdsn(f, "sample.id"))
seqAddValue(f, "sample.id", 1:90, replace=TRUE)
show(index.gdsn(f, "sample.id"))

show(index.gdsn(f, "chromosome"))
v <- seqGetData(f, "chromosome")
seqAddValue(f, "chromosome", paste0("chr", v), replace=TRUE)
show(index.gdsn(f, "chromosome"))
table(seqGetData(f, "chromosome"))

annotation info
seqAddValue(f, "annotation/info/folder", NULL) # add a new folder
seqAddValue(f, "annotation/info/folder/val", 1:1348, "random number")
seqAddValue(f, "annotation/info/folder/logical", rep(c(TRUE, FALSE), length.out=1348))
seqAddValue(f, "annotation/info/folder/packed", c(rep(2L, 1000), rep(NA, 348)))
seqAddValue(f, "annotation/info/newff",

data.frame(x=1:1348, y=rep("s", 1348), stringsAsFactors=FALSE),
desp=c("integer numbers", "character"))

variable-length annotation info data
v <- lapply(1:1348, function(x) as.character(x))
v[[1]] <- 1:10
seqAddValue(f, "annotation/info/folder/val1", v)
head(seqGetData(f, "annotation/info/folder/val1", .tolist=TRUE))

sample annotation
seqAddValue(f, "sample.annotation", data.frame(ii=1:90, y=rep("A", 90)),

replace=TRUE)
seqAddValue(f, "sample.annotation/float", (1:90)/90)

close the GDS file
seqClose(f)

remove the temporary file
unlink("tmp.gds", force=TRUE)

seqAlleleFreq Get Allele Frequencies or Counts

Description

Calculates the allele frequencies or counts for reference or minor alleles.

Usage

seqAlleleFreq(gdsfile, ref.allele=0L, minor=FALSE, parallel=seqGetParallel(),
balancing=NA, verbose=FALSE)

seqAlleleCount(gdsfile, ref.allele=0L, minor=FALSE, parallel=seqGetParallel(),
balancing=NA, verbose=FALSE)

seqGetAF_AC_Missing(gdsfile, minor=FALSE, alt=FALSE, ns=FALSE,
parallel=seqGetParallel(), balancing=NA, verbose=FALSE)

8 seqAlleleFreq

Arguments

gdsfile a SeqVarGDSClass object

ref.allele NULL, a single numeric value, a numeric vector or a character vector; see Value

minor if TRUE, return minor allele frequency/count

alt if TRUE and minor=FALSE, return the frequencies and counts for the alternative
alleles in seqGetAF_AC_Missing; otherwise, return the frequencies and counts
for the reference alleles; if there are more than two alleles at a site, the alternative
alleles will be collapsed

ns if TRUE, return the numbers of samples without missing genotypes in the column
ns, used in seqGetAF_AC_Missing

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

verbose if TRUE, show progress information

Details

If the gds node ’genotype/data’ (integer genotypes) is not available, the node ’annotation/format/DS’
(numeric genotype dosages for alternative alleles) will be used to calculate allele frequencies. At
a site, it assumes ’annotation/format/DS’ stores the dosage of the 1st alternative allele in the 1st
column, 2nd alt. allele in the 2nd column if it is multi-allelic, and so on.

Value

If ref.allele=NULL, the function returns a list of allele frequencies/counts according to all allele
per site. If ref.allele is a single numeric value (like 0L), it returns a numeric/integer vector for
the specified allele (0L for the reference allele, 1L for the first alternative allele, etc). If ref.allele
is a numeric vector, ref.allele specifies each allele per site. If ref.allele is a character vector,
ref.allele specifies the desired allele for each site (e.g, ancestral allele for the derived allele
frequency/count).

seqGetAF_AC_Missing() returns data.frame(af, ac, miss) for allele frequencies, allele counts
and missing rates. It is faster than calling seqAlleleFreq(), seqAlleleCount() and seqMissing
sequentially.

Author(s)

Xiuwen Zheng

See Also

seqMissing, seqNumAllele, seqParallel, seqGetParallel

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display

seqApply 9

f <- seqOpen(gds.fn)

return a list
head(seqAlleleFreq(f, NULL, verbose=TRUE))

return a numeric vector
summary(seqAlleleFreq(f, 0L, verbose=TRUE))

return a numeric vector
summary(seqAlleleFreq(f, 0L, minor=TRUE, verbose=TRUE))

return a numeric vector, AA is ancestral allele
AA <- seqGetData(f, "annotation/info/AA", .padNA=TRUE)
summary(seqAlleleFreq(f, AA))
summary(seqAlleleFreq(f, AA, minor=TRUE))

allele counts
head(seqAlleleCount(f, NULL, verbose=TRUE))
head(seqAlleleCount(f, 0L, verbose=TRUE))
head(seqAlleleCount(f, 0L, minor=TRUE, verbose=TRUE))
head(seqAlleleCount(f, AA, verbose=TRUE))
head(seqAlleleCount(f, AA, minor=TRUE, verbose=TRUE))

allele frequencies, allele counts and missing proportions
v <- seqGetAF_AC_Missing(f, minor=TRUE)
head(v)

close the GDS file
seqClose(f)

A GDS file with imputed dosages
ds_fn <- seqExampleFileName("dosage")
ds_fn

str(seqGetAF_AC_Missing(ds_fn, alt=FALSE))
str(seqGetAF_AC_Missing(ds_fn, alt=TRUE))
str(seqGetAF_AC_Missing(ds_fn, minor=TRUE))

seqApply Apply Functions Over Array Margins

Description

Returns a vector or list of values obtained by applying a function to margins of genotypes and
annotations.

Usage

seqApply(gdsfile, var.name, FUN, margin=c("by.variant", "by.sample"),
as.is=c("none", "list", "integer", "double", "character", "logical", "raw"),
var.index=c("none", "relative", "absolute"), parallel=FALSE,
.useraw=FALSE, .progress=FALSE, .list_dup=TRUE, .balancing=FALSE, ...)

10 seqApply

Arguments

gdsfile a SeqVarGDSClass object or a GDS file name

var.name the variable name(s), see details

FUN the function to be applied

margin giving the dimension which the function will be applied over; margin="by.variant"
by default

as.is returned value: a list, an integer vector, etc; return nothing by default as.is="none";
as.is can be a connection object, or a GDS node gdsn.class object; if "un-
list" is used, produces a vector which contains all the atomic components, via
unlist(..., recursive=FALSE)

var.index if "none" (by default), call FUN(x, ...) without variable index; if "relative"
or "absolute", add an argument to the user-defined function FUN like FUN(index,
x, ...) where index is an index of variant starting from 1 if margin = "by.variant":
"relative" for indexing in the selection defined by seqSetFilter, "absolute"
for indexing with respect to all data

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

.useraw TRUE, force to use RAW instead of INTEGER for genotypes and dosages; FALSE,
use INTEGER; NA, use RAW for small numbers instead of INTEGER if possi-
ble, it is needed to detect data type (RAW or INTEGER) in the user-defined
function; for genotypes, 0xFF is missing value if RAW is used

.progress if TRUE, show progress information; or a file name for updating progress infor-
mation

.list_dup internal use only

.balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

... optional arguments to FUN

Details

The variable name should be "sample.id", "variant.id", "position", "chromosome", "allele",
"genotype", "annotation/id", "annotation/qual", "annotation/filter", "annotation/info/VARIABLE_NAME",
or "annotation/format/VARIABLE_NAME".

"@genotype", "annotation/info/@VARIABLE_NAME" or "annotation/format/@VARIABLE_NAME"
are used to obtain the index associated with these variables.

"$dosage" is also allowed for the dosages of reference allele (integer: 0, 1, 2 and NA for diploid
genotypes).

"$dosage_alt" returns a RAW/INTEGER matrix for the dosages of alternative allele without dis-
tinguishing different alternative alleles.

"$num_allele" returns an integer vector with the numbers of distinct alleles.

"$ref" returns a character vector of reference alleles

"$alt" returns a character vector of alternative alleles (delimited by comma)

"$chrom_pos" returns characters with the combination of chromosome and position, e.g., "1:1272721".
"$chrom_pos_allele" returns characters with the combination of chromosome, position and alle-
les, e.g., "1:1272721_A_G" (i.e., chr:position_REF_ALT).

seqApply 11

The algorithm is highly optimized by blocking the computations to exploit the high-speed memory
instead of disk.

Value

A vector, a list of values or none.

Author(s)

Xiuwen Zheng

See Also

seqBlockApply, seqSetFilter, seqGetData, seqParallel, seqGetParallel

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

get 'sample.id
(samp.id <- seqGetData(f, "sample.id"))
"NA06984" "NA06985" "NA06986" ...

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

set sample and variant filters
set.seed(100)
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)],

variant.id=sample(variant.id, 10))

read
seqApply(f, "genotype", FUN=print, margin="by.variant")
seqApply(f, "genotype", FUN=print, margin="by.variant", .useraw=TRUE)

seqApply(f, "genotype", FUN=print, margin="by.sample")
seqApply(f, "genotype", FUN=print, margin="by.sample", .useraw=TRUE)

read multiple variables variant by variant
seqApply(f, c(geno="genotype", phase="phase", rsid="annotation/id",

DP="annotation/format/DP"), FUN=print, as.is="none")

get the numbers of alleles per variant
seqApply(f, "allele",

FUN=function(x) length(unlist(strsplit(x,","))), as.is="integer")

output to a file
fl <- file("tmp.txt", "wt")
seqApply(f, "genotype", FUN=sum, na.rm=TRUE, as.is=fl)
close(fl)
readLines("tmp.txt")

12 seqApply

seqApply(f, "genotype", FUN=sum, na.rm=TRUE, as.is=stdout())
seqApply(f, "genotype", FUN=sum, na.rm=TRUE, as.is="integer")
should be identical

##
with an index of variant

seqApply(f, c(geno="genotype", phase="phase", rsid="annotation/id"),
FUN=function(index, x) { print(index); print(x); index },
as.is="integer", var.index="relative")

it is as the same as
which(seqGetFilter(f)$variant.sel)

##
reset sample and variant filters
seqResetFilter(f)

calculate the frequency of reference allele,
a faster version could be obtained by C coding
af <- seqApply(f, "genotype", FUN=function(x) mean(x==0L, na.rm=TRUE),

as.is="double")
length(af)
summary(af)

##
apply the user-defined function sample by sample

reset sample and variant filters
seqResetFilter(f)
summary(seqApply(f, "genotype", FUN=function(x) { mean(is.na(x)) },

margin="by.sample", as.is="double"))

set sample and variant filters
set.seed(100)
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)],

variant.id=sample(variant.id, 10))

seqApply(f, "genotype", FUN=print, margin="by.variant", as.is="none")

seqApply(f, "genotype", FUN=print, margin="by.sample", as.is="none")

seqApply(f, c(sample.id="sample.id", genotype="genotype"), FUN=print,
margin="by.sample", as.is="none")

close the GDS file
seqClose(f)

delete the temporary file

seqAsVCF 13

unlink("tmp.txt")

seqAsVCF VariantAnnotation objects

Description

Create a VCF-class object

Usage

seqAsVCF(x, chr.prefix="", info=NULL, geno=NULL)

Arguments

x a SeqVarGDSClass object

chr.prefix prefix to add to seqlevels

info which INFO fields to return

geno which GENO fields to return

Details

Coerces a SeqVarGDSClass object to a VCF-class object. Row names correspond to the variant.id.
info and geno specify the ’INFO’ and ’GENO’ (FORMAT) fields to return, respectively. If not
specified, all fields are returned; if ’NA’ no fields are returned. Use seqSetFilter prior to calling
seqAsVCF to specify samples and variants to return.

The VariantAnnotation package should be loaded to explore this object.

Value

A CollapsedVCF object.

Author(s)

Stephanie Gogarten, Xiuwen Zheng

See Also

VCF-class

Examples

gds <- seqOpen(seqExampleFileName("gds"))

Not run:
library(VariantAnnotation)
seqAsVCF(gds)

End(Not run)

seqClose(gds)

14 seqBED2GDS

seqBED2GDS Conversion between PLINK BED and SeqArray GDS

Description

Conversion between PLINK BED format and SeqArray GDS format.

