Package ‘STATegRa’

January 20, 2026

Type Package
Title Classes and methods for multi-omics data integration

Version 1.46.0
Date 2018-05-02
Author STATegra Consortia

Maintainer David Gomez-
Cabrero <david.gomezcabrero@ki.se>, Niria Planell <nuria.planell.picola@navarra.es>

Depends R (>=2.10)

Imports Biobase, gridExtra, ggplot2, methods, stats, grid, MASS,
calibrate, gplots, edgeR, limma, foreach, affy

Suggests RUnit, BiocGenerics, knitr (>= 1.6), rmarkdown, BiocStyle (>=
1.3), roxygen2, doSNOW

VignetteBuilder knitr
Encoding UTF-8

biocViews Software, StatisticalMethod, Clustering, DimensionReduction,
PrincipalComponent

Description Classes and tools for multi-omics data integration.
License GPL-2
LazyLoad yes

Collate 'STATegRa_combiningMappings.R' 'STATegRa_fused.R'
'STATegRa_holistOmics.R' 'STATegRa_omicsCLUST_bioMap.R'
'STATegRa_omicsCLUST_bioDist.R'
'STATegRa_omicsCLUST_bioDistW.R' 'STATegRa_omicsNPC.R'
'STATegRa_omicsNPC_internal.R' 'STATegRa_omicsPCA_caClass.R'
'STATegRa_omicsPCA_methods.R' 'STATegRa_omicsPCA_plotting.R’
'STATegRa_package.R'

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/STATegRa
git_branch RELEASE_3_22

git_last commit 5d45aa5

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

2 bioDist

Contents
bioDIiSt e e 2
bioDistclass e e 5
bioDistFeature e e 5
bioDistFeaturePlot 7
bioDistW . . . e e e 9
bioDistWPlot 10
bioMap 12
caClass-Class e 13
combiningMappings e e e e e e e e e e 14
createOmicsExpressionSet 15
getlnitialData L. 16
gethoadings L. e 17
getMethodInfo 18
getPreprocessing 19
GEtSCOTeS 20
getVAF . . e 21
holistOmiCS o e e e e e e 22
modelSelection L. e e e 23
omicsCompAnalysis e 24
omicsNPC e 25
plotRes 27
PIOtVAF . . . e e e 29
STATegRa e e e e 30
STATegRa-defunct e 31
STATegRaUsersGuide i i it e e e 31
STATegRa_data e 32
STATegRa_data_ TCGA_BRCA 32

Index 34

bioDist bioDist
Description

Function to compute a bioDistclass object from profile data and a mapping. For details of the
process see the user’s guide, but briefly the process involves using the mapping to identify reference
features appropriate to each surrogate feature (if any), aggregating the surrogate data into pseudo-
data for each reference feature, and then calculating the correlation distance between the reference
features according to the surrogate data.

Usage

bioDist(referenceFeatures=NULL, reference=NULL, mapping=NULL,

referenceData=NULL, surrogateData=NULL, filtering=NULL,
noMappingDist=NA, distance="spearman”, aggregation="sum",
maxitems=NULL, selectionRule="maxFC", expfac=NULL,
name=NULL, ...)

bioDist 3

Arguments

referenceFeatures
subset of features to be considered for the computation of the distances. If
NULL then the features are first gathered from the features in referenceData.
If referenceData is not provided then the list of features are gathered from map-
ping (bioMap class) and using the reference.

reference A character indicating the variable that is being used as features to compute
distance between

mapping The mapping between feature types

referenceData ExpressionSet object with the data from the reference features.
surrogateData ExpressionSet object with the data from the surrogate features.
filtering A filtering for the bioMap class. To be implemented.

noMappingDist Distance value to be used when a reference feature do not map to any surrogate
feature. If "max", maximum indirect distance among the rest of reference fea-
tures is taken. If NA, distance weights are re-scaled so this surrogate association
is not considered. If a number then the missing values are replaces with that
value.

distance Distance between features to be computed. Possible values are "pearson", "kendall",
"spearman”, "euclidean", "maximum", "manhattan”, "canberra", "binary" and
"minkowski". Default is "spearman".

aggregation Action to perform when a reference feature maps to more than one surrogate
" n " n

feature. Options are "max", "sum", "mean" or "median" and the the values are
aggregated according to the chosen statistic.

maxitems The maximum number of surrogate features per reference feature to be used,
selected according to "selectionRule" parameter. Default is 2.

selectionRule Rule to select the surrogate features to be used (the number is determined by
"maxitems"). It can be one of the following: (1) "maxcor" those presenting
maximum correlation with corresponding main feature; in this case "reference-
Data" must be provided and the columns must overlap in at least 3 samples; (2)
"maxmean": average across samples is computed and those features with higher
mean are selected; case (3) is simmilar to (2) but considering other statistics:
"maxmedian", "maxdiff", "maxFC", "sd" , "ee".

expfac Not in use yet.
name Character that describes the nature of the bioDist class computed

extra arguments passed to dist, eg "p=value" for the power used if calculating
minkowski distance

Value

An object of class bioDistclass containing distances between the features in surrogateData.

Author(s)

David Gomez-Cabrero

4 bioDist
Examples

data(STATegRa_S1)
data(STATegRa_S2)
require(Biobase)

Truncate data for brevity
Blockl <- Block1[1:100,]
Block2 <- Block2[1:100,]

Create ExpressionSets
mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname”))
miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname”))

Create the bioMap
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene",type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)

Create Gene-gene distance computed through miRNA data
bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
reference = "Varl”,
mapping = map.gene.miRNA,
surrogateData = miRNA.ds, #i## miRNA data
referenceData = mRNA.ds, ### mRNA data
maxitems=2,
selectionRule="sd",
expfac=NULL,
aggregation = "sum",
distance = "spearman”,
noMappingDist = 0,
filtering = NULL,
name = "mRNAbymiRNA")

Create Gene-gene distance through mRNA data
bioDistmRNA<-new("bioDistclass”,
name = "mRNAbymRNA",
distance = cor(t(exprs(mRNA.ds)),method="spearman”),
map.name = "id",
map.metadata = list(),
params = list())

#i#HH#HH# Generation of the list of Surrogated distances.

bioDistList<-list(bioDistmRNA,bioDistmiRNA)
sample.weights<-matrix(e,4,2)
sample.weights[,1]<-c(0,0.33,0.67,1)
sample.weights[,2]<-c(1,0.67,0.33,0)

#i##HHH#H Generation of the list of bioDistWclass objects.
bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),

bioDistList = bioDistList,
weights=sample.weights)

bioDistclass 5

#itt#H# Plot of distances.
bioDistWPlot(referenceFeatures = rownames(Block1l) ,
listDistW = bioDistWList,

method.cor="spearman”)

#i##### Computing the matrix of features/distances associated.

fm<-bioDistFeature(Feature = rownames(Block1)[1] ,
listDistW = bioDistWList,
threshold.cor=0.7)

bioDistFeaturePlot(data=fm)

bioDistclass bioDistclass

Description

Class to manage mappings between genomic features.

