
Package ‘SETA’
January 20, 2026

Title Single Cell Ecological Taxonomic Analysis

Version 1.0.0

Description Tools for compositional and other sample-level ecological analyses and visualizations tai-
lored for single-cell RNA-seq data. SETA includes functions for taxonomizing celltypes, normal-
izing data, performing statistical tests, and visualizing results. Several tutorials are in-
cluded to guide users and introduce them to key con-
cepts. SETA is meant to teach users about statistical concepts underlying ecological analy-
sis methods so they can apply them to their own single-cell data.

URL https://github.com/kkimler/SETA

BugReports https://github.com/kkimler/SETA/issues

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.5.0)

Imports dplyr, MASS, Matrix, SingleCellExperiment (>= 1.30.1), stats,
tidygraph, rlang, utils

Suggests BiocStyle, caret, glmnet, corrplot, ggplot2, ggraph, knitr,
methods, patchwork, reshape2, rmarkdown, SeuratObject, Seurat,
SummarizedExperiment, TabulaMurisSenisData, tidyr, tidytext,
testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews SingleCell, Transcriptomics, RNASeq, GeneExpression,
StatisticalMethod, DimensionReduction, Visualization,
Normalization, DataRepresentation, SystemsBiology

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/SETA

git_branch RELEASE_3_22

git_last_commit 2e28769

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Kyle Kimler [aut, cre] (ORCID: <https://orcid.org/0000-0003-4735-9064>),
Marc Elosua-Bayes [aut]

Maintainer Kyle Kimler <kkimler@broadinstitute.org>

1

https://github.com/kkimler/SETA
https://github.com/kkimler/SETA/issues
https://orcid.org/0000-0003-4735-9064


2 SETA-package

Contents

SETA-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
.extractMetadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
resolveGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
setaALR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
setaBalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
setaCLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
setaCounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
setaDistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
setaILR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
setaLatent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
setaLogCPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
setaMetadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
setaPercent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
setaTaxonomyDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
setaTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
taxonomy_to_tbl_graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Index 21

SETA-package Single Cell Ecological Taxonomic Analysis

Description

SETA provides tools for compositional analysis of single-cell RNA-seq data, applying ecologi-
cal principles and compositional data analysis (CoDA) methods to understand cell-type abundance
patterns. The package offers a comprehensive workflow for extracting cell-type counts, applying
various compositional transforms, performing latent space analysis, and visualizing results.

Details

SETA treats cell-type abundance data as compositional data, similar to how ecologists analyze
species abundance in environmental samples. This approach is appropriate because cell-type pro-
portions sum to 1 (or 100 in one cell type affect all others.

The package implements several compositional transforms:

• CLR (Centered Log-Ratio): Centers log-transformed data around the geometric mean

• ALR (Additive Log-Ratio): Uses a reference cell type as denominator

• ILR (Isometric Log-Ratio): Projects data onto orthonormal basis

• Balance transforms: User-defined log-ratios between groups of cell types

SETA also provides multi-resolution analysis capabilities, allowing users to analyze data at different
taxonomic levels (e.g., broad cell types vs. specific subtypes).



SETA-package 3

Value

This package provides functions that return various data structures:

• setaCounts(): Returns a sample-by-cell-type count matrix

• setaTransform(): Returns a list with transformed counts and method information

• setaLatent(): Returns a list with latent space coordinates, loadings, and variance explained

• setaDistances(): Returns a data frame with pairwise distances between samples

• setaTaxonomyDF(): Returns a data frame with hierarchical taxonomy information

• taxonomy_to_tbl_graph(): Returns a tbl_graph object for visualization

Key functions include:

• setaCounts: Extract cell-type count matrices from single-cell objects

• setaTransform: Apply compositional transforms (CLR, ALR, ILR, balance)

• setaLatent: Perform dimensionality reduction (PCA, PCoA, NMDS)

• setaDistances: Calculate compositional distances between samples

• setaTaxonomyDF: Create hierarchical taxonomies for multi-resolution analysis

• taxonomy_to_tbl_graph: Convert taxonomies to graph objects for visualization

For detailed examples, see the package vignettes:

• vignette("introductory_vignette", package = "SETA")

• vignette("comparing_samples", package = "SETA")

• vignette("reference_frames", package = "SETA")

The package is designed to be educational, teaching users about compositional data analysis prin-
ciples while providing practical tools for single-cell research.