Usage

seqBED2GDS(bed.fn, fam.fn, bim.fn, out.gdsfn, compress.geno="LZMA_RA",
compress.annotation="LZMA_RA", chr.conv=TRUE, include.pheno=TRUE,
optimize=TRUE, digest=TRUE, parallel=FALSE, verbose=TRUE)

seqGDS2BED(gdsfile, out.fn, write.rsid=c("auto", "annot_id", "chr_pos_ref_alt"),
multi.row=FALSE, verbose=TRUE)

Arguments

bed.fn the file name of PLINK binary file, genotype information
fam.fn the file name of first six columns of ".ped", sample or family information; if

missing, determine the file name using bed.fn

bim.fn the file name of extended MAP file with 6 columns, variant information; if miss-
ing, determine the file name using bed.fn

gdsfile character (a GDS file name), or a SeqVarGDSClass object
out.gdsfn the file name, output a file of SeqArray format
out.fn the file name of PLINK binary format without extended names
compress.geno the compression method for "genotype"; optional values are defined in the func-

tion add.gdsn
compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

chr.conv if TRUE, convert numeric chromosome codes 23 to X, 24 to Y, 25 to XY, and 26
to MT

include.pheno if TRUE, add ’family’, ’father’, ’mother’, ’sex’ and ’phenotype’ in the FAM file
to the output GDS file; FALSE for no phenotype; or a character vector to specify
which of the family, father, mother, sex and phenotype variables to be added

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

digest a logical value (TRUE/FALSE) or a character ("md5", "sha1", "sha256", "sha384"
or "sha512"); add hash codes to the GDS file if TRUE or a digest algorithm is
specified

parallel FALSE (serial processing), TRUE (parallel processing), a numeric value indicating
the number of cores, or a cluster object for parallel processing; parallel is
passed to the argument cl in seqParallel, see seqParallel for more details

write.rsid "annot_id": use the node "annotation/id" for the variant IDs; "chr_pos_ref_alt":
use the format "chrom_position_ref_alt"; "auto": use "annotation/id" for
the variant IDs if it is not a blank string or ".", otherwise use "chrom_position_ref_alt"

multi.row if TRUE, a multiallelic site is converted to multiple rows in PLINK bim and bed
files

verbose if TRUE, show information

seqBlockApply 15

Value

Return the file name of SeqArray file with an absolute path.

Author(s)

Xiuwen Zheng

See Also

seqSNP2GDS, seqVCF2GDS

Examples

library(SNPRelate)

PLINK BED files
bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

convert bed to gds
seqBED2GDS(bed.fn, fam.fn, bim.fn, "tmp.gds")

seqSummary("tmp.gds")

convert gds to bed
gdsfn <- seqExampleFileName("gds")
seqGDS2BED(gdsfn, "plink")

remove the temporary file
unlink(c("tmp.gds", "plink.fam", "plink.bim", "plink.bed"), force=TRUE)

seqBlockApply Apply Functions Over Array Margins via Blocking

Description

Returns a vector or list of values obtained by applying a function to margins of genotypes and
annotations via blocking.

Usage

seqBlockApply(gdsfile, var.name, FUN, margin=c("by.variant"),
as.is=c("none", "list", "unlist"), var.index=c("none", "relative", "absolute"),
bsize=1024L, parallel=FALSE, .useraw=FALSE, .padNA=TRUE, .tolist=FALSE,
.balancing=FALSE, .progress=FALSE, ...)

16 seqBlockApply

Arguments

gdsfile a SeqVarGDSClass object or a GDS file name

var.name the variable name(s), see details

FUN the function to be applied

margin giving the dimension which the function will be applied over

as.is returned value: a list, an integer vector, etc; return nothing by default as.is="none";
as.is can be a connection object, or a GDS node gdsn.class object; if "un-
list" is used, produces a vector which contains all the atomic components, via
unlist(..., recursive=FALSE)

var.index if "none" (by default), call FUN(x, ...) without variable index; if "relative"
or "absolute", add an argument to the user-defined function FUN like FUN(index,
x, ...) where index is an index of variant starting from 1 if margin="by.variant":
"relative" for indexing in the selection defined by seqSetFilter, "absolute"
for indexing with respect to all data

bsize block size

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

.useraw TRUE, force to use RAW instead of INTEGER for genotypes and dosages; FALSE,
use INTEGER; NA, use RAW instead of INTEGER if possible; for genotypes,
0xFF is missing value if RAW is used

.padNA TRUE, pad a variable-length vector with NA if the number of data points for each
variant is not greater than 1

.tolist if TRUE, return a list of vectors instead of the structure list(length, data) for
variable-length data; NA , return a compressed List defined in IRanges when it
is applicable

.balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

.progress if TRUE, show progress information

... optional arguments to FUN

Details

The variable name should be "sample.id", "variant.id", "position", "chromosome", "allele",
"genotype", "annotation/id", "annotation/qual", "annotation/filter", "annotation/info/VARIABLE_NAME",
or "annotation/format/VARIABLE_NAME".

"@genotype", "annotation/info/@VARIABLE_NAME" or "annotation/format/@VARIABLE_NAME"
are used to obtain the index associated with these variables.

"$chromosome" returns chromosome codes in an object of S4Vectors::Rle.

"$dosage" is also allowed for the dosages of reference allele (integer: 0, 1, 2 and NA for diploid
genotypes).

"$dosage_alt" returns a RAW/INTEGER matrix for the dosages of alternative allele without dis-
tinguishing different alternative alleles. "$dosage_alt2" allow the alleles are partially missing
(e.g., genotypes on chromosome X for males)

seqBlockApply 17

"$dosage_sp" returns a sparse matrix (dgCMatrix) for the dosages of alternative allele without
distinguishing different alternative alleles. "$dosage_sp2" allow the alleles are partially missing
(e.g., genotypes on chromosome X for males)

"$num_allele" returns an integer vector with the numbers of distinct alleles.

"$ref" returns a character vector of reference alleles. "$alt" returns a character vector of alterna-
tive alleles (delimited by comma).

"$chrom_pos" returns characters with the combination of chromosome and position, e.g., "1:1272721".
"$chrom_pos2" is similar to "$chrom_pos", except the suffix "_1" is added to the first duplicate
following the variant, "_2" is added to the second duplicate, and so on. "$chrom_pos_allele" re-
turns characters with the combination of chromosome, position and alleles, e.g., "1:1272721_A_G"
(i.e., chr:position_REF_ALT).

"$variant_index" returns the indices of selected variants starting from 1, and "$sample_index"
returns the indices of selected samples starting from 1.

The algorithm is highly optimized by blocking the computations to exploit the high-speed memory
instead of disk.

Value

A vector, a list of values or none.

Author(s)

Xiuwen Zheng

See Also

seqApply, seqSetFilter, seqGetData, seqParallel, seqGetParallel

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

get 'sample.id
(samp.id <- seqGetData(f, "sample.id"))
"NA06984" "NA06985" "NA06986" ...

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

set sample and variant filters
set.seed(100)
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)],

variant.id=sample(variant.id, 10))

read in block
seqGetData(f, "$dosage")
seqBlockApply(f, "$dosage", print, bsize=3)
seqBlockApply(f, "$dosage", function(x) x, as.is="list", bsize=3)
seqBlockApply(f, c(dos="$dosage", pos="position"), print, bsize=3)

18 seqCheck

close the GDS file
seqClose(f)

seqCheck Data Integrity Checking

Description

Performs data integrity on a SeqArray GDS file.

Usage

seqCheck(gdsfile, verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object, or a file name

verbose if TRUE, display information

Value

A list of the following components:

hash a data.frame for hash checking, including algo for digest algorithms and ok
for the checking states

dimension a data.frame for checking the dimension of each variable, including ok for the
checking states and info for the error messages

Author(s)

Xiuwen Zheng

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

seqCheck(gds.fn)

seqClose-methods 19

seqClose-methods Close the SeqArray GDS File

Description

Closes a SeqArray GDS file which is open.

Usage

S4 method for signature 'gds.class'
seqClose(object)
S4 method for signature 'SeqVarGDSClass'
seqClose(object)

Arguments

object a SeqArray object

Details

If object is

• gds.class, close a general GDS file

• SeqVarGDSClass, close the sequence GDS file.

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqOpen

seqDelete Delete GDS Variables

Description

Deletes variables in the SeqArray GDS file.

Usage

seqDelete(gdsfile, info.var=character(), fmt.var=character(),
samp.var=character(), verbose=TRUE)

20 seqDigest

Arguments

gdsfile a SeqVarGDSClass object

info.var the variables in the INFO field, i.e., "annotation/info/VARIABLE_NAME"

fmt.var the variables in the FORMAT field, i.e., "annotation/format/VARIABLE_NAME"

samp.var the variables in the sample annotation field, i.e., "sample.annotation/VARIABLE_NAME"

verbose if TRUE, show information

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqOpen, seqClose

Examples

the file of GDS
gds.fn <- seqExampleFileName("gds")
file.copy(gds.fn, "tmp.gds", overwrite=TRUE)

display
(f <- seqOpen("tmp.gds", FALSE))

seqDelete(f, info.var=c("HM2", "AA"), fmt.var="DP")
f

close the GDS file
seqClose(f)

clean up the fragments, reduce the file size
cleanup.gds("tmp.gds")

remove the temporary file
unlink("tmp.gds", force=TRUE)

seqDigest Hash function digests

Description

Create hash function digests for all or a subset of data

Usage

seqDigest(gdsfile, varname, algo=c("md5"), parallel=FALSE, verbose=FALSE)

seqDigest 21

Arguments

gdsfile a SeqVarGDSClass object or a GDS file name

varname the variable name(s), see details

algo the digest hash algorithm: "md5"

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

verbose if TRUE, show progress information

Details

The variable name should be "sample.id", "variant.id", "position", "chromosome", "allele",
"annotation/id", "annotation/qual", "annotation/filter", "annotation/info/VARIABLE_NAME",
or "annotation/format/VARIABLE_NAME".

Users can define a subset of data via seqSetFilter and create a hash digest for the subset only.

Note that the hashing algorithm is not parallelizable. When multiple processes are used, the hash
codes are calculated for each chuck of data, and then call digest() to obtain the final hash code.
Hence, the returned hash codes are different when comparing parallel=FALSE and a multicore
implementation.

Value

A hash character.

Author(s)

Xiuwen Zheng

See Also

seqSetFilter, seqApply

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
f <- seqOpen(gds.fn)

seqDigest(f, "genotype")
seqDigest(f, "annotation/filter")
seqDigest(f, "annotation/format/DP")

close the GDS file
seqClose(f)

22 seqEmptyFile

seqEmptyFile Empty GDS file

Description

Create a new empty GDS file.

Usage

seqEmptyFile(outfn, sample.id=character(), numvariant=1L, verbose=TRUE)

Arguments

outfn the output file name for a GDS file

sample.id a list of sample IDs

numvariant the number of variants

verbose if TRUE, show information

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS

Examples

seqEmptyFile("tmp.gds")

(f <- seqOpen("tmp.gds"))
seqClose(f)

remove the temporary file
unlink("tmp.gds", force=TRUE)

seqExampleFileName 23

seqExampleFileName Example files

Description

The example files of VCF and GDS format.

Usage

seqExampleFileName(type=c("gds", "vcf", "KG_Phase1", "dosage"))

Arguments

type "gds" (by default), "vcf", "KG_Phase1" or "dosage"

Value

Return the path of a VCF file in the package if type="vcf", or the path of a GDS file if type="gds";
if type="KG_Phase1", return the path of GDS file on Chromosome 22 of the 1000 Genomes Phase
1 project; if type="dosage", return the path of GDS file with imputed allele dosages.

Author(s)

Xiuwen Zheng

Examples

seqExampleFileName("gds")

seqExampleFileName("vcf")

seqExampleFileName("KG_Phase1")

seqExampleFileName("dosage")

seqExport Export to a GDS File

Description

Exports to a GDS file with selected samples and variants, which are defined by seqSetFilter().

Usage

seqExport(gdsfile, out.fn, info.var=NULL, fmt.var=NULL, samp.var=NULL,
optimize=TRUE, digest=TRUE, verbose=TRUE, verbose.clean=NA)

24 seqExport

Arguments

gdsfile a SeqVarGDSClass object

out.fn the file name of output GDS file

info.var characters, the variable name(s) in the INFO field for import; or NULL for all
variables

fmt.var characters, the variable name(s) in the FORMAT field for import; or NULL for all
variables

samp.var characters, the variable name(s) in the folder "sample.annotation"

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

digest a logical value (TRUE/FALSE) or a character ("md5", "sha1", "sha256", "sha384"
or "sha512"); add md5 hash codes to the GDS file if TRUE or a digest algorithm
is specified

verbose if TRUE, show information

verbose.clean when verbose.clean=NA, set it to verbose; whether display information when
calling cleanup.gds or not; only applicable when optimize=TRUE

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS, cleanup.gds

Examples

open the GDS file
(gds.fn <- seqExampleFileName("gds"))
(f <- seqOpen(gds.fn))

get 'sample.id'
head(samp.id <- seqGetData(f, "sample.id"))

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

set.seed(100)
set sample and variant filters
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10,12,14,16)])
seqSetFilter(f, variant.id=sample(variant.id, 100))

export
seqExport(f, "tmp.gds")
seqExport(f, "tmp.gds", info.var=character())
seqExport(f, "tmp.gds", fmt.var=character())
seqExport(f, "tmp.gds", samp.var=character())

seqGDS2SNP 25

show file
(f1 <- seqOpen("tmp.gds")); seqClose(f1)

close
seqClose(f)

delete the temporary file
unlink("tmp.gds")

seqGDS2SNP Convert to a SNP GDS File

Description

Converts a SeqArray GDS file to a SNP GDS file.

Usage

seqGDS2SNP(gdsfile, out.gdsfn, dosage=FALSE, compress.geno="LZMA_RA",
compress.annotation="LZMA_RA", ds.type=c("packedreal16", "float", "double"),
optimize=TRUE, verbose=TRUE)

Arguments

gdsfile character (a GDS file name), or a SeqVarGDSClass object

out.gdsfn the file name, output a file of VCF format

dosage a logical value, or characters for the variable name of dosage in the SeqArray
file; if FALSE exports genotypes, otherwise exports dosages

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add.gdsn

compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

ds.type applicable when import dosages, the data type for storing dosages; see add.gdsn;
ds.type="packedreal16" by default

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

verbose if TRUE, show information

Details

seqSetFilter can be used to define a subset of data for the conversion.