Usage

bioDistclass(name, distance, map.name, map.metadata, params)

Arguments
name Name assigned to the object
distance Matrix giving the distance between features
map . name Charactering giving the name of the bioMap object used to compute the distance

map.metadata List of parameters used to generate the mapping

params List of parameters used to generate the distance
bioDistFeature bioDistFeature
Description

Function that computes for a given selected feature the closest features given a selected set of
weighted distances.

Usage

bioDistFeature(Feature, listDistW, threshold.cor)

Arguments
Feature Feature A selected as a reference.
listDistW A list of bioDistWclass objects. All the objects must contain the Feature A

selected and all of them must contain the same set of features.

threshold.cor A threshold to select the features associated to Feature A

6 bioDistFeature

Value

Matrix with the associated features given the different weighted distances considered

Author(s)

David Gomez-Cabrero

Examples

data(STATegRa_S1)
data(STATegRa_S2)
require(Biobase)

Truncate data for brevity
Blockl <- Block1[1:100,]
Block2 <- Block2[1:100,]

Create ExpressionSets
mRNA.ds <- createOmicsExpressionSet(Data=Blockl,pData=ed,pDataDescr=c(”classname"))
miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"”))

Create the bioMap
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene",type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)

Create Gene-gene distance computed through miRNA data
bioDistmiRNA<-bioDist(referenceFeatures = rownames(Blockl),
reference = "Varl”,
mapping = map.gene.miRNA,
surrogateData = miRNA.ds, ### miRNA data
referenceData = mRNA.ds, #i## mRNA data
maxitems=2,
selectionRule="sd",
expfac=NULL,
aggregation = "sum”,
distance = "spearman”,
noMappingDist = 9,
filtering = NULL,
name = "mRNAbymiRNA")

Create Gene-gene distance through mRNA data
bioDistmRNA<-new("bioDistclass”,
name = "mRNAbymRNA",
distance = cor(t(exprs(mRNA.ds)),method="spearman”),
map.name = "id",
map.metadata = list(),
params = list())

#i#H#H#H#H# Generation of the list of Surrogated distances.
bioDistList<-list(bioDistmRNA,bioDistmiRNA)

sample.weights<-matrix(0,4,2)
sample.weights[,1]<-c(0,0.33,0.67,1)

bioDistFeaturePlot

sample.weights[,2]<-c(1,0.67,0.33,0)
#i##HH#H Generation of the list of bioDistWclass objects.

bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
bioDistList = bioDistList,
weights=sample.weights)

#i#HHH# Plot of distances.
bioDistWPlot(referenceFeatures = rownames(Block1l) ,
listDistW = bioDistWList,

method.cor="spearman")

#it#### Computing the matrix of features/distances associated.

fm<-bioDistFeature(Feature = rownames(Block1)[1] ,
listDistW = bioDistWList,
threshold.cor=0.7)

bioDistFeaturePlot(data=fm)

bioDistFeaturePlot bioDistFeaturePlot

Description

Function that pltos the results from a bioDistFeature analysis

Usage

bioDistFeaturePlot(data)

Arguments

data Matrix produced by bioDistFeature

Value

Generates a heatmap plot

Author(s)

David Gomez-Cabrero

Examples

data(STATegRa_S1)
data(STATegRa_S2)
require(Biobase)

Truncate data for brevity
Blockl <- Block1[1:100,]
Block2 <- Block2[1:100,]

bioDistFeaturePlot

Create ExpressionSets
mRNA.ds <- createOmicsExpressionSet(Data=Blockl,pData=ed,pDataDescr=c(”"classname"”))
miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname”))

Create the bioMap
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene",type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)

Create Gene-gene distance computed through miRNA data
bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
reference = "Var1l”,
mapping = map.gene.miRNA,
surrogateData = miRNA.ds, ### miRNA data
referenceData = mRNA.ds, #i## mRNA data
maxitems=2,
selectionRule="sd",
expfac=NULL,
aggregation = "sum",
distance = "spearman",
noMappingDist = 0,
filtering = NULL,
name = "mRNAbymiRNA")

Create Gene-gene distance through mRNA data
bioDistmRNA<-new("bioDistclass”,
name = "mRNAbymRNA",
distance = cor(t(exprs(mRNA.ds)),method="spearman”),
map.name = "id",
map.metadata = list(),
params = list())

#i##HH#H Generation of the list of Surrogated distances.

bioDistList<-list(bioDistmRNA,bioDistmiRNA)
sample.weights<-matrix(0,4,2)
sample.weights[,1]1<-c(0,0.33,0.67,1)
sample.weights[,2]<-c(1,0.67,0.33,0)

#i##HHH# Generation of the list of bioDistWclass objects.

bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
bioDistList = bioDistList,
weights=sample.weights)

Plot of distances.
bioDistWPlot(referenceFeatures = rownames(Block1) ,
listDistW = bioDistWList,

method.cor="spearman”)

###H#HH# Computing the matrix of features/distances associated.
fm<-bioDistFeature(Feature = rownames(Block1)[1] ,

listDistW = bioDistWList,
threshold.cor=0.7)

bioDistW 9

bioDistFeaturePlot(data=fm)

bioDistW bioDistW

Description

Function that computes weighted distances between a list of bioDistclass objects.

Usage

bioDistW(referenceFeatures, bioDistList, weights)

Arguments
referenceFeatures
The set of features that weighted distance is computed between.
bioDistList A list of bioDistclass objects. All the objects must contain the set of features
selected.
weights A matrix where the number of columns equals the number of elements included
in the bioDistList list.
Value

Returns a list of bioDistWclass objects. Each element in the list returns the weighted distance
associated to each row in the "weights" matrix.

