
Package ‘RegEnrich’
January 20, 2026

Type Package

Title Gene regulator enrichment analysis

Version 1.20.0

Description This package is a pipeline to identify the key gene regulators in a biological
process, for example in cell differentiation and in cell development after stimulation.
There are four major steps in this pipeline: (1) differential expression analysis; (2)
regulator-target network inference; (3) enrichment analysis; and (4) regulators scoring
and ranking.

Depends R (>= 4.0.0), S4Vectors, dplyr, tibble, BiocSet,
SummarizedExperiment

License GPL (>= 2)

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.3.1

Collate 'COEN.R' 'globals.R' 'DEA.R' 'GRN.R' 'data.R'
'regenrichClasses.R' 'genericMethods.R' 'localUtils.R'
'plots.R' 'regFET.R' 'regSEA.R' 'regenrich_diffExpr.R'
'regenrich_enrich.R' 'regenrich_network.R'
'regenrich_rankScore.R' 'results.R' 'show.R' 'topNet.R'

Imports randomForest, fgsea, DOSE, BiocParallel, DESeq2, limma, WGCNA,
ggplot2 (>= 2.2.0), methods, reshape2, magrittr, BiocStyle

Suggests GEOquery, rmarkdown, knitr, BiocManager, testthat

biocViews GeneExpression, Transcriptomics, RNASeq, TwoChannel,
Transcription, GeneTarget, NetworkEnrichment,
DifferentialExpression, Network, NetworkInference,
GeneSetEnrichment, FunctionalPrediction

git_url https://git.bioconductor.org/packages/RegEnrich

git_branch RELEASE_3_22

git_last_commit 4833032

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Weiyang Tao [cre, aut],
Aridaman Pandit [aut]

Maintainer Weiyang Tao <weiyangtao1513@gmail.com>

1

2 DeaSet-class

Contents
DeaSet-class . 2
dim,TopNetwork-method . 3
Enrich-class . 4
getResultsNames . 4
head,Score-method . 5
Lyme_GSE63085 . 6
newDeaSet . 6
newTopNetwork . 7
plotOrders . 8
plotRegTarExpr . 9
plotSoftPower . 10
plot_Enrich . 11
print.Score . 13
reexports . 13
RegenrichSet . 14
RegenrichSet-class . 21
regenrich_diffExpr . 21
regenrich_enrich . 23
regenrich_network . 24
regenrich_rankScore . 26
results_expr . 27
Score-class . 29
show,DeaSet-method . 30
TFs . 30
TopNetwork-class . 31

Index 32

DeaSet-class DeaSet class

Description

DeaSet class

Slots

colData DataFrame object, sample information, the row name is corresponding to the column
names of expression matrix in the assays slot.

assays SimpleList object of one/multiple matrix/matrices, this is the slot for storing the expression
data after filtering (and after Variance Stabilizing Transformation, i.e. VST, if the differential
analysis method is ’Wald_DESeq2’ or ’LRT_DESeq2’). And the expression matrix is used
for network inference and plotting.

NAMES row names of expression data in assays slot and elementMetadata slot.

elementMetadata feature information, contains at least a DataFrame of three columns, i.e. ‘gene‘,
‘p‘ and ‘logFC‘, which stores gene names/IDs, differential p values and log2 expression fold
changes, respectively.

metadata DataFrame object, information of feature columns.

assayRaw a slot for saving the raw expression data.

dim,TopNetwork-method 3

Examples

nrows = 100
ncols = 6
counts = matrix(rnbinom(nrows * ncols, size = 2, mu = 500),

nrow = nrows)
assays = SimpleList(assayData = counts)

colData = DataFrame(Condition = rep(c("treatment", "ctrl"), 3),
row.names=LETTERS[1:6])

geneNames = sprintf("G%03s", seq(nrows))
elementMetadata = DataFrame(gene = geneNames,

p = numeric(nrows),
logFC = numeric(nrows))

ds = new("DeaSet",
assays = Assays(assays),
colData = colData,
assayRaw = counts,
elementMetadata = elementMetadata,
NAMES = geneNames)

ds

dim,TopNetwork-method dimention of ‘TopNetwork‘ object

Description

dimention of ‘TopNetwork‘ object

Usage

S4 method for signature 'TopNetwork'
dim(x)

Arguments

x a ‘TopNetwork‘ object.

Value

Dimention of regulator-target network edge table.