Value

Return the file name of VCF file with an absolute path.

Author(s)

Xiuwen Zheng

26 seqGDS2VCF

See Also

seqSNP2GDS, seqVCF2GDS, seqGDS2VCF

Examples

the GDS file
gds.fn <- seqExampleFileName("gds")

seqGDS2SNP(gds.fn, "tmp.gds")

delete the temporary file
unlink("tmp.gds")

seqGDS2VCF Convert to a VCF File

Description

Converts a SeqArray GDS file to a Variant Call Format (VCF) file.

Usage

seqGDS2VCF(gdsfile, vcf.fn, info.var=NULL, fmt.var=NULL, chr_prefix="",
use_Rsamtools=TRUE, verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object

vcf.fn the file name, output a file of VCF format; or a connection object

info.var a list of variable names in the INFO field, or NULL for using all variables;
character(0) for no variable in the INFO field

fmt.var a list of variable names in the FORMAT field, or NULL for using all variables;
character(0) for no variable in the FORMAT field

chr_prefix the prefix of chromosome, e.g., "chr"; no prefix by default

use_Rsamtools TRUE for loading the Rsamtools package, see details

verbose if TRUE, show information

Details

seqSetFilter can be used to define a subset of data for the export.

If the filename extension is "gz" or "bgz", the gzip compression algorithm will be used to compress
the output data. When the Rsamtools package is installed and use_Rsamtools=TRUE, the exported
file utilizes the bgzf format (bgzip, a variant of gzip format) allowing for fast indexing. bzfile or
xzfile will be used, if the filename extension is "bz" or "xz".

Value

Return the file name of VCF file with an absolute path.

seqGDS2VCF 27

Author(s)

Xiuwen Zheng

References

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioin-
formatics 27, 2156-2158.

See Also

seqVCF2GDS

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

output the first 10 samples
samp.id <- seqGetData(f, "sample.id")
seqSetFilter(f, sample.id=samp.id[1:5])

convert
seqGDS2VCF(f, "tmp.vcf.gz")

no INFO and FORMAT
seqGDS2VCF(f, "tmp1.vcf.gz", info.var=character(), fmt.var=character())

output BN,GP,AA,DP,HM2 in INFO (the variables are in this order), no FORMAT
seqGDS2VCF(f, "tmp2.vcf.gz", info.var=c("BN","GP","AA","DP","HM2"),

fmt.var=character())

read
(txt <- readLines("tmp.vcf.gz", n=20))
(txt <- readLines("tmp1.vcf.gz", n=20))
(txt <- readLines("tmp2.vcf.gz", n=20))

###
Users could compare the new VCF file with the original VCF file
call "diff" in Unix (a command line tool comparing files line by line)

using all samples and variants
seqResetFilter(f)

convert
seqGDS2VCF(f, "tmp.vcf.gz")

28 seqGet2bGeno

file.copy(seqExampleFileName("vcf"), "old.vcf.gz", overwrite=TRUE)
system("diff <(gunzip -c old.vcf.gz) <(gunzip -c tmp.vcf.gz)")

1a2,3
> ##fileDate=20130309
> ##source=SeqArray_RPackage_v1.0

LOOK GOOD!

delete temporary files
unlink(c("tmp.vcf.gz", "tmp1.vcf.gz", "tmp2.vcf.gz"))

close the GDS file
seqClose(f)

seqGet2bGeno Get packed genotypes

Description

Gets a RAW matrix of genotypes in a packed 2-bit format.

Usage

seqGet2bGeno(gdsfile, samp_by_var=TRUE, ext_nbyte=0L, verbose=FALSE)

Arguments

gdsfile a SeqVarGDSClass object

samp_by_var if TRUE, return a sample-by-variant matrix; otherwise, return a variant-by-sample
matrix

ext_nbyte additional ext_nbyte row(s) with missing genotypes

verbose if TRUE, show progress information

Details

If samp_by_var=TRUE, the function returns a sample-by-variant RAW matrix (nrow = ceiling(#
of samples / 4)); otherwise, it returns a variant-by-sample RAW matrix (nrow = ceiling(# of
variants / 4)). The RAW matrix consists of a 2-bit array, with 0, 1 and 2 for dosage, and 3 for
missing genotype.

Value

Return a RAW matrix.

Author(s)

Xiuwen Zheng

seqGetData 29

See Also

seqGetData

Examples

open a GDS file
f <- seqOpen(seqExampleFileName("gds"))

str(seqGet2bGeno(f))

str(seqGet2bGeno(f, samp_by_var=FALSE))

close the GDS file
seqClose(f)

seqGetData Get Data

Description

Gets data from a SeqArray GDS file.

Usage

seqGetData(gdsfile, var.name, .useraw=FALSE, .padNA=TRUE, .tolist=FALSE,
.envir=NULL)

Arguments

gdsfile a SeqVarGDSClass object or a GDS file name

var.name a variable name or a character vector, see details; if character(), return NULL

.useraw TRUE, force to use RAW instead of INTEGER for genotypes and dosages; FALSE,
use INTEGER; NA, use RAW for small numbers instead of INTEGER if possi-
ble; 0xFF is missing value if RAW is used

.padNA TRUE, pad a variable-length vector with NA if the number of data points for each
variant is not greater than 1

.tolist if TRUE, return a list of vectors instead of the structure list(length, data) for
variable-length data; NA , return a compressed List defined in IRanges when it
is applicable

.envir NULL, an environment object, a list or a data.frame

Details

The variable name should be "sample.id", "variant.id", "position", "chromosome", "allele",
"genotype", "annotation/id", "annotation/qual", "annotation/filter", "annotation/info/VARIABLE_NAME",
or "annotation/format/VARIABLE_NAME".

"@genotype", "annotation/info/@VARIABLE_NAME" or "annotation/format/@VARIABLE_NAME"
are used to obtain the index associated with these variables.

"$chromosome" returns chromosome codes in an object of S4Vectors::Rle.

30 seqGetData

"$dosage" is also allowed for the dosages of reference allele (integer: 0, 1, 2 and NA for diploid
genotypes).

"$dosage_alt" returns a RAW/INTEGER matrix for the dosages of alternative allele without dis-
tinguishing different alternative alleles. "$dosage_alt2" allow the alleles are partially missing
(e.g., genotypes on chromosome X for males)

"$dosage_sp" returns a sparse matrix (dgCMatrix) for the dosages of alternative allele without
distinguishing different alternative alleles. "$dosage_sp2" allow the alleles are partially missing
(e.g., genotypes on chromosome X for males)

"$num_allele" returns an integer vector with the numbers of distinct alleles.

"$ref" returns a character vector of reference alleles. "$alt" returns a character vector of alterna-
tive alleles (delimited by comma).

"$chrom_pos" returns characters with the combination of chromosome and position, e.g., "1:1272721".
"$chrom_pos2" is similar to "$chrom_pos", except the suffix "_1" is added to the first duplicate
following the variant, "_2" is added to the second duplicate, and so on. "$chrom_pos_allele" re-
turns characters with the combination of chromosome, position and alleles, e.g., "1:1272721_A_G"
(i.e., chr:position_REF_ALT).

"$variant_index" returns the indices of selected variants starting from 1, and "$sample_index"
returns the indices of selected samples starting from 1.

"$:VAR" return the variable "VAR" from .envir according to the selected variants.

Value

Return vectors, matrices or lists (with length and data components) with a class name SeqVarDataList.

Author(s)

Xiuwen Zheng

See Also

seqSetFilter, seqApply, seqNewVarData, seqListVarData

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

get 'sample.id
(samp.id <- seqGetData(f, "sample.id"))
"NA06984" "NA06985" "NA06986" ...

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

get 'chromosome'
table(seqGetData(f, "chromosome"))
seqGetData(f, "$chromosome")

get 'allele'
head(seqGetData(f, "allele"))

seqGetData 31

"T,C" "G,A" "G,A" ...

get '$chrom_pos'
head(seqGetData(f, "$chrom_pos"))

get '$dosage'
seqGetData(f, "$dosage")[1:6, 1:10]

get a sparse matrix of dosages
seqGetData(f, "$dosage_sp")[1:6, 1:10]

get '$num_allele'
head(seqGetData(f, "$num_allele"))

set sample and variant filters
set.seed(100)
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)])
seqSetFilter(f, variant.id=sample(variant.id, 10))

get a list
seqGetData(f, c(chr="chromosome", pos="position", allele="allele"))

get the indices of selected variants/samples
seqGetData(f, "$variant_index")
seqGetData(f, "$sample_index")

get genotypic data
seqGetData(f, "genotype")

get annotation/info/DP
seqGetData(f, "annotation/info/DP")

get annotation/info/AA, a variable-length dataset
seqGetData(f, "annotation/info/AA", .padNA=FALSE)
$length <- indicating the length of each variable-length data
[1] 1 1 1 1 1 1 ...
$data <- the data according to $length
[1] "T" "C" "T" "C" "G" "C" ...

or return a simplified vector
seqGetData(f, "annotation/info/AA", .padNA=TRUE)

return a compressed list (CharacterList)
seqGetData(f, "annotation/info/AA", .padNA=FALSE, .tolist=NA)

get annotation/format/DP, a variable-length dataset
seqGetData(f, "annotation/format/DP")
$length <- indicating the length of each variable-length data
[1] 1 1 1 1 1 1 ...
$data <- the data according to $length
variant
sample [,1] [,2] [,3] [,4] [,5] [,6] ...
[1,] 25 25 22 3 4 17 ...

32 seqGetFilter

get values from R environment
env <- new.env()
env$x <- 1:1348 / 10
env$x[seqGetData(f, "$variant_index")]
seqGetData(f, "$:x", .envir=env)

close the GDS file
seqClose(f)

seqGetFilter Get the Filter of GDS File

Description

Gets the filter of samples and variants.

Usage

seqGetFilter(gdsfile, .useraw=FALSE)

Arguments

gdsfile a SeqVarGDSClass object

.useraw returns logical vectors if FALSE, and returns raw vectors if TRUE

Value

Return a list:

sample.sel a logical/raw vector indicating selected samples

variant.sel a logical/raw vector indicating selected variants

Author(s)

Xiuwen Zheng

See Also

seqSetFilter

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

get 'sample.id
(samp.id <- seqGetData(f, "sample.id"))
"NA06984" "NA06985" "NA06986" ...

seqMerge 33

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

set sample and variant filters
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)])
set.seed(100)
seqSetFilter(f, variant.id=sample(variant.id, 10))

get filter
z <- seqGetFilter(f)

the number of selected samples
sum(z$sample.sel)
the number of selected variants
sum(z$variant.sel)

z <- seqGetFilter(f, .useraw=TRUE)
head(z$sample.sel)
head(z$variant.sel)

close the GDS file
seqClose(f)

seqMerge Merge Multiple SeqArray GDS Files

Description

Merges multiple SeqArray GDS files.

Usage

seqMerge(gds.fn, out.fn, storage.option="LZMA_RA", info.var=NULL, fmt.var=NULL,
samp.var=NULL, optimize=TRUE, digest=TRUE, geno.pad=TRUE, verbose=TRUE)

Arguments

gds.fn the file names of multiple GDS files

out.fn the output file name

storage.option specify the storage and compression option, "ZIP_RA" (seqStorageOption("ZIP_RA"));
or "LZMA_RA" to use LZMA compression algorithm with higher compression
ratio (by default)

info.var characters, the variable name(s) in the INFO field; NULL for all variables, or
character() excludes all INFO variables

fmt.var characters, the variable name(s) in the FORMAT field; NULL for all variables, or
character() excludes all FORMAT variables

samp.var characters, the variable name(s) in ’sample.annotation’; or NULL for all variables

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

34 seqMerge

digest a logical value (TRUE/FALSE) or a character ("md5", "sha1", "sha256", "sha384"
or "sha512"); add md5 hash codes to the GDS file if TRUE or a digest algorithm
is specified

geno.pad TRUE, pad a 2-bit genotype array in bytes to avoid recompressing genotypes if
possible

verbose if TRUE, show information

Details

The function merges multiple SeqArray GDS files. Users can specify the compression method and
level for the new GDS file. If gds.fn contains one file, users can change the storage type to create
a new file.

WARNING: the functionality of seqMerge() is limited.

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS, seqExport

Examples

the VCF file
vcf.fn <- seqExampleFileName("vcf")

the number of variants
total.count <- seqVCF_Header(vcf.fn, getnum=TRUE)$num.variant

split.cnt <- 5
start <- integer(split.cnt)
count <- integer(split.cnt)

s <- (total.count+1) / split.cnt
st <- 1L
for (i in 1:split.cnt)
{

z <- round(s * i)
start[i] <- st
count[i] <- z - st
st <- z

}

fn <- paste0("tmp", 1:split.cnt, ".gds")

convert to 5 gds files
for (i in 1:split.cnt)
{

seqVCF2GDS(vcf.fn, fn[i], storage.option="ZIP_RA",
start=start[i], count=count[i])

seqMissing 35

}

merge different variants
seqMerge(fn, "tmp.gds", storage.option="ZIP_RA")
seqSummary("tmp.gds")

merging different samples

vcf.fn <- seqExampleFileName("gds")
file.copy(vcf.fn, "test.gds", overwrite=TRUE)

modify 'sample.id'
seqAddValue("test.gds", "sample.id", paste0("S", 1:90), replace=TRUE)

merging
seqMerge(c(vcf.fn, "test.gds"), "output.gds", storage.option="ZIP_RA")

delete the temporary files
unlink(c("tmp.gds", "test.gds", "output.gds"), force=TRUE)
unlink(fn, force=TRUE)

seqMissing Missing genotype percentage

Description

Calculates the missing rates per variant or per sample.