Author(s)

David Gomez-Cabrero

Examples

data(STATegRa_S1)
data(STATegRa_S2)
require(Biobase)

Truncate data for brevity
Blockl <- Block1[1:100,]
Block2 <- Block2[1:100,]

Create ExpressionSets
mRNA.ds <- createOmicsExpressionSet(Data=Blockl,pData=ed,pDataDescr=c(”"classname"”))
miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname”))

Create the bioMap
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene", type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)

10 bioDistWPIlot

Create Gene-gene distance computed through miRNA data
bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
reference = "Var1l”,
mapping = map.gene.miRNA,
surrogateData = miRNA.ds, ### miRNA data
referenceData = mRNA.ds, ### mRNA data
maxitems=2,
selectionRule="sd",
expfac=NULL,
aggregation = "sum",
distance = "spearman”,
noMappingDist = 9,
filtering = NULL,
name = "mRNAbymiRNA")

Create Gene-gene distance through mRNA data
bioDistmRNA<-new("bioDistclass”,
name = "mRNAbymRNA",
distance = cor(t(exprs(mRNA.ds)),method="spearman”),
map.name = "id",
map.metadata = list(),
params = list())

#i##HHH#H Generation of the list of Surrogated distances.

bioDistList<-list(bioDistmRNA,bioDistmiRNA)
sample.weights<-matrix(0,4,2)
sample.weights[,1]<-c(0,0.33,0.67,1)
sample.weights[,2]<-c(1,0.67,0.33,0)

#i#H#HH Generation of the list of bioDistWclass objects.

bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
bioDistList = bioDistlList,
weights=sample.weights)

#iHt#HH# Plot of distances.
bioDistWPlot(referenceFeatures = rownames(Block1) ,
listDistW = bioDistWList,

method.cor="spearman")

#iHH#HH# Computing the matrix of features/distances associated.

fm<-bioDistFeature(Feature = rownames(Block1)[1] ,
listDistW = bioDistWList,
threshold.cor=0.7)

bioDistFeaturePlot(data=fm)

bioDistWPlot bioDistWPlot

Description

Function that plots the "distance relation" between features computed through different surrogate
features.

bioDistWPIlot 11

Usage

bioDistWPlot(referenceFeatures, listDistW, method.cor)

Arguments
referenceFeatures
The set of features to be used.
listDistW A list of bioDistWclass objects.
method. cor Method to compute distances between the elements in the listDistW. The default
is spearman correlation.
Value

Makes a plot with the projected distance between the listDistW objects.

Author(s)

David Gomez-Cabrero

Examples

data(STATegRa_S1)
data(STATegRa_S2)
require(Biobase)

Truncate data for brevity
Blockl <- Block1[1:100,]
Block2 <- Block2[1:100,]

Create ExpressionSets
mRNA.ds <- createOmicsExpressionSet(Data=Blockl,pData=ed,pDataDescr=c(”"classname"”))
miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname”))

Create the bioMap
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene",type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)

Create Gene-gene distance computed through miRNA data
bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
reference = "Var1l”,
mapping = map.gene.miRNA,
surrogateData = miRNA.ds, #i## miRNA data
referenceData = mRNA.ds, #i## mRNA data
maxitems=2,
selectionRule="sd",
expfac=NULL,
aggregation = "sum",
distance = "spearman”,
noMappingDist = 0,
filtering = NULL,
name = "mRNAbymiRNA")

12 bioMap

Create Gene-gene distance through mRNA data
bioDistmRNA<-new("bioDistclass”,
name = "mRNAbymRNA",
distance = cor(t(exprs(mRNA.ds)),method="spearman”),
map.name = "id",
map.metadata = list(),
params = list())

#i##HH#H Generation of the list of Surrogated distances.

bioDistList<-list(bioDistmRNA,bioDistmiRNA)
sample.weights<-matrix(0,4,2)
sample.weights[,1]<-c(0,0.33,0.67,1)
sample.weights[,2]<-c(1,0.67,0.33,0)

#i#H#H#H#H# Generation of the list of bioDistWclass objects.

bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
bioDistList = bioDistList,
weights=sample.weights)

#i##HH# Plot of distances.
bioDistWPlot(referenceFeatures = rownames(Block1l) ,
listDistW = bioDistWList,

method.cor="spearman")

#iH#H#H## Computing the matrix of features/distances associated.

fm<-bioDistFeature(Feature = rownames(Block1)[1] ,
listDistW = bioDistWList,
threshold.cor=0.7)

bioDistFeaturePlot(data=fm)

bioMap bioMap

Description

Function to generate a bioMap object.

Usage

bioMap(name, metadata, map)

Arguments
name Name to assign the object
metadata A list with information of the mapping. Elements expected in the list are: (1)

"type_v1" and "type_v2", refer to the nature of the features mapped; a vo-
cabulary we recommend is "gene", "mRNA", "miRNA", "proteins", etc. (2)
"source_database", provides information on the source of the mapping; from a
specific data-base e.g. "targetscan.Hs.eg.db" to a genomic location mapping. (3)
"data_extraction" stores information on the data the mapping was generated or
downloaded.

caClass-class 13

map A data.frame object storing the mapping. The data.frame may inclue an un-
limited number of columns, however the first column must be named "Varl"
and refer to the elements of "type_v1" and simmilarly for the second column
("Var2", "type_v2").

Value

An object of class bioMap

Author(s)

David Gomez-Cabrero

Examples

data(STATegRa_S2)
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene",type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)

caClass-class caClass

Description

Stores the results of any of the omicsPCA analyses.

