
Package ‘SWATH2stats’
January 20, 2026

Type Package

Title Transform and Filter SWATH Data for Statistical Packages

Version 1.40.1

Date 2025-12-23

Author Peter Blattmann [aut, cre]
Moritz Heusel [aut]
Ruedi Aebersold [aut]

Maintainer Peter Blattmann <peter_blattmann@bluewin.ch>

Description This package is intended to transform SWATH data from the
OpenSWATH software into a format readable by other statistics
packages while performing filtering, annotation and FDR estimation.

License GPL-3

Depends R(>= 2.10.0)

Imports data.table, reshape2, ggplot2, stats, grDevices, graphics,
utils, biomaRt, methods

Suggests testthat, knitr, rmarkdown

Enhances MSstats, PECA, aLFQ

biocViews Proteomics, Annotation, ExperimentalDesign, Preprocessing,
MassSpectrometry, ImmunoOncology

NeedsCompilation no

VignetteBuilder knitr

RoxygenNote 7.3.3

Encoding UTF-8

URL https://peterblattmann.github.io/SWATH2stats/

BugReports https://github.com/peterblattmann/SWATH2stats

git_url https://git.bioconductor.org/packages/SWATH2stats

git_branch RELEASE_3_22

git_last_commit f997ef6

git_last_commit_date 2025-12-22

Repository Bioconductor 3.22

Date/Publication 2026-01-19

1

https://peterblattmann.github.io/SWATH2stats/
https://github.com/peterblattmann/SWATH2stats

2 Contents

Contents

add_genesymbol . 3
assess_decoy_rate . 4
assess_fdr_byrun . 5
assess_fdr_overall . 6
convert4aLFQ . 7
convert4mapDIA . 8
convert4MSstats . 9
convert4PECA . 10
convert4pythonscript . 11
convert_protein_ids . 12
count_analytes . 13
disaggregate . 14
filter_all_peptides . 15
filter_mscore . 15
filter_mscore_condition . 16
filter_mscore_fdr . 17
filter_mscore_freqobs . 19
filter_on_max_peptides . 20
filter_on_min_peptides . 21
filter_proteotypic_peptides . 22
import_data . 22
JPP_update . 23
load_mart . 24
mscore4assayfdr . 25
mscore4pepfdr . 26
mscore4protfdr . 27
MSstats_data . 28
OpenSWATH_data . 28
plot.fdr_cube . 28
plot.fdr_table . 29
plot_correlation_between_samples . 30
plot_variation . 31
plot_variation_vs_total . 32
reduce_OpenSWATH_output . 34
removeDecoyProteins . 35
rmDecoyProt . 35
sample_annotation . 36
Spyogenes . 37
Study_design . 37
transform_MSstats_OpenSWATH . 38
unifyProteinGroupLabels . 38
validate_columns . 39
write_matrix_peptides . 40
write_matrix_proteins . 41

Index 43

add_genesymbol 3

add_genesymbol Adds gene symbols to a table

Description

Gather gene symbols from biomart and add them to a data frame.

Usage

add_genesymbol(
data_table,
gene_ID_table,
column_name = "Protein",
ID1 = "uniprotswissprot",
ID2 = "hgnc_symbol",
id.separator = "/",
copy_nonconverted = TRUE

)

Arguments

data_table A data frame or file name.

gene_ID_table A table to match gene identifiers against

column_name The column name where the original protein identifiers are present.

ID1 The type of the original protein identifiers (e.g. "uniprotswissprot", "ensembl_peptide_id").

ID2 The type of the converted protein identifiers (e.g. "hgnc_symbol", "mgi_symbol",
"external_gene_name").

id.separator Separator between protein identifiers of shared peptides.

copy_nonconverted

Option defining if the identifiers that cannot be converted should be copied.

Value

Returns the data frame with an added column of the converted protein identifiers.

Note

Protein identifiers from shared peptides should be separated by a forward slash. The host of archived
ensembl databases can be introduced as well (e.g. "dec2017.archive.ensembl.org")

Author(s)

Peter Blattmann

4 assess_decoy_rate

Examples

{
gene_ID_table <- data.frame(uniprotswissprot = c("Q01581", "P49327", "P60709"),

hgnc_symbol = c("HMGCS1", "FASN", "ACTB"))
data_table <- data.frame(Protein = c("Q01581", "P49327", "2/P63261/P60709"),

Abundance = c(100, 3390, 43423))
add_genesymbol(data_table, gene_ID_table)
}

assess_decoy_rate Assess decoy rate in data

Description

This function assesses the number of quantifications (typically peptides) that are decoys (false-
positive) versus true identifications.

Usage

assess_decoy_rate(data, column = "FullPeptideName", column_decoy = "decoy")

Arguments

data A data frame that contains at least a column named "FullPeptideName" and
"decoy".

column The column name of the Peptide identifier. Default: FullPeptideName.

column_decoy The column name of the decoy column. Default: decoy.

Details

A printout is generated to indicate the number of non-decoy, decoy peptides and the rate of decoy
vs non-decoy peptides. Unique peptides are counted, so a precursor with different charge states is
counted as one peptide. In the column "decoy" the values need to be 1,0 or TRUE and FALSE.

Value

Message detailing the number of decoys, non-decoys, and the ratio.

Author(s)

Peter Blattmann

Examples

data("OpenSWATH_data", package="SWATH2stats")
data <- OpenSWATH_data
assess_decoy_rate(data)

assess_fdr_byrun 5

assess_fdr_byrun Assess assay, peptide and protein level FDR by run (for each
MS_injection separately) in OpenSWATH output table

Description

This function estimates the assay, peptide and protein FDR by run in an OpenSWATH result table
in dependence of a range of m_score cutoffs. The results can be visualized and summarized by the
associated method plot.fdr_table(). It counts target and decoy assays (unique transition_group_id),
peptides (unique FullPeptideName) and proteins (unique ProteinName) in the OpenSWATH output
table in dependence of m-score cutoff, the useful m_score cutoff range is evaluated for each dataset
individually on the fly. To arrive from decoy counts at an estimation of the false discovery rate
(false positives among the targets remaining at a given mscore cutoff) the ratio of false positives
to true negatives (decoys) (FFT) must be supplied. It is estimated for each run individually by
pyProphet and contained in the pyProphet statistics [Injection_name]_full_stat.csv. As an approx-
imation, the FFTs of multiple runs are averaged and supplied as argument FFT. For further details
see the Vignette Section 1.3 and 4.1. To assess fdr over the entire dataset, please refer to function
assess_fdr_overall. FDR is calculated as FDR = (TN*FFT/T); TN=decoys, T=targets, FFT=see
above.

Usage

assess_fdr_byrun(
data,
FFT = 1,
n_range = 20,
output = "pdf_csv",
plot = TRUE,
filename = "FDR_report_byrun",
output_mscore_levels = c(0.01, 0.001),
score_col = "m_score"

)

Arguments

data Annotated OpenSWATH/pyProphet output table. Refer to function sample_annotation
from this package for further information.