Usage

seqMissing(gdsfile, per.variant=TRUE, parallel=seqGetParallel(), balancing=NA,
verbose=FALSE)

Arguments

gdsfile a SeqVarGDSClass object
per.variant missing rate per variant if TRUE, missing rate per sample if FALSE, or calculating

missing rates for variants and samples if NA
parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other

value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

verbose if TRUE, show progress information

Details

If the gds node ’genotype/data’ (integer genotypes) is not available, the node ’annotation/format/DS’
(numeric genotype dosages for alternative alleles) will be used to calculate allele frequencies. At
a site, it assumes ’annotation/format/DS’ stores the dosage of the 1st alternative allele in the 1st
column, 2nd alt. allele in the 2nd column if it is multi-allelic, and so on.

36 seqNewVarData

Value

A vector of missing rates, or a list(variant, sample) for both variants and samples.

Author(s)

Xiuwen Zheng

See Also

seqAlleleFreq, seqNumAllele, seqParallel, seqGetParallel

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

summary(m1 <- seqMissing(f, TRUE, verbose=TRUE))
summary(m2 <- seqMissing(f, FALSE, verbose=TRUE))

str(m <- seqMissing(f, NA, verbose=TRUE))
identical(m1, m$variant) # should be TRUE
identical(m2, m$sample) # should be TRUE

close the GDS file
seqClose(f)

seqNewVarData Variable-length data

Description

Gets a variable-length data object.

Usage

seqNewVarData(len, data)
seqListVarData(obj, useList=FALSE)

Arguments

len a non-negative vector for variable lengths

data a vector of data according to len

obj a SeqVarDataList object or a compressed list (defined in IRanges)

useList if TRUE, return a compressed List defined in IRanges (e.g., seqGetData)

Details

seqNewVarData() creates a SeqVarDataList object for variable- length data, and seqListVarData()
converts the SeqVarDataList object to a list. seqGetData() returns a SeqVarDataList object for
variable-length data; seqAddValue() can add a SeqVarDataList object to a GDS file.

seqNumAllele 37

Value

Return a SeqVarDataList object or a CompressedAtomicList object (e.g., IntegerList()).

Author(s)

Xiuwen Zheng

See Also

seqGetData, seqAddValue, IntegerList

Examples

obj <- seqNewVarData(c(1,2,1,0,2), c("A", "B", "B", "C", "E", "E"))
obj

seqListVarData(obj) # a list
(a <- seqListVarData(obj, useList=TRUE)) # CharacterList
seqListVarData(a) # a list

seqNumAllele Number of alleles

Description

Returns the numbers of alleles for each site.

Usage

seqNumAllele(gdsfile)

Arguments

gdsfile a SeqVarGDSClass object

Value

The numbers of alleles for each site.

Author(s)

Xiuwen Zheng

See Also

seqAlleleFreq, seqMissing

38 seqOpen

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
f <- seqOpen(gds.fn)

table(seqNumAllele(f))

close the GDS file
seqClose(f)

seqOpen Open a SeqArray GDS File

Description

Opens a SeqArray GDS file.

Usage

seqOpen(gds.fn, readonly=TRUE, allow.duplicate=FALSE)

Arguments

gds.fn the file name

readonly whether read-only or not

allow.duplicate

if TRUE, it is allowed to open a GDS file with read-only mode when it has been
opened in the same R session

Details

It is strongly suggested to call seqOpen instead of openfn.gds, since seqOpen will perform internal
checking for data integrality.

Value

Return an object of class SeqVarGDSClass inherited from gds.class.

Author(s)

Xiuwen Zheng

See Also

seqClose, seqGetData, seqApply

seqOptimize 39

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

open the GDS file
gdsfile <- seqOpen(gds.fn)

display the contents of the GDS file in a hierarchical structure
gdsfile

close the GDS file
seqClose(gdsfile)

seqOptimize Optimize the Storage of Data Array

Description

Transpose data array or matrix for possibly higher-speed access.

Usage

seqOptimize(gdsfile, target=c("chromosome", "by.sample"), format.var=TRUE,
cleanup=TRUE, verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object or a GDS file name

target "chromosome", "by.sample"; see details

format.var a character vector for selected variable names, or TRUE for all variables, accord-
ing to "annotation/format"

cleanup call link{cleanup.gds} if TRUE

verbose if TRUE, show information

Details

"chromosome": adding or updating two additional nodes ’@chrom_rle_val’ and ’@chrom_rle_len’
for faster chromosome indexing, requiring SeqArray>=v1.20.0.

"by.sample": optimizing GDS file for seqApply(..., margin="by.sample"). Warning: opti-
mizing GDS file for reading data by sample may increase file size by up to 2X as genotype data and
all format data are duplicated.

Value

None.

Author(s)

Xiuwen Zheng

40 seqParallel

See Also

seqGetData, seqApply

Examples

the file name of VCF
(vcf.fn <- seqExampleFileName("vcf"))
or vcf.fn <- "C:/YourFolder/Your_VCF_File.vcf"

convert
seqVCF2GDS(vcf.fn, "tmp.gds", storage.option="ZIP_RA")

prepare data
seqOptimize("tmp.gds", target="by.sample")

list the structure of GDS variables
(f <- seqOpen("tmp.gds", readonly=FALSE))
seqOptimize(f, "chromosome")

close
seqClose(f)

delete the temporary file
unlink("tmp.gds")

seqParallel Apply Functions in Parallel

Description

Applies a user-defined function in parallel.

Usage

seqParallel(cl=seqGetParallel(), gdsfile, FUN,
split=c("by.variant", "by.sample", "none"), .combine="unlist",
.selection.flag=FALSE, .initialize=NULL, .finalize=NULL, .initparam=NULL,
.balancing=FALSE, .bl_size=NA_integer_, .bl_progress=FALSE,
.status_file=FALSE, .proc_time=FALSE, ...)

seqParApply(cl=seqGetParallel(), x, FUN, .balancing=TRUE, ...)

Arguments

cl NULL or FALSE: serial processing; TRUE: multicore processing (the maximum
number of cores minor one); a numeric value: the number of cores to be used; a
cluster object for parallel processing, created by the functions in the package
parallel, like makeCluster; a BiocParallelParam object from the BiocPar-
allel package. See details

gdsfile a SeqVarGDSClass object, or NULL

seqParallel 41

FUN the function to be applied, should be like FUN(gdsfile, ...) if gdsfile is
given, or FUN(...) if gdsfile=NULL

split split the dataset by variant or sample according to multiple processes, or "none"
for no split; split="by.variant" by default

.combine define a fucntion for combining results from different processes; by default,
"unlist" is used, to produce a vector which contains all the atomic components,
via unlist(..., recursive=FALSE); "list", return a list of results created by
child processes; "none", no return; or a function with one or two arguments, like
"+"

.selection.flag

TRUE – passes a logical vector of selection to the second argument of FUN(gdsfile,
selection, ...)

.initialize a user-defined function for initializing workers, should have two arguments (pro-
cess_id, param)

.finalize a user-defined function for finalizing workers, should have two arguments (pro-
cess_id, param)

.initparam parameters passed to .initialize and .initialize

.balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

.bl_size chuck size (# of variants or samples), the increment for load balancing, only
applicable if .balancing=TRUE; if NA_integer_, automatically determined by
the number of cores

.bl_progress if TRUE and .balancing=TRUE, show progress information

.status_file if TRUE, create empty files for saving the status of child processes, which can be
used in the user-defined function

.proc_time if TRUE, show the elapsed time calling the function

x a vector (atomic or list), passed to FUN

... optional arguments to FUN

Details

When cl is TRUE or a numeric value, forking techniques are used to create a new child process as
a copy of the current R process, see ?parallel::mcfork. However, forking is not available on
Windows, and makeCluster is called to make a cluster which will be deallocated after calling FUN.

It is strongly suggested to use seqParallel together with seqParallelSetup. seqParallelSetup
could work around the problem of forking on Windows, without allocating clusters frequently.

The user-defined function could use two predefined variables SeqArray:::process_count and
SeqArray:::process_index to tell the total number of cluster nodes and which cluster node being
used.

seqParallel(, gdsfile=NULL, FUN=..., split="none") could be used to setup multiple streams
of pseudo-random numbers, and see nextRNGStream or nextRNGSubStream in the package parallel.

Value

A vector or list of values.

42 seqParallel

Author(s)

Xiuwen Zheng

See Also

seqSetFilter, seqGetData, seqApply, seqParallelSetup, seqGetParallel

Examples

library(parallel)

choose an appropriate cluster size or number of cores
seqParallelSetup(2)

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(gdsfile <- seqOpen(gds.fn))

the uniprocessor version
afreq1 <- seqParallel(, gdsfile, FUN = function(f) {

seqApply(f, "genotype", as.is="double",
FUN=function(x) mean(x==0, na.rm=TRUE))

}, split="by.variant")

length(afreq1)
summary(afreq1)

run in parallel
afreq2 <- seqParallel(, gdsfile, FUN = function(f) {

seqApply(f, "genotype", as.is="double",
FUN=function(x) mean(x==0, na.rm=TRUE))

}, split="by.variant")

length(afreq2)
summary(afreq2)

check
length(afreq1) # 1348
all(afreq1 == afreq2)

##
check -- variant splits

seqParallel(, gdsfile, FUN = function(f) {
v <- seqGetFilter(f)
sum(v$variant.sel)

}, split="by.variant")
[1] 674 674

##

seqParallelSetup 43

seqParallel(, NULL, FUN = function() {
paste(SeqArray:::process_index, SeqArray:::process_count, sep=" / ")

}, split="none")

seqParallel(, NULL, FUN = function() {
SeqArray:::process_index

}, split="none", .combine=function(i) print(i))

seqParallel(, NULL, FUN = function() {
SeqArray:::process_index

}, split="none", .combine="+")

##

close the GDS file
seqClose(gdsfile)

clear the parallel cluster
seqParallelSetup(FALSE)

seqParallelSetup Setup/Get a Parallel Environment

Description

Setups a parallel environment in R for the current session.

Usage

seqParallelSetup(cluster=TRUE, verbose=TRUE)
seqGetParallel()
seqMulticoreSetup(num, type=c("psock", "fork"), verbose=TRUE)

Arguments

cluster NULL or FALSE: serial processing; TRUE: parallel processing with the maximum
number of cores minor one; a numeric value: the number of cores to be used;
a cluster object for parallel processing, created by the functions in the package
parallel, like makeCluster. See details

num the maximum number of cores used for the user-defined multicore setting; FALSE,
NA or any value less than 2, to disable the pre-defined multicore cluster; see de-
tails

type either PSOCK or Fork cluster setup for the multicore setting, the resulting par-
allel cluster will be used if ’parallel’ is a number greater than one in associated
functions

verbose if TRUE, show information

44 seqRecompress

Details

When cl is TRUE or a numeric value, forking techniques are used to create a new child process
as a copy of the current R process, see ?parallel::mcfork. However, forking is not avail-
able on Windows, so multiple processes created by makeCluster are used instead. The R en-
vironment option seqarray.parallel will be set according to the value of cluster. Using
seqParallelSetup(FALSE) removes the registered cluster, as does stopping the registered clus-
ter.

seqMulticoreSetup sets a multicore cluster and can avoid large memory usage when forking is
used for the number of cores specified in the argument 'parallel'. It is recommended to call
seqMulticoreSetup before running any memory-intensive functions, as forking within such func-
tions can significantly increase memory usage.

Value

seqParallelSetup() has no return, and seqGetParallel() returns getOption("seqarray.parallel",
FALSE).

Author(s)

Xiuwen Zheng

See Also

seqParallel, seqApply

Examples

library(parallel)

seqParallelSetup(2L)

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

run in parallel
summary(seqMissing(f))

close the GDS file
seqClose(f)

seqParallelSetup(FALSE)

seqRecompress Recompress the GDS file

Description

Recompress the SeqArray GDS file.

seqRecompress 45

Usage

seqRecompress(gds.fn,
compress=c("ZIP", "LZ4", "LZMA", "Ultra", "UltraMax", "none"),
exclude=character(), optimize=TRUE, digest=TRUE, verbose=TRUE)

Arguments

gds.fn the file name of SeqArray file

compress the compression method, compress="ZIP" by default

exclude a list of GDS nodes to be excluded, see details

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

digest a logical value (TRUE/FALSE), whether adding md5 hash codes to the GDS file

verbose if TRUE, show information

Details

This function requires gdsfmt (>= v1.17.2). seqVCF2GDS usually takes lots of memory when
the compression method "LZMA_RA.max", "Ultra" or "UltraMax" is specified. So users could
call seqVCF2GDS(, storage.option="ZIP_RA") first, and then recompress the GDS file with a
higher compression option, e.g., "UltraMax". seqRecompress() takes much less memory than
seqVCF2GDS(), since it recompresses data in a GDS node each time.