Author(s)

Kyle Kimler <kkimler@broadinstitute.org> (aut, cre)

Marc Elosua-Bayes (aut)

References

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the Royal Statisti-
cal Society. Series B (Methodological), 44(2), 139-177.

Greenacre, M. (2018). Compositional Data Analysis in Practice. CRC Press.

Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015). Modeling and Analysis of
Compositional Data. John Wiley & Sons.

See Also

Useful links:

• https://github.com/CellDiscoveryNetwork/SETA

• Report bugs at https://github.com/CellDiscoveryNetwork/SETA/issues

https://github.com/CellDiscoveryNetwork/SETA
https://github.com/CellDiscoveryNetwork/SETA/issues


4 data

.extractMetadata Extract metadata from single-cell objects

Description

This function extracts metadata from various single-cell objects and converts them to data.frames
for use with other SETA functions.

Usage

.extractMetadata(obj)

Arguments

obj A single-cell object (Seurat, SingleCellExperiment, or data.frame)

Value

A data.frame containing cell metadata

data Synthetic single-cell, mixture and marker data

Description

mockSeurat/mockSCE/mockLong are designed to generate synthetic single-cell data. These data
are not meant to represent biologically meaningful use-cases, but are solely intended for use in
examples, for unit-testing, and to demonstrate SETA’s general functionality. Please don’t use it in
real life.

Usage

mockSeurat(ng = 200, nc = 50, nt = 3, ns = 4, nb = 2)

mockLong(nc = 50, nt = 3, ns = 4, nb = 2, useBatch = TRUE)

mockCount(df = mockLong())

mockSCE(nc = 500, nt = 3, ns = 4, nb = 2, useBatch = TRUE)

makeTypeHierarchy(type_levels)

Arguments

ng, nc, nt, ns, nb integer scalar specifying the number of genes, cells, types (groups), samples,
and batches to simulate.

useBatch logical scalar indicating whether to include a batch metadata column

df data.frame in the format of ‘mockLong()‘.

type_levels character vector of type levels representing cell types to be assigned to fine, mid
and broad annotations



resolveGroup 5

Value

• mockSeurat returns a Seurat object with rows = genes, columns = single cells, and cell
metadata column type containing group identifiers.

• mockLong returns a data.frame object with rows = cells, columns = cell metadata column
fine_type, mid_type, broad_type containing group identifiers at different hierarchical lev-
els.

• mockCount returns a data.frame object with rows = type x sample, columns = metadata
column bc containing the number of cells per type x sample.

• mockSCE returns a SingleCellExperiment object with rows = genes, columns = single cells,
and cell metadata column type containing group identifiers.

• makeTypeHierarchy returns a list of as many elements as levels in the hierarchy, with names
corresponding to the type levels and values containing the corresponding type identifiers at
that level.

Examples

seu <- mockSeurat()
sce <- mockSCE()
hierarchy <- makeTypeHierarchy(c("Lineage", "Type", "State"))

resolveGroup ‘resolveGroup()‘ converts a user supplied *group specification* into
the column indices of the corresponding leaves in a **counts** taxa
matrix. A group specification can be:

Description

* **character vector of leaf names** present in ‘colnames(counts)‘ * **character vector of higher
level labels** that appear in a column of ‘taxonomyDF‘ (‘taxonomy_col‘) * **numeric vector of
column indices**

Usage

resolveGroup(spec, counts, taxonomyDF = NULL, taxonomy_col = NULL)

Arguments

spec A character or numeric vector specifying a group. See Details.

counts Numeric matrix: samples × taxa. Column names are treated as leaf (finest level)
labels.

taxonomyDF A data.frame returned by setaTaxonomyDF (optional).

taxonomy_col Character. Which column of taxonomyDF to search when spec contains higher
level labels (optional).

Details

If higher level labels are supplied, the function returns *all leaves* (finest level labels = ‘row-
names(taxonomyDF)‘) whose ‘taxonomy_col‘ entry matches the requested label(s).



6 setaALR

Value

An integer vector of column indices inside ‘counts‘.