FFT Ratio of false positives to true negatives, q-values from [Injection_name]_full_stat.csv
in pyProphet stats output. As an approximation, the q-values of multiple runs
are averaged and supplied as argument FFT. Numeric from 0 to 1. Defaults to 1,
the most conservative value (1 Decoy indicates 1 False target).

n_range Option to set the number of magnitude for which the m_score threshold is de-
creased (e.g. n_range = 10, m-score from 0.1 until 10^-10)^.

output Choose output type. "pdf_csv" creates the output as files in the working direc-
tory, "Rconsole" triggers delivery of the output to the console enabling further
computation or custom plotting / output.

plot Logical, whether or not to create plots from the results (using the associated
method plot.fdr_cube()

filename Modify the basename of the result files if set.

6 assess_fdr_overall

output_mscore_levels

Define m-score levels to plot and write the estimated FDR results.

score_col Column that contains the score. Default. m_score

Value

Returns an array of target/decoy identification numbers and calculated FDR values at different m-
score cutoffs.

Author(s)

Moritz Heusel

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
assessed <- assess_fdr_byrun(data, FFT=0.7, output="Rconsole", plot=TRUE,

filename="Testoutput_assess_fdr_byrun")
summary(assessed)
}

assess_fdr_overall Assess overall FDR in annotated OpenSWATH/pyProphet output table
in dependence of m_score cutoff

Description

This function estimates the assay, peptide and protein FDR over a multi-run OpenSWATH/pyProphet
output table. It counts target and decoy assays (unique transition_group_id), peptides (unique
FullPeptideName) and proteins (unique ProteinName) in dependence of the m-score cutoff (1e-2
to 1e-20). To arrive from decoy counts at an estimation of the false discovery rate (false positives
among the targets remaining at a given mscore cutoff) the ratio of false positives to true negatives
(decoys) (FFT) must be supplied. It is estimated for each run individually by pyProphet and con-
tained in the pyProphet statistics [Injection_name]_full_stat.csv. As an approximation, the FFTs of
multiple runs are averaged and supplied as argument FFT. For further details see the Vignette Sec-
tion 1.3 and 4.1. Protein FDR control on peak group quality level is a very strict filter and should be
handled with caution. FDR is calculated as FDR = (TN*FFT/T); TN=decoys, T=targets, FFT=see
above

Usage

assess_fdr_overall(
data,
FFT = 1,
n_range = 20,
output = "pdf_csv",
plot = TRUE,
filename = "FDR_report_overall",
score_col = "m_score"

)

convert4aLFQ 7

Arguments

data Data table that is produced by the OpenSWATH/pyProphet workflow

FFT Ratio of false positives to true negatives, q-values from [Injection_name]_full_stat.csv
in pyProphet stats output. As an approximation, the q-values of multiple runs
are averaged and supplied as argument FFT. Numeric from 0 to 1. Defaults to 1,
the most conservative value (1 Decoy indicates 1 False target).

n_range I am also not certain what this is, nor why 20 is the optimal default value, but I
think the idea is to set up a series of mscore thresholds.

output Choose output type. "pdf_csv" creates the output as files in the working direc-
tory, "Rconsole" triggers delivery of the output to the console enabling further
computation or custom plotting / output.

plot Logical, whether or not to create plots from the results (using the associated
method plot.fdr_table()

filename Optional, modifying the basename of the result files if applicable.

score_col Column that contains the score. Default. m_score

Value

Returns a list of class "fdr_table". If output "pdf_csv" and plot = TRUE were chosen, report files
are written to the working folder.

Author(s)

Moritz Heusel

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
assess_fdr_overall(data, FFT=0.7, output="Rconsole", plot=TRUE,

filename="Testoutput_assess_fdr_overall")
}

convert4aLFQ Convert table into the format expected by aLFQ.

Description

This function selects the columns necessary for the aLFQ R package.

Usage

convert4aLFQ(data, annotation = TRUE, check_transitions = TRUE)

8 convert4mapDIA

Arguments

data A data frame containing the SWATH data in transition-level format

annotation Option to indicate if the data has been annotated, i.e. if the columns Condition,
Replicate, Run are present. If option is set to true it will write a new run_id as a
string of the combination of these three columns.

check_transitions

Option if number of transitions should be checked. As input only transition-
level data should be used and therefore this is checked. However, this makes the
function slow and herewith be omitted.

Value

Returns a data frame in the appropriate format for aLFQ.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- SWATH2stats::sample_annotation(OpenSWATH_data, Study_design, verbose=TRUE)
data.filtered.decoy <- filter_mscore(data, 0.01)
raw <- disaggregate(data.filtered.decoy)
data.aLFQ <- convert4aLFQ(raw)
}

convert4mapDIA Convert table into the format for mapDIA

Description

This functions selects the columns necessary for mapDIA.

Usage

convert4mapDIA(data, RT = FALSE)

Arguments

data A data frame containing SWATH data.

RT Option to export the retention times.

Value

Returns a data frame in the appropriate format for mapDIA.

convert4MSstats 9

Note

The table must not contain any technical replica, the intensity of technical replica is averaged. This
function requires the package reshape2.

Author(s)

Peter Blattmann

References

Teo, G., et al. (2015). "mapDIA: Preprocessing and statistical analysis of quantitative proteomics
data from data independent acquisition mass spectrometry." J Proteomics 129: 108-120.

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
raw <- disaggregate(data.filtered.decoy)
data.mapDIA <- convert4mapDIA(raw, RT=TRUE)
}

convert4MSstats Get data ready for use by MSstats.

Description

Though SWATH2stats uses very similar format as MSstats, some coercion is required to convert the
data into the format for MSstats.

Usage

convert4MSstats(
data,
replace_values = TRUE,
replace_colnames = TRUE,
replace_unimod = TRUE

)

Arguments

data A data frame containing SWATH data.

replace_values Option to indicate if negative and 0 values should be replaced with NA.
replace_colnames

Option to indicate if column names should be renamed and columns reduced to
the necessary columns for MSstats.

replace_unimod Option to indicate if Unimod Identifier should be replaced from ":" to "_".

10 convert4PECA

Details

This functions selects the columns necessary for MSstats and renames them if necessary.

The necessary columns are selected and three columns renamed: FullPeptideName -> PeptideSe-
quence Charge -> PrecursorCharge filename -> File

Value

Returns a data frame in the appropriate format for MSstats.

Author(s)

Peter Blattmann

References

Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, Vitek O. MSstats: an R package
for statistical analysis of quantitative mass spectrometry-based proteomic experiments.Bioinformatics.
2014 Sep 1;30(17):2524-6. doi: 10.1093/bioinformatics/btu305.

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
raw <- disaggregate(data.filtered.decoy)
data.mapDIA <- convert4MSstats(raw)

convert4PECA Convert table into the format for ROPECA

Description

This functions selects the columns necessary for ROPECA.

Usage

convert4PECA(data)

Arguments

data A data frame containing SWATH data.

Value

Returns a data frame in the appropriate format for ROPECA.

Note

The table must not contain any technical replica, the intensity of technical replica is averaged. This
function requires the package reshape2.

convert4pythonscript 11

Author(s)

Peter Blattmann

References

Suomi, T. and Elo L.L. (2017). "Enhanced differential expression statistics for data-independent ac-
quisition proteomics" Scientific Reports 7, Article number: 5869.doi:10.1038/s41598-017-05949-y

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
data.PECA <- convert4PECA(data.filtered.decoy)

}

convert4pythonscript Convert data into the format for running a python script.

Description

This functions selects the columns suggested to run a python script to change the data from peptide-
level to transition-level.

