Package ‘SCFA’

January 20, 2026

Type Package
Title SCFA: Subtyping via Consensus Factor Analysis

Version 1.20.0

Description Subtyping via Consensus Factor Analysis (SCFA) can efficiently remove noisy sig-
nals from consistent molecular patterns in multi-omics data.
SCFA first uses an autoencoder to select only important features and then repeatedly per-
forms factor analysis to represent the data with different numbers of factors.
Using these representations, it can reliably identify cancer subtypes and accurately pre-
dict risk scores of patients.

License LGPL
Encoding UTF-8
LazyData true
Depends R (>=4.0)

Imports matrixStats, BiocParallel, torch (>= 0.3.0), coro, igraph,
Matrix, cluster, psych, glmnet, RhpcBLASctl, stats, utils,
methods, survival

RoxygenNote 7.1.1

biocViews Survival, Clustering, Classification
Suggests knitr, rmarkdown, BiocStyle
VignetteBuilder knitr

URL https://github.com/duct317/SCFA

BugReports https://github.com/duct317/SCFA/issues
git_url https://git.bioconductor.org/packages/SCFA
git_branch RELEASE_3_22

git_last_commit 00e97f9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Duc Tran [aut, cre],
Hung Nguyen [aut],
Tin Nguyen [fnd]

Maintainer Duc Tran <duct@nevada.unr.edu>

https://github.com/duct317/SCFA
https://github.com/duct317/SCFA/issues

2 SCFA
Contents
GBM . e 2
SCFA . . . 2
SCFA.Class e e e 3
Index 5
GBM GBM
Description

GBM dataset, including microRNA and survidal data.

Usage
GBM

Format
A list with two items:

data List of microRNA data matrix.

survival Survival information.

SCFA SCFA

Description

The main function to perform subtyping. It takes a list of data matrices as the input and outputs the

subtype for each patient

Usage

SCFA(dataList, k = NULL, max.k = 5, ncores =

10L, seed = NULL)

Arguments
datalList List of data matrices. In each matrix, rows represent samples and columns rep-
resent genes/features.
k Number of clusters, leave as default for auto detection.
max . k Maximum number of cluster
ncores Number of processor cores to use.
seed Seed for reproducibility, you still need to use set.seed function for full repro-
ducibility.
Value

A numeric vector containing cluster assignment for each sample.

SCFA.class 3

Examples

#lLoad example data (GBM dataset)

data("GBM")

#lList of one matrix (microRNA data)

dataList <- GBM$data

#Survival information

survival <- GBM$survival

library(survival)

#Generating subtyping result

set.seed(1)

subtype <- SCFA(datalList, seed = 1, ncores = 2L)
#Perform survival analysis on the result

coxFit <- coxph(Surv(time = Survival, event = Death) ~ as.factor(subtype), data = survival, ties="exact")
coxP <- round(summary(coxFit)$sctest[3],digits = 20)
print(coxP)

SCFA.class SCFA.class

Description
Perform risk score prediction on input data. This function requires training data with survival
information. The output is the risk scores of patients in testing set.

Usage

SCFA.class(datalistTrain, trainLabel, dataListTest, ncores = 10L, seed = NULL)

Arguments
datalListTrain List of training data matrices. In each matrix, rows represent samples and
columns represent genes/features.
trainLabel Survival information of patient in training set in form of Surv object.

datalListTest Listof testing data matrices. In each matrix, rows represent samples and columns
represent genes/features.

ncores Number of processor cores to use.
seed Seed for reproducibility, you still need to use set.seed function for full repro-
ducibility.
Value

A vector of risk score predictions for patient in test set.

Examples

#lLoad example data (GBM dataset)
data("GBM")

#lList of one matrix (microRNA data)
datalList <- GBM$data

#Survival information

survival <- GBM$survival
library(survival)

SCFA.class

#Split data to train and test

set.seed(1)

idx <- sample.int(nrow(dataList[[1]]), round(nrow(datalList[[1]1)/2))

survival$Survival <- survival$Survival - min(survival$Survival) + 1 # Survival time must be positive
trainList <- lapply(datalList, function(x) x[idx,])

trainSurvival <- Surv(time = survival[idx,]$Survival, event = survival[idx,]$Death)
testList <- lapply(datalList, function(x) x[-idx,])
testSurvival <- Surv(time = survival[-idx,]$Survival, event = survival[-idx,]$Death)

#Perform risk prediction

result <- SCFA.class(trainList, trainSurvival, testList, seed = 1, ncores = 2L)
#Validation using concordance index

c.index <- concordance(coxph(testSurvival ~ result))$concordance

print(c.index)

Index

x datasets
GBM, 2

GBM, 2

SCFA, 2
SCFA.class, 3

	GBM
	SCFA
	SCFA.class
	Index