Slots

InitialData List of ExpressionSets, one for each set of omics data

Names Character vector giving names for the input data

preprocessing Character vector describing the preprocessing applied to the data
preproData List of matrices containing data after preprocessing

caMethod Character giving the component analysis method name

commonComps Numeric giving the number of common components

distComps Numeric vector giving the number of distinctive components for each block
scores List of matrices of common and distinctive scores

loadings List of matrices of common and distinctive loadings

VAF List of matrices indicating VAF (Variability Explained For) for each component in each block
of data

others List containing other miscellaneous information specific to different SCA methods

Author(s)

Patricia Sebastian Leon

14 combiningMappings

combiningMappings combiningMappings, combining several mappings for use in the omic-
SNPC function

Description

This function combines several annotation so that measurements across different datasets are mapped
to the same reference elements (e.g., genes). The annotations should all be either data frame / ma-
trices, named vectors/lists, or bioMap objects. See the examples for further details

Usage

combiningMappings(mappings, reference = NULL, retainAll = FALSE)

Arguments
mappings List of annotations.
reference If the annotations are data frame, matrices or bioMap objects, the name of the
column containing the reference elements
retainAll Logical, if set to TRUE measurements that have no counterparts in other datasets
are retained
Value

A data frame encoding the mapping across several dataset

Author(s)

Vincenzo Lagani

References

Nestoras Karathanasis, Ioannis Tsamardinos and Vincenzo Lagani. omicsNPC: applying the Non-
Parametric Combination methodology to the integrative analysis of heterogeneous omics data. Sub-
mitted to PlosONE.

Examples

#Example 1
#Mapping with data frames
mRNA <- data.frame(gene = rep(c('G1"', 'G2', 'G3"'), each = 2), probeset = paste('p', 1:6, sep=""));
methylation <- data.frame(gene = c(rep('G1', 3), rep('G2', 4)),

methy = paste('methy', 1:7, sep = '"));
miRNA <- data.frame(gene = c(rep('Gl', 2), rep('G2', 1), rep('G3', 2)),

miR = c¢('miR1', 'miR2', 'miR1', 'miR1', 'miR2"));

mappings <- list(mRNA = mRNA, methylation = methylation, miRNA = miRNA);
combiningMappings(mappings = mappings, retainAll = TRUE)

#Example 2

#Mapping with character vectors

mRNA <- rep(c('G1', 'G2', 'G3'), each = 2);
names(mRNA) = paste('p', 1:6, sep = '");

createOmicsExpressionSet 15

methylation <- c(rep('G1', 3), rep('G2', 4));

names(methylation) = paste('methy', 1:7, sep = '');

miRNA <- c(rep('G1', 2), rep('G2', 1), rep('G3', 2));

names(miRNA) = c('miR1', 'miR2', 'miR1', 'miR1', 'miR2");

mappings <- list(mRNA = mRNA, methylation = methylation, miRNA = miRNA);
combiningMappings(mappings = mappings, retainAll = TRUE)

createOmicsExpressionSet
createOmicsExpressionSet

Description
This function allow to the user to create a ExpressionSet object from a matrix representing an omics
dataset. It allows to include the experimental design and annotation in the ExpressionSet object.
Usage

createOmicsExpressionSet(Data, pData = NULL, pDataDescr = NULL,
feaData = NULL, feaDataDescr = NULL)

Arguments
Data Omics data
pData Data associated with the samples/phenotype
pDataDescr Description of the phenotypic data
feaData Data associated with the variables/features annotation

feaDataDescr Description of the feature annotation

Details

In Data matrix, samples has to be in columns and variables has to be in rows

Value

ExpressionSet with the data provided

Author(s)

Patricia Sebastian-Leon

Examples

data(STATegRa_S3)

B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,
pDataDescr=c("classname"))

B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,
pDataDescr=c("classname"”))

16

getlnitialData

getInitialData

Retrieve initial data from caClass objects

Description

Generic function to retrieve the initial data used for by omicsCompAnalysis from a caClass-class

object

Usage

getInitialData(x, block=NULL)

Arguments

X

block

Value

caClass-class object.

Character indicating the block of data to be returned. It can be specified by the
position of the block ("1" or "2") or the name assigned in the caClass-class
object. If it is NULL both blocks are displayed.

The requested data block or blocks

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis, caClass-class

Examples

data("STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA,

pDataDescr=c("classname”))

B2 <- createOmicsExpressionSet(Data=Block2.PCA,

pData=ed.PCA, pDataDescr=c("classname"))

Omics components analysis
res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr”, "mirna"),

method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2),
center=TRUE, scale=TRUE, weight=TRUE)

getInitialData(res)
getInitialData(res, block="expr")

getLoadings 17

getlLoadings Retrieve component analysis loadings

Description
Generic function to retrieve loadings (common and distinctive) found by omicsCompAnalysis on a
caClass-class object.

Usage

getLoadings(x, part=NULL, block=NULL)

Arguments
X caClass-class object.
part Character indicating whether "common" or "distinctive" loadings should be dis-
played
block Character indicating the block of data for which the loadings will be given. It
can be specified by the position of the block ("1" or "2") or the name assigned
in the caClass-class object. If it is NULL both blocks are displayed.
Value

A list containing the requested information.

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis, caClass-class

Examples

data(”"STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA,
pDataDescr=c("classname"))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA, pDataDescr=c("classname”))
Omics components analysis
res <- omicsCompAnalysis(Input=1ist(B1, B2), Names=c("expr"”, "mirna"),
method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2),
center=TRUE, scale=TRUE, weight=TRUE)
getLoadings(res)
getlLoadings(res, part="common”, block="expr")
getLoadings(res, part="distinctive”, block="expr")

18 getMethodInfo

getMethodInfo Retrieve information about component analysis method

Description

Generic function to retrieve information about the method used by omicsCompAnalysis onacaClass-class
object.

Usage

getMethodInfo(x, method=FALSE, comps=NULL, block=NULL)

Arguments
X caClass-class object.
method Logical indicating whether to return the method name.
comps Character indicating which component number to return ("common", "distinc-
tive" or "all")
block Character indicating the block of data for which the component count will be
given. It can be specified by the position of the block ("1" or "2") or the name
assigned in the caClass-class object. If it is NULL both blocks are displayed.
Value

A list containing the requested information.

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis, caClass-class

Examples

data(”"STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA,
pDataDescr=c("classname"”))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA, pDataDescr=c("classname"))
Omics components analysis
res <- omicsCompAnalysis(Input=1list(B1, B2), Names=c("expr"”, "mirna"),
method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2),
center=TRUE, scale=TRUE, weight=TRUE)
getMethodInfo(res)
getMethodInfo(res, method=TRUE)
getMethodInfo(res, comps="all"”, block="expr")

getPreprocessing 19

getPreprocessing Retrieve information about preprocessing

Description

Generic function to retrieve information about the preprocessing done by omicsCompAnalysis on
a caClass-class object.

