Package ‘S4Arrays’

January 20, 2026

Title Foundation of array-like containers in Bioconductor

Description The S4Arrays package defines the Array virtual class to be
extended by other S4 classes that wish to implement a container
with an array-like semantic. It also provides: (1) low-level
functionality meant to help the developer of such container to
implement basic operations like display, subsetting, or coercion
of their array-like objects to an ordinary matrix or array, and
(2) a framework that facilitates block processing of array-like
objects (typically on-disk objects).

biocViews Infrastructure, DataRepresentation
URL https://bioconductor.org/packages/S4Arrays

BugReports https://github.com/Bioconductor/S4Arrays/issues
Version 1.10.1

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.3.0), methods, Matrix, abind, BiocGenerics (>=
0.45.2), S4Vectors (>= 0.47.6), IRanges

Imports stats
LinkingTo S4Vectors

Suggests BiocParallel, SparseArray (>= 0.0.4), DelayedArray,
HDF5Array, testthat, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

Collate utils.R rowsum.R abind.R aperm2.R array_selection.R
Nindex-utils.R arep.R array_recycling.R Array-class.R
dim-tuning-utils.R Array-subsetting.R Array-subassignment.R
ArrayGrid-class.R mapToGrid.R extract_array.R type.R
is_sparse.R read_block.R write_block.R show-utils.R
Array-kronecker-methods.R zzz.R

git_url https://git.bioconductor.org/packages/S4Arrays
git_branch RELEASE_3_22

git_last_commit adcccba

git_last_commit_date 2025-11-24

Repository Bioconductor 3.22

Date/Publication 2026-01-19

https://bioconductor.org/packages/S4Arrays
https://github.com/Bioconductor/S4Arrays/issues

2 aperm2
Author Hervé Pages [aut, cre] (ORCID: <https://orcid.org/0009-0002-8272-4522>),
Jacques Serizay [ctb]

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Contents
APETIN2 . . . L L L e e e e e e e e e e e e e e 2
ATED « o v e e e e e e e e e e e e e e e e e e 6
array selection L e 7
Array-class 10
Array-kronecker-methods oL Lo 11
Array-subassignment L. Lo e e e 14
Array-subsetting L e 14
ArrayGrid-class L e e e 14
array_recycling e e e e e 18
bind-arrays e e e e e e e e 20
dim-tuning-utils oL e 21
EXITACL_AITAY .« . v v v v et e e e e e e e e e e e e e e e e e e 21
IS_SPATSE « « v v v v e 24
mapToGrid e e 25
read_block e 27
TOWSUIL © . v v v v e v e 30
LYPE . . e 32
write_block e 33

Index 37

aperm2 Generalized permutation of the dimensions of an array
Description

aper

m2() extends the functionality of base: :aperm() by allowing dropping and/or adding inef-

fective dimensions (i.e. dimensions with an extent of 1) from/to the input array, in addition to
permuting its dimensions.

Note

that, like base: :aperm(), aperm2() always preserves the length of the input array. However,

unlike with base: :aperm(), the array returned by aperm2() doesn’t necessarily have the same
number of dimensions as the input array.

Usage
aperm2(a, perm)
Arguments
a An ordinary array.
perm An integer vector, possibly containing NAs, indicating how the dimensions of the

returned array should be mapped to those of the input array.
More precisely, perm can be one of the following:

https://orcid.org/0009-0002-8272-4522

aperm?2 3

* A permutation of the seq_along(dim(a)) vector, like for base: :aperm().
Note that if the identity permutation is used (i.e. perm=seq_along(dim(a))),
then aperm2() is a no-op (like with base: :aperm()).

* A permutation of a subset of the seq_along(dim(a)) vector. In this case
the dimensions that are excluded must be ineffective dimensions i.e. each
of them must have an extent of 1. In other words, only integers that belong
to which(dim(a) == 1) can be missing from perm.

In this case, the ineffective dimensions that are excluded will be dropped
i.e. they won’t be carried over to the returned array.

* Additionally, any number of NAs can be inserted anywhere in a perm vector

like one described above.
In this case, ineffective dimensions will be added to the returned array.
These added dimensions will materialize as additional 1’s in the dim() vec-
tor of the returned array, at positions that match the positions of the NAs in
perm.

Note that if perm is missing, then aperm2(a) reverses the order of a’s dimen-
sions (i.e. perm gets set to rev(seg_along(dim(a)))), like base: :aperm(a)
does.

Value

An array with one dimension per element in the perm argument. The length of the returned array
will always be the same as the length of the input array. (Note that for an array a, length(a) is
prod(dim(a)).)

Note

The aperm() method for DelayedArray objects defined in the DelayedArray package implements
the "aperm2 semantic", that is, it allows dropping and/or adding ineffective dimensions from/to the
input DelayedArray object.

See Also

* apermin the base package for the function that aperm2 is based on.
* aperm in the BiocGenerics package for the aperm S4 generic function.

» aperm,SVT_SparseArray-method in the SparseArray package and aperm,DelayedArray-method
in the DelayedArray package for aperm() methods that implements the "aperm2 semantic".

Examples

e
SOME EXAMPLES WITH A 4D ARRAY
HHE =

a <- array(1:72, c(3, 6, 1, 4),
dimnames=1ist(NULL, letters[1:6], NULL, LETTERS[1:41))
a

Permute first two dimensions:
aperm2(a, perm=c(2,1,3,4))

Permute first and last dimensions:
aperm2(a, perm=c(4,2,3,1))

aperm2

Drop 3rd dimension:
aperm2(a, perm=c(1,2,4))

Drop 3rd dimension and permute 2nd and last:
aperm2(a, perm=c(1,4,2))

Drop 3rd dimension and cycle the order of the remaining ones:
aperm2(a, perm=c(2,4,1))

Add one ineffective dimension:
aperm2(a, perm=c(NA,1,2,3,4))
aperm2(a, perm=c(1,NA,2,3,4))
aperm2(a, perm=c(1,2,NA,3,4))
aperm2(a, perm=c(1,2,3,NA,4))
aperm2(a, perm=c(1,2,3,4,NA))

Add four ineffective dimensions:
aperm2(a, perm=c(NA,1,2,3,NA,NA,4 NA))

Permute first and last dimensions and add one ineffective dimension:
aperm2(a, perm=c(4,2,3,NA,1))

Drop 3rd dimension, cycle the order of the remaining ones, and add
two ineffective dimensions:
aperm2(a, perm=c(2,4,NA,1,NA))

No-op:
aperm2(a, perm=seq_along(dim(a)))

Reverse the order of the dimensions (multidimensional transposition):
aperm2(a) # same as 'aperm2(a, perm=rev(seqg_along(dim(a))))"'

Bt e
COMPOSING aperm2() TRANSFORMATIONS
e

Applying two successive aperm() transformations, first with 'perm'’
set to 'perml' then set to 'perm2', is equivalent to applying a
single aperm() transformation with 'perm' set to 'perml[perm2]'.

#H#

More formally:

aperm(aperm(a, perm=perml), perm=perm2)
is equivalent to:

#it aperm(a, perm=perml[perm2])

##

Note that this also applies to aperm2()!
Examples with aperm():

perml <- ¢(2,4,3,1)

perm2 <- c(4,3,2,1)

perm3 <- c(2,1,4,3)

al2 <- aperm(aperm(a, perm=perml), perm=perm2)
stopifnot(identical(al2, aperm(a, perm=perml[perm2])))

aperm2

al3 <- aperm(aperm(a, perm=perml), perm=perm3)
stopifnot(identical(al3, aperm(a, perm=perml[perm3])))

a23 <- aperm(aperm(a, perm=perm2), perm=perm3)
stopifnot(identical(a23, aperm(a, perm=perm2[perm3])))

al23 <- aperm(aperm(aperm(a, perm=perml), perm=perm2), perm=perm3)
stopifnot(identical(al23, aperm(a, perm=perml[perm2][perm3])))
stopifnot(identical(al23, aperm(a, perm=perml[perm2[perm3]1])))

Examples with aperm2():

perml <- c(2,4,1)
perm2 <- c(1,3,NA,2,NA)
perm3 <- c(5,4,2,1)

al2 <- aperm2(aperm2(a, perm=perml), perm=perm2)
stopifnot(identical(al2, aperm2(a, perm=perml[perm2])))

al23 <- aperm2(aperm2(aperm2(a, perm=perml), perm=perm2), perm=perm3)
stopifnot(identical(al123, aperm2(a, perm=perml[perm2][perm3])))
stopifnot(identical(a123, aperm2(a, perm=perml[perm2[perm3]1])))

B =
REVERSIBILITY OF THE aperm2() TRANSFORMATION
e

An aperm() or aperm2() transformation is always reversible.
The 'perm' vector to use to achieve the reverse transformation
can be inferred from the initial 'perm' vector using the following
helper function ('n' must be the number of dimensions of
the original array):
build_rev_perm <- function(perm, n=length(perm)) {
rev_perm <- rep.int(NA_integer_, n)
na_idx <- which(!is.na(perm))
rev_perm[perm[na_idx]] <- na_idx
rev_perm

}

Examples:

perm <- c(2,4,NA,1,NA)
rev_perm <- build_rev_perm(perm, n=length(dim(a)))
stopifnot(identical (aperm2(aperm2(a, perm=perm), perm=rev_perm), a))

The "composed” 'perm' vector achieves identity:
perm[rev_perm]

Sanity checks:

perm <- seq_len(10)
stopifnot(identical(build_rev_perm(perm), perm))

perm <- c(2:5,1L)
rev_perm <- build_rev_perm(perm)
stopifnot(identical (perm[rev_perm], seq_along(perm)))

6 arep

perm <- c(5L,NA,2:4,NA,NA,1L)
rev_perm <- build_rev_perm(perm, n=6)
stopifnot(identical (perm[rev_perm], c(1:5,NA)))

arep Replicate array elements

Description

arep_times() and arep_each() are multidimensional versions of base::rep(, times=) and
base::rep(, each=), respectively.