Examples

nw = newTopNetwork()
dim(nw)

4 getResultsNames

Enrich-class Enrich class

Description

The ‘Enrich‘ object is to store enrichment analysis results by either ‘FET‘ method or ‘GSEA‘
method.

Slots

topResult data frame. The enrichment results that pass thresholds (default threshold is 0.05).

allResult data frame. The enrichment results by FET or GSEA methods.

gene character vector indicating the genes used for enrichment analysis.

namedScores numeric vector, a vector of ranked scores (decendent), the names of the scores are
the genes to perform enrichment analysis. Here the scores are p-value of each gene.

type character indicating enrichment method, either ’FET’ or ’GSEA’.

getResultsNames Inference the name of results of DESeq analysis by a formula (or
model matrix) and sample information

Description

Inference the name of results of DESeq analysis by a formula (or model matrix) and sample infor-
mation

Usage

getResultsNames(design, pData = NULL)

Arguments

design either a formula or a model matrix.

pData a data frame, showing the information of each sample. If design is a formula,
the pData must be include the columns that identical to the terms of the design
formula. If design is a model matrix, then pData is not used. Default is NULL.

Value

the names of contrast parameter (list of character format) that regenrich_diffExpr and results
function can use, and it is the same as the value that resultsNames function returns.

head,Score-method 5

Examples

formula with intercept
design = ~condition
pData = data.frame(condition = factor(c('A', 'A', 'A', 'B', 'B', 'B'),

c('A', 'B')))
getResultsNames(design, pData)

formula without intercept
design = ~0+condition
getResultsNames(design, pData)

formula with two terms
design = ~condition+treatment
pData = data.frame(condition = factor(rep(c('A', 'B'), each= 4),

c('A', 'B')),
treatment = factor(rep_len(c('Ctrl', 'Treat'), 8),

c('Ctrl', 'Treat')))
getResultsNames(design, pData)

formula with two terms and an interaction term
design = ~condition+treatment+condition:treatment
getResultsNames(design, pData)

design is a model matrix
pData = data.frame(condition = factor(rep(c('A', 'B'), each= 4),

c('A', 'B')),
treatment = factor(rep_len(c('Ctrl', 'Treat'), 8),

c('Ctrl', 'Treat')))
design = model.matrix(~condition+treatment, pData)
getResultsNames(design)

head,Score-method head or tail of Score object

Description

head or tail of Score object

Usage

S4 method for signature 'Score'
head(x, ...)

S4 method for signature 'Score'
tail(x, ...)

Arguments

x an Score object.
... arguments to be passed to or from other methods.

Value

Head or tail table of Score object.

6 newDeaSet

Examples

s = newScore(letters, seq(26), seq(26), seq(26), seq(2, 0, len = 26))
s1 = head(s)
s1

s2 = tail(s)
s2

Lyme_GSE63085 Example RNAseq dataset [Human]

Description

Data from an RNA sequencing experiment on peripheral mononuclear blood cells (PBMC) of Lyme
disease patients against healthy controls. It contains a gene expression (FPKM) table (data frame)
and a sample information table (data frame).

Usage

data(Lyme_GSE63085)

Format

A list of 2 elements: FPKM and sampleInfo. FPKM is the ’Fragments Per Kilobase of transcript
per Million mapped reads’ data, which is a 5000 (genes) * 52 (samples) data frame. sampleInfo
is the information of samples, which is 52 (samples) * 9 (features) data frame. The full version of
FPKM table contains 23615 rows, which can be downloaded from GEO database.

Source

URL

References

Bouquet et al. (2016) mBio 7(1): e00100-16 (PubMed)

newDeaSet DeaSet object creator

Description

DeaSet object creator

Usage

newDeaSet(
assayRaw = matrix(nrow = 0, ncol = 0),
rowData = NULL,
assays = SimpleList(),
colData = DataFrame(),
metadata = list()

)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63085
https://www.ncbi.nlm.nih.gov/pubmed/26873097

newTopNetwork 7

Arguments

assayRaw A matrix of gene expression data. This can be the same as the matrix-like ele-
ment in assays parameter.

rowData A DataFrame object describing the rows.

assays A list or SimpleList of matrix-like element, or a matrix-like object. The matrix-
like element can be the same as assayRaw parameter.

colData A DataFrame describing the sample information.

metadata An optional list of arbitrary content describing the overall experiment.

Value

A DeaSet object.