Usage
getPreprocessing(x, process=FALSE, preproData=FALSE, block=NULL)

Arguments
X caClass-class object.
process Logical indicating whether to return information about the processing done.
preproData Logical indicating whether to return the pre-processed data matrices.
block Character indicating the block of data to be returned. It can be specified by the
position of the block ("1" or "2") or the name assigned in the caClass-class
object. If it is NULL both blocks are displayed.
Value

If both process and preproData are specified, a list containing (otherwise the individual item):

process Character indicating the processing done

preproData Matrix (or list of matrices, depending on block) containing pre-processed data

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis, caClass-class

Examples

data(”"STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA,
pDataDescr=c("classname"))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA, pDataDescr=c("classname"))
Omics components analysis
res <- omicsCompAnalysis(Input=1list(B1, B2), Names=c("expr"”, "mirna"),
method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2),
center=TRUE, scale=TRUE, weight=TRUE)
getPreprocessing(res, process=TRUE)
getPreprocessing(res, preproData=TRUE, block="1")

20

getScores

getScores

Retrieve component analysis scores

Description

Generic function to retrieve scores (common and distinctive) found by omicsCompAnalysis on a
caClass-class object.

Usage

getScores(x, part=NULL, block=NULL)

Arguments

X

part

block

Value

caClass-class object.
Character indicating whether "common" or "distinctive" scores should be dis-
played

Character indicating the block of data for which the scores will be given. It can
be specified by the position of the block ("1" or "2") or the name assigned in the
caClass-class object. If it is NULL both blocks are displayed.

A list containing the requested information.

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis, caClass-class

Examples

data(”"STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA,

pDataDescr=c("classname"))

B2 <- createOmicsExpressionSet(Data=Block2.PCA,

pData=ed.PCA, pDataDescr=c("classname”))

Omics components analysis
res <- omicsCompAnalysis(Input=1ist(B1, B2), Names=c("expr"”, "mirna"),

getScores(res)

method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2),
center=TRUE, scale=TRUE, weight=TRUE)

getScores(res, part="common")
getScores(res, part="distinctive”, block="expr")

getVAF 21

getVAF Retrieve information abotut VAF

Description

Generic function to retrieve VAF found by omicsCompAnalysis on a caClass-class object.

Usage

getVAF(x, part=NULL, block=NULL)

Arguments
X caClass-class object.
part Character indicating whether "common" or "distinctive" VAF should be dis-
played
block Character indicating the block of data for which the VAF will be given. It can
be specified by the position of the block ("1" or "2") or the name assigned in the
caClass-class object. If it is NULL both blocks are displayed.
Value

A list containing the requested information.

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis, caClass-class

Examples

data("STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA,
pDataDescr=c("classname"”))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA, pDataDescr=c(”classname"))
Omics components analysis
res <- omicsCompAnalysis(Input=1list(B1, B2), Names=c("expr"”, "mirna"),
method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2),
center=TRUE, scale=TRUE, weight=TRUE)
getVAF (res)
getVAF(res, part="common")
getVAF(res, part="distinctive”, block="expr")

22 holistOmics

holistOmics HolistOmics an application of NPC on omics datasets

Description

This function is defunct. Use omicsNPC instead.

Usage

holistOmics(datalnput, dataTypes, comb.method = c("Fisher"”, "Liptak”, "Tippett"),
numPerm = 1000, numCores = 1, verbose = FALSE)

Arguments
dataInput List of ExpressionSet objects, one for each data modality.
dataTypes Character vector with possible values: 'RNA-seq’, 'microarray’
comb.method Character vector with possible values: ’Fisher’, "Liptak’, *Tippett’, if more than
one is specified, all will be used.
numPerm Number of permutations
numCores Number of CPU cores to use
verbose Logical, if set to TRUE holistOmics prints out the step that it performs
Value

A data.frame

Author(s)

Nestoras Karathanasis

References

Pesarin, Fortunato, and Luigi Salmaso. Permutation tests for complex data: theory, applications
and software. John Wiley & Sons, 2010.

Examples

Load the data

data("TCGA_BRCA_Batch_93")

Setting dataTypes, the first two ExpressionSets include RNAseq data,
the third ExpressionSet includes Microarray data.

dataTypes <- c("RNAseq”, "RNAseq", "Microarray")

Setting methods to combine pvalues

comb.method = c("Fisher"”, "Liptak”, "Tippett")

Setting number of permutations

numPerm = 1000

Setting number of cores

numCores = 1

Setting holistOmics to print out the steps that it performs.
verbose = TRUE

Run holistOmics analysis.

modelSelection 23

The output is a data.frame of p-values.

Each row corresponds to a gene name. Each column corresponds to a method

used in the analysis.

Not run: out <- holistOmics(datalnput = TCGA_BRCA_Data, dataTypes = dataTypes,
comb.method = comb.method, numPerm = numPerm,
numCores = numCores, verbose = verbose)

End(Not run)

modelSelection Find optimal common and distinctive components

Description
Estimate the optimal number of common and distinctive components according to given selection
criteria.

Usage

modelSelection(Input,Rmax,fac.sel,varthreshold=NULL,nvar=NULL,PCnum=NULL,center=FALSE,scale=FALS

Arguments
Input List of ExpressionSet objects, one for each block of data
Rmax Maximum common components
fac.sel PCA criteria for selection ("%accum", "single%", "rel.abs", "fixed.num")

varthreshold Cumulative variance criteria for PCA selection. Threshold for "%accum" or
"single%" criteria.

nvar Relative variance criteria. Threshold for "rel.abs".
PCnum Fixed number of components for "fixed.num".
center Character (or FALSE) specifying which (if any) centering will be applied be-

fore analysis. Choices are "PERBLOCKS" (each block separately) or "ALL-
BLOCKS" (all data together).

scale Character (or FALSE) specifying which (if any) scaling will be applied be-
fore analysis. Choices are "PERBLOCKS" (each block separately) or "ALL-
BLOCKS" (all data together).