Examples

## Mini counts matrix
mat <- matrix(1, 3, 4, dimnames = list(NULL,

c("AT1", "AT2", "Fib1", "Fib2")))

## Taxonomy table
taxDF <- data.frame(

broad_type = c("Epi","Epi","Stroma","Stroma"),
row.names = c("AT1","AT2","Fib1","Fib2")

)

## Resolve by leaf names
resolveGroup(c("AT1","AT2"), mat, taxDF, "broad_type")

## Resolve by higher level label
resolveGroup("Stroma", mat, taxDF, "broad_type")

setaALR Additive Log-Ratio (ALR) Transform

Description

Applies the ALR transform to an integer matrix of counts using a specified reference taxon. Samples
are in rows and taxa in columns.

Usage

setaALR(counts, ref, pseudocount = 1)

Arguments

counts A numeric matrix with rows as samples and columns as taxa.

ref Either the reference taxon name (a character string, which must appear in colnames(counts))
or the column index of the reference.

pseudocount Numeric. Added to every count to avoid log(0). Default is 1.

Details

For each sample, the transform computes ALR(x)i = log
(
(xi + c)/(xref + c)

)
, where c is the

pseudocount, for all taxa i except the reference.

Value

A list with:

method A string indicating the ALR transform with the reference taxon.

counts A matrix with one row per sample and (n_taxa - 1) columns.



setaBalance 7

Examples

# Example with 2 samples and 2 taxa:
mat <- matrix(c(1, 2, 4, 8), nrow = 2, byrow = TRUE)
colnames(mat) <- c("TaxonA", "TaxonB")
# Using TaxonA as the reference.
out <- setaALR(mat, ref = "TaxonA", pseudocount = 0)
out$counts

setaBalance User-defined balance transform (geometric-mean log-ratio)

Description

‘setaBalance()‘ computes *one or more* biologically meaningful balances (log-ratios) from a count
matrix. Each balance is defined by two groups of taxa: **numerator** (‘num‘) and **denomina-
tor** (‘denom‘). Groups may be given as leaf names, higher-level labels (resolved through a ‘tax-
onomyDF‘), or column indices. The resulting balance will be positive if weighted in the numerator
direction, and negative toward the denominator.

Usage

setaBalance(
counts,
balances,
taxonomyDF = NULL,
taxonomy_col = NULL,
normalize_to_parent = FALSE,
pseudocount = 1

)

Arguments

counts Numeric matrix with rows = samples and columns = taxa.
balances A single balance (list with ‘num‘, ‘denom‘) **or** a named list of such lists for

multiple balances.
taxonomyDF Optional. A data frame from [setaTaxonomyDF()] used to expand higher-level

labels into their descendant leaves.
taxonomy_col Character. Column in ‘taxonomyDF‘ whose values should match any higher-

level labels given in ‘balances‘.
normalize_to_parent

Logical (default ‘FALSE‘). If ‘TRUE‘, each sample is re-closed to the sub-
composition formed by the union of num and denom before taking the log-ratio,
i.e., the balance is within the parent total.

pseudocount Numeric. Value added to every count to avoid ‘log(0)‘. Default ‘1‘.

Details

For every balance and every sample the function returns

log
(
GM(num)/GM(denom)

)
,

where GM(·) is the geometric mean of the (pseudocount-adjusted) counts in the respective group.



8 setaCLR

Value

A list with

method "balance".

counts Matrix with dimensions samples × balances. Column names are the balance names (or
"Balance1" if unnamed).

Examples

# Toy metadata & taxonomy table (from setaTaxonomyDF documentation)
meta <- data.frame(

bc = paste0("cell", 1:6),
fine_type = c("AT1","AT2","AT1","Fib1","Fib1","AT2"),
mid_type = c("Alv","Alv","Alv","Fib","Fib","Alv"),
broad_type = c("Epi","Epi","Epi","Stroma","Stroma","Epi")

)
taxDF <- setaTaxonomyDF(meta,

resolution_cols = c("broad_type","mid_type","fine_type"))

# Fake counts (2 samples x n_taxa leaves)
set.seed(687)
cnt <- matrix(rpois(2 * 3, 10), nrow = 2)
colnames(cnt) <- rownames(taxDF)

# (a) One balance: Epi vs Stroma (broad_type level)
bal1 <- list(num = "Epi", denom = "Stroma")
out1 <- setaBalance(cnt, bal1,

taxonomyDF = taxDF, taxonomy_col = "broad_type")
out1$counts

# (b) Two balances in one call
bals <- list(

epi_vs_stroma = list(num = "Epi", denom = "Stroma"),
AT1_vs_AT2 = list(num = "AT1", denom = "AT2")