Usage

convert4pythonscript(data, replace.Unimod = TRUE)

Arguments

data A data frame containing SWATH data.

replace.Unimod Option to indicate if Unimod Identifier should be replaced form ":"" to "_".

Details

The necessary columns are selected and the run column is renamed to filename for the script. The
intensities are taken from the column aggr_Peak_Area and therefore the Intensity column is not
exported.

Value

Returns a data frame in the appropriate format to be used by a custom python script stored in the
scripts folder.

Author(s)

Peter Blattmann

12 convert_protein_ids

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data,0.01)
data.pythonscript <- convert4pythonscript(data.filtered.decoy)

convert_protein_ids Convert protein ids

Description

This function renames protein ids in a data frame or file

Usage

convert_protein_ids(
data_table,
column_name = "Protein",
species = "hsapiens_gene_ensembl",
host = "https://www.ensembl.org",
mart = "ENSEMBL_MART_ENSEMBL",
ID1 = "uniprotswissprot",
ID2 = "hgnc_symbol",
id.separator = "/",
copy_nonconverted = TRUE,
verbose = FALSE

)

Arguments

data_table A data frame or file name.

column_name The column name where the original protein identifiers are present.

species The species of the protein identifiers in the term used by biomaRt (e.g. "hsapi-
ens_gene_ensembl", "mmusculus_gene_ensembl", "drerio_gene_ensembl", etc.)

host Path of the biomaRt database (e.g. "www.ensembl.org", "dec2017.archive.ensembl.org").

mart The type of mart (e.g. "ENSEMBL_MART_ENSEMBL", etc.)

ID1 The type of the original protein identifiers (e.g. "uniprotswissprot", "ensembl_peptide_id").

ID2 The type of the converted protein identifiers (e.g. "hgnc_symbol", "mgi_symbol",
"external_gene_name").

id.separator Separator between protein identifiers of shared peptides.
copy_nonconverted

Option defining if the identifiers that cannot be converted should be copied.

verbose Option to write a file containing the version of the database used.

Value

The data frame with an added column of the converted protein identifiers.

count_analytes 13

Note

Protein identifiers from shared peptides should be separated by a forward slash. The host of archived
ensembl databases can be introduced as well (e.g. "dec2017.archive.ensembl.org")

Author(s)

Peter Blattmann

Examples

Not run:
data_table <- data.frame(

"Protein" = c("Q01581", "P49327", "2/P63261/P60709"),
"Abundance" = c(100, 3390, 43423))

convert_protein_ids(data_table)

End(Not run)

count_analytes Counts the analytes across the different injections

Description

This functions counts the number of different peakgroups, peptides and proteins in different injec-
tions.

Usage

count_analytes(
data,
column_levels = c("transition_group_id", "FullPeptideName", "ProteinName"),
column_by = "run_id",
rm_decoy = TRUE

)

Arguments

data A data frame containing SWATH data.

column_levels Columns in which the number of unique identifiers should be counted.

column_by Column for which the different identifiers should be counted for, e.g. for the
different injections.

rm_decoy Option to not remove decoy before counting.

Value

Returns a data frame with the count of the different identifiers per e.g. injection.

Author(s)

Peter Blattmann

14 disaggregate

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
counts <- count_analytes(data)
}

disaggregate Transforms the SWATH data from a peptide- to a transition-level table.

Description

If the SWATH data should be analyzed on transition-level the data needs to be tranformed from
peptide-level table to a transition-level table (one row per transition instead of one row per pep-
tide). The columns "aggr_Fragment_Annotation" and "aggr_Peak_Area" are disaggregated into the
new columns "Fragmentation" and "Intensity". The following columns are renamed if they exist:
FullPeptideName -> PeptideSequence, Charge -> PrecursorCharge, Area -> Intensity, Fragment ->
Fragmentation, Sequence -> NakedSequence.

Usage

disaggregate(data, all.columns = FALSE)

Arguments

data A data frame containing SWATH data.

all.columns Option that all columns are processed. Otherwise only the columns typically
needed for downstream analysis are processed.

Value

Returns a data frame containing the SWATH data in a transition-level table.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
raw <- disaggregate(data.filtered.decoy)
}

filter_all_peptides 15

filter_all_peptides Select all proteins that are supported by peptides.

Description

This function can be used as opposed to the function "filter_proteotypic_peptides()". This function
counts all proteins (including proteins supported by non proteo-typic (i.e. shared) peptides). All
peptides (incl. non proteotypic peptides are selected. For the proteins supported by proteotypic
peptide the "1/" in front of the identifier is removed to facilitate further data processing. The protein
identifier of shared peptides needs to be separated by a slash "/".

Usage

filter_all_peptides(data)

Arguments

data A data frame containing SWATH data.

Value

Returns a data frame with the data from both proteotypic and non-proteotypic peptides.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
data.all <- filter_all_peptides(data.filtered.decoy)
}

filter_mscore Filter OpenSWATH output table based on mscore.

Description

This function filters the SWATH/DIA data according to a m_score value, as well as to the number
of occurence in the data (requant) and within a condition (condition).

Usage

filter_mscore(data, mscore, rm.decoy = TRUE, mscore.col = "m_score")

16 filter_mscore_condition

Arguments

data A data frame containing SWATH data.

mscore Value that defines the mscore threshold according to which the data will be
filtered.

rm.decoy Option to drop decoys from the data

mscore.col Defines the column from which to retrieve the m_score. If you use JPP (Rosen-
berger, Bludau et al. 2017) this can be used to select between Protein and tran-
sition_group m_score.

Value

Returns a data frame with the filtered data

Author(s)

Peter Blattmann

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered <- filter_mscore(data, 0.01)
data.filtered <- filter_mscore_freqobs(data, 0.01, 0.8)
data.filtered <- filter_mscore_condition(data, 0.01, 3)

filter_mscore_condition

Filter OpenSWATH output table according to mscore and conditions.

Description

This function filters the SWATH data according to the m_score value, as well as to the number of
occurence in the data (requant) and within a condition (condition).

Usage

filter_mscore_condition(
data,
mscore,
n_replica,
peptide_col = c("Peptide.Sequence", "FullPeptideName"),
charge_col = "Charge",
condition_col = "Condition",
rm.decoy = TRUE,
mscore.col = "m_score"

)

filter_mscore_fdr 17

Arguments

data A data frame containing SWATH data.
mscore Value that defines the mscore threshold according to which the data will be

filtered.
n_replica Number of measurements within at least one condition that have to pass the

mscore threshold for this transition.
peptide_col Column with peptide identifiers. Default: Peptide.Sequence or FullPeptide-

Name
charge_col Column with peptide charge. Default: Charge
condition_col Column with conditions. Default: Condition
rm.decoy Option to drop decoys from the data
mscore.col Defines the column from which to retrieve the m_score. If you use JPP (Rosen-

berger, Bludau et al. 2017) this can be used to select between Protein and tran-
sition_group m_score.

Value

Data which has been filtered.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered <- filter_mscore(data, 0.01)
data.filtered <- filter_mscore_freqobs(data, 0.01, 0.8)
data.filtered <- filter_mscore_condition(data, 0.01, 3)
}

filter_mscore_fdr Filter annotated OpenSWATH/pyProphet output table to achieve a
high FDR quality data matrix with controlled overall protein FDR and
quantitative values for all peptides mapping to these high-confidence
proteins (up to a desired overall peptide level FDR quality).