weight Logical indicating whether weighting is to be done. Choices are "BETWEEN-
BLOCKS"
plot_common Logical indicating whether to plot the explained variances (SSQ) of each block

and its estimation and the ratios

plot_dist Logical indicating whether to plot the explained variances (SSQ) and the accu-
mulated variance for each block
Value
List containing:

common List with common components results
commonComps Optimal number of common components

ssqs Matrix of SSQ for each block and estimator

24 omicsCompAnalysis

pssq ggplot object showing SSQ for each block and estimator
pratios ggplot object showing SSQ ratios between each block and estimator

dist List containg the results of distinct PCA for each input block; for each block PCAres and
numComps is returned within a list

PCAres List containing results of PCA, with fields "eigen", "var.exp", "scores" and "loadings"

nomComps Number of components selected

Author(s)

Patricia Sebastian-Leon

See Also

omicsCompAnalysis

Examples

data(STATegRa_S3)

B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))

B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("”"classname"))

ms <- modelSelection(Input=1list(B1, B2), Rmax=3, fac.sel="single\%", varthreshold=0.03, center=TRUE, scale=FA
ms

omicsCompAnalysis Components analysis for multiple objects

Description

This function performs a components analysis of object wise omics data to understand the mech-
anisms that underlay all the data blocks under study (common mechanisms) and the mechanisms
underlying each of the data block independently (distinctive mechanisms). This analysis include
both, the preprocessing of data and the components analysis by using three different methodolo-
gies.

Usage

omicsCompAnalysis(Input, Names, method, Rcommon, Rspecific,
convThres=1e-10, maxIter=600, center=FALSE,
scale=FALSE, weight=FALSE)

Arguments
Input List of ExpressionSet objects, one for each block of data.
Names Character vector giving names for each Input object.
method Method to use for analysis (either "DISCOSCA", "JIVE", or "O2PLS").
Rcommon Number of common components between all blocks
Rspecific Vector giving number of unique components for each input block
convThres Stop criteria for convergence

maxIter Maximum number of iterations

omicsNPC 25

center Character (or FALSE) specifying which (if any) centering will be applied be-
fore analysis. Choices are "PERBLOCKS" (each block separately) or "ALL-
BLOCKS" (all data together).

scale Character (or FALSE) specifying which (if any) scaling will be applied be-
fore analysis. Choices are "PERBLOCKS" (each block separately) or "ALL-
BLOCKS" (all data together).

weight Logical indicating whether weighting is to be done.

Value

An object of class caClass-class.

Author(s)

Patricia Sebastian Leon

Examples

data("STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,
pDataDescr=c("classname"))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA,pDataDescr=c("”classname”))
Omics components analysis
discoRes <- omicsCompAnalysis(Input=1ist(B1,B2),Names=c("expr”,"mirna"),
method="DISCOSCA" ,Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)
jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr”,"mirna"),
method="JIVE",Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)
02plsRes <- omicsCompAnalysis(Input=1ist(B1,B2),Names=c("expr"”,"mirna"),
method="02PLS" ,Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)

omicsNPC omicsNPC, applying the Non-Parametric Combination (NPC) on
omics datasets

Description

This function applies the NonParametric Combination methodology on the integrative analysis of
different omics data modalities. It retrieves genes associated to a given outcome, taking into ac-
count all omics data. First, each datatype is analyzed independently using the appropriate method.
omicsNPC analyses continuous data (microarray) using limma, while count data (e.g., RNAseq)
are first preprocessed with using the "voom" function. The user can also specify their own func-
tion for computing deregulation / association The p-values from the single dataset analysis are then
combined employing Fisher, Liptak and Tippett combining functions. The Tippett function returns
findings which are supported by at least one omics modality. The Liptak function returns findings
which are supportd by most modalities. The Fisher function has an intermediate behavior between
those of Tippett and Liptak.

26 omicsNPC

Usage

omicsNPC(datalnput, dataMapping, dataTypes = rep('continuous', length(datalnput)),
combMethods = c("Fisher"”, "Liptak"”, "Tippett"”), numPerms = 1000,
numCores = 1, verbose = FALSE, functionGeneratingIndex = NULL,
outcomeName = NULL, allCombinations = FALSE,
dataWeights = rep(1, length(datalnput))/length(datalnput),

returnPermPvalues = FALSE, ...)
Arguments
datalnput List of ExpressionSet objects, one for each data modality.
dataMapping A data frame describing how to map measurements across datasets. See details
for more information.
dataTypes Character vector with possible values: ’continuous’, ’count’. Alternatively, a

list of functions for assessing deregulation / association with an outcome

combMethods Character vector with possible values: *Fisher’, ’Liptak’, *Tippett’. If more than
one is specified, all will be used.

numPerms Number of permutations
numCores Number of CPU cores to use
verbose Logical, if set to TRUE omicsNPC prints out the step that it performs

functionGeneratingIndex
Function generating the indices for randomly permuting the samples
outcomeName Name of the outcome of interest / experimental factor, as reported in the design
matrices. If NULL, the last column of the design matrices is assumed to be the

outcome of interest.
allCombinations

Logical, if TRUE all combinations of omics datasets are considered

dataWeights A vector specifying the weigth to give to each dataset. Note that sum(dataWeights)
should be 1.
returnPermPvalues

Logical, should the p-values computed at each permutation being returned?

Additional arguments to be passed to the user-defined functions

Value

A list containing: statsO Partial deregulation / association statistics pvaluesO The partial p-values
computed on each dataset pvaluesNPC The p-values computed through NPC. permPvalues The
p-values computed at each permutation

Author(s)

Nestoras Karathanasis, Vincenzo Lagani

References

Pesarin, Fortunato, and Luigi Salmaso. Permutation tests for complex data: theory, applications and
software. John Wiley & Sons, 2010. Nestoras Karathanasis, Ioannis Tsamardinos and Vincenzo La-
gani. omicsNPC: applying the Non-Parametric Combination methodology to the integrative analy-
sis of heterogeneous omics data. PlosONE 11(11): e0165545. doi:10.1371/journal.pone.0165545

plotRes 27

Examples

Load the data

data("TCGA_BRCA_Batch_93")

Setting dataTypes, the first two ExpressionSets include RNAseq data,
the third ExpressionSet includes Microarray data.

dataTypes <- c("count”, "count”, "continuous")

Setting methods to combine pvalues

combMethods = c("Fisher"”, "Liptak”, "Tippett")

Setting number of permutations

numPerms = 1000

Setting number of cores

numCores = 1

Setting omicsNPC to print out the steps that it performs.

verbose = TRUE

Run omicsNPC analysis.