)
out2 <- setaBalance(cnt, bals,

taxonomyDF = taxDF, taxonomy_col = "fine_type")
out2$counts

setaCLR Centered Log-Ratio (CLR) Transform Applies a CLR transform to a
matrix of counts. Samples should be in rows and taxa (cell types)
in columns. For each sample, the transform computes CLR(x)_i =
log

(
(x_i+ c)/g(x+ c)

)
, where g(x+ c) is the geometric mean of the

row.

Description

Centered Log-Ratio (CLR) Transform Applies a CLR transform to a matrix of counts. Samples
should be in rows and taxa (cell types) in columns. For each sample, the transform computes
CLR(x)i = log

(
(xi + c)/g(x+ c)

)
, where g(x+ c) is the geometric mean of the row.



setaCounts 9

Usage

setaCLR(counts, pseudocount = 1)

Arguments

counts An integer matrix of cell-type counts with samples in rows.

pseudocount Numeric. Added to all entries to avoid log(0). Default is 1.

Details

The CLR transform is defined sample-wise as

CLR(x)ij = log
(
(xij + c)/gi

)
,

where

gi = exp
(
1
p

p∑
j=1

log(xij + c)
)

for sample i, and p is the number of taxa. Here c is the pseudocount.

Value

A list with:

method A string indicating the transform ("CLR").

counts A matrix of the same dimensions as the input after the CLR transform.

References

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the Royal Statisti-
cal Society. Series B (Methodological), 44(2), 139–177.

Examples

mat <- matrix(c(1, 2, 4, 8), nrow = 2, byrow = TRUE)
colnames(mat) <- c("Taxon1", "Taxon2")
out <- setaCLR(mat, pseudocount = 0)
out$counts

setaCounts Extract Taxonomic Counts from Various Single Cell Objects

Description

Given a long-form data.frame, creates a type-by-sample matrix of cell counts. Users can specify
the column names for cell types, samples, and barcodes.

Usage

setaCounts(obj, cell_type_col = "type", sample_col = "sample", bc_col = "bc")



10 setaDistances

Arguments

obj A long-form data.frame, Seurat object, or SingleCellExperiment object.

cell_type_col Column name for cell types (default "type")

sample_col Column name for sample IDs (default "sample")

bc_col Column name for barcodes (default "bc") Use ‘"rownames"‘ to extract barcodes
from row names.

Value

A sample-by-celltype matrix of counts.

Examples

# For a data.frame with custom column names:
set.seed(687)
df <- data.frame(

barcode = paste0("cell", 1:10),
cellType = sample(c("Tcell", "Bcell"), 10, TRUE),
sampleID = sample(c("sample1","sample2"), 10, TRUE)

)
cmat <- setaCounts(df,

cell_type_col = "cellType",
sample_col = "sampleID",
bc_col = "barcode")

print(head(cmat))

setaDistances Compute Distance Matrix between Samples

Description

Calculates a pairwise distance matrix between samples based on user-specified or default ("euclidean")
distance metrics. If used on CLR-transformed data, the default Euclidean distance is the Aitchison
distance, which is commonly used in compositional data analysis (CoDA).

Usage

setaDistances(transformed_counts, method = "euclidean")

Arguments

transformed_counts

Numeric matrix: rows as samples and columns as taxa (e.g., output from setaCLR,
setaTransform, etc.).

method Character. Distance metric for dist. Default: "euclidean" See dist for op-
tions.

Details

This function calculates distances between samples.

Output is a long-form structure convenient to merge with sample-level metadata using merge or
left_join.



setaILR 11

Value

A long-form data.frame with three columns:

from Sample ID of the first sample in the pairwise comparison.

to Sample ID of the second sample in the pairwise comparison.

distance Numeric distance between the two samples.

References

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the Royal Statisti-
cal Society. Series B (Methodological), 44(2), 139-177.