Description

This function controls the protein FDR over a multi-run OpenSWATH/pyProphet output table and
filters all quantitative values to a desired overall/global peptide FDR level. It first finds a suitable
m-score cutoff to minimally achieve a desired global FDR quality on a protein master list based on
the function mscore4protfdr. It then finds a suitable m-score cutoff to minimally achieve a desired
global FDR quality on peptide level based on the function mscore4pepfdr. Finally, it reports all
the peptide quantities derived based on the peptide level cutoff for only those peptides mapping to
the protein master list. It further summarizes the protein and peptide numbers remaining after the
filtering and evaluates the individual run FDR qualities of the peptides (and quantitation events)
selected.

18 filter_mscore_fdr

Usage

filter_mscore_fdr(
data,
FFT = 1,
overall_protein_fdr_target = 0.02,
upper_overall_peptide_fdr_limit = 0.05,
rm_decoy = TRUE,
score_col = "m_score"

)

Arguments

data Annotated OpenSWATH/pyProphet data table.

FFT Ratio of false positives to true negatives, q-values from [Injection_name]_full_stat.csv
in pyProphet stats output. As an approximation, the q-values of multiple runs
are averaged and supplied as argument FFT. Numeric from 0 to 1. Defaults to
1, the most conservative value (1 Decoy indicates 1 False target). For further
details see the Vignette Section 1.3 and 4.1.

overall_protein_fdr_target

FDR target for the protein master list for which quantitative values down to the
less strict peptide_fdr criterion will be kept/reported. Defaults to 0.02.

upper_overall_peptide_fdr_limit

Option to relax or tighten the false discovery rate limit.

rm_decoy Logical T/F, whether decoy entries should be removed after the analysis. De-
faults to TRUE. Can be useful to disable to track the influence on decoy fraction
by further filtering steps such as requiring 2 peptides per protein.

score_col Defines the column from which to retrieve the m_score. If you use JPP (Rosen-
berger, Bludau et al. 2017) this can be used to select between Protein and tran-
sition_group m_score.

Value

Returns a data frame with the filtered data.

Author(s)

Moritz Heusel

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.fdr.filtered<-filter_mscore_fdr(data, FFT=0.7,

overall_protein_fdr_target=0.02,
upper_overall_peptide_fdr_limit=0.1)

filter_mscore_freqobs 19

filter_mscore_freqobs Filter OpenSWATH output table according to mscore.

Description

This function filters the SWATH data according to the m_score value, as well as to the number of
occurence in the data.

Usage

filter_mscore_freqobs(
data,
mscore,
percentage = NULL,
rm.decoy = TRUE,
mscore.col = "m_score"

)

Arguments

data A data frame containing SWATH data.

mscore Value that defines the mscore threshold according to which the data will be
filtered.

percentage Percentage in which replicas the transition has to reach the mscore threshold.

rm.decoy Option to remove the decoys during filtering.

mscore.col Defines the column from which to retrieve the m_score. If you use JPP (Rosen-
berger, Bludau et al. 2017) this can be used to select between Protein and tran-
sition_group m_score.

Value

Returns a data frame with the filtered data.

Author(s)

Peter Blattmann

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered <- filter_mscore(data, 0.01)
data.filtered <- filter_mscore_freqobs(data, 0.01, 0.8)
data.filtered <- filter_mscore_condition(data, 0.01, 3)

20 filter_on_max_peptides

filter_on_max_peptides

Filter only for the highest intense peptides

Description

In order to reduce the data, the data is filtered only for the proteins with the highest intensity pep-
tides.

Usage

filter_on_max_peptides(
data,
n_peptides,
protein_col = "ProteinName",
peptide_col = c("Peptide.Sequence", "FullPeptideName"),
rm.decoy = TRUE

)

Arguments

data A data frame containing SWATH data with the column names: ProteinNames,
PeptideSequence, PrecursorCharge, Intensity.

n_peptides Maximum number of highest intense peptides to filter the data on.

protein_col Column with protein identifiers. Default: ProteinName

peptide_col Column with peptide identifiers. Default: Peptide.Sequence or FullPeptide-
Name

rm.decoy Option to remove the decoys during filtering.

Value

Returns a data frame of the filtered data.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered <- filter_mscore_freqobs(data, 0.01,0.8)
data.max <- filter_on_max_peptides(data.filtered, 5)
}

filter_on_min_peptides 21

filter_on_min_peptides

Filter openSWATH output for proteins that are identified by a minimum
of n independent peptides.

Description

This function removes entries mapping to proteins that are identified by less than n_peptides. Re-
moving single-hit proteins from an analysis can significantly increase the sensitivity under strict
protein fdr criteria, as evaluated by e.g. assess_fdr_overall.

Usage

filter_on_min_peptides(
data,
n_peptides,
protein_col = "ProteinName",
peptide_col = c("Peptide.Sequence", "FullPeptideName"),
rm.decoy = TRUE

)

Arguments

data Data table that is produced by the OpenSWATH/iPortal workflow.

n_peptides Number of minimal number of peptide IDs associated with a protein ID in order
to be kept in the dataset.

protein_col Column with protein identifiers. Default: ProteinName

peptide_col Column with peptide identifiers. Default: Peptide.Sequence or FullPeptide-
Name

rm.decoy Option to remove the decoys during filtering.

Value

Returns the filtered data frame with only peptides that map to proteins with >= n_peptides peptides.

Author(s)

Moritz Heusel, Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered <- filter_mscore_freqobs(data, 0.01,0.8)
data.max <- filter_on_max_peptides(data.filtered, 5)
data.min.max <- filter_on_min_peptides(data.max, 3)
}

22 import_data

filter_proteotypic_peptides

Filter for proteins that are supported by proteotypic peptides.

Description

Peptides can match to several proteins. With this function proteotypic peptides, peptides that are
only contained in one protein are selected. Additionally the number of proteins are counted and
printed.

Usage

filter_proteotypic_peptides(data, rm.decoy = TRUE)

Arguments

data A data frame containing SWATH data.

rm.decoy Option to remove the decoys during filtering.

Value

Returns a data frame with only the data supported by proteotypic peptides.

Author(s)

Peter Blattmann

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
data.all <- filter_proteotypic_peptides(data.filtered.decoy)

import_data Transforms the column names from a data frame to the required for-
mat.

Description

This functions transforms the column names from a data frame from another format to a data frame
with column names used by the OpenSWATH output and required for these functions. During
executing of the function the corresponding columns for each column in the data need to be selected.
For columns that do not corresond to a certain column ’not applicable’ needs to be selected and the
column names are not changed.

Usage

import_data(data)

JPP_update 23

Arguments

data A data frame containing the SWATH-MS data (one line per peptide precursor
quantified) but with different column names.

Value

Returns the data frame in the appropriate format.