The output contains a data.frame of p-values, where each row corresponds to a gene,
and each column corresponds to a method used in the analysis.

Not run: out <- omicsNPC(datalnput = TCGA_BRCA_Data, dataTypes = dataTypes,
combMethods = combMethods, numPerms = numPerms,
numCores = numCores, verbose = verbose)

End(Not run)

plotRes Plot component analysis results

Description

Plot scatterplots of scores or loadings, for common and distinctive parts as well as combined plots.

Usage

plotRes(object, comps=c(1, 2), what, type, combined, block=NULL,
color=NULL, shape=NULL, labels=NULL, title=NULL, xlabel=NULL, ylabel=NULL, background=TR
palette=NULL, pointSize=4, labelSize=NULL,
axisSize=NULL, titleSize=NULL, sizeValues = c(2,4), shapeValues = c(17, 0))

Arguments

object caClass-class containing component analysis results

comps If combined=FALSE, it indicates the x and y components of the type and block
chosen. If combined=TRUE, it indicates the component to plot for the first block
of information and the component for the second block of information to plot
together. By default the components are set to c(1,2) if combined=FALSE and to
c(1,1) if combined=TRUE.

what Either "scores", "loadings" or "both"

type Either "common", "individual" or "both"

combined Logical indicating whether to make a simple plot of two components from one
block, or components from different blocks

block Which block to plot, either "1" or "2" or the name of the block.

color Character specifying a pData column from the original data to use to color points

28

shape Character specifying a pData column to select point shape

labels Character specifying a pData column from which to take point labels

title Main title

xlabel X-axis name

ylabel y-axis name

background Logical specifying whether to make a grey background

palette Vector giving the color palette for the plot

pointSize Size of plot points

labelSize Size of point labels if not NULL

axisSize Size of axis text

titleSize Size of title text

sizeValues Vector containing sizes for scores and loadings

shapeValues Vector indicating the shapes for scores and loadings
Value

ggplot object

Author(s)

Patricia Sebastian-Leon

Examples

data("STATegRa_S3")
B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,
pDataDescr=c("classname”))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA,pDataDescr=c("classname”))
Omics components analysis
discoRes <- omicsCompAnalysis(Input=1ist(B1,B2),Names=c("expr”,"mirna"),
method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)
jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),
method="JIVE",Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)
o02plsRes <- omicsCompAnalysis(Input=1list(B1,B2),Names=c("expr”,"mirna"),
method="02PLS" ,Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)

Scatterplot of scores variables associated to common components

DISCO-SCA

plotRes(object=discoRes, comps=c(1,2),what="scores”, type="common",
combined=FALSE,block=NULL,color="classname"”,shape=NULL,labels=NULL,
background=TRUE,palette=NULL,pointSize=4,1labelSize=NULL,
axisSize=NULL,titleSize=NULL)

JIVE

plotRes(object=jiveRes, comps=c(1,2),what="scores”, type="common",
combined=FALSE,block=NULL,color="classname"”, shape=NULL,labels=NULL,
background=TRUE,palette=NULL,pointSize=4,1labelSize=NULL,

plotVAF 29

axisSize=NULL,titleSize=NULL)

02PLS

Scatterplot of scores variables associated to common components

Associated to first block

p1 <- plotRes(object=02plsRes,comps=c(1,2),what="scores”,type="common"”,
combined=FALSE,block="expr",color="classname”, shape=NULL,
labels=NULL,background=TRUE,palette=NULL,pointSize=4,
labelSize=NULL,axisSize=NULL,titleSize=NULL)

Associated to second block

p2 <- plotRes(object=02plsRes, comps=c(1,2),what="scores",type="common”,
combined=FALSE,block="mirna",color="classname", shape=NULL,
labels=NULL,background=TRUE,palette=NULL,pointSize=4,
labelSize=NULL,axisSize=NULL,titleSize=NULL)

Combined plot of scores variables assocaited to common components

plotRes(object=02plsRes, comps=c(1,1),what="scores”, type="common",
combined=TRUE,block=NULL,color="classname", shape=NULL,
labels=NULL,background=TRUE,palette=NULL,pointSize=4,
labelSize=NULL,axisSize=NULL,titleSize=NULL)

Loadings plot for individual components

Separately for each block

pl <- plotRes(object=discoRes,comps=c(1,2),what="1loadings"”,type="individual”,
combined=FALSE,block="expr",color="classname"”, shape=NULL,
labels=NULL,background=TRUE,palette=NULL,pointSize=4,
labelSize=NULL,axisSize=NULL,titleSize=NULL)

p2 <- plotRes(object=discoRes, comps=c(1,2),what="1oadings",type="individual”,
combined=FALSE,block="mirna",color="classname", shape=NULL,
labels=NULL,background=TRUE,palette=NULL,pointSize=4,
labelSize=NULL,axisSize=NULL,titleSize=NULL)

Biplot: scores + loadings

plotRes(object=discoRes, comps=c(1,2),what="both", type="common”,
combined=FALSE,block="expr",color="classname”, shape=NULL,
labels=NULL,background=TRUE,palette=NULL,pointSize=4,
labelSize=NULL,axisSize=NULL,titleSize=NULL)

plotVAF Plot VAF (Variance Explained For) from Component Analysis

Description

This function visualises the VAF results from component analysis. The input is a caClass-class
object from omicsCompAnalysis. VAF cannot be calculated if mode "O2PLS" was used. The plots
for modes "DISCOSCA" and "JIVE" are different since DISCO-SCA distinctive components have
some VAF in the other block. This VAF can be interpreted as an error in the rotation.

Usage

plotVAF (object, mainTitle="")

30 STATegRa

Arguments
object caClass-class object containing component analysis results
mainTitle Plot title

Value

ggplot object

Author(s)

Patricia Sebastian-Leon

Examples

data(”"STATegRa_S3")
require(ggplot2)
B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,
pDataDescr=c("classname"))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,
pData=ed.PCA,pDataDescr=c("classname"))
Omics components analysis
discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr”,"mirna"),
method="DISCOSCA" ,Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)
jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr”,"mirna"),
method="JIVE" ,Rcommon=2,Rspecific=c(2,2),
center=TRUE, scale=TRUE,weight=TRUE)

DISCO-SCA plotVAF
plotVAF (discoRes)

JIVE plotVAF
plotVAF (jiveRes)

STATegRa STATegRa

Description

STATegRa is a package for the integrative analysis of multi-omic data-sets.