Examples

# Example CLR transformed data (2 samples, 3 taxa)
mat <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, byrow = TRUE)
colnames(mat) <- c("Taxon1", "Taxon2", "Taxon3")
rownames(mat) <- c("SampleA", "SampleB")

clr_mat <- setaCLR(mat, pseudocount = 0)

# Calculate Euclidean (Aitchison) distance
dist_df <- setaDistances(clr_mat)
print(head(dist_df))

setaILR Isometric Log-Ratio (ILR) Transform Applies the ILR transform to
an integer counts matrix. For each sample (row), the data are log-
transformed (with an optional Box Cox like transformation) then pro-
jected onto an orthonormal Helmert basis, reducing dimensionality by
one.

Description

Isometric Log-Ratio (ILR) Transform Applies the ILR transform to an integer counts matrix. For
each sample (row), the data are log-transformed (with an optional Box Cox like transformation)
then projected onto an orthonormal Helmert basis, reducing dimensionality by one.

Usage

setaILR(counts, boxcox_p = 0, taxTree = NULL, pseudocount = 1)

Arguments

counts An integer matrix of celltype counts with samples in rows.

boxcox_p Numeric. If nonzero, a Box Cox type transform is applied to the log-values.
Default is 0 (no Box Cox transformation).

taxTree Unused. Reserved for future taxonomic-balance approaches.

pseudocount Numeric. Added to avoid log(0). Default is 1.



12 setaLatent

Details

The ILR transform is computed as follows:

1. Add a pseudocount and take the natural logarithm:

y = log(x+ pseudocount)

2. If boxcox_p != 0, apply the Box Cox like transform:

y =
exp(p y)− 1

p

3. Project the log-transformed data onto an orthonormal Helmert basis computed via QR decom-
position.

Value

A list with:

method A string indicating the ILR transform. If boxcox_p is nonzero, the value is indicated in
the method string.

counts A matrix of ILR-transformed values with ncol(counts) - 1 columns and the same number
of rows (samples) as the input.

References

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the Royal Statisti-
cal Society. Series B (Methodological), 44(2), 139-177.

Examples

# Example matrix: rows are samples, columns are cell types.
mat <- matrix(c(1, 2, 4, 8), nrow = 2, byrow = TRUE)
colnames(mat) <- c("A", "B")
# ILR transformation reduces the dimension by 1.
out <- setaILR(mat, boxcox_p = 0, pseudocount = 1)
out$counts

setaLatent Compute a Latent Space from Transformed Counts

Description

Given an object produced by one of the seta* transform functions (e.g., setaCLR), this function
applies a dimension reduction method (PCA, PCoA, or NMDS) to transform_obj$counts.

Usage

setaLatent(transform_obj, method = c("PCA", "PCoA", "NMDS"), dims = 2)



setaLogCPM 13

Arguments

transform_obj A list returned by, e.g., setaCLR, setaILR containing a counts matrix, where
rows are samples and columns are features (taxa or cell types).

method A string specifying the dimension reduction method. One of "PCA", "PCoA", or
"NMDS".

dims Integer number of dimensions to return. Default is 2.

Details

• PCA: Uses stats::prcomp on the rows of transform_obj$counts.

• PCoA: Computes a distance matrix via stats::dist, then applies classical multidimensional
scaling (stats::cmdscale).

• NMDS: Uses MASS::isoMDS to compute non-metric MDS from the distance matrix.

Each method returns a data frame of coordinates in latentSpace, plus additional information spe-
cific to that method.

Value

A list containing:

method The chosen latent space method.

latentSpace A data frame of coordinates in the chosen latent space with dims columns.

loadings For PCA, the loadings matrix. Otherwise NA.

varExplained Variance explained (for PCA or PCoA) or stress (for NMDS).

Examples

set.seed(687)
mat <- matrix(rpois(20, lambda=5), nrow=4) # small 4x5 matrix
colnames(mat) <- paste0("C", 1:5)
clr_out <- setaCLR(mat)
latent_pca <- setaLatent(clr_out, method="PCA", dims=2)
latent_pca$latentSpace

setaLogCPM log2(CPM) Transform Computes the log2 counts-per-million (CPM)
for each sample. Samples are in rows and taxa in columns.

Description

log2(CPM) Transform Computes the log2 counts-per-million (CPM) for each sample. Samples are
in rows and taxa in columns.