"UltraMax" might be not better than "Ultra", and its behavior is similar to xz -9 --extreme:
use a slower variant of the selected compression preset level (-9) to hopefully get a little bit better
compression ratio, but with bad luck this can also make it worse.

ls.gdsn(gdsfile, include.hidden=TRUE, recursive=TRUE) returns a list of GDS nodes to be
re-compressed, and users can specify the excluded nodes in the argument exclude.

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS, seqStorageOption

Examples

gds.fn <- seqExampleFileName("gds")
file.copy(gds.fn, "tmp.gds")

seqRecompress("tmp.gds", "LZMA")

unlink("tmp.gds")

46 seqResetVariantID

seqResetVariantID Reset Variant ID in SeqArray GDS Files

Description

Resets the variant IDs in multiple SeqArray GDS files.

Usage

seqResetVariantID(gds.fn, start=1L, set=NULL, digest=TRUE, optimize=TRUE,
verbose=TRUE)

Arguments

gds.fn a character vector of multiple GDS file names

start the starting number of the sequence of variant IDs

set NULL or a logical vector; NULL for resetting all files, or TRUE for resetting vari-
ant.id for that GDS file

digest a logical value, if TRUE, add a md5 hash code

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

verbose if TRUE, show information

Details

The variant IDs will be replaced by the numbers in sequential order and adjacent to each file. The
variant ID starts from start (1 by default) in the first GDS file.

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS

Examples

fn <- seqExampleFileName("gds")

file.copy(fn, "tmp1.gds", overwrite=TRUE)
file.copy(fn, "tmp2.gds", overwrite=TRUE)

gds.fn <- c("tmp1.gds", "tmp2.gds")
seqResetVariantID(gds.fn)

f <- seqOpen("tmp1.gds")
head(seqGetData(f, "variant.id"))

seqSetFilter-methods 47

seqClose(f)

f <- seqOpen("tmp2.gds")
head(seqGetData(f, "variant.id"))
seqClose(f)

delete the temporary files
unlink(gds.fn, force=TRUE)

seqSetFilter-methods Set a Filter to Sample or Variant

Description

Sets a filter to sample and/or variant.

Usage

S4 method for signature 'SeqVarGDSClass,ANY'
seqSetFilter(object, variant.sel,

sample.sel=NULL, variant.id=NULL, sample.id=NULL,
action=c("set", "intersect", "push", "push+set", "push+intersect", "pop"),
ret.idx=FALSE, warn=TRUE, verbose=TRUE)

S4 method for signature 'SeqVarGDSClass,GRanges'
seqSetFilter(object, variant.sel,

rm.txt="chr", intersect=FALSE, verbose=TRUE)
S4 method for signature 'SeqVarGDSClass,GRangesList'
seqSetFilter(object, variant.sel,

rm.txt="chr", intersect=FALSE, verbose=TRUE)
S4 method for signature 'SeqVarGDSClass,IRanges'
seqSetFilter(object, variant.sel,

chr, intersect=FALSE, verbose=TRUE)
seqResetFilter(object, sample=TRUE, variant=TRUE, verbose=TRUE)
seqSetFilterChrom(object, include=NULL, is.num=NA, from.bp=NULL, to.bp=NULL,

intersect=FALSE, verbose=TRUE)
seqSetFilterPos(object, chr, pos, ref=NULL, alt=NULL, intersect=FALSE,

multi.pos=TRUE, ret.idx=FALSE, verbose=TRUE)
seqSetFilterAnnotID(object, id, ret.idx=FALSE, verbose=TRUE)
seqFilterPush(object) # store the current filter
seqFilterPop(object) # restore the last filter

Arguments

object a SeqVarGDSClass object

variant.sel a logical/raw/index vector indicating the selected variants; GRanges, a GRanges
object for the genomic locations; GRangesList, a GRangesList object for stor-
ing a collection of GRanges objects; IRanges, a IRanges object for storing a
collection of range objects

sample.sel a logical/raw/index vector indicating the selected samples

variant.id ID of selected variants

48 seqSetFilter-methods

sample.id ID of selected samples

action "set" – set the current filter via sample.id, variant.id, samp.sel or variant.sel;
"intersect" – set the current filter to the intersection of selected samples
and/or variants; "push" – push the current filter to the stack, and it could be
recovered by "pop" later, no change on the current filter; "push+set" – push
the current filter to the stack, and changes the current filter via sample.id,
variant.id, samp.sel or variant.sel; "push+intersect" – push the cur-
rent filter to the stack, and set the current filter to the intersection of selected
samples and/or variants; "pop" – pop up the last filter

ret.idx if TRUE, return the index in the output array according to the order of ’sam-
ple.id’, ’sample.sel’, ’variant.id’ or ’variant.sel’

rm.txt a character, the characters will be removed from seqnames(variant.sel)

chr a vector of character for chromsome coding

pos a vector of numeric values for genome coordinate

sample logical, if TRUE, include all samples

variant logical, if TRUE, include all variants

include NULL, or a vector of characters for specified chromosome(s)

is.num a logical variable: TRUE, chromosome code is numeric; FALSE, chromosome is
not numeric; is.num=TRUE is usually used to exclude non-autosomes

from.bp NULL, no limit; a numeric vector, the lower bound of position

to.bp NULL, no limit; a numeric vector, the upper bound of position

intersect if FALSE, the candidate samples/variants for selection are all samples/variants
(by default); if TRUE, the candidate samples/variants are from the selected sam-
ples/variants defined via the previous call

ref the reference alleles

alt the alternative alleles

multi.pos FALSE, use the first matched position; TRUE, allow multiple variants at the same
position

id a character vector for RS IDs (stored in "annotation/id")

warn if TRUE, show a warning when the input sample.sel or variant.sel is not
ordered as the GDS file or there is any duplicate

verbose if TRUE, show information

Details

seqResetFilter(file) is equivalent to seqSetFilter(file), where the selection arguments in
seqSetFilter are NULL.

If from.bp and to.bp has values, they should be equal-size as include. A trio of include,
from.bp and to.bp indicates a region on human genomes. NA in from.bp is treated as 0, and
NA in to.bp is treated as the maximum of integer (2^31 - 1).

Value

If ret.idx=TRUE, seqSetFilter() returns a list with two components sample_idx and variant_idx
to indicate the indices of the output array according to the input ’sample.id’, ’sample.sel’, ’variant.id’
or ’variant.sel’; if ret.idx=TRUE, seqSetFilterAnnotID() return an index vector; otherwise no
return.

seqSetFilter-methods 49

Author(s)

Xiuwen Zheng

See Also

seqSetFilterCond, seqGetFilter, seqGetData, seqApply

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

get 'sample.id
(samp.id <- seqGetData(f, "sample.id"))
"NA06984" "NA06985" "NA06986" ...

get 'variant.id'
head(variant.id <- seqGetData(f, "variant.id"))

get 'chromosome'
table(seqGetData(f, "chromosome"))

get 'allele'
head(seqGetData(f, "allele"))
"T,C" "G,A" "G,A" ...

set sample filters
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8)])
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8)], ret.idx=TRUE)

(v <- seqSetFilter(f, sample.id=samp.id[c(8,2,6,4)], ret.idx=TRUE))
all(seqGetData(f, "sample.id")[v$sample_idx] == samp.id[c(8,2,6,4)])

set variant filters
seqSetFilter(f, variant.id=variant.id[c(2,4,6,8,10,12)], ret.idx=TRUE)
(v <- seqSetFilter(f, variant.id=variant.id[c(12,4,6,10,8,12)], ret.idx=TRUE))
all(variant.id[c(12,4,6,10,8,12)] == seqGetData(f, "variant.id")[v$variant_idx])

set.seed(100)
seqSetFilter(f, variant.id=sample(variant.id, 5))

get genotypic data
seqGetData(f, "genotype")

OR
set sample and variant filters
seqSetFilter(f, sample.sel=c(2,4,6,8))
set.seed(100)
seqSetFilter(f, variant.sel=sample.int(length(variant.id), 5))

get genotypic data

50 seqSetFilter-methods

seqGetData(f, "genotype")

set the intersection

seqResetFilter(f)
seqSetFilterChrom(f, 10L)
seqSummary(f, "genotype", check="none")

AF <- seqAlleleFreq(f)
table(AF <= 0.9)

seqSetFilter(f, variant.sel=(AF<=0.9), action="intersect")
seqSummary(f, "genotype", check="none")

chromosome

seqResetFilter(f)

seqSetFilterChrom(f, is.num=TRUE)
seqSummary(f, "genotype", check="none")

seqSetFilterChrom(f, is.num=FALSE)
seqSummary(f, "genotype", check="none")

seqSetFilterChrom(f, 1:4)
seqSummary(f, "genotype", check="none")
table(seqGetData(f, "chromosome"))

HLA region
seqSetFilterChrom(f, 6, from.bp=29719561, to.bp=32883508)
seqSummary(f, "genotype", check="none")

two regions
seqSetFilterChrom(f, c(1, 6), from.bp=c(1000000, 29719561),

to.bp=c(90000000, 32883508))
seqSummary(f, "genotype", check="none")
seqGetData(f, "chromosome")

intersection option

seqResetFilter(f)
seqSetFilterChrom(f, 6, from.bp=29719561, to.bp=32883508) # MHC
seqSetFilterChrom(f, include=6) # chromosome 6

seqResetFilter(f)
seqSetFilterChrom(f, 6, from.bp=29719561, to.bp=32883508) # MHC
seqSetFilterChrom(f, include=6, intersect=TRUE) # MHC region only

close the GDS file
seqClose(f)

seqSetFilterCond 51

seqSetFilterCond Set a Filter to Variant with Allele Count/Freq

Description

Sets a filter to variant with specified allele count/frequency and missing rate.

Usage

seqSetFilterCond(gdsfile, maf=NaN, mac=1L, missing.rate=NaN,
parallel=seqGetParallel(), balancing=NA, .progress=FALSE, verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object

maf minimum minor reference allele frequency, or a range of MAF maf[1] <= ...
< maf[2]

mac minimum minor reference allele count, or a range of MAC mac[1] <= ... <
mac[2]

missing.rate maximum missing genotype rate

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

.progress if TRUE, show progress information

verbose if TRUE, show the number of selected variants

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqSetFilter, seqSetFilterChrom, seqAlleleFreq, seqAlleleCount, seqMissing

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

display
(f <- seqOpen(gds.fn))

seqSetFilterChrom(f, c(1, 6))

52 seqSNP2GDS

seqSetFilterCond(f, maf=0.05, .progress=TRUE)

seqSetFilterChrom(f, c(1, 6))
seqSetFilterCond(f, maf=c(0.01, 0.05), .progress=TRUE)

close the GDS file
seqClose(f)

seqSNP2GDS Convert SNPRelate Format to SeqArray Format

Description

Converts a SNP GDS file to a SeqArray GDS file.

Usage

seqSNP2GDS(gds.fn, out.fn, storage.option="LZMA_RA", major.ref=TRUE,
ds.type=c("packedreal16", "float", "double"), optimize=TRUE, digest=TRUE,
verbose=TRUE)

Arguments

gds.fn the file name of SNP format

out.fn the file name, output a file of SeqArray format

storage.option specify the storage and compression options, "LZMA_RA" to use LZMA com-
pression algorithm with higher compression ratio compared to "ZIP_RA"

major.ref if TRUE, use the major allele as a reference allele; otherwise, use A allele in
SNP GDS file as a reference allele

ds.type applicable when import dosages, the data type for storing dosages; see add.gdsn;
ds.type="packedreal16" by default

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

digest a logical value (TRUE/FALSE) or a character ("md5", "sha1", "sha256", "sha384"
or "sha512"); add hash codes to the GDS file if TRUE or a digest algorithm is
specified

verbose if TRUE, show information

Value

Return the file name of SeqArray file with an absolute path. If the input file is genotype dosage, the
dosage matrix is stored in the node annotation/format/DS with the estimated dosage of alterna-
tive alleles. Any value less than 0 or greater than 2 will be replaced by NaN.

Author(s)

Xiuwen Zheng

seqStorageOption 53

See Also

seqGDS2SNP, seqVCF2GDS, seqGDS2VCF, seqBED2GDS

Examples

library(SNPRelate)

the GDS file
gds.fn <- snpgdsExampleFileName()

seqSNP2GDS(gds.fn, "tmp.gds")

seqSummary("tmp.gds")

remove the temporary file
unlink("tmp.gds", force=TRUE)

seqStorageOption Storage and Compression Options

Description

Storage and compression options for GDS import and merging.

Usage

seqStorageOption(compression=c("ZIP_RA", "ZIP_RA.fast", "ZIP_RA.max", "LZ4_RA",
"LZ4_RA.fast", "LZ4_RA.max", "LZMA_RA", "LZMA_RA.fast", "LZMA_RA.max",
"Ultra", "UltraMax", "none"), mode=NULL, float.mode="float32",
geno.compress=NULL, info.compress=NULL, format.compress=NULL,
index.compress=NULL, ...)