Examples

Empty DeaSet object
newDeaSet()

100 * 6 DeaSet object
nrows = 100
ncols = 6
counts = matrix(rnbinom(nrows * ncols, size = 2, mu = 500),

nrow = nrows)
assays = SimpleList(counts=counts)

colData = DataFrame(Condition = rep(c("treatment", "ctrl"), 3),
row.names=LETTERS[1:6])

geneNames = sprintf("G%03s", seq(nrows))
elementMetadata = DataFrame(gene = geneNames,

p = numeric(nrows),
logFC = numeric(nrows))

newDeaSet(assayRaw = counts,
rowData = elementMetadata,
assays = SimpleList(assayData = counts),
colData = colData)

newTopNetwork TopNetwork object creator

Description

This function create ‘TopNetwork‘ object using 3-column edge table.

Usage

newTopNetwork(
networkEdgeTable,
reg = "",
directed = TRUE,
networkConstruction = c("new", "COEN", "GRN"),
percent = 100

)

8 plotOrders

Arguments

networkEdgeTable

a data frame of 3 columns, representing ’from.gene’ (’regulators’), ’to.gene’
(’targets’) and ’weight’, respectively.

reg a vector of gene regulators.
directed logical, whether the network is directed. Default is TRUE.
networkConstruction

the method to construct this network. Possible can be: ’COEN’, coexpression
network; ’GRN’, gene regulatory network by random forest; ’new’ (default),
meaning a network provided by user, rather than infered based on the expression
data.

percent the percentage of edges in the original whole network. Default is 100, meaning
100% edges in whole network.

Value

an object of topNetwork class.

Examples

data(TFs)
edge = data.frame(from = rep(TFs$TF_name[seq(3)], seq(3)),

to = TFs$TF_name[11:16], weight = 0.1*(6:1))
object = newTopNetwork(edge, networkConstruction = 'new', percent = 100)
object
str(object)

plotOrders Compare the orders of two vectors

Description

compare the orders of two vectors

Usage

plotOrders(name1, name2)

Arguments

name1 a vector with first order.
name2 a vector with anothoer second order.

Value

A plot of comparing two orders of vectors.

Examples

a = c('a1', 'a2', 'a5', 'a4')
b = c('a2', 'a5', 'a7', 'a4', 'a6')
plotOrders(a, b)

plotRegTarExpr 9

plotRegTarExpr Plot regulator and its targets expression

Description

Plot regulator and its targets expression

Usage

plotRegTarExpr(
object,
reg,
n = 1000,
scale = TRUE,
tarCol = "black",
tarColAlpha = 0.1,
regCol = "#ffaa00",
xlab = "Samples",
ylab = "Z-scores",
...

)

Arguments

object a RegenrichSet object, to which at least regenrich_diffExpr and regenrich_network
functions have been applied.

reg a regulator to plot.

n the maximun number of targets to plot.

scale logical, whether gene expression is z-score normalized.

tarCol the color of the lines for the targets of the regulator.

tarColAlpha numeric, ranging from 0 to 1, indicating transparancy of target lines.

regCol the color of the line for the ’reg’.

xlab x label of plot.

ylab y label of plot.

... other parameters in ggplot function.

Value

a ggplot object.

Examples

constructing a RegenrichSet object
colData = data.frame(patientID = paste0('Sample_', seq(50)),

week = rep(c('0', '1'), each = 25),
row.names = paste0('Sample_', seq(50)),
stringsAsFactors = TRUE)

design = ~week
reduced = ~1

10 plotSoftPower

set.seed(123)
cnts = matrix(as.integer(rnbinom(n=1000*50, mu=100, size=1/0.1)), ncol=50,

dimnames = list(paste0('gene', seq(1000)), rownames(colData)))

cnts[5,26:50] = cnts[5,26:50] + 50L # add reads to gene5 in some samples.
id = sample(31:1000, 20) # randomly select 20 rows, and assign reads.
cnts[id,] = vapply(cnts[5,], function(x){

as.integer(rnbinom(n = 20, size = 1/0.02, mu = x))},
FUN.VALUE = rep(1L, 20))

object = RegenrichSet(expr = cnts,
colData = colData,
method = 'LRT_DESeq2', minMeanExpr = 0,
design = design, reduced = reduced, fitType = 'local',
networkConstruction = 'COEN',
enrichTest = 'FET',
reg = paste0('gene', seq(30)))

RegEnrich analysis
object = regenrich_diffExpr(object)

Set a random softPower, otherwise it is difficult to achive a
scale-free network because of a randomly generated count data.
object = regenrich_network(object, softPower = 3)
object = regenrich_enrich(object)
object = regenrich_rankScore(object)

plot expression of a regulator and its targets.
plotRegTarExpr(object, reg = 'gene5')
plotRegTarExpr(object, reg = 'gene27')

plotSoftPower Plot soft power for WGCNA analysis

Description

Plot soft power and corresponding scale free topology fitting index to find a proper soft power for
WGCNA analysis.