They’re both generic functions with default methods that work on any array-like object that supports
[(single-bracket subsetting).

Usage

arep_times(x, times)
arep_each(x, each)

Arguments
X An array-like object, that is, an ordinary array or any object with dimensions.
times, each An integer vector parallel to dim(x) i.e. with one element per dimension in x.
Value

An array-like object of the same class as x and with dimensions dim(x) * times for arep_times
or dim(x) * each for arep_each. The dimnames on x are propagated, if any.

See Also

* base: :rep in the base package.

e array and matrix objects in base R.

Examples

m <- matrix(1:10, nrow=2)
arep_times(m, c(4, 2))
arep_each(m, c(4, 2))

Note that the output array is 'prod(times)' (or 'prod(each)') times
bigger than the input array!

array selection 7

array selection Manipulation of array selections

Description

NOTE: The tools documented in this man page are primarily intended for developers or advanced
users curious about the internals of the SparseArray or DelayedArray packages. End users typi-
cally don’t need them for their regular use of SparseArray or DelayedArray objects.

An array selection is just an index into an array-like object that contains the information of which
array elements are selected. This index can take various forms but 3 special forms are particularly
useful and extensively used in the context of the SparseArray and DelayedArray packages: linear
index (also referred to as L-index or Lindex), matrix index (also referred to as M-index or Mindex),
N-dimensional index (also referred to as N-index or Nindex). See Details section below for more
information.

Two utility functions are provided at the moment to convert back and forth between L-indices and
M-indices. More will be added in the future to convert between other types of array indices.

Usage

Convert back and forth between L-indices and M-indices:
Lindex2Mindex(Lindex, dim, use.names=FALSE)
Mindex2Lindex(Mindex, dim, use.names=FALSE, as.integer=FALSE)

Arguments

Lindex An L-index. See Details section below.

Mindex An M-index. See Details section below.
For convenience, Mindex can also be specified as an integer vector with one
element per dimension in the underlying array, in which case it will be treated
like a 1-row matrix.

dim An integer vector containing the dimensions of the underlying array.
Note that dim can also be an integer matrix, in which case it must have one row
per element in Lindex (or per row in Mindex) and one column per dimension in
the underlying array.

use.names Should the names (or rownames) on the input be propagated to the output?

as.integer Set to TRUE to force Mindex2Lindex to return the L-index as an integer vector.

Dangerous!

By default, i.e. when as.integer=FALSE, Mindex2Lindex will return the L-
index either as an integer or numeric vector. It will choose the former only if it’s
safe, that is, only if all the values in the L-index "fit" in the integer type. More
precisely:

e If dim is not a matrix (i.e. is a vector) or if it’s a matrix with a single row:
Mindex2Lindex returns an integer or numeric vector depending on whether
prod(dim) is <= .Machine$integer.max (2731 - 1) or not.

* Otherwise Mindex2Lindex returns a numeric vector.

Note that with these rules, Mindex2Lindex can return a numeric vector even if
an integer vector could have been used.

Use as.integer=TRUE only in situations where you know that all the L-index
values are going to "fit" in the integer type. Mindex2Lindex will return garbage
if they don’t.

8 array selection

Details

The 3 special forms of array indices that are extensively used in the context of the SparseArray
and DelayedArray packages:

1. Linear index (or L-index or Lindex): A numeric vector where each value is >= 1 and <= the
length of the array-like object. When using an L-index to subset an array-like object, the
returned value is a vector-like object (i.e. no dimensions) of the same length as the L-index.

Example:

a <- array(101:124, 4:2)
Lindex <- c(7, 2, 24, 2)
a[Lindex]

2. Matrix index (or M-index or Mindex): An integer matrix with one column per dimension in the
array-like object and one row per array element in the selection. The values in each column
must be >= 1 and <= the extent of the array-like object along the corresponding dimension.
When using an M-index to subset an array-like object, the returned value is a vector-like object
(i.e. no dimensions) of length the number of rows in the M-index.

Example:

a <- array(101:124, 4:2)
Mindex <- rbind(c(3, 2, 1),

C(Z’ 1, 1))
C(4’ 3’ 2)’
c(2, 1, 1)

a[Mindex]

Note that this is the type of index returned by base: :arrayInd.

3. N-dimensional (or N-index or Nindex): A list with one list element per dimension in the array-
like object. Each list element must be a subscript describing the selection along the corre-
sponding dimension of the array-like object. IMPORTANT: A NULL subscript is interpreted as
a missing subscript ("missing" like in al , , 1:21]), that is, as a subscript that runs along the
full extend of the corresponding dimension of the array-like object. This means that before
an N-index can be used in a call to [, [<-, [[or [[<-, the NULL list elements in it must be
replaced with objects of class "name”. When using an N-index to subset an array-like object,
the returned value is another array-like object of dimensions the lengths of the selections along
each dimensions.

Examples:

a <- array(101:124, 4:2)

Normalized N-index (i.e. non-NULL subscripts are integer
vectors with positive values only):

Nindex <- list(c(1, 4, 1), NULL, 1)
Same as alc(1, 4, 1), , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

Nindex <- list(integer(@), NULL, 1)
Same as alinteger(@), , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

array selection

Value

Non-normalized N-index:

Nindex <- list(-3, NULL, c(TRUE, FALSE, FALSE))
Nindex <- S4Arrays:::normalize_Nindex(Nindex, a)
Same as a[-3, , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

Nindex <- list(IRanges(2, 4), NULL, 1)

Nindex <- S4Arrays:::normalize_Nindex(Nindex, a)
Same as a[2:4, , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

dimnames(a)[[1]] <- LETTERS[1:4]

Nindex <- list(c("D", "B"), NULL, 1)

Nindex <- S4Arrays:::normalize_Nindex(Nindex, a)
Same as a[c("D", "B"), , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

Lindex2Mindex returns an M-index.

Mindex2Lindex returns an L-index.

See Also

arrayInd in the base package.

Examples

R

M-index vs L-index

R

a <- array(101:124, 4:2)

The same "array selection” can be represented by an M-index or
an L-index. Here we use both representations to select the same
4 array elements:

Mindex <- rbind(c(3, 2, 1),

a[Mindex]

C(Z' -I! 1)!
c(4, 3, 2),
c(2, 1, 1)

Lindex <- c(7, 2, 24, 2)

alLindex]

Sanity check:

stopifnot(identical (a[Mindex], a[Lindex]))

e

Convert back and forth between M-index and L-index representation

R

10 Array-class

Mindex2Lindex(Mindex, dim(a)) # L-index
Lindex2Mindex(Lindex, dim(a)) # M-index

Sanity checks:

storage.mode(Mindex) <- storage.mode(Lindex) <- "integer"”
stopifnot(identical (Mindex2Lindex(Mindex, dim(a)), Lindex))
stopifnot(identical(Lindex2Mindex(Lindex, dim(a)), Mindex))

B oo
More Mindex2Lindex() examples
T
dim <- 4:2

Mindex2Lindex(c(4, 3, 1), dim)
Mindex2Lindex(c(4, 3, 2), dim)

Mindex <- rbind(c(1, 1, 1),
c(2, 1, 1),
c(3, 1, 1,
c(4, 1, 1,
c(l, 2, 1),
c(1, 1, 2),
c(4, 3, 2))

Mindex2Lindex(Mindex, dim)
With a matrix of dimensions:
dims <- rbind(c(4L, 3L),

c(5L, 3L),

c(6L, 3L))

Mindex <- rbind(c(1, 2),
C(1! 2)’
c(1, 2))

Mindex2Lindex(Mindex, dims)

Sanity checks:

dim <- c(33:30, 45L, 30L)
stopifnot(Mindex2Lindex(rep(1, 6), dim) == 1)

stopifnot(Mindex2Lindex(dim, dim) == prod(dim))

stopifnot(identical (Mindex2Lindex(arrayInd(1:120, 6:4), 6:4), 1:120))
stopifnot(identical (Mindex2Lindex(arrayInd(840:1, 4:7), 4:7), 840:1))

Array-class Array objects

Description

Array is a virtual class with no slots intended to be extended by concrete subclasses with an array-
like semantic.

Array-kronecker-methods 11

Details

Some examples of Array derivatives:

* SparseArray objects implemented in the SparseArray package.
* DelayedArray objects implemented in the DelayedArray package.
* ArrayGrid and ArrayViewport objects implemented in this package (the S4Arrays package).

See Also

* array and matrix objects in base R.

Examples

showClass("Array”) # virtual class with no slots

Array-kronecker-methods
Kronecker products on Array objects

Description

The S4Arrays package implements kronecker () methods for Array objects that work out-of-the-
box on Array derivatives that support [and *.

Note that kronecker is a generic function defined in the methods package but documented in the
base package. See ?base: :kronecker.

Usage
S4 method for signature 'Array,ANY'
kronecker(X, Y, FUN="x"] make.dimnames=FALSE, ...)
S4 method for signature 'ANY,Array'
kronecker (X, Y, FUN="x" make.dimnames=FALSE, ...)
S4 method for signature 'Array,Array'’
kronecker (X, Y, FUN="x" make.dimnames=FALSE, ...)

The workhorse behind the three above methods.

kronecker2(X, Y, FUN="%" make.dimnames=FALSE, ...)
Arguments
X, Y Array-like objects. Alternatively X and/or Y can be vectors, in which case they

are converted to 1D-arrays with as.array().
Note that X and Y are expected to have the same number of dimensions. How-
ever, when they don’t, ineffective dimensions (i.e. dimensions with an extent of
1) are added to the object with less dimensions.
For the S4 methods, at least one of X or Y must be an Array derivative.