Usage

setaLogCPM(counts, pseudocount = 1, size_factors = NULL, scale_factor = 1e+06)



14 setaMetadata

Arguments

counts A numeric matrix with rows as samples and columns as taxa.

pseudocount Numeric. Added to counts to avoid log2(0). Default is 1.

size_factors Optional numeric vector of library sizes for each sample. If NULL, the row sums
are used.

scale_factor Numeric. The scaling factor, typically 1e6 for CPM. Default is 1e6.

Details

The transform is
log2

(
((x+ c)/L)× s

)
,

where c is the pseudocount, L is the per-sample library size, and s is scale_factor.

Value

A list with:

method The string "logCPM".

counts A matrix of the same dimensions with log2-transformed CPM values.

Examples

mat <- matrix(c(10, 20, 100, 200), nrow = 2, byrow = TRUE)
out <- setaLogCPM(mat, pseudocount = 1)
out$counts

setaMetadata Extract Sample-Level Metadata from Various Objects

Description

This function extracts sample-level metadata from a dataframe. It ensures that each metadata col-
umn contains unique values per sample. If a metadata column contains non-unique values within
any sample, that column is excluded from the output, and the user is notified via a warning. Useful
when preparing metadata for visualizations or analyses where sample-level inspection is required.

Usage

setaMetadata(x, sample_col = "Sample ID", meta_cols = NULL)

Arguments

x An object of class dataframe which contains cell-level or sample-level metadata.

sample_col Character. The sample identifier column name in source_obj. Default is ’sam-
ple_id’. This column is used to group the metadata.

meta_cols Character vector. Names of metadata columns to retain. If NULL, all columns
present in the source object are considered. However, only those columns where
all entries are identical within each sample are included in the final output.



setaPercent 15

Value

A dataframe where each row corresponds to a unique sample and each column represents a meta-
data variable that has uniform values within samples. Columns with non-unique values within any
sample are excluded, and a warning lists these columns.

Examples

# Using a Seurat object

# if (requireNamespace("SeuratObject", quietly = TRUE)) {
# meta_df <- setaMetadata(seurat_obj[[]],
# sample_col="donor_id",
# meta_cols=c("disease", "Severity"))
# }
#
# Using a SingleCellExperiment object with default parameters
# if (requireNamespace("SingleCellExperiment", quietly = TRUE)) {
# meta_df <- setaMetadata(data.frame(colData(sce_obj)))
#
# Using a dataframe and extracting all possible metadata columns
# meta_df <- setaMetadata(df)
# }

setaPercent Percentage Transform Converts each row (sample) of a counts matrix
to percentages of its row sum.

Description

Percentage Transform Converts each row (sample) of a counts matrix to percentages of its row sum.

Usage

setaPercent(counts)

Arguments

counts A numeric matrix with rows as samples and columns as taxa.

Details

Useful for simplified comparisons and as an input to non-parametric tests.

Value

A list with:

method The string "percent".

counts A matrix of the same dimensions as counts, where each row sums to 100.



16 setaTaxonomyDF

Examples

mat <- matrix(c(1,2,4,8), nrow = 2, byrow = TRUE)
out <- setaPercent(mat)
out$counts

setaTaxonomyDF Build a taxonomy data frame at multiple resolutions

Description

setaTaxonomyDF() converts **one long-form metadata data.frame**-typically colData(sce), seu[[]],
or any frame you already have, into a tidy taxonomy table. Each row corresponds to a unique value
of the *finest* label (the **last** element of ‘resolution_cols‘), and every coarser label sits in its
own column.

Usage

setaTaxonomyDF(
obj,
resolution_cols = c("broad_type", "mid_type", "fine_type"),
bc_col = "bc"

)

Arguments

obj A data.frame or similar object containing cell metadata.
resolution_cols

A character vector of column names indicating hierarchical taxonomy (from
broad to fine).

bc_col Optional. The name of the column containing barcodes, or "rownames" if they
are row names.

Details

## What the input must contain * exactly **one row per cell** * at least one **barcode** col-
umn (default ‘"bc"‘). Pass ‘bc_col = "rownames"‘ if barcodes live in ‘rownames(obj)‘. * **all**
columns listed in ‘resolution_cols‘

No ‘Seurat‘/‘SingleCellExperiment‘ objects are accepted here: extract their metadata/colData first,
then hand it in as a ‘data.frame‘

## Value A ‘data.frame‘ whose **rownames** are the finest label. If any finest label maps to more
than one set of coarser labels the function should stop with an informative error.