Usage

plotSoftPower(
expr,
rowSample = FALSE,
weights = NULL,
powerVector = c(seq(10), seq(12, 20, by = 2)),
RsquaredCut = 0.85,
networkType = "unsigned",
removeFirst = FALSE,
nBreaks = 10,
corFnc = WGCNA::cor,
corOptions = list(use = "p")

)

plot_Enrich 11

Arguments

expr Gene expression data, either a matrix or a data frame. By default, each row
represents a gene, each column represents a sample.

rowSample logic. If TRUE, each row represents a sample. The default is FALSE.

weights optional observation weights for expr to be used in correlation calculation.

powerVector a vector of soft thresholding powers for which the scale free topology fit indices
are to be calculated.

RsquaredCut desired minimum scale free topology fitting index R^2. The default is 0.85.

networkType character, network type. Allowed values are (unique abbreviations of) "un-
signed" (default), "signed", "signed hybrid". See adjacency.

removeFirst should the first bin be removed from the connectivity histogram? The default is
FALSE.

nBreaks number of bins in connectivity histograms. The default is 10.

corFnc correlation function to be used in adjacency calculation. The default is the cor
function in WGCNA.

corOptions a named list of options to the correlation function specified in corFnc. The
default is list(use = "p").

Value

a list of three elements: powerEstimate, fitIndices, and plot. powerEstimate is an estimate of
an appropriate soft-thresholding power. fitIndices is a data frame containing the fit indices for
scale free topology. The plot is a ggplot object.

Examples

data(Lyme_GSE63085)
log2FPKM = log2(Lyme_GSE63085$FPKM + 1)
log2FPKMhi = log2FPKM[rowMeans(log2FPKM) >= 10^-3, , drop = FALSE]
log2FPKMhi = head(log2FPKMhi, 3000) # First 3000 genes for example

softP = plotSoftPower(log2FPKMhi, RsquaredCut = 0.85)
print(softP)

plot_Enrich Plot results of FET/GSEA enrichment analysis

Description

Plot FET/GSEA enrichment results. If the FET method is applied, the top ‘showCategory‘ regulator
will be plotted. If the GSEA method is applied, the GSEA graph of regulator ‘reg‘ will be plotted.

12 plot_Enrich

Usage

plot_Enrich(object, ...)

S4 method for signature 'RegenrichSet'
plot_Enrich(
object,
reg = NULL,
showCategory = 20,
regDescription = NULL,
font.size = 12

)

Arguments

object a RegenrichSet object.

... other parameters.

reg The regulator to plot. This only works when the GSEA enrichment method has
used.

showCategory the number of regulator to plot.

regDescription NULL or a two-column data frame, in which first column is the regulator IDs
(for example ENSEMBL IDs), and the second column is the description of reg-
ulators (for example gene name). Default is NULL, meaning both columns are
the same regulator names/IDs in the network.

font.size font size of axis labels and axis tick mark labels, default is 12.

Value

a ggplot object of plotting FET or GSEA enrichment result.

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)
object = RegenrichSet(expr = data1,

colData = colData,
method = "limma", minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = "COEN",
enrichTest = "FET")

Differential expression analysis
object = regenrich_diffExpr(object)
Network inference using "COEN" method
object = regenrich_network(object)

print.Score 13

Enrichment analysis by Fisher's exact test (FET)
object = regenrich_enrich(object)
plot
plot_Enrich(object)

Enrichment analysis by Fisher's exact test (FET)
object = regenrich_enrich(object, enrichTest = "GSEA")
plot
plot_Enrich(object)

print.Score Print Score object

Description

Print Score object

Usage

S3 method for class 'Score'
print(x, ...)

Arguments

x a Score object.

... optional arguments to print.