Note

List of column names of the OpenSWATH data: ProteinName: Unique identifier for protein or pro-
teingroup that the peptide maps to. Proteotypic peptides should be indicated by 1/ in order to be
recognized as such by the function filter_proteotypic_peptides. FullPeptideName: Unique identifier
for the peptide. Charge: Charge of the peptide precursor ion quantified. Sequence: Naked peptide
sequence without modifications. aggr_Fragment_Annotation: aggregated annotation for the differ-
ent Fragments quantified for this peptide. In the OpenSWATH results the different annotation in
OpenSWATH are concatenated by a semicolon. aggr_Peak_Area: aggregated Intensity values for
the different Fragments quantified for this peptide. In the OpenSWATH results the aggregated Peak
Area intensities are concatenated by a semicolon. transition_group_id: A unique identifier for each
transition group used. decoy: Indicating with 1 or 0 if this transition group is a decoy. m_score:
Column containing the score that is used to estimate FDR or filter. M-score values of identified
peak groups are equivalent to a q-value and thus typically are smaller than 0.01, depending on the
confidence of identification (the lower the m-score, the higher the confidence). Column containing
the score that is used to estimate FDR or filter. RT: Column containing the retention time of the
quantified peak. filename: Column containing the filename or a unique identifier for each injection.
Intensity: column containing the intensity value for each quantified peptide. Columns needed for
FDR estimation and filtering functions: ProteinName, FullPeptideName, transition_group_id, de-
coy, m_score Columns needed for conversion to transition-level format (needed for MSStats and
mapDIA input): aggr_Fragment_Annotation, aggr_Peak_Are

Author(s)

Peter Blattmann

Examples

data('Spyogenes', package = 'SWATH2stats')
head(data)
str(data)

JPP_update Select alternate m_score column in JPP data and avert user

Description

The output from JPP (Rosenberger, Bludau et al. 2017) has not anymore the m_score column but
an ProteinName_m_score and transition_group_id_m_score. To make the users aware this func-
tion tests if the m_score column still exists and selects as default the transition_group_id_m_score
column.

24 load_mart

Usage

JPP_update(data, mscore_col)

Arguments

data Data table that is produced by the OpenSWATH/pyProphet workflow

mscore_col Defines the column from which to retrieve the m_score. If you use JPP (Rosen-
berger, Bludau et al. 2017) this can be used to select between Protein and tran-
sition_group m_score.

Value

Returns the mscore_col that might have been changed to transition_group_id_m_score and gives a
message to the user.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
JPP_update(OpenSWATH_data, "m_score")
}

load_mart Establish connection to biomaRt database

Description

This function establishes a connection to a biomart database.

Usage

load_mart(species, ensembl.path = "www.ensembl.org", mart, verbose = FALSE)

Arguments

species The species of the protein identifiers in the term used by biomaRt (e.g. "hsapi-
ens_gene_ensembl", "mmusculus_gene_ensembl", "drerio_gene_ensembl", etc.)

ensembl.path Ensembl host to connect to. Default: www.ensembl.org

mart The type of mart (e.g. "ENSEMBL_MART_ENSEMBL", etc.)

verbose print a summary of the ensembl connection.

Value

Connection for performing biomart queries.

Author(s)

Peter Blattmann

mscore4assayfdr 25

Examples

{
data_table <- data.frame(Protein = c("Q01581", "P49327", "2/P63261/P60709"),

Abundance = c(100, 3390, 43423))
mart <- convert_protein_ids(data_table)
}

mscore4assayfdr Find m_score cutoff to reach a desired FDR on assay level (over the
entire OpenSWATH/pyProphet output table)

Description

This function estimates the m_score cutoff required in a dataset to reach a given overall assay level
FDR. It counts target and decoy assays at high resolution across the m_score cutoffs and reports a
useful m_score cutoff - assay FDR pair close to the supplied fdr_target level over the entire dataset.
The m_score cutoff is returned by the function and can be used in the context of the filtering func-
tions, e.g.: data.assayFDR1pc<-filter_mscore(data, mscore4assayfdr(data, fdr_target=0.01)) To ar-
rive from decoy counts at an estimation of the false discovery rate (false positives among the targets
remaining at a given mscore cutoff) the ratio of false positives to true negatives (decoys) (FFT) must
be supplied. It is estimated for each run individually by pyProphet and contained in the pyProphet
statistics [Injection_name]_full_stat.csv. As an approximation, the FFTs of multiple runs are av-
eraged and supplied as argument FFT. For further details see the Vignette Section 1.3 and 4.1.
For FDR evaluations on peptide and protein level, please refer to functions mscore4pepfdr and
mscore4protfdr.

Usage

mscore4assayfdr(data, FFT = 1, fdr_target = 0.01, mscore.col = "m_score")

Arguments

data Annotated OpenSWATH/pyProphet data table. See function sample_annotation
from this package.

FFT Ratio of false positives to true negatives, q-values from [Injection_name]_full_stat.csv
in pyProphet stats output. As an approximation, the q-values of multiple runs
are averaged and supplied as argument FFT. Numeric from 0 to 1. Defaults to 1,
the most conservative value (1 Decoy indicates 1 False target).

fdr_target Assay FDR target, numeric, defaults to 0.01. An m_score cutoff achieving an
FDR < fdr_target will be selected. Calculated as FDR = (TN*FFT/T); TN=decoys,
T=targets, FFT=see above.

mscore.col Column name containing the computed m scores.

Value

Returns the m_score cutoff selected to arrive at the desired FDR

Author(s)

Moritz Heusel

26 mscore4pepfdr

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
chosen <- mscore4assayfdr(data, FFT=0.7, fdr_target=0.01)

mscore4pepfdr Find m_score cutoff to reach a desired FDR on peptide level (over the
entire OpenSWATH/pyProphet output table)

Description

This function estimates the m_score cutoff required in a dataset to reach a given overall pep-
tide level FDR. It counts target and decoy peptides (unique FullPeptideName) at high resolution
across the m_score cutoffs and reports a useful m_score cutoff - peptide FDR pair close to the
supplied fdr_target level over the entire dataset. The m_score cutoff is returned by the function
and can be used in the context of the filtering functions, e.g.: data.pepFDR2pc<-filter_mscore(data,
mscore4pepfdr(data, fdr_target=0.02)) To arrive from decoy counts at an estimation of the false dis-
covery rate (false positives among the targets remaining at a given mscore cutoff) the ratio of false
positives to true negatives (decoys) (FFT) must be supplied. It is estimated for each run individu-
ally by pyProphet and contained in the pyProphet statistics [Injection_name]_full_stat.csv. As an
approximation, the FFTs of multiple runs are averaged and supplied as argument FFT. For further
details see the Vignette Section 1.3 and 4.1. For FDR evaluations on assay and protein level, please
refer to functions mscore4assayfdr and mscore4protfdr

Usage

mscore4pepfdr(data, FFT = 1, fdr_target = 0.01, mscore.col = "m_score")

Arguments

data Annotated OpenSWATH/pyProphet data table. See function sample_annotation
from this package.

FFT Ratio of false positives to true negatives, q-values from [Injection_name]_full_stat.csv
in pyProphet stats output. As an approximation, the q-values of multiple runs
are averaged and supplied as argument FFT. Numeric from 0 to 1. Defaults to 1,
the most conservative value (1 Decoy indicates 1 False target).

fdr_target FDR target, numeric, defaults to 0.01. An m_score cutoff achieving an FDR
< fdr_target will be selected. Calculated as FDR = (TN*FFT/T); TN=decoys,
T=targets, FFT=see above.

mscore.col column in the data containing the m score data.