FUN, make.dimnames, ...
See ?base: :kronecker for a description of these arguments.

12 Array-kronecker-methods

Details
The three kronecker () methods listed above delegate to kronecker2(), a re-implementation of
base: :kronecker().

kronecker2() is semantically equivalent to base: :kronecker. However, unlike the latter which
calls as.array() on X and Y internally, the former operates natively on the input objects regardless
of their internal representations, as long as they are array-like objects that support [(single-bracket
subsetting) and *. In particular, when X and Y use the same internal representations, the returned
object will also use that representation. In other words, the output object will have the same class
as the input objects (endomorphism).

The endomorphism property is particularly important when the input objects are sparse (e.g. SVT_SparseArray
objects from the SparseArray package) or when they use an on-disk representation (e.g. De-
layedArray objects from the DelayedArray package). For example, if X and Y are DelayedArray ob-

jects, the returned object is another DelayedArray object. Also in that case, calling kronecker2()

is virtually instantaneous because all the operations that the function performs internally on X and Y

by the are delayed!

Value

An array-like object with dimensions dim(X) * dim(Y).

See Also

* base: :kronecker in the base package.

* The "Kronecker product” page on Wikipedia: https://en.wikipedia.org/wiki/Kronecker_
product

e The Array class.

» SparseArray objects implemented in the SparseArray package.

* DelayedArray objects implemented in the DelayedArray package.
* TENxMatrix objects implemented in the HDF5Array package.

Examples
B — o
SIMPLE kronecker2() EXAMPLES
B o o o
ml <- matrix(1:10, nrow=2) # 2 x 5 matrix
m2 <- matrix(101:106, nrow=3) # 3 x 2 matrix
kronecker2(m1, m2) # 6 x 10 matrix

al <- array(1:16, dim=c(4, 2, 2))
a2 <- array(1:30, dim=c(3, 5, 2))
kronecker2(al, a2) # 12 x 10 x 4 array

The Kronecker product is **not** commutative:
ml <- matrix(LETTERS[1:10], nrow=2)

m2 <- matrix(letters[1:6], nrow=3)
kronecker2(ml, m2, paste, sep="x"
kronecker2(m2, m1, paste, sep="x")

Sanity checks:
stopifnot(

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Kronecker_product

Array-kronecker-methods

identical (kronecker2(m1, m2, paste@), kronecker(ml, m2, paste0)),
identical (kronecker2(m2, ml1, paste@), kronecker(m2, ml, paste@))

)

USING kronecker() ON Array DERIVATIVES

#H# -
The user should typically avoid direct calls to kronecker2() and

stick to kronecker(). Because this is a generic function, it will

dispatch to the appropriate method based on the classes of the input
objects. If one of them is an Array derivative, kronecker2() will

be called thanks to the methods defined in the S4Arrays package and
listed in the Usage section above.

With SparseMatrix objects (Array derivatives):
library(SparseArray)

sm1 <- poissonSparseMatrix(300, 15, density=0.25)

sm2 <- poissonSparseMatrix(80, 500, density=0.15)
kronecker2(sm1, sm2) # 24000 x 7500 SparseMatrix object

With TENxMatrix objects (DelayedArray derivatives, therefore also

Array derivatives):

library(HDF5Array)

M1 <- writeTENxMatrix(sm1) # 300 x 15 TENxMatrix object

M2 <- writeTENxMatrix(sm2) # 80 x 500 TENxMatrix object

K <- kronecker2(M1, M2) # instantaneous! (all operations are delayed)
showtree(K) # show delayed operations details

e
VERIFYING THE MIXED-PRODUCT PROPERTY (JUST FOR FUN!)

B oo
See https://en.wikipedia.org/wiki/Kronecker_product for details

about "The mixed-product property”.

We verify the property on 4 random matrices:
A <- matrix(runif(1000), ncol=40)

B <- matrix(runif(800), ncol=100)

C <- matrix(runif(600), nrow=40)

D <- matrix(runif(5000), nrow=100)

kAB <- kronecker2(A, B)

kCD <- kronecker2(C, D)

KAB_x_kCD <- kAB %*% kCD

A_X_C <= A %*% C

B_x_D <- B %*% D

stopifnot(all.equal (kAB_x_kCD, kronecker2(A_x_C, B_x_D)))

The mixed-product property also for the element-wise product
(Hadamard product). We verify this on 4 random arrays:

A <- array(1:60, dim=5:3)

B <- array(101:180, dim=c(2,10,4))

C <- array(runif(60), dim=5:3)

D <- array(runif(80), dim=c(2,10,4))

kAB <- kronecker2(A, B)
kCD <- kronecker2(C, D)
kAB_o_kCD <- kAB * kCD

13

14 ArrayGrid-class

Ao C<-A=*C
B_.oD<-B *D
stopifnot(all.equal (kAB_o_kCD, kronecker2(A_o_C, B_o_D)))

Array-subassignment Low-level internal generics involved in subassignment of Array
derivatives

Description

The S4Arrays package defines a small set of low-level generic functions that are involved in sub-
assignment operations on Array derivatives. They are not intended to be used directly by the end
user.

See Also

* The Array class.

Array-subsetting Low-level internal generics involved in subsetting of Array derivatives

Description
The S4Arrays package defines a small set of low-level generic functions that are involved in sub-
setting operations on Array derivatives. They are not intended to be used directly by the end user.
See Also

e The Array class.

ArrayGrid-class ArrayGrid and ArrayViewport objects

Description

A grid is a partitioning of an array-like object into block-shaped regions called viewports.

The S4Arrays package defines two S4 classes to formally represent grids and viewports: the Ar-
rayGrid and ArrayViewport classes. Note that ArrayGrid and ArrayViewport objects are used ex-
tensively in the context of block processing of array-like objects.

There are two variants of ArrayGrid objects:
* RegularArrayGrid objects: for grids where all the blocks have the same geometry (except
maybe for the edge blocks).

* ArbitraryArrayGrid objects: for grids where blocks don’t necessarily have the same geometry.

ArrayGrid-class 15

Usage

Constructor functions:
RegularArrayGrid(refdim, spacings=refdim)
ArbitraryArrayGrid(tickmarks)

downsample(x, ratio=1L)

Arguments
refdim An integer vector containing the dimensions of the reference array.
spacings An integer vector specifying the grid spacing along each dimension.
tickmarks A list of integer vectors, one along each dimension of the reference array, repre-
senting the tickmarks along that dimension. Each integer vector must be sorted
in ascending order. NAs or negative values are not allowed.
X An ArrayGrid object.
ratio An integer vector specifying the ratio of the downsampling along each dimen-
sion. Can be of length 1, in which case the same ratio is used along all the
dimensions.
Details

RegularArrayGrid and ArbitraryArrayGrid are concrete subclasses of ArrayGrid, which itself is a
virtual class.

Note that an ArrayGrid or ArrayViewport object doesn’t store any array data, only the geometry
of the grid or viewport. This makes these objects extremely light-weight, even for grids made of
millions of blocks.

Value

For RegularArrayGrid(), a RegularArrayGrid instance.
For ArbitraryArrayGrid(), an ArbitraryArrayGrid instance.

For downsample (), an ArrayGrid object on the same reference array than x.

See Also

* read_block to read a block of data from an array-like object.

* blockApply and family, in the DelayedArray package, for convenient block processing of an
array-like object.

* mapToGrid for mapping reference array positions to grid positions and vice-versa.

* array and matrix objects in base R.

Examples

Bt — oo
A. ArrayGrid OBJECTS
B = m

Create a regularly-spaced grid on top of a 3700 x 100 x 33 array:
gridl <- RegularArrayGrid(c(3700, 100, 33), c(250, 100, 10))

Dimensions of the reference array:

16

ArrayGrid-class

refdim(gridl)

Number of grid elements along each dimension of the reference array:
dim(grid1l)

Total number of grid elements:
length(gridl)

First element in the grid:
grid1[[1L]] # same as grid1[[1L, 1L, 1L]1]

Last element in the grid:
grid1[[length(grid1)]] # same as grid1[[15L, 1L, 4L]]

Dimensions of the grid elements:
dims(grid1) # one row per grid element

Lengths of the grid elements:
lengths(grid1) # same as rowProds(dims(grid1))
stopifnot(sum(lengths(gridl)) == prod(refdim(gridl)))

maxlength(gridl) # does not need to compute lengths(gridl)) first
so is more efficient than max(lengths(gridl))
stopifnot(maxlength(gridl) == max(lengths(grid1)))

Create an arbitrary-spaced grid on top of a 15 x 9 matrix:
grid2 <- ArbitraryArrayGrid(list(c(2L, 7:10, 13L, 15L), c(5:6, 6L, 9L)))

refdim(grid2)

dim(grid2)

length(grid2)

grid2[[1L]] # same as grid2[[1L, 1L]]
grid2[[length(grid2)]] # same as grid2[[15L, 9L]]

dims(grid2)

lengths(grid2)

array(lengths(grid2), dim(grid2)) # display the grid element lengths in
an array of same shape as grid2

stopifnot(sum(lengths(grid2)) == prod(refdim(grid2)))

maxlength(grid2) # does not need to compute lengths(grid2)) first
so is more efficient than max(lengths(grid2))
stopifnot(maxlength(grid2) == max(lengths(grid2)))

Max (i.e. highest) resolution grid:

Hgrid <- RegularArrayGrid(6:4, c(1, 1, 1))
Hgrid

dim(Hgrid) # same as refdim(Hgrid)
stopifnot(identical(dim(Hgrid), refdim(Hgrid)))
stopifnot(all(lengths(Hgrid) == 1))

Min (i.e. lowest) resolution grid:

Lgrid <- RegularArrayGrid(6:4, 6:4)

Lgrid

stopifnot(all(dim(Lgrid) == 1))

stopifnot(identical (dim(Lgrid[[1L]]), refdim(Lgrid)))

ArrayGrid-class

stopifnot(identical (dims(Lgrid), matrix(refdim(Lgrid), nrow=1)))

e
B. ArrayViewport OBJECTS
B — oo

Grid elements are ArrayViewport objects:
grid1[[1L]]

stopifnot(is(grid1[[1L]1], "ArrayViewport"))
grid1[[2L]]

grid1[[2L, 1L, 1L]]

grid1[[15L, 1L, 4L]]

Construction of a standalong ArrayViewport object:

mo <- matrix(1:30, ncol=5)

block_dim <- c(4, 3)

viewportl <- ArrayViewport(dim(m@), IRanges(c(3, 2), width=block_dim))
viewportl

dim(viewport1) # 'block_dim'
length(viewport1) # number of array elements in the viewport
ranges(viewportl)

C. GRIDS CAN BE TRANSPOSED
e

tgrid2 <- t(grid2)
dim(tgrid2)
refdim(tgrid2)

Use aperm() if the grid has more than 2 dimensions:
tgridl <- aperm(grid?1)

dim(tgridl)

refdim(tgrid?l)

aperm(gridl, c(3, 1, 2))

aperm(gridl, c(1, 3, 2))

aperm(gridl, c(3, 1)) # some dimensions can be dropped
aperm(gridl, c(3, 2, 3)) # and some can be repeated

D. DOWNSAMPLING AN ArrayGrid OBJECT

#H -
The elements (ArrayViewport) of an ArrayGrid object can be replaced
with bigger elements obtained by merging adjacent elements. How many
adjacent elements to merge along each dimension is specified via the
'ratio' vector (one integer per dimension). We call this operation
"downsampling. It can be seen as reducing the "resolution” of a grid
by the specified ratio (if we think of the grid elements as pixels).
downsample(grid2, 2)

downsample(grid2, 3)

downsample(grid2, 4)

Downsampling preserves the dimensions of the reference array:
stopifnot(identical (refdim(downsample(grid2, 2)), refdim(grid2)))
stopifnot(identical (refdim(downsample(grid2, 3)), refdim(grid2)))

17

18 array_recycling

stopifnot(identical (refdim(downsample(grid2, 4)), refdim(grid2)))

A big enough ratio will eventually produce the coarsest possible grid
i.e. a grid with a single grid element covering the entire reference
array:

grid3 <- downsample(grid2, 7)

length(grid3)

grid3[[1L]]

stopifnot(identical(dim(grid3[[1L]]), refdim(grid3)))

Downsampling by a ratio of 1 is a no-op:
stopifnot(identical (downsample(grid2, 1), grid2))

Using one ratio per dimension:
downsample(grid2, c(2, 1))

Downsample a max resolution grid:

refdim <- c(45, 16, 20)

grid4 <- RegularArrayGrid(refdim, c(1, 1, 1))

ratio <- c(6, 1, 3)

stopifnot(identical(
downsample(grid4, ratio),
RegularArrayGrid(refdim, ratio)

))

array_recycling Multidimensional array recycling

Description

In base R, arithmetic and other binary operations between a matrix or array and a vector don’t let the
user control how the latter should be recycled: it’s always recycled along the first dimension of the
matrix or array. This has led users to use various tricks when they need recycling along the second
dimension (a.k.a. "horizontal recycling"), like the popular "double-transposition” trick: t(t(m) /
colSums(m)). However this is not only inelegant, it’s also inefficient.

as_tile() is meant to address that.

It also allows arithmetic and other binary operations between two arrays of distinct dimensions
(rejected as "non-conformable” by arithmetic operations in base R), typically between a small one
(the tile) and a bigger one, as long as their geometries are compatible.

Usage

as_tile(x, along=1L, dim=NULL)

Arguments
X An array-like object or a vector.
along Can only be used when x is a vector. Must be a single positive integer indicating

the "orientation" of the tile to be created, that is, the dimension along which x
will be recycled by arithmetic operations and other binary operations.

dim NULL or the dimensions (supplied as an integer vector) of the tile to be created.

array_recycling

Value

A tile object (tile is an extension of array).

See Also

* base::colSums in the base package.

* array and matrix objects in base R.

Examples

#H -
2D EXAMPLES

-
mod <- matrix(1:54, nrow=6)

x <- c(-1, 0, 100)

Arithmetic operations in base R recycle 'x' along the first dimension
of the matrix ("vertical recycling”):

mo * x

To recycle 'x' along the second dimension of the matrix ("horizontal
recycling”), we turn it into an "horizontal” tile:

t <- as_tile(x, along=2)

t

mo * t

The above produces the same result as the double-transposition trick
but is more efficient (and also makes code easier to read):
stopifnot(identical(mo * t, t(t(m@) * x)))

A less artificial example:
cs@ <- colSums(m@)
m <- m@ / as_tile(cs@, along=2)

stopifnot(all.equal(colSums(m), rep(1, ncol(m)))) # sanity check
Using an arbitrary 2D tile:

t <-mo[1:2, 1:3]
t
Unfortunately arithmetic operations in base R refuse to operate on
arrays that don't have the same dimensions:
Not run:
md / t # ERROR! (non-conformable arrays)

End(Not run)

Wrapping 't' in a tile object makes this work:
mo / as_tile(t)

e
3D EXAMPLES

BHE = m o mmm
Note that colSums() supports multidimensional arrays. In this case

the user can use the 'dims' argument to control how the array should

20 bind-arrays

be sliced into "columns”. See '?base::colSums' for the details.
a <- array(runif(300), dim=c(10, 5, 6))

Using 'dims=2' indicates that the columns are the 2D slices obtained
by slicing the array along its 3rd dimension. With this slicing, each
column is a 10 x 5 matrix.

cs2 <- colSums(a, dims=2)

cs2 # vector of length 6 (one value per 2D slice)

t <- as_tile(cs2, along=3)
a/t

stopifnot(all.equal(colSums(a / t, dims=2), rep(1, 6))) # sanity check

By default (i.e. when 'dims=1') the array is considered to be made
of 5x6 columns of length 10.

cs1 <- colSums(a)

csl # 5 x 6 matrix

t <- as_tile(cs1, dim=c(1L, dim(cs1)))
al/t

Sanity check:
stopifnot(all.equal(colSums(a / t), matrix(1, nrow=5, ncol=6)))

bind-arrays Combine multidimensional array-like objects

Description

Bind multidimensional array-like objects along any dimension.
NOTE: This man page is for the abind S4 generic function defined in the S4Arrays package. See
?abind: :abind for the default method (defined in the abind package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

Bind array-like objects along any dimension:
abind(..., along=NULL, rev.along=NULL)

Bind array-like objects along their first or second dimension:
arbind(...)
acbind(...)

Arguments

e The array-like objects to bind.

along, rev.along
See ?abind: :abind for a description of these arguments.

Value

An array-like object, typically of the same class as the input objects if they all have the same class.

dim-tuning-utils 21

See Also

* abind: :abind in the abind package for the default abind method.

* rbind and cbind in the base package for the corresponding operations on matrix-like objects.

Examples

al <- array(1:60, c(3, 5, 4),

dimnames=1ist(NULL, paste@("Aly", 1:5), NULL))
a2 <- array(101:240, c(7, 5, 4),

dimnames=list(paste@("A2x", 1:7), paste@("A2y", 1:5), NULL))
a3 <- array(10001:10100, c(5, 5, 4),

dimnames=1list(paste@(”A3x"”, 1:5), NULL, paste@("A3z", 1:4)))

abind(al, a2, a3, along=1) # same as 'arbind(al, a2, a3)
m2 <- matrix(1:35, nrow=7)

abind(m2, a2, along=3)

abind(a2, m2, along=3)

abind(m2, m2+0.5, rev.along=0) # same as 'abind(m2, m2+@.5, along=3)'

dim-tuning-utils Internal "dim tuning" utilities

Description

Internal "dim tuning" utilities not meant to be used directly by the end user.

extract_array extract_array

Description

extract_array is an internal generic function not intended to be used directly by the end user. It
has methods defined for array, data.frame, DataFrame objects, and other array-like objects.

Note that extract_array is part of the seed contract as defined in the Implementing A DelayedAr-
ray Backend vignette from the DelayedArray package.

Usage
The extract_array() S4 generic:
extract_array(x, index)

extract_array() methods defined in the S4Arrays package:

S4 method for signature 'ANY'
extract_array(x, index)

22 extract_array

S4 method for signature 'array'
extract_array(x, index)

S4 method for signature 'data.frame
extract_array(x, index)

S4 method for signature 'DataFrame’
extract_array(x, index)

Arguments

X An array-like object.

This can be an ordinary array, a SparseArray object from the SparseArray pack-
age, a dgCMatrix object from the Matrix package, a DelayedArray object from
the DelayedArray package, or any object with an array semantic (i.e. an object
for which dim(x) is not NULL).

Note that data.frame and DataFrame objects are also supported.
index An unnamed list of integer vectors, one per dimension in x. Each vector is called

a subscript and can only contain positive integers that are valid 1-based indices
along the corresponding dimension in x.

Empty or missing subscripts are allowed. They must be represented by list ele-
ments set to integer (@) or NULL, respectively.

The subscripts cannot contain NAs or non-positive values.
Individual subscripts are allowed to contain duplicated indices.