For full information, see the user’s guide.

See Also

STATegRaUsersGuide

STATegRa-defunct

31

STATegRa-defunct Defunct functions in STATegRa

Description

These functions have are defunct and no longer available

Details

* holistOmics: replaced by omicsNPC

STATegRaUsersGuide STATegRaUsersGuide

Description

Finds the location of the STATegRa User’s Guide and optionally opens it.

Usage

STATegRaUsersGuide(view = TRUE)

Arguments

view Whether to open a browser

Value

The path to the documentation

Author(s)

David Gomez-Cabrero

Examples

STATegRaUsersGuide (view=FALSE)

32 STATegRa data TCGA_BRCA

STATegRa_data STATegRa data

Description

mRNA data (Block1), miRNA data (Block?2) and the design matrix (ed), from STATegRa_S1, pro-
vides selected data downloaded from https://tcga-data.nci.nih.gov/docs/publications/
gbm_exp/. The mapping between miRNA and mRNA (mapdata, available in STATegRa_S2) con-
tains, as a processed matrix, selected information available from TargetScan; we selected the set
of miRNA target predictions for humans for those miRNA-mRNA pairs where both miRNA and
mRNA were in Block1 and Block?2 respectively.

The PCA version of the data (Block1.PCA, Block2.PCA, ed.PCA; available in STATegRa_S3), pro-
vides a similar data-set to Block1, Block2 and ed data; however in this case the data has been
processed in order to provide a pedagogic example of OmicsPCA. Results obtained from Omic-
sPCA (omicsCompAnalysis) with the existing data should not be taken as clinically valid.

Format
Two matrices with mRNA and miRNA expression data, a design matrix that describes both and a
mapping between miRNA and genes.

Author(s)

David Gomez-Cabrero, Patricia Sebastian-Leon, Gordon Ball

Source

(a) See https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/. (b) Gabor Csardi,
targetscan.Hs.eg.db: TargetScan miRNA target predictions for human. R package version 0.6.1

Examples

data(STATegRa_S1)
data(STATegRa_S2)
data(STATegRa_S3)

STATegRa_data_TCGA_BRCA
STATegRa data

Description

Data were downloaded from TCGA data portal, https://tcga-data.nci.nih.gov/tcga/. We

downloaded sixteen tumour samples and the sixteen matching normal, for Breast invasive carci-

noma, BRCA, batch 93. Herein, three types of data modalities are included, RNAseq (TCGA_BRCA_Data$RNAseq),
RNAseqV2 (TCGA_BRCA_Data$RNAseqV2) and Expression-Genes (TCGA_BRCA_Data$Microarray).

The Data Level was set to Level 3. For each data type, we pooled all data to one matrix, where rows
corresponded to genes and columns to samples. Only the first 100 genes are included.

https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
https://tcga-data.nci.nih.gov/tcga/

STATegRa data TCGA_BRCA

Format

One list, which contains three ExpressionSet objects.

Author(s)

Nestoras Karathanasis, Vincenzo Lagani

Source

See https://tcga-data.nci.nih.gov/tcga/.

Examples

load data
data(TCGA_BRCA_Batch_93)

33

https://tcga-data.nci.nih.gov/tcga/

Index

* datagen getVAF, 21
createOmicsExpressionSet, 15 getVAF,caClass-method (getVAF), 21
ggplot, 24
bioDist, 2
bioDist,character,character,bioMap,ExpressionSeliExpméssidpSet-method
(bioDist), 2 holistOmics,list,character-method
bioDistclass, 5 (holistOmics), 22

bioDistFeature, 5
bioDistFeature,character,list,numeric-method mapdata (STATegRa_data), 32

(bioDistFeature), 5 modelSelection, 23
bioDistFeaturePlot, 7 modelSelection,list,numeric,character-method
bioDistW, 9 (modelSelection), 23
bioDistW,character,list,matrix-method
(bioDistW), 9 omicsCompAnalysis, 16-21, 24, 24, 29, 32
bioDistWPlot. 10 omicsCompAnalysis,list,character,character,numeric, nume
bioDistWPlot,character,list,character-method (omicsCompAnalysis), 24
(bioDistWPlot), 10 omicsNPC, 25, 31
bioMap, 12 omicsNPC,list,data.frame-method
Block1 (STATegRa_data), 32 (omicsNPC), 25
Block2 (STATegRa_data), 32 omicsNPC,list,missing-method

(omicsNPC), 25
caClass-class, 13

combiningMappings, 14 plotRes, 27
createOmicsExpressionSet, 15 plotRes,caClass,numeric,character,character,logical-mef
createOmicsExpressionSet,matrix-method (plotRes), 27
(createOmicsExpressionSet), 15 plotVAF, 29
plotVAF,caClass-method (plotVAF), 29
dist, 3
STATegRa, 30
ed (STATegRa_data), 32 STATegRa-defunct, 31
STATegRa-package (STATegRa), 30
getInitialData, 16 STATegRa_data, 32
getInitialData , caClass-method STATegRa_data_TCGA_BRCA, 32
(getInitialData), 16 STATegRaUsersGuide, 30, 31
getLoadings, 17
getlLoadings,caClass-method TCGA_BRCA_Data
(getLoadings), 17 (STATegRa_data_TCGA_BRCA), 32

getMethodInfo, 18

getMethodInfo,caClass-method
(getMethodInfo), 18

getPreprocessing, 19

getPreprocessing,caClass-method
(getPreprocessing), 19

getScores, 20

getScores,caClass-method (getScores), 20

34

	bioDist
	bioDistclass
	bioDistFeature
	bioDistFeaturePlot
	bioDistW
	bioDistWPlot
	bioMap
	caClass-class
	combiningMappings
	createOmicsExpressionSet
	getInitialData
	getLoadings
	getMethodInfo
	getPreprocessing
	getScores
	getVAF
	holistOmics
	modelSelection
	omicsCompAnalysis
	omicsNPC
	plotRes
	plotVAF
	STATegRa
	STATegRa-defunct
	STATegRaUsersGuide
	STATegRa_data
	STATegRa_data_TCGA_BRCA
	Index