Arguments

compression the default compression level ("ZIP_RA"), see add.gdsn for the description of
compression methods

mode a character vector, specifying storage type for corresponding variable, e.g., c(‘annotation/info/HM‘="int16",
‘annotation/format/PL‘="int")

float.mode specify the storage mode for read numbers, e.g., "float32", "float64", "packe-
dreal16"; the additional parameters can follow by colon, like "packedreal16:scale=0.0001"

geno.compress NULL for the default value, or the compression method for genotypic data

info.compress NULL for the default value, or the compression method for data sets stored in
the INFO field (i.e., "annotation/info")

format.compress

NULL for the default value, or the compression method for data sets stored in
the FORMAT field (i.e., "annotation/format")

index.compress NULL for the default value, or the compression method for data index variables
(e.g., "annotation/info/@HM")

... other specified storage compression for corresponding variable, e.g., ‘annota-
tion/info/HM‘="ZIP_MAX"

54 seqStorageOption

Details

The compression modes "Ultra" and "UltraMax" attempt to maximize the compression ratio
using gigabyte-sized or even terabyte-sized virtual memory, according to "LZMA_RA.ultra" and
"LZMA_RA.ultra_max" in compression.gdsn. These features require gdsfmt (>=v1.16.0). "Ultra"
and "UltraMax" may not increase the compression ratio much compared with "LZMA_RA.max", and
these options are designed for the users who want to exhaust the computational resources.

Value

Return a list with a class name "SeqGDSStorageClass", contains the compression algorithm for
each data type.

Author(s)

Xiuwen Zheng

See Also

seqVCF2GDS, seqRecompress, seqMerge

Examples

the file of VCF
(vcf.fn <- seqExampleFileName("vcf"))

convert
seqVCF2GDS(vcf.fn, "tmp1.gds", storage.option=seqStorageOption())
(f1 <- seqOpen("tmp1.gds"))

convert (maximize the compression ratio)
seqVCF2GDS(vcf.fn, "tmp2.gds", storage.option=seqStorageOption("ZIP_RA.max"))
(f2 <- seqOpen("tmp2.gds"))

does not compress the genotypic data
seqVCF2GDS(vcf.fn, "tmp3.gds", storage.option=

seqStorageOption("ZIP_RA", geno.compress=""))
(f3 <- seqOpen("tmp3.gds"))

compress with LZ4
seqVCF2GDS(vcf.fn, "tmp4.gds", storage.option=seqStorageOption("LZ4_RA"))
(f4 <- seqOpen("tmp4.gds"))

close and remove the files
seqClose(f1)
seqClose(f2)
seqClose(f3)
seqClose(f4)

unlink(c("tmp1.gds", "tmp2.gds", "tmp3.gds", "tmp4.gds"))

seqSummary 55

seqSummary Summarize a SeqArray GDS File

Description

Gets the summary of SeqArray GDS file.

Usage

seqSummary(gdsfile, varname=NULL, check=c("default", "none", "full"),
verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object, or a file name

varname if NULL, check the whole GDS file; or a character specifying variable name, and
return a description of that variable. See details

check should be one of "default", "none", "full"; check="default" by default

verbose if TRUE, display information

Details

If check="default", the function performs regular checking, like variable dimensions. If check="full",
it performs more checking, e.g., unique sample id, unique variant id, whether genotypic data are in
a valid range or not.

Value

If varname=NULL, the function returns a list:

filename the file name

version the version of SeqArray format

reference genome reference, a character vector (0-length for undefined)

ploidy the number of sets of chromosomes

num.sample the total number of samples

num.variant the total number of variants

allele allele information, see seqSummary(gdsfile, "allele")

annot_qual the total number of "annotation/qual" if check="none", or a summary object
including min, max, median, mean

filter filter information, see seqSummary(gdsfile, "annotation/filter")

info a data.frame of INFO field: ID, Number, Type, Description, Source and Ver-
sion

format a data.frame of FORMAT field: ID, Number, Type and Description

sample.annot a data.frame of sample annotation with ID, Type and Description

— seqSummary(gdsfile, "genotype", check="none", verbose=FALSE) returns a list with com-
ponents:

56 seqSummary

dim an integer vector: ploidy, # of samples, # of variants

seldim an integer vector: ploidy, # of selected samples, # of selected variants

— seqSummary(gdsfile, "allele") returns a data.frame with ID and descriptions (check="none"),
or a list with components:

value a data.frame with ID and Description

table cross tabulation for the number of alleles per site

— seqSummary(gdsfile, "$alt") returns a data.frame with ID and Description for describing the
alternative alleles.

— seqSummary(gdsfile, "annotation/filter") or seqSummary(gdsfile, "$filter") returns
a data.frame with ID and description (check="none"), or a list with components: value (a data.frame
with ID and Description), table (cross tabulation for the variable ’filter’).

— seqSummary(gdsfile, "annotation/info") or seqSummary(gdsfile, "$info") returns a
data.frame describing the variables in the folder "annotation/info" with ID, Number, Type, De-
scription, Source and Version.

— seqSummary(gdsfile, "annotation/format") returns a data.frame describing the variables
in the folder "annotation/format" with ID, Number, Type and Description.

— seqSummary(gdsfile, "sample.annotation") returns a data.frame describing sample an-
notation with ID, Type and Description.

— seqSummary(gdsfile, "$reference") returns the genome reference if it is defined (a 0-length
character vector if undefined).

— seqSummary(gdsfile, "$contig") returns the contig information, a data.frame including
ID.

— seqSummary(gdsfile, "$format") returns a data.frame describing VCF FORMAT header
with ID, Number, Type and Description. The first row is used for genotypes.

— seqSummary(gdsfile, "$digest") returns a data.frame with the full names of GDS vari-
ables, digest codes and validation (FALSE/TRUE).

Author(s)

Xiuwen Zheng

See Also

seqGetData, seqApply

Examples

the GDS file
(gds.fn <- seqExampleFileName("gds"))

seqSummary(gds.fn)

ans <- seqSummary(gds.fn, check="full")
ans

seqSummary(gds.fn, "genotype")
seqSummary(gds.fn, "allele")
seqSummary(gds.fn, "annotation/filter")
seqSummary(gds.fn, "annotation/info")

seqSystem 57

seqSummary(gds.fn, "annotation/format")
seqSummary(gds.fn, "sample.annotation")

seqSummary(gds.fn, "$reference")
seqSummary(gds.fn, "$contig")
seqSummary(gds.fn, "$filter")
seqSummary(gds.fn, "$alt")
seqSummary(gds.fn, "$info")
seqSummary(gds.fn, "$format")
seqSummary(gds.fn, "$digest")

open a GDS file
f <- seqOpen(gds.fn)

get 'sample.id
samp.id <- seqGetData(f, "sample.id")
get 'variant.id'
variant.id <- seqGetData(f, "variant.id")

set sample and variant filters
seqSetFilter(f, sample.id=samp.id[c(2,4,6,8,10)])
set.seed(100)
seqSetFilter(f, variant.id=sample(variant.id, 10))

seqSummary(f, "genotype")

close a GDS file
seqClose(f)

seqSystem Get the parameters in the GDS system

Description

Get a list of parameters in the GDS system

Usage

seqSystem()

Value

A list including

num.logical.core

the number of logical cores

compiler.flag SIMD instructions supported by the compiler

options list all options associated with SeqArray GDS format or packages

Author(s)

Xiuwen Zheng

58 seqTranspose

Examples

seqSystem()

seqTranspose Transpose Data Array

Description

Transpose data array or matrix for possibly higher-speed access.

Usage

seqTranspose(gdsfile, var.name, compress=NULL, digest=TRUE, verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object

var.name the variable name with ’/’ as a separator

compress the compression option used in add.gdsn; or determine automatically if NULL

digest a logical value (TRUE/FALSE) or a character ("md5", "sha1", "sha256", "sha384"
or "sha512"); add md5 hash codes to the GDS file if TRUE or a digest algorithm
is specified

verbose if TRUE, show information

Details

It is designed for possibly higher-speed access. More details will be provided in the future version.

Value

None.

Author(s)

Xiuwen Zheng

See Also

seqGetData, seqApply

Examples

the VCF file
(vcf.fn <- seqExampleFileName("vcf"))

convert
seqVCF2GDS(vcf.fn, "tmp.gds", storage.option="ZIP_RA")

list the structure of GDS variables
f <- seqOpen("tmp.gds", FALSE)
f

seqUnitApply 59

seqTranspose(f, "genotype/data")
f

the original array
index.gdsn(f, "genotype/data")
the transposed array
index.gdsn(f, "genotype/~data")

close
seqClose(f)

delete the temporary file
unlink("tmp.gds")

seqUnitApply Apply Function Over Variant Units

Description

Applies a user-defined function to each variant unit.

Usage

seqUnitApply(gdsfile, units, var.name, FUN, as.is=c("none", "list", "unlist"),
parallel=FALSE, ..., .bl_size=256L, .progress=FALSE, .useraw=FALSE,
.padNA=TRUE, .tolist=FALSE, .envir=NULL)

Arguments

gdsfile a SeqVarGDSClass object
units a list of units of selected variants, with S3 class SeqUnitListClass
var.name the variable name(s), see details
FUN the function to be applied
as.is returned value: a list, an integer vector, etc; return nothing by default as.is="none";

as.is can be a connection object, or a GDS node gdsn.class object; if "un-
list" is used, produces a vector which contains all the atomic components, via
unlist(..., recursive=FALSE)

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

.bl_size chuck size, the increment for load balancing, 256 for units

.progress if TRUE, show progress information

.useraw TRUE, force to use RAW instead of INTEGER for genotypes and dosages; FALSE,
use INTEGER; NA, use RAW instead of INTEGER if possible; for genotypes,
0xFF is missing value if RAW is used

.padNA TRUE, pad a variable-length vector with NA if the number of data points for each
variant is not greater than 1

.tolist if TRUE, return a list of vectors instead of the structure list(length, data) for
variable-length data

.envir NULL, an environment object, or a list/data.frame

... optional arguments to FUN

60 seqUnitApply

Details

The variable name should be "sample.id", "variant.id", "position", "chromosome", "allele",
"genotype", "annotation/id", "annotation/qual", "annotation/filter", "annotation/info/VARIABLE_NAME",
or "annotation/format/VARIABLE_NAME".

"@genotype", "annotation/info/@VARIABLE_NAME" or "annotation/format/@VARIABLE_NAME"
are used to obtain the index associated with these variables.

"$dosage" is also allowed for the dosages of reference allele (integer: 0, 1, 2 and NA for diploid
genotypes).

"$dosage_alt" returns a RAW/INTEGER matrix for the dosages of alternative allele without dis-
tinguishing different alternative alleles.

"$dosage_sp" returns a sparse matrix (dgCMatrix) for the dosages of alternative allele without
distinguishing different alternative alleles.

"$num_allele" returns an integer vector with the numbers of distinct alleles.

"$ref" returns a character vector of reference alleles

"$alt" returns a character vector of alternative alleles (delimited by comma)

"$chrom_pos" returns characters with the combination of chromosome and position, e.g., "1:1272721".
"$chrom_pos_allele" returns characters with the combination of chromosome, position and alle-
les, e.g., "1:1272721_A_G" (i.e., chr:position_REF_ALT).

"$variant_index" returns the indices of selected variants starting from 1, and "$sample_index"
returns the indices of selected samples starting from 1.

Value

A vector, a list of values or none.

Author(s)

Xiuwen Zheng

See Also

seqUnitSlidingWindows, seqUnitFilterCond

Examples

open the GDS file
gdsfile <- seqOpen(seqExampleFileName("gds"))

variant units via sliding windows
units <- seqUnitSlidingWindows(gdsfile)

v1 <- seqUnitApply(gdsfile, units, "genotype", function(x) dim(x)[3L],
as.is="unlist", .progress=TRUE)

v2 <- seqUnitApply(gdsfile, units, "genotype", function(x) dim(x)[3L],
as.is="unlist", parallel=2, .progress=TRUE)

all(v1 == lengths(units$index))
all(v1 == v2)

call with an external R variable

seqUnitCreate 61

ext <- list(x=1:1348/10)
v3 <- seqUnitApply(gdsfile, units, "$:x", function(x) x,

as.is="list", .progress=TRUE, .envir=ext)
head(units$index)
head(v3)

table(sapply(seq_along(units$index), function(i) all(units$index[[i]] == v3[[i]]*10)))
all TRUE

close the GDS file
seqClose(gdsfile)

seqUnitCreate Subset and merge the units

Description

Subset and merge the variant unit(s).

Usage

seqUnitCreate(idx, desp=NULL)
seqUnitSubset(units, i)
seqUnitMerge(ut1, ut2)

Arguments

idx a list of numeric indexing vectors for specifying variants

desp a data.frame for annotating the variant sets

units a list of units of selected variants, with S3 class SeqUnitListClass

ut1 a list of units of selected variants, with S3 class SeqUnitListClass

ut2 a list of units of selected variants, with S3 class SeqUnitListClass

i a numeric or logical vector for indices specifying elements

Value

The variant unit of SeqUnitListClass.