Details

extract_array() methods need to support empty or missing subscripts. For example, if x is an
M x N matrix-like object, then extract_array(x, list(NULL, integer(@))) must return an M
x 0 ordinary matrix, and extract_array(x, list(integer (@), integer(@))) a 0 x O ordinary
matrix.

Also subscripts are allowed to contain duplicated indices so things like extract_array(x, list(c(1:3,
3:1), 2L)) need to be supported.

Finally, for maximum efficiency, extract_array() methods should not try to do anything with the
dimnames on Xx.

Value

An ordinary array of the same type() as x. For example, if x is an object representing an M x N
matrix of complex numbers (i.e. type(x) == "complex"), then extract_array(x, 1list(NULL,
2L)) must return the 2nd column in x as an M x 1 ordinary matrix of type() "complex”.

See Also

* S4Arrays: : type to get the type of the elements of an array-like object.

array and data.frame objects in base R.

» SparseArray objects implemented in the SparseArray package.

DelayedArray objects implemented in the DelayedArray package.

DataFrame objects implemented in the S4Vectors package.

extract_array 23

Examples

extract_array
showMethods("extract_array")

extract_array() works on array-like objects like SparseArray objects,
dgCMatrix objects, DataFrame objects, etc...

--- On a SparseArray object ---

library(SparseArray)

a <- array(oL, 5:3)

alc(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L
svt <- as(a, "SparseArray")

svt

extract_array(svt, list(NULL, c(4L,2L,4L), 1L))
extract_array(svt, list(NULL, c(4L,2L,4L), 2:3))
extract_array(svt, list(NULL, c(4L,2L,4L), integer(0)))

Sanity checks:
stopifnot(
identical (extract_array(svt, list(NULL, c(4L,2L,4L), 1L)),
as.array(svt)[, c(4L,2L,4L), 1L, drop=FALSE]),
identical (extract_array(svt, list(NULL, c(4L,2L,4L), 2:3)),
as.array(svt)[, c(4L,2L,4L), 2:31),
identical(extract_array(svt, list(NULL, c(4L,2L,4L), integer(@))),
as.array(svt)[, c(4L,2L,4L), integer(@)])
)

--- On a dgCMatrix object ---

library(Matrix)

m<-a[l, , 1]

dgem <- as(m, "dgCMatrix")
dgcm

extract_array(dgem, list(NULL, c(4L,2L,4L)))

Sanity check:
stopifnot(
identical(extract_array(dgem, list(NULL, c(4L,2L,4L))),
as.matrix(dgem)[, c(4L,2L,4L)1)
)

--- On a data.frame or DataFrame object ---

df <- data.frame(a=44:49, b=letters[1:6], c=c(TRUE, FALSE))
DF <- as(df, "DataFrame")

extract_array(df, list(4:2, c(1L,3L)))
extract_array(DF, list(4:2, c(1L,3L)))

Sanity check:

target <- as.matrix(df)[4:2, c(1L,3L)]
dimnames(target) <- NULL

stopifnot(

24 is_sparse

identical(extract_array(df, list(4:2, c(1L,3L))), target),
identical(extract_array(DF, list(4:2, c(1L,3L))), target)
)

is_sparse Check for sparse representation

Description

is_sparse indicates whether an object (typically array-like) uses a sparse representation of the data
or not.

Note that this is about data representation and not about the data itself. For example, is_sparse()
always returns FALSE on an ordinary matrix, even if the matrix contains 99% zeros, because the data
in such a matrix is always stored in a dense form. OTOH is_sparse() always returns TRUE on a
SparseArray derivative from the SparseArray package, or on a dgCMatrix object from the Matrix
package, even if the data contains no zeros, because these objects use a sparse representation of the
data.

Usage

is_sparse(x)

Arguments
X Any object, but will typically be an array-like object.
Examples of array-like objects: ordinary arrays, SparseArray objects from the
SparseArray package, dgCMatrix objects from the Matrix package, Delayed Ar-
ray objects from the DelayedArray package, or any object with an array seman-
tic (i.e. an object for which dim(x) is not NULL).
Value

TRUE or FALSE

See Also
* read_block to read a block of data from an array-like object.
e array and matrix objects in base R.

* dgCMatrix objects implemented in the Matrix package.

Examples

m <- matrix(@OL, nrow=50, ncol=20)
stopifnot(identical (is_sparse(m), FALSE))

dgc <- as(m + runif(1000), "dgCMatrix")
stopifnot(identical (is_sparse(dgc), TRUE))

mapToGrid 25

mapToGrid Map reference array positions to grid positions and vice-versa

Description

Use mapToGrid() to map a set of reference array positions to grid positions. Use mapToRef () for
the reverse mapping.

Usage

mapToGrid(Mindex, grid, linear=FALSE)

mapToRef (major, minor, grid, linear=FALSE)

Arguments

Mindex An M-index containing absolute positions, that is, positions with respect to the

grid

underlying array (i.e. to the reference array of grid).

For convenience, Mindex can also be specified as an integer vector with one
element per dimension in the underlying array, in which case it will be treated
like a 1-row matrix.

Note that no bounds checking is performed, that is, values in the j-th column of
Mindex can be < 1 or > refdim(grid)[j]. What those values will be mapped
to is undefined.

An ArrayGrid object.

linear TRUE or FALSE. Controls the format of the output for mapToGrid and the input

for mapToRef.

By default (i.e. when linear is FALSE), the major and minor indices returned by
mapToGrid (or taken by mapToRef) are both M-indices (a.k.a. matrix indices).
When linear is set to TRUE, they are both returned (or taken) as L-indices (a.k.a.
linear indices).

major, minor The major and minor components as returned by mapToGrid.

Value

For mapToGrid(): A list with 2 components, major and minor.

Each row in input matrix Mindex is an n-tuple that contains the coordinates of an absolute
position.

By default (i.e. when linear is FALSE), the 2 components of the returned list are integer
matrices of the same dimensions as the input matrix. A row in the major (or minor) matrix
is called a "major n-tuple" (or "minor n-tuple"). So for each "input position" (i.e. for each
row in the input matrix), 2 n-tuples are returned: the "major n-tuple" and the "minor n-tuple".
The "major n-tuple" contains the coordinates of the "input position" in the grid coordinate
system, that is, the coordinates of the grid element where the position falls in. The "minor
n-tuple" represents where exactly the "input position" falls inside the grid element reported by
the "major n-tuple". The coordinates in the "minor n-tuple" are relative to this grid element.
When linear is TRUE, the major and minor components are returned as linear indices. In this
case, both are integer vectors containing 1 linear index per "input position".

For mapToRef (): A numeric matrix like one returned by base: :arrayInd describing posi-
tions relative to the reference array of grid.

26 mapToGrid

See Also

* ArrayGrid for the formal representation of grids and viewports.

e Lindex2Mindex and Mindex2Lindex for converting back and forth between linear indices
and matrix indices.

* array and matrix objects in base R.

Examples

Create an arbitrary-spaced grid on top of a 15 x 9 matrix:
grid2 <- ArbitraryArrayGrid(list(c(2L, 7:10, 13L, 15L), c(5:6, 6L, 9L)))

Create a set of reference array positions:

Mindex <- rbind(c(2, 5), # bottom right corner of 1st grid element
c(3, 1), # top left corner of 2nd grid element
c(14, 9), # top right corner of last grid element

c(15, 7), # bottom left corner of last grid element

c(15, 9)) # bottom right corner of last grid element

Map them to grid positions:
majmin <- mapToGrid(Mindex, grid2)
majmin

Reverse mapping:
Mindex2 <- mapToRef(majmin$major, majmin$minor, grid2)
stopifnot(all.equal(Mindex2, Mindex))

majmin <- mapToGrid(Mindex, grid2, linear=TRUE)

majmin

Mindex2 <- mapToRef(majmin$major, majmin$minor, grid2, linear=TRUE)
stopifnot(all.equal(Mindex2, Mindex))

Map all the valid positions:

all_positions <- seqg_len(prod(refdim(grid2)))

Mindex <- arrayInd(all_positions, refdim(grid2))

majmin <- data.frame(mapToGrid(Mindex, grid2, linear=TRUE))
majmin

Sanity checks:
min_by_maj <- split(majmin$minor,

factor(majmin$major, levels=seq_along(grid2)))
stopifnot(identical(lengths(min_by_maj, use.names=FALSE), lengths(grid2)))
stopifnot(all(mapply(isSequence, min_by_maj, lengths(min_by_maj))))
Mindex2 <- mapToRef(majmin$major, majmin$minor, grid2, linear=TRUE)
stopifnot(identical (Mindex2, Mindex))

More mapping:
grid4 <- RegularArrayGrid(c(50, 20), spacings=c(15L, 9L))
Mindex <- rbind(c(1, 1),

c(2, 1,
c(3, 1,
c(16, 1),
c(16, 2),
c(16, 10),
c(27, 18))

mapToGrid(Mindex, grid4)

read_block 27

mapToGrid(Mindex, grid4, linear=TRUE)

read_block Read array blocks

Description

Use read_block to read a block of data from an array-like object.

Note that this function is typically used in the context of block processing of on-disk objects (e.g.
DelayedArray objects), often in combination with write_block.

Usage

read_block(x, viewport, as.sparse=NA)

Internal generic function used by read_block() when is_sparse(x)
is FALSE:
read_block_as_dense(x, viewport)

Arguments

X An array-like object.
This can be an ordinary array, a SparseArray object from the SparseArray pack-
age, a dgCMatrix object from the Matrix package, a DelayedArray object from
the DelayedArray package, or any object with an array semantic (i.e. an object
for which dim(x) is not NULL).

viewport An Array Viewport object compatible with x, that is, such that refdim(viewport)
is identical to dim(x).

as.sparse Can be FALSE, TRUE, or NA.
If FALSE, the block is returned as an ordinary array (a.k.a. dense array).
If TRUE, it’s returned as a SparseArray object.
If NA (the default), the block is returned as an ordinary array if is_sparse(x) is
FALSE and as a SparseArray object otherwise. In other words, using as. sparse=NA

is equivalent to using as.sparse=is_sparse(x). This preserves sparsity and
is the most efficient way to read a block.