Value

Returns the m_score cutoff selected to arrive at the desired FDR

Author(s)

Moritz Heusel

mscore4protfdr 27

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
chosen <- mscore4pepfdr(data, FFT=0.7, fdr_target=0.01)

mscore4protfdr Find m_score cutoff to reach a desired FDR on protein level (over the
entire OpenSWATH/pyProphet output table)

Description

This function estimates the m_score cutoff required in a dataset to reach a given overall protein
level FDR. This filter is to be used with caution as the resulting quantitative matrix is relatively
sparse. It can be filled with quantitative values at a lower FDR quality level. It counts target and
decoy peptides (unique ProteinName) at high resolution across the m_score cutoffs and reports
a useful m_score cutoff - peptide FDR pair close to the supplied fdr_target level over the entire
dataset. The m_score cutoff is returned by the function and can be used in the context of the filtering
functions, e.g.: data.protFDR5pc<-filter_mscore(data, mscore4protfdr(data, fdr_target=0.02)) To
arrive from decoy counts at an estimation of the false discovery rate (false positives among the
targets remaining at a given mscore cutoff) the ratio of false positives to true negatives (decoys)
(FFT) must be supplied. It is estimated for each run individually by pyProphet and contained in
the pyProphet statistics [Injection_name]_full_stat.csv. As an approximation, the FFTs of multiple
runs are averaged and supplied as argument FFT. For further details see the Vignette Section 1.3
and 4.1. For FDR evaluations on assay and peptide level, please refer to functions mscore4assayfdr
and mscore4pepfdr.

Usage

mscore4protfdr(data, FFT = 1, fdr_target = 0.02, mscore.col = "m_score")

Arguments

data Annotated OpenSWATH/pyProphet data table. See function sample_annotation
from this package.

FFT Ratio of false positives to true negatives, q-values from [Injection_name]_full_stat.csv
in pyProphet stats output. As an approximation, the q-values of multiple runs
are averaged and supplied as argument FFT. Numeric from 0 to 1. Defaults to 1,
the most conservative value (1 Decoy indicates 1 False target).

fdr_target FDR target, numeric, defaults to 0.01. An m_score cutoff achieving an FDR
< fdr_target will be selected. Calculated as FDR = (TN*FFT/T); TN=decoys,
T=targets, FFT=see above.

mscore.col Column containing the mscore data.

Value

Returns the m_score cutoff selected to arrive at the desired FDR quality.

Author(s)

Moritz Heusel

28 plot.fdr_cube

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
chosen <- mscore4protfdr(data, FFT=0.7, fdr_target=0.01)

MSstats_data Testing dataset in MSstats format.

Description

A small table with the column names corresponding to the MSstats format. This data is intended
only to test functions.

Author(s)

Peter Blattmann

OpenSWATH_data Testing dataset from OpenSWATH.

Description

A small selection of the data obtained from the iPortal pipeline for an SWATH/DIA experiment
with perturbations relating to cholesterol regulation. Protein and Peptides have been anonymized as
the data is unpublished. The FDR version of the test data contains modified (lowered) decoy peak
group m_scores to simulate FDR behaviour of a large dataset.

Author(s)

Peter Blattmann

plot.fdr_cube S3 plot function for FDR assessment result arrays

Description

This function creates standard plots from result arrays as produced by e.g. the function assess_fdr_byrun(),
visualizig assay, peptide and protein level FDR for each run at m-score cutoffs 1e-2 and 1e-3. Fur-
thermore, Target and Decoy ID numbers are visualized.

Usage

S3 method for class 'fdr_cube'
plot(
x,
output = "Rconsole",
filename = "FDR_report_byrun",
plot_mscore_levels = c(0.01, 0.001),
...

)

plot.fdr_table 29

Arguments

x Array of by-run FDR assessment results as produced e.g. by the function as-
sess_fdr_byrun() from this package.

output Choose output type. "pdf_csv" creates the output as files in the working direc-
tory, "Rconsole" triggers delivery of the output to the console enabling further
computation and/or custom plotting / output.

filename Basename for output files to be created (if output = "pdf_csv" has been selected).

plot_mscore_levels

Define m-score levels to plot the estimated FDR results.

... Extra arguments passed on to functions inside this.

Value

Plots in Rconsole or report files.

Author(s)

Moritz Heusel

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
x <- assess_fdr_byrun(data, FFT=0.7, output="Rconsole", plot=FALSE)
retlist <- plot(x, output="Rconsole", filename="Assess_fdr_byrun_testplot",

plot_mscore_levels=0.01)
}

plot.fdr_table S3 plot function for results of class "fdr_table" as produced by e.g. the
function assess_fdr_overall()

Description

This function created standard plots from results of class "fdr_table" as produced by e.g. the func-
tion assess_fdr_overall() visualizig ID numbers in dependence of estimated FDR and also estimated
FDR in dependence of m_score cutoff.

Usage

S3 method for class 'fdr_table'
plot(x, output = "Rconsole", filename = "FDR_report_overall", ...)

30 plot_correlation_between_samples

Arguments

x List of class "fdr_table" as produced e.g. by the function assess_fdr_overall()
from this package.

output Choose output type. "pdf_csv" creates the output as files in the working direc-
tory, "Rconsole" triggers delivery of the output to the console enabling further
computation or custom plotting / output.

filename Basename for output files to be created (if output = "pdf_csv" has been selected).

... Extra arguments passed on to functions inside this.

Value

Plots in Rconsole or report files.

Author(s)

Moritz Heusel

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
x <- assess_fdr_overall(data, FFT=0.7, output="Rconsole", plot=FALSE)
plot(x, output="Rconsole", filename="Assess_fdr_overall_testplot")
}

plot_correlation_between_samples

Plots the correlation between injections.

Description

This function plots the Pearson’s and Spearman correlation between samples. If decoys are present
these are removed before plotting.

Usage

plot_correlation_between_samples(
data,
column_values = "Intensity",
comparison = transition_group_id ~ Condition + BioReplicate,
fun_aggregate = NULL,
label = TRUE,
...

)

plot_variation 31

Arguments

data Data frame that is produced by the OpenSWATH/pyProphet workflow.

column_values Indicates the columns for which the correlation is assessed. This can be the
Intensity or Signal, but also the retention time.

comparison The comparison for assessing the variability. Default is to assess the variability
per transition_group_id over the different Condition and Replicates. Compari-
son is performed using the dcast() function of the reshape2 package.

fun_aggregate If for the comparison values have to be aggregated one needs to provide the
function here.

label Option to print correlation value in the plot.

... Further arguments passed to methods.

Value

Plots in Rconsole a correlation heatmap and returns the data frame used to do the plotting.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
information <- plot_correlation_between_samples(data)

}

plot_variation Plots the coefficient of variation for different replicates.

Description

This function plots the coefficient of variation within replicates for a given value. If decoys are
present these are removed before plotting.

Usage

plot_variation(
data,
column.values = "Intensity",
comparison = transition_group_id + Condition ~ BioReplicate,
fun_aggregate = NULL,
label = FALSE,
title = "cv across conditions",
boxplot = TRUE,
...

)

32 plot_variation_vs_total

Arguments

data Data frame that is produced by the OpenSWATH/pyProphet workflow.

column.values Indicates the columns for which the variation is assessed. This can be the Inten-
sity or Signal, but also the retention time.

comparison The comparison for assessing the variability. Default is to assess the variability
per transition_group_id and Condition over the different Replicates. Compari-
son is performed using the dcast() function of the reshape2 package.

fun_aggregate If for the comparison values have to be aggregated one needs to provide the
function here.

label Option to print value of median cv.

title Title of plot. Default: "cv across conditions"

boxplot Logical. If boxplot should be plotted. Default: TRUE

... further arguments passed to method.