Value

print.Score returns the a Score object

Examples

x = newScore(letters[1:5], 1:5, 1:5, -2:2, seq(2, 1, len = 5))
print(x)

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

magrittr %>%

14 RegenrichSet

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')

Using %>%
object %>% regenrich_diffExpr()

RegenrichSet RegenrichSet object creator

Description

This is ‘RegenrichSet‘ object creator function. There are four types of parameters in this function.
First, parameters to provide raw data and sample information;
‘expr‘ and ‘colData‘.

Second, parameters to perform differential expression analysis;
‘method‘, ‘minMeanExpr‘, ‘design‘, ‘reduced‘, ‘contrast‘, ‘coef‘, ‘name‘, ‘fitType‘, ‘sfType‘, ‘be-
taPrior‘, ‘minReplicatesForReplace‘, ‘useT‘, ‘minmu‘, ‘parallel‘, ‘BPPARAM‘ (also for network
inference), ‘altHypothesis‘, ‘listValues‘, ‘cooksCutoff‘, ‘independentFiltering‘, ‘alpha‘, ‘filter‘, ‘theta‘,
‘filterFun‘, ‘addMLE‘, ‘blind‘, ‘ndups‘, ‘spacing‘, ‘block‘, ‘correlation‘, ‘weights‘, ‘proportion‘,
‘stdev.coef.lim‘, ‘trend‘, ‘robust‘, and ‘winsor.tail.p‘.

Thrid, parameters to perform regulator-target network inference;
‘reg‘, ‘networkConstruction‘, ‘topNetPercent‘, ‘directed‘, ‘rowSample‘, ‘softPower‘, ‘network-
Type‘, ‘TOMDenom‘, ‘RsquaredCut‘, ‘edgeThreshold‘, ‘K‘, ‘nbTrees‘, ‘importanceMeasure‘, ‘trace‘,
‘BPPARAM‘ (also for differential expression analysis), and ‘minR‘.

Fourth, parameters to perform enrichment analysis:
‘enrichTest‘, ‘namedScoresCutoffs‘, ‘minSize‘, ‘maxSize‘, ‘pvalueCutoff‘, ‘qvalueCutoff‘, ‘regAlt-
Name‘, ‘universe‘, and ‘nperm‘.

RegenrichSet 15

Usage

RegenrichSet(
expr,
colData,
rowData = NULL,
method = c("Wald_DESeq2", "LRT_DESeq2", "limma", "LRT_LM"),
minMeanExpr = NULL,
design,
reduced,
contrast,
coef = NULL,
name,
fitType = c("parametric", "local", "mean"),
sfType = c("ratio", "poscounts", "iterate"),
betaPrior,
minReplicatesForReplace = 7,
useT = FALSE,
minmu = 0.5,
parallel = FALSE,
BPPARAM = bpparam(),
altHypothesis = c("greaterAbs", "lessAbs", "greater", "less"),
listValues = c(1, -1),
cooksCutoff,
independentFiltering = TRUE,
alpha = 0.1,
filter,
theta,
filterFun,
addMLE = FALSE,
blind = FALSE,
ndups = 1,
spacing = 1,
block = NULL,
correlation,
weights = NULL,
proportion = 0.01,
stdev.coef.lim = c(0.1, 4),
trend = FALSE,
robust = FALSE,
winsor.tail.p = c(0.05, 0.1),
reg = TFs$TF_name,
networkConstruction = c("COEN", "GRN", "new"),
topNetPercent = 5,
directed = FALSE,
rowSample = FALSE,
softPower = NULL,
networkType = "unsigned",
TOMDenom = "min",
RsquaredCut = 0.85,
edgeThreshold = NULL,
K = "sqrt",
nbTrees = 1000,

16 RegenrichSet

importanceMeasure = "IncNodePurity",
trace = FALSE,
minR = 0.3,
enrichTest = c("FET", "GSEA"),
namedScoresCutoffs = 0.05,
minSize = 5,
maxSize = 5000,
pvalueCutoff = 0.05,
qvalueCutoff = 0.2,
regAltName = NULL,
universe = NULL,
nperm = 10000

)

Arguments

expr matrix or data.frame, expression profile of a set of genes or a set of proteins. If
the method = 'Wald_DESeq2' or 'LRT_DESeq2' only non-negative integer ma-
trix (read counts by RNA sequencing) is accepted.

colData data frame, sample phenotype data. The rows of colData must correspond to the
columns of expr.

rowData NULL or data frame, information of each row/gene. Default is NULL, which
will generate a DataFrame of three columns, i.e., "gene", "p", and "logFC".

method either ’Wald_DESeq2’, ’LRT_DESeq2’, ’limma’, or ’LRT_LM’ for the differ-
ential expression analysis.