Note that when returned as a 2D SparseArray object with numeric or logical
data, a block can easily and efficiently be coerced to a sparseMatrix derivative
from the Matrix package with as(block, "sparseMatrix”). This will return a
dgCMatrix object if type(block) is "double” or "integer", and a IlgCMatrix
object if it’s "logical”.

Details

read_block() delegates to 2 internal generic functions for reading a block:

e read_block_as_dense: used when is_sparse(x) is FALSE.
* read_block_as_sparse (defined in the SparseArray package): used when is_sparse(x)
is TRUE.

Note that these 2 internal generic functions are not meant to be called directly by the end user. The
end user should always call the higher-level user-facing read_block() function instead.

28 read_block

Value
A block of data. More precisely, the data from x that belongs to the block delimited by the specified
viewport.

The block of data is returned either as an ordinary (dense) array or as a SparseArray object from the
SparseArray package.

Note that the returned block of data is guaranteed to have the same type as x and the same di-
mensions as the viewport. More formally, if block is the value returned by read_block(x,
viewport), then:

identical (type(block), type(x))
and
identical(dim(block), dim(viewport))

are always TRUE.

See Also

* ArrayGrid for ArrayGrid and ArrayViewport objects.

* is_sparse to check whether an object uses a sparse representation of the data or not.
* SparseArray objects implemented in the SparseArray package.

* S4Arrays: :type to get the type of the elements of an array-like object.

* The read_block_as_sparse internal generic function defined in the SparseArray package
and used by read_block() when is_sparse(x) is TRUE.

* write_block to write a block of data to an array-like object.

* blockApply and family, in the DelayedArray package, for convenient block processing of an
array-like object.

» dgCMatrix and lgCMatrix objects implemented in the Matrix package.
* DelayedArray objects implemented in the DelayedArray package.

* array and matrix objects in base R.

Examples

Please note that, although educative, the examples below are somewhat
artificial and do not illustrate real-world usage of read_block().

See '?RealizationSink' in the DelayedArray package for more realistic
read_block/write_block examples.

B m o
BASIC EXAMPLE 1: READ A BLOCK FROM AN ORDINARY MATRIX (DENSE)

B m oo
ml <- matrix(1:30, ncol=5)

ml

Define the viewport on 'm1' to read the data from:

blockl_dim <- c(4, 3)

viewportl <- ArrayViewport(dim(m1), IRanges(c(3, 2), width=blockl_dim))
viewportl

Read the block:

read_block

blockl <- read_block(m1, viewportl) # same as mi1[3:6, 2:4, drop=FALSE]
block1

Use 'as.sparse=TRUE' to read the block as sparse object:
blocklb <- read_block(m1, viewportl, as.sparse=TRUE)

blocklb
is_sparse(blocklb) # TRUE
class(block1b) # an SVT_SparseArray object

Sanity checks:

stopifnot(identical(type(ml), type(blockl)))
stopifnot(identical(dim(viewport1), dim(blockl)))
stopifnot(identical(m1[3:6, 2:4, drop=FALSE], block1))
stopifnot(is(blocklb, "SparseArray"))
stopifnot(identical (type(m1), type(blocklb)))
stopifnot(identical (dim(viewport1), dim(blockl1b)))
stopifnot(identical(blockl, as.array(blocklb)))

#H -
BASIC EXAMPLE 2: READ A BLOCK FROM A SPARSE MATRIX
-
m2 <- rsparsematrix(12, 20, density=0.2,

rand.x=function(n) sample(25, n, replace=TRUE))
m2
is_sparse(m2) # TRUE

Define the viewport on 'm2' to read the data from:

block2_dim <- c(2, 20)

viewport2 <- ArrayViewport(dim(m2), IRanges(c(1, 1), width=block2_dim))
viewport2

By default, read_block() preserves sparsity:
block2 <- read_block(m2, viewport2)

block?2
is_sparse(block2) # TRUE
class(block2) # an SVT_SparseArray object

Use 'as.sparse=FALSE' to force read_block() to return an ordinary
matrix or array:

block2b <- read_block(m2, viewport2, as.sparse=FALSE)

block2b

as(block2b, "sparseMatrix")

Sanity checks:

stopifnot(is(block2, "SparseArray"))
stopifnot(identical(type(m2), type(block2)))
stopifnot(identical (dim(viewport2), dim(block2)))
stopifnot(identical(type(m2), type(block2b)))
stopifnot(identical(dim(viewport2), dim(block2b)))
stopifnot(identical (block2b, as.array(block2)))

e R
BASIC EXAMPLE 3: READ A BLOCK FROM A 3D ARRAY
e
a3 <- array(1:60, dim=5:3)

Define the viewport on 'a3' to read the data from:

29

30

block3_dim <- c(2, 4, 1)
viewport3 <- ArrayViewport(dim(a3), IRanges(c(1, 1, 3), width=block3_dim))
viewport3

Read the block:
block3 <- read_block(a3, viewport3) # same as a3[1:2, 1:4, 3, drop=FALSE]
block3

Note that unlike [, read_block() never drops dimensions.

Sanity checks:

stopifnot(identical(type(a3), type(block3)))
stopifnot(identical(dim(viewport3), dim(block3)))
stopifnot(identical(a3[1:2, 1:4, 3, drop=FALSE], block3))

e
BASIC EXAMPLE 4: READ AND PROCESS BLOCKS DEFINED BY A GRID

B =
a4 <- array(runif(120), dim=6:4)

Define a grid of 2x3x2 blocks on 'a4':

grid4 <- RegularArrayGrid(dim(a4), spacings=c(2,3,2))
grid4

nblock <- length(grid4) # number of blocks

Walk on the grid and print the corresponding blocks:
for (bid in seqg_len(nblock)) {
viewport <- grid4[[bid]]
block <- read_block(a4, viewport)
cat("====== Block ", bid, "/", nblock, " ======\n", sep="")
print(block)
3

Walk on the grid and compute the sum of each block:
block_sums <- sapply(grid4,
function(viewport) sum(read_block(a4, viewport))

)

block_sums

Sanity checks:
stopifnot(identical (length(block_sums), nblock))
stopifnot(all.equal (sum(block_sums), sum(a4)))

B o o
THE read_block/write_block COMBO
e et e e R e R
See '?write_block' for examples that use the read_block/write_block
combo.

rowsum

rowsum

rows/columns

Compute column/row sums of a matrix-like object, for groups of

rowsum 31

Description

rowsum() computes column sums across rows of a numeric matrix-like object for each level of a
grouping variable.

colsum() computes row sums across columns of a numeric matrix-like object for each level of a
grouping variable.

NOTE: This man page is for the rowsum and colsum S4 generic functions defined in the S4Arrays
package. See ?base::rowsum for the default rowsum() method (defined in the base package).
Bioconductor packages can define specific methods for objects (typically matrix-like) not supported
by the default methods.

Usage
rowsum(x, group, reorder=TRUE, ...)
colsum(x, group, reorder=TRUE, ...)
Arguments
X A numeric matrix-like object.

group, reorder, ...
See ?base: : rowsum for a description of these arguments.

Value

See ?base: : rowsum for the value returned by the default method.
The default colsum() method simply does t (rowsum(t(x), group, reorder=reorder, ...)).

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

See Also

* base: :rowsum for the default rowsum method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

» rowsum,DelayedMatrix-method in the DelayedArray package for an example of a specific
rowsum method (defined for DelayedMatrix objects).

Examples

rowsum # note the dispatch on the 'x' arg only
showMethods (" rowsum")
selectMethod("rowsum”, "ANY") # the default rowsum() method

colsum # note the dispatch on the 'x' arg only

showMethods ("colsum")

selectMethod("colsum”, "ANY") # the default colsum() method
selectMethod("colsum”, "matrix") # colsum() method for ordinary matrices

32

type

type

Get the type of the elements of an array-like object

Description

The S4Arrays package defines a couple of type() methods to get the type of the elements of a
matrix-like or array-like object.

Usage

S4 method for signature 'ANY'

type(x)

S4 method for signature 'DataFrame’

type(x)

Arguments

X

Details

For the default type() method: An array-like object. This can be an ordinary
array, a SparseArray object from the SparseArray package, a dgCMatrix ob-
ject from the Matrix package, a DelayedArray object from the DelayedArray
package, or any object with an array semantic (i.e. an object for which dim(x)
is not NULL).

For the method for DataFrame objects: A DataFrame derivative for which as.data. frame(x)
preserves the number of columns. See below for more information.

Note that for an ordinary matrix or array x, type(x) is the same as typeof (x).

On an array-like object x that is not an ordinary array, type(x) is semantically equivalent to
typeof (as.array(x)). However, the actual implementation is careful to avoid turning the full
array-like object x into an ordinary array, as this would tend to be very inefficient in general. For
example, doing so on a big DelayedArray object could easily eat all the memory available on the

machine.

On a DataFrame object, type (x) only works if as. data. frame(x) preserves the number of columns,
in which case it is semantically equivalent to typeof (as.matrix(as.data.frame(x))). Here too,
the actual implementation is careful to avoid turning the full object into a data frame, then into a
matrix, for efficiency reasons.

Value

A single string indicating the type of the array elements in x.

See Also

* The type generic function defined in the BiocGenerics package.