Value

A ‘data.frame‘ with one row per unique value of the finest label (the last entry in ‘resolution_cols‘),
and one column for each resolution level. The row names are set to the finest label values. If
any finest label maps to more than one combination of coarser labels, the function stops with an
informative error.



setaTransform 17

Examples

meta <- data.frame(
bc = paste0("cell", 1:6),
broad_type = c("Epi","Epi","Epi","Stroma","Stroma","Epi"),
mid_type = c("Alv","Alv","Alv","Fib","Fib","Alv"),
fine_type = c("AT1","AT2","AT1","Fib1","Fib1","AT2")

)
setaTaxonomyDF(meta,

resolution_cols = c("broad_type","mid_type","fine_type"))

## barcodes can be in rownames with bc_col = "rownames" (as in Seurat Object)
rownames(meta) <- meta$bc
meta$bc <- NULL
setaTaxonomyDF(meta,

resolution_cols = c("broad_type","mid_type","fine_type"),
bc_col = "rownames")

setaTransform Wrapper for Compositional Transforms with Optional Within-Lineage
Resolutions A convenience function that dispatches to one of the trans-
forms: CLR, ALR, ILR, percent, or logCPM. Note that the input
counts matrix should have rows as samples and columns as taxa. Op-
tionally, you can supply a taxonomy data frame to perform a within-
lineage transform at a specified resolution.

Description

Wrapper for Compositional Transforms with Optional Within-Lineage Resolutions A convenience
function that dispatches to one of the transforms: CLR, ALR, ILR, percent, or logCPM. Note that
the input counts matrix should have rows as samples and columns as taxa. Optionally, you can
supply a taxonomy data frame to perform a within-lineage transform at a specified resolution.

Usage

setaTransform(
counts,
method = c("CLR", "ALR", "ILR", "percent", "logCPM", "balance"),
ref = NULL,
taxTree = NULL,
pseudocount = 1,
size_factors = NULL,
taxonomyDF = NULL,
taxonomy_col = NULL,
within_resolution = FALSE,
balances = NULL,
normalize_to_parent = FALSE

)

Arguments

counts A numeric matrix with rows as samples and columns as taxa.



18 setaTransform

method A character string specifying which transform to apply. One of "CLR", "ALR",
"ILR", "percent", "logCPM" or "balance".

ref Reference taxon (only used if method = "ALR"). This can be a taxon name or a
column index.

taxTree Optional tree for ILR (not yet implemented).
pseudocount Numeric, used by CLR, ALR, ILR, and logCPM. Default is 1.
size_factors For logCPM scaling. If NULL, uses row sums.
taxonomyDF Optional data frame specifying higher-level groupings for each taxon. Row

names of taxonomyDF should match colnames(counts).
taxonomy_col The column of taxonomyDF indicating which lineage each taxon belongs to.

Only used if within_resolution = TRUE.
within_resolution

Logical. If TRUE, applies the transform within each lineage of taxa defined
by taxonomyDF[[taxonomy_col]] separately, then merges them back into the
original matrix structure. Default is FALSE. Ignored for ‘"balance"‘.

balances For ‘"balance"‘: a single balance list or a named list;
normalize_to_parent

Logical, passed to [setaBalance()].

Value

A list with the following elements:

transform_method The core transform, e.g. \"CLR\", \"ALR\", etc.
within_resolution Logical indicating if a within-lineage transform was used.
grouping_var The name of the column in taxonomyDF used for grouping (lineages) if within_resolution

= TRUE, otherwise NULL.
counts The resulting matrix after transformation, with the same dimensions as the input counts.

Examples

mat <- matrix(c(1, 2, 4, 8, 3, 6, 9, 12),
nrow = 2, byrow = TRUE)

colnames(mat) <- c("TaxonA1", "TaxonA2", "TaxonB1", "TaxonB2")

# Build a taxonomy data frame labeling lineages
df_lineage <- data.frame(

Lineage = c("LineageA", "LineageA", "LineageB", "LineageB"),
row.names = colnames(mat)

)

# Apply CLR transform to all columns together
out1 <- setaTransform(mat, method = "CLR")

# Apply CLR within each Lineage
out2 <- setaTransform(

mat,
method = "CLR",
taxonomyDF = df_lineage,
taxonomy_col = "Lineage",
within_resolution = TRUE

)



taxonomy_to_tbl_graph 19

taxonomy_to_tbl_graph Convert Multi-Column Taxonomy to a Single-Root tbl_graph (with
node metadata)

Description

This function takes a data frame describing a hierarchical taxonomy across multiple columns (e.g.,
broad -> mid -> fine). Each row represents a unique path through the hierarchy. The function
introduces a single root node (named root_name) above the first hierarchy column, then constructs
a directed tree in which each level connects to the next. After building the graph, it appends node-
level metadata by looking up which rows (and columns) in tax_df contain each node. This allows
you to color or facet by different levels of the taxonomy when using ggraph.