Value

Returns a list with the data and calculated cv and a table that summarizes the mean, median and
mode cv per Condition (if Condition is contained in the comparison). In addition it plots in Rconsole
a violin plot with the observed coefficient of variations.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
var_summary <- plot_variation(data)
}

plot_variation_vs_total

Plots the total variation versus variation within replicates

Description

This function plots the total variation and the variation within replicates for a given value. If decoys
are present these are removed before plotting.

Usage

plot_variation_vs_total(
data,
column.values = "Intensity",
comparison1 = transition_group_id ~ BioReplicate + Condition,
comparison2 = transition_group_id + Condition ~ BioReplicate,

plot_variation_vs_total 33

fun_aggregate = NULL,
label = FALSE,
title = "coefficient of variation - total versus within replicates",
boxplot = TRUE,
...

)

Arguments

data Data table that is produced by the OpenSWATH/pyProphet workflow.

column.values Indicates the columns for which the variation is assessed. This can be the Inten-
sity or Signal, but also the retention time.

comparison1 The comparison for assessing the total variability. Default is to assess the vari-
ability per transition_group_id over the combination of Replicates and different
Conditions.

comparison2 The comparison for assessing the variability within the replicates. Default is to
assess the variability per transition_group_id and Condition over the different
Replicates.

fun_aggregate If depending on the comparison values have to be aggregated one needs to pro-
vide the function here. (I think this should be sum, yesno?)

label Option to print value of median cv.

title Title of plot. Default: "cv across conditions"

boxplot Logical. If boxplot should be plotted. Default: TRUE

... Arguments passed through, currently unused.

Value

Plots in Rconsole a violin plot comparing the total variation with the variation within replicates. In
addition it returns the data frame from which the plotting is done and a table with the calculated
mean, median and mode of the cv for the total or replicate data.

Author(s)

Peter Blattmann

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
var_summary <- plot_variation_vs_total(data)
}

34 reduce_OpenSWATH_output

reduce_OpenSWATH_output

Reduce columns of OpenSWATH data

Description

This function selects the columns from the standard OpenSWATH output to column needed for
MSstats, aLFQ and mapDIA.

Usage

reduce_OpenSWATH_output(data, column.names = NULL)

Arguments

data A data frame containing SWATH data.

column.names A vector of column names that can be selected.

Value

Returns a data frame with the selected columns.

Note

A basic set of columns are defined in the function and are used if no column names are indicated.

The column.names can be omitted and then the following columns are selected that are needed for
MSstats and mapDIA analysis: ProteinName, FullPeptideName, Sequence, Charge, aggr_Fragment_Annotation,
aggr_Peak_Area, filename, m_score, decoy, Intensity, RT. This function should be ommitted if the
data is analyzed afterwards with the aLFQ or imsbInfer package that needs further columns.

Author(s)

Peter Blattmann

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered <- reduce_OpenSWATH_output(data)

removeDecoyProteins 35

removeDecoyProteins Removes decoy proteins from the protein group label

Description

There exist peptides annotated as protein groups with 2/ProteinA/DECOY_ProteinB. However these
are in principal proteotypic peptides and should be annoated 1/ProteinA. This function changes
these labels accordingly. The subfunction rmDecoyProt removes the Decoy protein, calling re-
moveDecoyProteins also changes the nubmer before the protein group accordingly.

Usage

removeDecoyProteins(data, column = "ProteinName", decoy_string = "DECOY")

Arguments

data A data frame containing SWATH data.

column Column to query for decoy string

decoy_string String defining a decoy. Default: DECOY

Value

Returns a data frame with changed protein labels

Author(s)

Moritz Heusel

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
data.2 <- removeDecoyProteins(data.filtered.decoy)

rmDecoyProt Subfunction to remove decoys

Description

Subfunction to remove decoys

Usage

rmDecoyProt(x, decoy_string = "DECOY")

Arguments

x proteinname string to query.

decoy_string String defining a decoy

36 sample_annotation

Value

returns string without elements containing the decoy string

sample_annotation Annotate the SWATH data with the sample information

Description

For statistical analysis and filtering the measurements need to be annotated with Filename, Condi-
tion, BioReplicate, and Run. This functions takes this information from a txt file containing this
meta-data.

Usage

sample_annotation(
data,
sample_annotation,
data_type = "OpenSWATH",
column_file = "filename",
change_run_id = TRUE,
verbose = FALSE

)

Arguments

data A data frame containing SWATH data.
sample_annotation

A data frame containing the columns: Filename, Condition, BioReplicate, Run.
The values contained in the column filename have to be present in the filename
of the SWATH data.

data_type Option to specify the format of the table, if the column names from an OpenSWATH
output or MSstats table are used.

column_file Option to specify the column name where the injection file is specified. Default
is set to "filename".

change_run_id Option to choose if the run_id column shall be reassigned to a unique value com-
bining the values of Condition, BioReplicate and Run. (Option only possible if
data is of format "OpenSWATH")

verbose Option to turn on reporting on which filename it is working on.

Details

Given dataframes of TRIC processed data and sample annotations, mash them together into some-
thing appropriate for downstream analyses.

This performs some quick sanity checks on the data and annotations and creates the ’Condition’,
’BioReplicate’, and ’Run’ columns along with other columns expected by MSstats/OpenSWATH.

Value

Returns a dataframe with each row annotated for the study design

Spyogenes 37

Author(s)

Peter Blattmann

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- SWATH2stats::sample_annotation(OpenSWATH_data, Study_design, verbose=TRUE)
summary(data)

Spyogenes S.pyogenes example data.

Description

A table containing SWATH-MS data from S.pyogenes. This table was generated from the origi-
nal data deposited on PeptideAtlas (PASS00289, file "rawOpenSwathResults_1pcnt_only.tsv") by
selecting only the column necessary for the SWATH2stats.

References

Rost, H. L., et al. (2014). OpenSWATH enables automated, targeted analysis of data-independent
acquisition MS data. Nat Biotechnol 32(3): 219-223.

Study_design A table containing the meta-data defining the study design of the
OpenSWATH data.

Description

This table contains a unique identifier in the column "Filename" corresponding to the filename in the
SWATH data. In the column "Condition" the perturbation performed is described. In the column
"BioReplicate" the biological replicate is indicated. In the column "Run" a unique identifier for
each injection. Technical injections would have different Run numbers but the same BioReplicate
number.

Author(s)

Peter Blattmann

38 unifyProteinGroupLabels

transform_MSstats_OpenSWATH

Transforms column names to OpenSWATH column names

Description

This functions transforms the column names from a data frame in MSstats format to a data frame
with column names used by the OpenSWATH output. The original table needs to contain at least the
10 columns defined by MSstats: ProteinName, PeptideSequence, PrecursorCharge, Fragmentation,
ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity.)

Usage

transform_MSstats_OpenSWATH(data)

Arguments

data A data frame containing the SWATH data in the MSstats format

Value

The data frame in the appropriate format.

Author(s)

Peter Blattmann

References

Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, Vitek O. MSstats: an R package
for statistical analysis of quantitative mass spectrometry-based proteomic experiments.Bioinformatics.
2014 Sep 1;30(17):2524-6. doi: 10.1093/bioinformatics/btu305.