Author(s)

Xiuwen Zheng

See Also

seqUnitSlidingWindows, seqUnitFilterCond

62 seqUnitFilterCond

Examples

open the GDS file
gdsfile <- seqOpen(seqExampleFileName("gds"))

variant units via sliding windows
units <- seqUnitSlidingWindows(gdsfile)

(u1 <- seqUnitSubset(units, 1:10))
(u2 <- seqUnitSubset(units, 30:39))

seqUnitMerge(u1, u2)

seqUnitCreate(list(1:10, 20:30), data.frame(gene=c("g1", "g2")))

close the GDS file
seqClose(gdsfile)

seqUnitFilterCond Filter unit variants

Description

Filters out the unit variants according to MAF, MAC and missing rates.

Usage

seqUnitFilterCond(gdsfile, units, maf=NaN, mac=1L, missing.rate=NaN,
minsize=1L, parallel=seqGetParallel(), balancing=NA, verbose=TRUE)

Arguments

gdsfile a SeqVarGDSClass object

units a list of units of selected variants, with S3 class SeqUnitListClass

maf minimum minor reference allele frequency, or a range of MAF maf[1] <= ...
< maf[2]

mac minimum minor reference allele count, or a range of MAC mac[1] <= ... <
mac[2]

missing.rate maximum missing genotype rate

minsize the minimum of unit size

parallel FALSE (serial processing), TRUE (multicore processing), numeric value or other
value; parallel is passed to the argument cl in seqParallel, see seqParallel
for more details.

balancing whether to perform workload balancing or not, only applicable when multiple
cores are used; if NA, use TRUE as a default until getOption("seqarray.balancing")
is set and not TRUE

verbose if TRUE, show information

seqUnitSlidingWindows 63

Value

A S3 object with the class name "SeqUnitListClass" and two components (desp and index): the
first is a data.frame with columns "chr", "start" and "end", and the second is list of integer vectors
(the variant indices).

Author(s)

Xiuwen Zheng

See Also

seqUnitApply, seqUnitCreate, seqUnitSubset, seqUnitMerge

Examples

open the GDS file
gdsfile <- seqOpen(seqExampleFileName("gds"))

unit1 <- seqUnitSlidingWindows(gdsfile)
unit1 # "desp" "index"

only rare variants
newunit <- seqUnitFilterCond(gdsfile, unit1, maf=c(0, 0.01))
newunit

excluded variants
exvar <- setdiff(unique(unlist(unit1$index)), unique(unlist(newunit$index)))

seqSetFilter(gdsfile, variant.sel=exvar)
maf <- seqAlleleFreq(gdsfile, minor=TRUE)
table(maf > 0)
summary(maf[maf > 0]) # > 0.01

close the GDS file
seqClose(gdsfile)

seqUnitSlidingWindows Sliding units of selected variants

Description

Generates units of selected variants via sliding windows.

Usage

seqUnitSlidingWindows(gdsfile, win.size=5000L, win.shift=2500L, win.start=0L,
dup.rm=TRUE, verbose=TRUE)

64 SeqVarGDSClass

Arguments

gdsfile a SeqVarGDSClass object

win.size window size in basepair

win.shift the shift of sliding window in basepair

win.start the start position in basepair

dup.rm if TRUE, remove duplicate and zero-length windows

verbose if TRUE, display information

Value

A S3 object with the class name "SeqUnitListClass" and two components (desp and index): the
first is a data.frame with columns "chr", "start" and "end", and the second is list of integer vectors
(the variant indices).

Author(s)

Xiuwen Zheng

See Also

seqUnitApply, seqUnitFilterCond

Examples

open the GDS file
gdsfile <- seqOpen(seqExampleFileName("gds"))

v <- seqUnitSlidingWindows(gdsfile)
v # "desp" "index"

close the GDS file
seqClose(gdsfile)

SeqVarGDSClass SeqVarGDSClass

Description

A SeqVarGDSClass object provides access to a GDS file containing Variant Call Format (VCF)
data. It extends gds.class.

Details

A SeqArray GDS file is created from a VCF file with seqVCF2GDS. This file can be opened with
seqOpen to create a SeqVarGDSClass object.

SeqVarGDSClass 65

Accessors

In the following code snippets x is a SeqVarGDSClass object.

granges(x) Returns the chromosome and position of variants as a GRanges object. Names corre-
spond to the variant.id.

ref(x) Returns the reference alleles as a DNAStringSet.

alt(x) Returns the alternate alleles as a DNAStringSetList.

qual(x) Returns the quality scores.

filt(x) Returns the filter data.

fixed(x) Returns the fixed fields (ref, alt, qual, filt).

header(x) Returns the header as a DataFrameList.

rowRanges(x) Returns a GRanges object with metadata.

colData(x) Returns a DataFrame with sample identifiers and any information in the ’sample.annotation’
node.

info(x, info=NULL) Returns the info fields as a DataFrame. info is a character vector with the
names of fields to return (default is to return all).

geno(x, geno=NULL) Returns the geno (format) fields as a SimpleList. geno is a character vector
with the names of fields to return (default is to return all).

Other data can be accessed with seqGetData.

Coercion methods

In the following code snippets x is a SeqVarGDSClass object.

. seqAsVCF(x, chr.prefix="", info=NULL, geno=NULL):

Author(s)

Stephanie Gogarten, Xiuwen Zheng

See Also

gds.class, seqOpen

Examples

gds <- seqOpen(seqExampleFileName("gds"))
gds

sample ID
head(seqGetData(gds, "sample.id"))

variants
granges(gds)

Not run:
alleles as comma-separated character strings
head(seqGetData(gds, "allele"))

alleles as DNAStringSet or DNAStringSetList
ref(gds)

66 seqVCF2GDS

v <- alt(gds)

genotype
geno <- seqGetData(gds, "genotype")
dim(geno)
dimensions are: allele, sample, variant
geno[1,1:10,1:5]

rsID
head(seqGetData(gds, "annotation/id"))

alternate allele count
head(seqGetData(gds, "annotation/info/AC"))

individual read depth
depth <- seqGetData(gds, "annotation/format/DP")
names(depth)
VCF header defined DP as variable-length data
table(depth$length)
all length 1, so depth$data should be a sample by variant matrix
dim(depth$data)
depth$data[1:10,1:5]

End(Not run)

seqClose(gds)

seqVCF2GDS Reformat VCF Files

Description

Reformats Variant Call Format (VCF) files.

Usage

seqVCF2GDS(vcf.fn, out.fn, header=NULL, storage.option="LZMA_RA",
info.import=NULL, fmt.import=NULL, genotype.var.name="GT",
ignore.chr.prefix="chr", scenario=c("general", "imputation"),
reference=NULL, start=1L, count=-1L, variant_count=NA_integer_,
optimize=TRUE, raise.error=TRUE, digest=TRUE, use_Rsamtools=NA,
parallel=FALSE, verbose=TRUE)

seqBCF2GDS(bcf.fn, out.fn, header=NULL, storage.option="LZMA_RA",
info.import=NULL, fmt.import=NULL, genotype.var.name="GT",
ignore.chr.prefix="chr", scenario=c("general", "imputation"),
reference=NULL, optimize=TRUE, raise.error=TRUE, digest=TRUE,
bcftools="bcftools", verbose=TRUE)

Arguments

vcf.fn the file name(s) of VCF format; or a connection object

bcf.fn a file name of binary VCF format (BCF)

out.fn the file name of output GDS file

seqVCF2GDS 67

header if NULL, header is set to be seqVCF_Header(vcf.fn)

storage.option specify the storage and compression option, "ZIP_RA" (seqStorageOption("ZIP_RA"));
or "LZMA_RA" to use LZMA compression algorithm with higher compression
ratio by default; or "LZ4_RA" to use an extremely fast compression and decom-
pression algorithm. "ZIP_RA.max", "LZMA_RA.max" and "LZ4_RA.max"
correspond to the algorithms with a maximum compression level; the suffix
"_RA" indicates that fine-level random access is available; see more details at
seqStorageOption

info.import characters, the variable name(s) in the INFO field for import; or NULL for all
variables

fmt.import characters, the variable name(s) in the FORMAT field for import; or NULL for all
variables

genotype.var.name

the ID for genotypic data in the FORMAT column; "GT" by default (in VCF v4)

ignore.chr.prefix

a vector of character, indicating the prefix of chromosome which should be ig-
nored, e.g., "chr"; it is not case-sensitive

scenario "general": use float32 to store floating-point numbers (by default); "imputation":
use packedreal16 to store DS and GP in the FORMAT field with four decimal
place accuracy

reference genome reference, like "hg19", "GRCh37"; if the genome reference is not avail-
able in VCF files, users could specify the reference here

start the starting variant if importing part of VCF files

count the maximum count of variant if importing part of VCF files, -1 indicates im-
porting to the end

variant_count NA_integer_ (default) or a numeric vector specifying the numbers of variants
in the VCF file(s) in vcf.fn; only applicable when multiple cores are used; if
the number of variants is known, the conversion can skip counting the variants
before splitting the file(s); variant_count could be an approximate

optimize if TRUE, optimize the access efficiency by calling cleanup.gds

raise.error TRUE: throw an error if numeric conversion fails; FALSE: get missing value if
numeric conversion fails

digest a logical value (TRUE/FALSE) or a character ("md5", "sha1", "sha256", "sha384"
or "sha512"); add md5 hash codes to the GDS file if TRUE or a digest algorithm
is specified

use_Rsamtools only applicable when multiple cores are used; use_Rsamtools is passed to
seqVCF_Header to get the total number of variants; NA: using Rsamtools when
it is installed; FALSE: not use the Rsamtools package; TRUE: to use Rsamtools, if
it is not installed, the function fails

parallel FALSE (serial processing), TRUE (parallel processing), a numeric value indicating
the number of cores, or a cluster object for parallel processing; parallel is
passed to the argument cl in seqParallel, see seqParallel for more details

verbose if TRUE, show information

bcftools the path of the program bcftools

68 seqVCF2GDS

Details

If there are more than one files in vcf.fn, seqVCF2GDS will merge all VCF files together if they
contain the same samples. It is useful to merge multiple VCF files if variant data are split by
chromosomes.

The real numbers in the VCF file(s) are stored in 32-bit floating-point format by default. Users can
set storage.option=seqStorageOption(float.mode="float64") to switch to 64-bit floating
point format. Or packed real numbers can be adopted by setting storage.option=seqStorageOption(float.mode="packedreal16:scale=0.0001").

By default, the compression method is "LZMA_RA" (https://tukaani.org/xz/, LZMA algo-
rithm with default compression level + independent data blocks for fine-level random access). Users
can maximize the compression ratio by storage.option="LZMA_RA.max" or storage.option=seqStorageOption("LZMA_RA.max").
LZMA is known to have higher compression ratio than the zlib algorithm. LZ4 (https://github.
com/lz4/lz4) is an option via storage.option="LZ4_RA" or storage.option=seqStorageOption("LZ4_RA").

If multiple cores/processes are specified in parallel, all VCF files are scanned to calculate the
total number of variants before format conversion, and then split by the number of cores/processes.

storage.option="Ultra" and storage.option="UltraMax" need much larger memory than other
compression methods. Users may consider using seqRecompress to recompress the GDS file af-
ter calling seqVCF2GDS() with storage.option="ZIP_RA", since seqRecompress() compresses
data nodes one by one, taking much less memory than "Ultra" and "UltraMax".

If storage.option="LZMA_RA" runs out of memory (e.g., there are too many annotation fields
in the VCF file), users could use storage.option="ZIP_RA" and then call seqRecompress(,
compress="LZMA").

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioin-
formatics 27, 2156-2158.

See Also

seqVCF_Header, seqStorageOption, seqMerge, seqGDS2VCF, seqRecompress

Examples

the VCF file
vcf.fn <- seqExampleFileName("vcf")

conversion
seqVCF2GDS(vcf.fn, "tmp.gds", storage.option="ZIP_RA")

conversion in parallel
seqVCF2GDS(vcf.fn, "tmp_p2.gds", storage.option="ZIP_RA", parallel=2L)

https://tukaani.org/xz/
https://github.com/lz4/lz4
https://github.com/lz4/lz4

seqVCF_Header 69

display
(f <- seqOpen("tmp.gds"))
seqClose(f)

convert without the INFO fields
seqVCF2GDS(vcf.fn, "tmp.gds", storage.option="ZIP_RA",

info.import=character(0))

display
(f <- seqOpen("tmp.gds"))
seqClose(f)

convert without the INFO and FORMAT fields
seqVCF2GDS(vcf.fn, "tmp.gds", storage.option="ZIP_RA",

info.import=character(0), fmt.import=character(0))

display
(f <- seqOpen("tmp.gds"))
seqClose(f)

delete the temporary file
unlink(c("tmp.gds", "tmp_p2.gds"), force=TRUE)

seqVCF_Header Parse the Header of a VCF/BCF File

Description

Parses the meta-information lines of a VCF or BCF file.