Usage

taxonomy_to_tbl_graph(tax_df, columns = NULL, root_name = "AllCells")

Arguments

tax_df A data frame with one row per unique path in the hierarchy. For example, if
your columns are c(\"broad\",\"mid\",\"fine\"), each row is a single path
from broad -> mid -> fine.

columns A character vector of column names in tax_df to use. They should be ordered
from the broadest level (first) to the finest level (last). If NULL, the function will
use all columns of tax_df in their given order.

root_name A character string naming the artificial root node, inserted above the first hierar-
chy column. Default is \"AllCells\".

Details

1. The function first builds an edge list

1. Root -> level1 for each row

2. level1 -> level2

3. . . .

4. level_{N-1} -> levelN

and removes duplicates, creating a single connected tree.

2. It then annotates each node with the best-known taxonomy data. For a node named x, we look
up all rows of tax_df where x appears in columns, gather the distinct values from each col, and
store them joined with \"|\" if more than one distinct value is found.

This means if a node is shared among multiple broad categories (uncommon, but possible), that
node’s broad column will contain something like \"Epithelial|Stromal\".

Value

A tbl_graph object (directed) with a single root node. The node data includes extra columns
corresponding to each level in columns. If a node corresponds to multiple categories at a given
level, these are combined with \"|\".



20 taxonomy_to_tbl_graph

Examples

# Minimal example with a 3-level hierarchy (broad -> mid -> fine)
tax_df_example <- data.frame(

broad = c("Epithelial", "Epithelial", "Stromal"),
mid = c("Alveolar", "Alveolar", "Fibroblast"),
fine = c("AlveolarType1", "AlveolarType2", "Fibroblast1"),
stringsAsFactors = FALSE

)
library(tidygraph)
library(ggraph)
library(ggplot2)

# Build a single-root tree and incorporate node metadata
tbl_g <- taxonomy_to_tbl_graph(

tax_df_example,
columns = c("broad", "mid", "fine"),
root_name = "AllCells"

)

# Inspect node data (metadata for each node)
as.data.frame(tbl_g, "nodes")

# Visualize with ggraph, coloring by 'broad' level
ggraph(tbl_g, layout = "tree") +

geom_edge_diagonal() +
geom_node_point(aes(color = broad), size = 3) +
geom_node_text(aes(label = name), vjust = 1, hjust = 0.5) +
theme_minimal() +
labs(title = "Single-Root Taxonomy Tree")



Index

∗ compositional
SETA-package, 2

∗ ecology
SETA-package, 2

∗ internal
.extractMetadata, 4

∗ package
SETA-package, 2

∗ single-cell
SETA-package, 2

.extractMetadata, 4

data, 4
dist, 10

left_join, 10

makeTypeHierarchy (data), 4
merge, 10
mockCount (data), 4
mockLong (data), 4
mockSCE (data), 4
mockSeurat (data), 4

resolveGroup, 5

SETA (SETA-package), 2
SETA-package, 2
setaALR, 6
setaBalance, 7
setaCLR, 8
setaCounts, 3, 9
setaDistances, 3, 10
setaILR, 11
setaLatent, 3, 12
setaLogCPM, 13
setaMetadata, 14
setaPercent, 15
setaTaxonomyDF, 3, 5, 16
setaTransform, 3, 17

taxonomy_to_tbl_graph, 3, 19

21


	SETA-package
	.extractMetadata
	data
	resolveGroup
	setaALR
	setaBalance
	setaCLR
	setaCounts
	setaDistances
	setaILR
	setaLatent
	setaLogCPM
	setaMetadata
	setaPercent
	setaTaxonomyDF
	setaTransform
	taxonomy_to_tbl_graph
	Index