* SparseArray objects implemented in the SparseArray package.

* DelayedArray objects implemented in the DelayedArray package.

» DataFrame objects implemented in the S4 Vectors package.

write_block 33

Examples

m <- matrix(rpois(54e6, lambda=0.4), ncol=1200)
type(m) # integer

x1 <- as(m, "dgCMatrix")
type(x1) # double

library(SparseArray)
X2 <- SparseArray(m)
type(x2) # integer

write_block Write array blocks

Description

Use write_block to write a block of data to an array-like object.

Note that this function is typically used in the context of block processing of on-disk objects (e.g.
DelayedArray objects), often in combination with read_block.

Usage

write_block(sink, viewport, block)

Arguments
sink A *F*writable** array-like object. This is typically a RealizationSink derivative
(RealizationSink is a virtual class defined in the DelayedArray package), but
not necessarily. See ?RealizationSink in the DelayedArray package for more
information about RealizationSink objects.
Although write_block() will typically be used on a RealizationSink deriva-
tive, it can also be used on an ordinary array or other in-memory array-like
object that supports subassignment (* [<-"), like a SparseArray object from the
SparseArray package, or a dgCMatrix object from the Matrix package.
viewport An Array Viewport object compatible with sink, that is, such that refdim(viewport)
is identical to dim(sink).
block An array-like object of the same dimensions as viewport.
Value

The modified array-like object sink.

See Also

* ArrayGrid for ArrayGrid and ArrayViewport objects.
» SparseArray objects implemented in the SparseArray package.
* read_block to read a block of data from an array-like object.

* blockApply and family, in the DelayedArray package, for convenient block processing of an
array-like object.

 RealizationSink objects implemented in the Delayed Array package for more realistic write_block
examples.

* array and matrix objects in base R.

34

Examples

Please note that, although educative, the examples below are somewhat
artificial and do not illustrate real-world usage of write_block().
See '?RealizationSink' in the DelayedArray package for more realistic
read_block/write_block examples.

B m o
BASIC EXAMPLE 1: WRITE A BLOCK TO AN ORDINARY MATRIX (DENSE)

B o o
ml <- matrix(1:30, ncol=5)

ml

Define the viewport on 'm1' to write the data to:

blocki_dim <- c(4, 3)

viewportl <- ArrayViewport(dim(ml1), IRanges(c(3, 2), width=blockl1_dim))
viewportl

Data to write:
blockl <- read_block(m1l, viewportl) + 1000L

Write the block:
mlA <- write_block(m1, viewportl, block1l)
m1A

Sanity checks:

stopifnot(identical (*[<-~(m1, 3:6, 2:4, value=blockl), ml1A))
miB <- write_block(m1, viewportl, as(blockl, "dgCMatrix"))
stopifnot(identical(m1A, miB))

S
BASIC EXAMPLE 2: WRITE A BLOCK TO A SPARSE MATRIX
e
m2 <- rsparsematrix(12, 20, density=0.2,

rand.x=function(n) sample(25, n, replace=TRUE))
m2

Define the viewport on 'm2' to write the data to:

block2_dim <- c(2, 20)

viewport2 <- ArrayViewport(dim(m2), IRanges(c(1, 1), width=block2_dim))
viewport2

Data to write:
block2 <- matrix(1001:1040, nrow=2)

Write the block:
m2A <- write_block(m2, viewport2, block2)
m2A

Sanity checks:

stopifnot(identical ("[<-"(m2, 1:2, , value=block2), m2A))
m2B <- write_block(m2, viewport2, as(block2, "dgCMatrix"))
stopifnot(identical(m2A, m2B))

BASIC EXAMPLE 3: WRITE A BLOCK TO A 3D ARRAY
e

write_block

write_block

a3 <- array(1:60, dim=5:3)

Define the viewport on 'a3' to write the data to:

block3_dim <- c(2, 4, 1)

viewport3 <- ArrayViewport(dim(a3), IRanges(c(1, 1, 3), width=block3_dim))
viewport3

Data to write:
block3 <- array(-(1:8), dim=block3_dim)

Write the block:
a3A <- write_block(a3, viewport3, block3)
a3A

Sanity checks:

stopifnot(identical ("[<-"(a3, 1:2, , 3, value=block3), a3A))
a3B <- write_block(a3, viewport3, as(block3, "SparseArray"))
stopifnot(identical(a3A, a3B))

HHE m o
BASIC EXAMPLE 4: WRITE BLOCKS DEFINED BY A GRID

B — o
a4 <- array(NA_real_, dim=6:4)

Define a grid of 2x3x2 blocks on 'a4':

grid4 <- RegularArrayGrid(dim(a4), spacings=c(2,3,2))
grid4

nblock <- length(grid4) # number of blocks

Walk on the grid and write blocks of random data:

for (bid in seg_len(nblock)) {
viewport <- grid4[[bid]]
block <- array(runif(length(viewport)), dim=dim(viewport))
cat("====== Write block ", bid, "/", nblock, " ======\n", sep="")

3
a4

B m o
BASIC EXAMPLE 5: READ, PROCESS, AND WRITE BLOCKS DEFINED BY TWO GRIDS
HH -
Say we have a 3D array and want to collapse its 3rd dimension by

summing the array elements that are stacked vertically, that is, we
want to compute the matrix 'm' obtained by doing 'sum(ali, j, 1)' for
all valid i and j. There are several ways to do this.

1. Here is a solution based on apply():
collapse_3rd_dim <- function(a) apply(a, MARGIN=1:2, sum)
2. Here is a slightly more efficient solution:
collapse_3rd_dim <- function(a) {

m <- matrix(@, nrow=nrow(a), ncol=ncol(a))

for (z in seq_len(dim(a)[[3]11))
m<-m+al, , z]

35

36

3. And here is a block-processing solution that involves two grids,
one for the sink, and one for the input:

a5 <- array(runif(8000), dim=c(25, 40, 8)) # input
m <- array(NA_real_, dim=dim(a5)[1:2]) # sink

Since we're going to walk on the two grids simultaneously, read a
block from 'a5' and write it to 'm', we need to make sure that we
define grids that are "aligned”. More precisely, the two grids must
have the same number of viewports, and the viewports in one must

correspond to the viewports in the other one:

m_grid <- RegularArrayGrid(dim(m), spacings=c(10, 10))

a5_grid <- RegularArrayGrid(dim(a5), spacings=c(10, 10, dim(a5)[[3]11))

Let's check that our two grids are actually "aligned”:
stopifnot(identical (length(m_grid), length(a5_grid)))
stopifnot(identical (dims(m_grid), dims(a5_grid)[, 1:2, drop=FALSE]))

Walk on the two grids simultaneously, and read/collapse/write blocks:
for (bid in seq_along(m_grid)) {

Read block from 'a5'.

a5_viewport <- a5_grid[[bid]]

block <- read_block(a5, a5_viewport)

Collapse it.

block <- collapse_3rd_dim(block)

Write the collapsed block to 'm'.

m_viewport <- m_grid[[bid]]

m <- write_block(m, m_viewport, block)

Sanity checks:
stopifnot(identical(dim(a5)[1:2], dim(m)))
stopifnot(identical (sum(a5), sum(m)))
stopifnot(identical(collapse_3rd_dim(a5), m))

See '?RealizationSink' in the DelayedArray package for a more
realistic "array collapse” example where the blocks are written
to a RealizationSink object.

write_block

Index

* array
aperm2, 2
arep, 6
array selection,7
Array-class, 10
Array-kronecker-methods, 11
Array-subassignment, 14
Array-subsetting, 14
array_recycling, 18
bind-arrays, 20
extract_array, 21
read_block, 27
* classes
Array-class, 10
ArrayGrid-class, 14
x internal
Array-subassignment, 14
Array-subsetting, 14
dim-tuning-utils, 21
extract_array, 21
mapToGrid, 25
* manip
apermz, 2
bind-arrays, 20
rowsum, 30
+ methods
arep, 6
Array-class, 10
Array-kronecker-methods, 11
array_recycling, 18
ArrayGrid-class, 14
is_sparse, 24
read_block, 27
rowsum, 30
type, 32
write_block, 33
+ utilities
array selection,7
[,Array, ANY,ANY,ANY-method
(Array-subsetting), 14
[<-,Array,ANY,ANY,ANY-method
(Array-subassignment), 14
[[,Array-method (Array-class), 10

37

abind, 20, 21

abind (bind-arrays), 20

abind, ANY-method (bind-arrays), 20

acbind (bind-arrays), 20

acbind, ANY-method (bind-arrays), 20

aperm, 2, 3

aperm,ArbitraryArrayGrid-method
(ArrayGrid-class), 14

aperm,DelayedArray-method, 3

aperm,DummyArrayGrid-method
(ArrayGrid-class), 14

aperm,RegularArrayGrid-method
(ArrayGrid-class), 14

aperm, SVT_SparseArray-method, 3

aperm.ArbitraryArrayGrid
(ArrayGrid-class), 14

aperm.DummyArrayGrid (ArrayGrid-class),

14
aperm.RegularArrayGrid
(ArrayGrid-class), 14
aperm2, 2
arbind (bind-arrays), 20
arbind, ANY-method (bind-arrays), 20