Usage

seqVCF_Header(vcf.fn, getnum=FALSE, use_Rsamtools=NA, parallel=FALSE,
verbose=TRUE)

Arguments

vcf.fn the file name of VCF or BCF format; or a connection object for VCF format

getnum if TRUE, return the total number of variants

use_Rsamtools only applicable when getnum=TRUE and multiple cores are used; NA: using Rsam-
tools when it is installed; FALSE: not use the Rsamtools package; TRUE: to use
Rsamtools, if it is not installed, the function fails

parallel FALSE (serial processing), TRUE (parallel processing), a numeric value indicating
the number of cores, or a cluster object for parallel processing; parallel is
passed to the argument cl in seqParallel, see seqParallel for more details

verbose when getnum=TRUE and verbose=TRUE, show the progress information for scan-
ning the file

70 seqVCF_Header

Details

The ID description contains four columns: ID – variable name; Number – the number of elements,
see the webpage of the 1000 Genomes Project; Type – data type; Description – a variable descrip-
tion.

If multiple cores are used to get the total number of variants, the Rsamtools package should be
installed, and the indexing file (i.e., .csi or .tbi) should be available along with vcf.fn.

Value

Return a list (with a class name "SeqVCFHeaderClass", S3 object):

fileformat the file format
info the ID description in the INFO field
filter the ID description in the FILTER field
format the ID description in the FORMAT field
alt the ID description in the ALT field
contig the description in the contig field
assembly the link of assembly
reference genome reference, or NULL if unknown
header the other header lines
ploidy ploidy, two for humans
num.sample the number of samples
num.variant the number of variants, applicable only if getnum=TRUE
sample.id a vector of sample IDs in the VCF/BCF file

Author(s)

Xiuwen Zheng

References

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioin-
formatics 27, 2156-2158.

See Also

seqVCF_SampID, seqVCF2GDS

Examples

the VCF file
(vcf.fn <- seqExampleFileName("vcf"))
or vcf.fn <- "C:/YourFolder/Your_VCF_File.vcf"

get sample id
seqVCF_Header(vcf.fn, getnum=TRUE)

use a connection object
f <- file(vcf.fn, "r")
seqVCF_Header(f, getnum=TRUE)
close(f)

seqVCF_SampID 71

seqVCF_SampID Get the Sample IDs

Description

Returns the sample IDs of a VCF file.

Usage

seqVCF_SampID(vcf.fn)

Arguments

vcf.fn the file name, output a file of VCF format; or a connection object

Author(s)

Xiuwen Zheng

References

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioin-
formatics 27, 2156-2158.

See Also

seqVCF_Header, seqVCF2GDS

Examples

the VCF file
(vcf.fn <- seqExampleFileName("vcf"))

get sample id
seqVCF_SampID(vcf.fn)

Index

∗ VCF
seqExport, 23
seqGDS2VCF, 26
seqVCF2GDS, 66
seqVCF_Header, 69
seqVCF_SampID, 71

∗ gds
KG_P1_SampData, 5
seqAddValue, 6
seqAlleleFreq, 7
seqApply, 9
SeqArray-package, 3
seqAsVCF, 13
seqBED2GDS, 14
seqBlockApply, 15
seqCheck, 18
seqClose-methods, 19
seqDelete, 19
seqDigest, 20
seqEmptyFile, 22
seqExampleFileName, 23
seqExport, 23
seqGDS2SNP, 25
seqGDS2VCF, 26
seqGet2bGeno, 28
seqGetData, 29
seqGetFilter, 32
seqMerge, 33
seqMissing, 35
seqNewVarData, 36
seqNumAllele, 37
seqOpen, 38
seqOptimize, 39
seqParallel, 40
seqParallelSetup, 43
seqRecompress, 44
seqResetVariantID, 46
seqSetFilter-methods, 47
seqSetFilterCond, 51
seqSNP2GDS, 52
seqStorageOption, 53
seqSummary, 55
seqSystem, 57

seqTranspose, 58
seqUnitApply, 59
seqUnitCreate, 61
seqUnitFilterCond, 62
seqUnitSlidingWindows, 63
seqVCF2GDS, 66
seqVCF_Header, 69
seqVCF_SampID, 71

∗ genetics
KG_P1_SampData, 5
seqAddValue, 6
seqAlleleFreq, 7
seqApply, 9
SeqArray-package, 3
seqAsVCF, 13
seqBED2GDS, 14
seqBlockApply, 15
seqCheck, 18
seqClose-methods, 19
seqDelete, 19
seqDigest, 20
seqEmptyFile, 22
seqExampleFileName, 23
seqExport, 23
seqGDS2SNP, 25
seqGDS2VCF, 26
seqGet2bGeno, 28
seqGetData, 29
seqGetFilter, 32
seqMerge, 33
seqMissing, 35
seqNumAllele, 37
seqOpen, 38
seqOptimize, 39
seqParallel, 40
seqParallelSetup, 43
seqRecompress, 44
seqResetVariantID, 46
seqSetFilter-methods, 47
seqSetFilterCond, 51
seqSNP2GDS, 52
seqStorageOption, 53
seqSummary, 55

72

INDEX 73

seqSystem, 57
seqTranspose, 58
seqUnitApply, 59
seqUnitCreate, 61
seqUnitFilterCond, 62
seqUnitSlidingWindows, 63
seqVCF2GDS, 66
seqVCF_Header, 69
seqVCF_SampID, 71

∗ sequencing
KG_P1_SampData, 5
seqAddValue, 6
seqAlleleFreq, 7
seqApply, 9
SeqArray-package, 3
seqAsVCF, 13
seqBED2GDS, 14
seqBlockApply, 15
seqCheck, 18
seqClose-methods, 19
seqDelete, 19
seqDigest, 20
seqEmptyFile, 22
seqExampleFileName, 23
seqExport, 23
seqGDS2SNP, 25
seqGDS2VCF, 26
seqGet2bGeno, 28
seqGetData, 29
seqGetFilter, 32
seqMerge, 33
seqMissing, 35
seqNewVarData, 36
seqNumAllele, 37
seqOpen, 38
seqOptimize, 39
seqParallel, 40
seqParallelSetup, 43
seqRecompress, 44
seqResetVariantID, 46
seqSetFilter-methods, 47
seqSetFilterCond, 51
seqSNP2GDS, 52
seqStorageOption, 53
seqSummary, 55
seqSystem, 57
seqTranspose, 58
seqUnitApply, 59
seqUnitCreate, 61
seqUnitFilterCond, 62
seqUnitSlidingWindows, 63
seqVCF2GDS, 66

seqVCF_Header, 69
seqVCF_SampID, 71

add.gdsn, 6, 25, 52, 53, 58
alt (SeqVarGDSClass), 64
alt,SeqVarGDSClass-method

(SeqVarGDSClass), 64

bgzip, 26

cleanup.gds, 14, 24, 25, 33, 45, 46, 52, 67
colData (SeqVarGDSClass), 64
colData,SeqVarGDSClass-method

(SeqVarGDSClass), 64
CollapsedVCF, 13
compression.gdsn, 54
connection, 10, 16, 26, 59, 66, 69, 71

DataFrameList, 65
DNAStringSet, 65
DNAStringSetList, 65

filt (SeqVarGDSClass), 64
filt,SeqVarGDSClass-method

(SeqVarGDSClass), 64
fixed (SeqVarGDSClass), 64
fixed,SeqVarGDSClass-method

(SeqVarGDSClass), 64

gds.class, 19, 38, 64, 65
gdsn.class, 10, 16, 59
geno (SeqVarGDSClass), 64
geno,SeqVarGDSClass,ANY-method

(SeqVarGDSClass), 64
geno,SeqVarGDSClass-method

(SeqVarGDSClass), 64
GRanges, 47
granges,SeqVarGDSClass-method

(SeqVarGDSClass), 64
GRangesList, 47

header (SeqVarGDSClass), 64
header,SeqVarGDSClass-method

(SeqVarGDSClass), 64

info (SeqVarGDSClass), 64
info,SeqVarGDSClass-method

(SeqVarGDSClass), 64
IntegerList, 37
IRanges, 47

KG_P1_SampData, 5

makeCluster, 40, 41, 43, 44

74 INDEX

nextRNGStream, 41
nextRNGSubStream, 41

openfn.gds, 38

parallel, 40, 43

qual (SeqVarGDSClass), 64
qual,SeqVarGDSClass-method

(SeqVarGDSClass), 64

ref (SeqVarGDSClass), 64
ref,SeqVarGDSClass-method

(SeqVarGDSClass), 64
rowRanges (SeqVarGDSClass), 64
rowRanges,SeqVarGDSClass-method

(SeqVarGDSClass), 64

seqAddValue, 6, 37
seqAlleleCount, 51
seqAlleleCount (seqAlleleFreq), 7
seqAlleleFreq, 7, 36, 37, 51
seqApply, 9, 17, 21, 30, 38, 40, 42, 44, 49, 56,

58
SeqArray (SeqArray-package), 3
SeqArray-package, 3
seqAsVCF, 13
seqBCF2GDS (seqVCF2GDS), 66
seqBED2GDS, 14, 53
seqBlockApply, 11, 15
seqCheck, 18
seqClose, 20, 38
seqClose (seqClose-methods), 19
seqClose,gds.class-method

(seqClose-methods), 19
seqClose,SeqVarGDSClass-method

(seqClose-methods), 19
seqClose-methods, 19
seqDelete, 19
seqDigest, 20
seqEmptyFile, 22
seqExampleFileName, 23
seqExport, 23, 34
seqFilterPop (seqSetFilter-methods), 47
seqFilterPush (seqSetFilter-methods), 47
seqGDS2BED (seqBED2GDS), 14
seqGDS2SNP, 25, 53
seqGDS2VCF, 26, 26, 53, 68
seqGet2bGeno, 28
seqGetAF_AC_Missing (seqAlleleFreq), 7
seqGetData, 11, 17, 29, 29, 36–38, 40, 42, 49,

56, 58, 65
seqGetFilter, 32, 49

seqGetParallel, 8, 11, 17, 36, 42
seqGetParallel (seqParallelSetup), 43
seqListVarData, 30
seqListVarData (seqNewVarData), 36
seqMerge, 33, 54, 68
seqMissing, 8, 35, 37, 51
seqMulticoreSetup (seqParallelSetup), 43
seqNewVarData, 6, 30, 36
seqNumAllele, 8, 36, 37
seqOpen, 19, 20, 38, 64, 65
seqOptimize, 39
seqParallel, 8, 10, 11, 14, 16, 17, 21, 35, 36,

40, 44, 51, 59, 62, 67, 69
seqParallelSetup, 42, 43
seqParApply (seqParallel), 40
seqRecompress, 44, 54, 68
seqResetFilter (seqSetFilter-methods),

47
seqResetVariantID, 46
seqSetFilter, 10, 11, 13, 16, 17, 21, 25, 26,

30, 32, 42, 51
seqSetFilter (seqSetFilter-methods), 47
seqSetFilter,SeqVarGDSClass,ANY-method

(seqSetFilter-methods), 47
seqSetFilter,SeqVarGDSClass,GRanges-method

(seqSetFilter-methods), 47
seqSetFilter,SeqVarGDSClass,GRangesList-method

(seqSetFilter-methods), 47
seqSetFilter,SeqVarGDSClass,IRanges-method

(seqSetFilter-methods), 47
seqSetFilter-methods, 47
seqSetFilterAnnotID

(seqSetFilter-methods), 47
seqSetFilterChrom, 51
seqSetFilterChrom

(seqSetFilter-methods), 47
seqSetFilterCond, 49, 51
seqSetFilterPos (seqSetFilter-methods),

47
seqSNP2GDS, 15, 26, 52
seqStorageOption, 33, 45, 53, 67, 68
seqSummary, 55
seqSystem, 57
seqTranspose, 58
seqUnitApply, 59, 63, 64
seqUnitCreate, 61, 63
seqUnitFilterCond, 60, 61, 62, 64
seqUnitMerge, 63
seqUnitMerge (seqUnitCreate), 61
seqUnitSlidingWindows, 60, 61, 63
seqUnitSubset, 63
seqUnitSubset (seqUnitCreate), 61

INDEX 75

SeqVarGDSClass, 6, 8, 10, 13, 14, 16, 18–21,
24–26, 28, 29, 32, 35, 37, 39, 40, 47,
51, 55, 58, 59, 62, 64, 64

SeqVarGDSClass-class (SeqVarGDSClass),
64

seqVCF2GDS, 6, 15, 22, 24, 26, 27, 34, 45, 46,
53, 54, 64, 66, 70, 71

seqVCF_Header, 67, 68, 69, 71
seqVCF_SampID, 70, 71

VCF-class, 13

	SeqArray-package
	KG_P1_SampData
	seqAddValue
	seqAlleleFreq
	seqApply
	seqAsVCF
	seqBED2GDS
	seqBlockApply
	seqCheck
	seqClose-methods
	seqDelete
	seqDigest
	seqEmptyFile
	seqExampleFileName
	seqExport
	seqGDS2SNP
	seqGDS2VCF
	seqGet2bGeno
	seqGetData
	seqGetFilter
	seqMerge
	seqMissing
	seqNewVarData
	seqNumAllele
	seqOpen
	seqOptimize
	seqParallel
	seqParallelSetup
	seqRecompress
	seqResetVariantID
	seqSetFilter-methods
	seqSetFilterCond
	seqSNP2GDS
	seqStorageOption
	seqSummary
	seqSystem
	seqTranspose
	seqUnitApply
	seqUnitCreate
	seqUnitFilterCond
	seqUnitSlidingWindows
	SeqVarGDSClass
	seqVCF2GDS
	seqVCF_Header
	seqVCF_SampID
	Index