Examples

data("MSstats_data", package="SWATH2stats")
transformed <- transform_MSstats_OpenSWATH(MSstats_data)

unifyProteinGroupLabels

Unify the protein group labels.

Description

Unify the protein group labels (2/ProteinA/ProteinB and 2/ProteinB/ProteinA) to one common label
(e.g. 2/ProteinA/ProteinB)

Usage

unifyProteinGroupLabels(data, column = "ProteinName")

validate_columns 39

Arguments

data A data frame containing SWATH data.

column Which column to use for unifying the protein group identifiers.

Value

Returns a data frame with the unififed protein labels.

Author(s)

Moritz Heusel

Examples

data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
data.filtered.decoy <- filter_mscore(data, 0.01)
data.unified <- unifyProteinGroupLabels(data.filtered.decoy)

validate_columns Validate columns for a data.frame

Description

This function looks at the different possible column names given and chooses the one present in
a data.frame. If none of the column names fit or if multiple names fit the function stops with an
appropriate error message. The functions returns a list with the column names existing that can be
used.

Usage

validate_columns(data, columns, verbose = FALSE)

Arguments

data data.frame to check for columns.

columns List of column names to be checked if they exist.

verbose Logical if message should be printed. Default = FALSE

Value

Returns list of columns that are present

Author(s)

Peter Blattmann

40 write_matrix_peptides

Examples

{
validate_columns(cars, list(Speed = c("speed")))

if out of two possible column one exists
validate_columns(cars, list(Speed = c("speed", "velocity")))
validate_columns(cars, list(Speed = c("speed", "velocity")), verbose = TRUE)

}

write_matrix_peptides Writes out an overview matrix of peptides mapping to a FDR quality
controlled protein master list at controlled global peptide FDR quality.

Description

Writes out an overview matrix on peptide level of a supplied (unfiltered or prefiltered) OpenSWATH
results data frame. The peptide quantification is achieved by summing the areas under all 6 transi-
tions per precursor and summing all precursors per FullPeptideName. In order to keep the peptide-
to-protein association, the FullPeptideName is joined with the ProteinName.

Usage

write_matrix_peptides(
data,
write_csv = FALSE,
fun_aggregate = "sum",
filename = "SWATH2stats_overview_matrix_peptidelevel.csv",
rm_decoy = FALSE

)

Arguments

data A data frame containing annotated OpenSWATH/pyProphet data.

write_csv Option to determine if table should be written automatically into csv file.

fun_aggregate What function to use when aggregating the set of intensities (sum or mean)?.
Default: sum.

filename File base name of the .csv matrix written out to the working folder.

rm_decoy Logical whether decoys will be removed from the data matrix. Defaults to
FALSE. It’s sometimes useful to know how decoys behave across a dataset and
how many you allow into your final table with the current filtering strategy.

Value

the peptides as a matrix! also output .csv matrix is written to the working folder.

Author(s)

Moritz Heusel

write_matrix_proteins 41

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
written <- write_matrix_peptides(data)
}

write_matrix_proteins Writes out an overview matrix of summed signals per protein identifier
(lines) over run_id(columns).

Description

Writes out an overview matrix on protein level of a supplied (unfiltered or filtered) OpenSWATH
results data frame. The protein quantification is achieved by summing the areas under all 6 transi-
tions per precursor, summing all precursors per FullPeptideName and all FullPeptideName signals
per ProteinName entry. This function does not select consistently quantified or top peptides but
sums all signals availabe that may or may not originate from the same set of peptides across differ-
ent runs. A more detailed overview can be generated using the function write_matrix_peptides().
Peptide selection can be achieved upstream using e.g. the functions filter_mscore_requant(), fil-
ter_on_max_peptides() and filter_on_min_peptides().

Usage

write_matrix_proteins(
data,
write_csv = FALSE,
fun_aggregate = "sum",
filename = "SWATH2stats_overview_matrix_proteinlevel.csv",
rm_decoy = FALSE

)

Arguments

data A data frame containing annotated OpenSWATH/pyProphet data.

write_csv Option to determine if table should be written automatically into csv file.

fun_aggregate What function to use when aggregating the set of intensities (sum or mean)?.
Default: sum.

filename File base name of the .csv matrix written out to the working folder

rm_decoy Logical whether decoys will be removed from the data matrix. Defaults to
FALSE. It’s sometimes useful to know how decoys behave across a dataset and
how many you allow into your final table with the current filtering strategy.

Value

the peptides as a matrix, also output .csv matrix is written to the working folder

Author(s)

Moritz Heusel

42 write_matrix_proteins

Examples

{
data("OpenSWATH_data", package="SWATH2stats")
data("Study_design", package="SWATH2stats")
data <- sample_annotation(OpenSWATH_data, Study_design)
written <- write_matrix_proteins(data)
}

Index

add_genesymbol, 3
assess_decoy_rate, 4
assess_fdr_byrun, 5
assess_fdr_overall, 6

convert4aLFQ, 7
convert4mapDIA, 8
convert4MSstats, 9
convert4PECA, 10
convert4pythonscript, 11
convert_protein_ids, 12
count_analytes, 13

data (OpenSWATH_data), 28
disaggregate, 14

filter_all_peptides, 15
filter_mscore, 15
filter_mscore_condition, 16
filter_mscore_fdr, 17
filter_mscore_freqobs, 19
filter_on_max_peptides, 20
filter_on_min_peptides, 21
filter_proteotypic_peptides, 22

import_data, 22

JPP_update, 23

load_mart, 24

mscore4assayfdr, 25
mscore4pepfdr, 26
mscore4protfdr, 27
MSstats_data, 28

OpenSWATH_data, 28

plot.fdr_cube, 28
plot.fdr_table, 29
plot_correlation_between_samples, 30
plot_variation, 31
plot_variation_vs_total, 32

reduce_OpenSWATH_output, 34

removeDecoyProteins, 35
rmDecoyProt, 35

sample_annotation, 36
Spyogenes, 37
Study_design, 37

transform_MSstats_OpenSWATH, 38

unifyProteinGroupLabels, 38

validate_columns, 39

write_matrix_peptides, 40
write_matrix_proteins, 41

43

	add_genesymbol
	assess_decoy_rate
	assess_fdr_byrun
	assess_fdr_overall
	convert4aLFQ
	convert4mapDIA
	convert4MSstats
	convert4PECA
	convert4pythonscript
	convert_protein_ids
	count_analytes
	disaggregate
	filter_all_peptides
	filter_mscore
	filter_mscore_condition
	filter_mscore_fdr
	filter_mscore_freqobs
	filter_on_max_peptides
	filter_on_min_peptides
	filter_proteotypic_peptides
	import_data
	JPP_update
	load_mart
	mscore4assayfdr
	mscore4pepfdr
	mscore4protfdr
	MSstats_data
	OpenSWATH_data
	plot.fdr_cube
	plot.fdr_table
	plot_correlation_between_samples
	plot_variation
	plot_variation_vs_total
	reduce_OpenSWATH_output
	removeDecoyProteins
	rmDecoyProt
	sample_annotation
	Spyogenes
	Study_design
	transform_MSstats_OpenSWATH
	unifyProteinGroupLabels
	validate_columns
	write_matrix_peptides
	write_matrix_proteins
	Index