ArbitraryArrayGrid (ArrayGrid-class), 14

ArbitraryArrayGrid-class
(ArrayGrid-class), 14

arep, 6

arep_each (arep), 6

arep_each,ANY-method (arep), 6

arep_times (arep), 6

arep_times, ANY-method (arep), 6

Array, 11, 12, 14

Array (Array-class), 10

array, 6, 11,15, 19,22, 24, 26, 28, 33

array selection, 7

array selections (array selection), 7

Array-class, 10

Array-kronecker
(Array-kronecker-methods), 11

Array-kronecker-methods, 11

Array-subassignment, 14

Array-subsetting, 14

Array_kronecker

38

(Array-kronecker-methods), 11
Array_kronecker-methods
(Array-kronecker-methods), 11
array_recycling, 18
array_selection (array selection), 7
array_selections (array selection), 7
Array_subassignment
(Array-subassignment), 14
Array_subsetting (Array-subsetting), 14
ArrayGrid, 11, 26, 28, 33
ArrayGrid (ArrayGrid-class), 14
ArrayGrid-class, 14
arraylnd, 8, 9, 25
ArrayViewport, 11,27, 33
ArrayViewport (ArrayGrid-class), 14
ArrayViewport-class (ArrayGrid-class),
14
as.array,Array-method (extract_array),
21
as.array.Array (extract_array), 21
as.character,Array-method
(extract_array), 21
as.character,ArrayGrid-method
(ArrayGrid-class), 14
as.character.Array (extract_array), 21
as.character.ArrayGrid
(ArrayGrid-class), 14
as.complex,Array-method
(extract_array), 21
as.complex.Array (extract_array), 21
as.data.frame,Array-method
(extract_array), 21
as.data.frame.Array (extract_array), 21
as.integer,Array-method
(extract_array), 21
as.integer.Array (extract_array), 21
as.logical,Array-method
(extract_array), 21
as.logical.Array (extract_array), 21
as.matrix,Array-method (Array-class), 10
as.matrix.Array (Array-class), 10
as.numeric,Array-method
(extract_array), 21
as.numeric.Array (extract_array), 21
as.raw,Array-method (extract_array), 21
as.raw.Array (extract_array), 21
as.vector,Array-method (extract_array),
21
as.vector.Array (extract_array), 21
as_tile (array_recycling), 18

bind arrays (bind-arrays), 20
bind-arrays, 20

INDEX

blockApply, 15, 28, 33

cbind, 21

class:ArbitraryArrayGrid
(ArrayGrid-class), 14

class:Array (Array-class), 10

class:ArrayGrid (ArrayGrid-class), 14

class:ArrayViewport (ArrayGrid-class),
14

class:DummyArrayGrid (ArrayGrid-class),
14

class:DummyArrayViewport
(ArrayGrid-class), 14

class:RegularArrayGrid
(ArrayGrid-class), 14

class:SafeArrayViewport
(ArrayGrid-class), 14

class:tile (array_recycling), 18

classNameForDisplay,ArrayViewport-method

(ArrayGrid-class), 14
colsum (rowsum), 30
colsum, ANY-method (rowsum), 30
colsum,matrix-method (rowsum), 30
colSums, /9

data.frame, 22
DataFrame, 21, 22, 32
DelayedArray, 3, 7,11, 12,22, 24,27, 28, 32
33
DelayedMatrix, 31
dgCMatrix, 22, 24, 27, 28, 32
dim,ArbitraryArrayGrid-method
(ArrayGrid-class), 14
dim,ArrayViewport-method
(ArrayGrid-class), 14
dim,DummyArrayGrid-method
(ArrayGrid-class), 14
dim,RegularArrayGrid-method
(ArrayGrid-class), 14
dim-tuning-utils, 21
dim<-,Array-method (dim-tuning-utils),
21
dims (ArrayGrid-class), 14
dims,ArrayGrid-method
(ArrayGrid-class), 14
downsample (ArrayGrid-class), 14
downsample,ArbitraryArrayGrid-method
(ArrayGrid-class), 14
downsample,RegularArrayGrid-method
(ArrayGrid-class), 14
drop,Array-method (dim-tuning-utils), 21
DummyArrayGrid (ArrayGrid-class), 14

INDEX

DummyArrayGrid-class (ArrayGrid-class),
14

DummyArrayViewport (ArrayGrid-class), 14

DummyArrayViewport-class
(ArrayGrid-class), 14

end,ArrayViewport-method
(ArrayGrid-class), 14
extract_array, 21
extract_array, ANY-method
(extract_array), 21
extract_array,array-method
(extract_array), 21
extract_array,data.frame-method
(extract_array), 21
extract_array,DataFrame-method
(extract_array), 21

is_sparse, 24, 27, 28
is_sparse,ANY-method (is_sparse), 24
is_sparse,CsparseMatrix-method
(is_sparse), 24
is_sparse,RsparseMatrix-method
(is_sparse), 24
is_sparse,TsparseMatrix-method
(is_sparse), 24
is_sparse<- (is_sparse), 24
isEmpty,Array-method (Array-class), 10

kronecker, 11, 12

kronecker (Array-kronecker-methods), 11

kronecker,ANY,Array-method
(Array-kronecker-methods), 11

kronecker,Array,ANY-method
(Array-kronecker-methods), 11

kronecker,Array,Array-method
(Array-kronecker-methods), 11

kronecker?2 (Array-kronecker-methods), 11

L-index (array selection),7

length,Array-method (Array-class), 10

lengths,ArrayGrid-method
(ArrayGrid-class), 14

lengths,DummyArrayGrid-method
(ArrayGrid-class), 14

1gCMatrix, 28

Lindex (array selection), 7

Lindex2Mindex, 26

Lindex2Mindex (array selection), 7

M-index (array selection), 7
makeNindexFromArrayViewport
(ArrayGrid-class), 14

39

mapToGrid, 715, 25

mapToGrid,ArbitraryArrayGrid-method
(mapToGrid), 25

mapToGrid,RegularArrayGrid-method
(mapToGrid), 25

mapToRef (mapToGrid), 25

mapToRef,ArbitraryArrayGrid-method
(mapToGrid), 25

mapToRef,RegularArrayGrid-method
(mapToGrid), 25

matrix, 6, 11, 15, 19, 24, 26, 28, 33

maxlength (ArrayGrid-class), 14

maxlength, ANY-method (ArrayGrid-class),
14

maxlength,ArbitraryArrayGrid-method
(ArrayGrid-class), 14

maxlength,RegularArrayGrid-method
(ArrayGrid-class), 14

Mindex (array selection), 7

Mindex2Lindex, 26

Mindex2Lindex (array selection), 7

N-index (array selection), 7
Nindex (array selection), 7

Ops,array,tile-method
(array_recycling), 18

Ops,tile,array-method
(array_recycling), 18

Ops,tile,tile-method (array_recycling),
18

ranges,DummyArrayViewport-method
(ArrayGrid-class), 14
ranges, SafeArrayViewport-method
(ArrayGrid-class), 14
rbind, 2/
read_block, /5, 24,27, 33
read_block_as_dense (read_block), 27
read_block_as_dense, ANY-method
(read_block), 27
read_block_as_sparse, 27, 28
RealizationSink, 33
refdim (ArrayGrid-class), 14
refdim,ArbitraryArrayGrid-method
(ArrayGrid-class), 14
refdim,ArrayViewport-method
(ArrayGrid-class), 14
refdim,DummyArrayGrid-method
(ArrayGrid-class), 14
refdim,RegularArrayGrid-method
(ArrayGrid-class), 14
RegularArrayGrid (ArrayGrid-class), 14

40

RegularArrayGrid-class
(ArrayGrid-class), 14

rep, 6

rowsum, 30, 3/

rowsum,DelayedMatrix-method, 3/

SafeArrayViewport (ArrayGrid-class), 14

SafeArrayViewport-class
(ArrayGrid-class), 14

selectMethod, 3/

show,ArrayGrid-method
(ArrayGrid-class), 14

show, ArrayViewport-method
(ArrayGrid-class), 14

showAsCell, Array-method (Array-class),
10

showMethods, 3/

SparseArray, 7, 11, 12,22, 24,27, 28, 32, 33

sparseMatrix, 27

start,ArrayViewport-method
(ArrayGrid-class), 14

subassign_Array_by_Lindex
(Array-subassignment), 14

subassign_Array_by_Lindex,Array-method

(Array-subassignment), 14
subassign_Array_by_logical_array
(Array-subassignment), 14

INDEX

SVT_SparseArray, 12

t,Array-method (Array-class), 10
t.Array (Array-class), 10
TENxMatrix, 12

tile (array_recycling), 18

tile-class (array_recycling), 18
tune_Array_dims (dim-tuning-utils), 21
type, 22, 28, 32, 32

type, ANY-method (type), 32
type,DataFrame-method (type), 32

width,ArrayViewport-method
(ArrayGrid-class), 14

write_block, 27, 28, 33

write_block,ANY-method (write_block), 33

subassign_Array_by_logical_array,Array-method

(Array-subassignment), 14
subassign_Array_by_Mindex
(Array-subassignment), 14

subassign_Array_by_Mindex,Array-method

(Array-subassignment), 14
subassign_Array_by_Nindex
(Array-subassignment), 14

subassign_Array_by_Nindex,Array-method

(Array-subassignment), 14
subset_Array_by_Lindex
(Array-subsetting), 14
subset_Array_by_Lindex,Array-method
(Array-subsetting), 14
subset_Array_by_logical_array
(Array-subsetting), 14

subset_Array_by_logical_array,Array-method

(Array-subsetting), 14
subset_Array_by_Mindex
(Array-subsetting), 14
subset_Array_by_Mindex,Array-method
(Array-subsetting), 14
subset_Array_by_Nindex
(Array-subsetting), 14
subset_Array_by_Nindex,Array-method
(Array-subsetting), 14

	aperm2
	arep
	array selection
	Array-class
	Array-kronecker-methods
	Array-subassignment
	Array-subsetting
	ArrayGrid-class
	array_recycling
	bind-arrays
	dim-tuning-utils
	extract_array
	is_sparse
	mapToGrid
	read_block
	rowsum
	type
	write_block
	Index