• When method = ’Wald_DESeq2’, the Wald test in DESeq2 package is used;
• When method = ’LRT_DESeq2’, the likelihood ratio test (LRT) in DESeq2

package is used;
• When method = ’limma’, the ‘ls‘ method and empirical Bayes method in

limma package are used to calculate moderated t-statistics and differential
p-values;

• When method = ’LRT_LM’, a likelihood ratio test is performed for each
row of ‘expr‘ to compare two linear model specified by ‘design‘ and ‘re-
duced‘ arguments. In this case, the fold changes are not calculated but set
to 0.

minMeanExpr numeric, the cutoff of gene average expression for pre-filtering. The rows of
‘expr‘ with everage expression < minMeanExpr is removed. The higher ‘min-
MeanExpr‘ is, the more genes are not included for testing.

design either model formula or model matrix. For method = ’LRT_DESeq2’ or ’LRT_LM’,
the design is the full model formula/matrix. For method = ’limma’, and if de-
sign is a formula, the model matrix is constructed using model.matrix(design,
colData), so the name of each term in the design formula must be included in
the column names of ‘colData‘.

reduced The argument is used only when method = ’LRT_DESeq2’ or ’LRT_LM’, it is
a reduced formula/matrix to compare against. If the design is a model matrix,
‘reduced‘ must also be a model matrix.

contrast The argument is used only when method = ’LRT_DESeq2’, ’Wald_DESeq2’, or
’limma’.
When method = ’LRT_DESeq2’, or ’Wald_DESeq2’, it specifies what compar-
ison to extract from the ‘DESeqDataSet‘ object to build a results table (when

RegenrichSet 17

method = ’LRT_DESeq2’, this does not affect the value of ‘stat‘, ‘pvalue‘, or
‘padj‘).
It can be one of following three formats:

• a character vector with exactly three elements: the name of a factor in the
design formula, the name of the numerator level for the fold change, and
the name of the denominator level for the fold change;

• a list of 1 or 2 character vector(s): the first element specifies the names
of the fold changes for the numerator, and the second element (optional)
specifies the names of the fold changes for the denominator. These names
should be elements of getResultsNames(design, colData);

• a numeric contrast vector with one element for each element in getResultsNames(design,
colData).

When method = ’limma’, It can be one of following two formats:
• a numeric matrix with rows corresponding to coefficients in design matrix

and columns containing contrasts;
• a numeric vector if there is only one contrast. Each element of the vector

corresponds to coefficients in design matrix. This is similar to the third
format of contrast when method = ’LRT_DESeq2’, or ’Wald_DESeq2’.

coef The argument is used only when method = ’limma’. (Vector of) column number
or column name specifying which coefficient or contrast of the linear model is
of interest. Default is NULL.

name The argument is used only when method = ’LRT_DESeq2’ or ’Wald_DESeq2’.
the name of the individual effect (coefficient) for building a results table. Use
this argument rather than contrast for continuous variables, individual effects or
for individual interaction terms. The value provided to name must be an element
of getResultsNames(design, colData).

fitType either ’parametric’, ’local’, or ’mean’ for the type of fitting of dispersions to the
mean intensity. This argument is used only when method = ’Wald_DESeq2’ or
’LRT_DESeq2’. See DESeq from DESeq2 package for more details. Default is
’parametric’.

sfType either ’ratio’, ’poscounts’, or ’iterate’ for the type of size factor estimation. This
argument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See DESeq from DESeq2 package for more details. Default is ’ratio’.

betaPrior This argument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See DESeq from DESeq2 package for more details.

minReplicatesForReplace

This argument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See DESeq from DESeq2 package for more details. Default is 7.

useT This argument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See DESeq from DESeq2 package for more details. Default is FALSE,

minmu This argument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See DESeq from DESeq2 package for more details. Default is 0.5.

parallel whether computing (only for differential analysis with method = "Wald_DESeq2"
or "LRT_DESeq2") is parallel (default is FALSE).

BPPARAM parameters for parallel computing (default is bpparam()).
altHypothesis = c(’greaterAbs’, ’lessAbs’, ’greater’, ’less’). This argument is used only when

method = either ’Wald_DESeq2’ or ’LRT_DESeq2’. See results from DE-
Seq2 package for more details. Default is ’greaterAbs’.

18 RegenrichSet

listValues This argument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See results from DESeq2 package for more details. Default is c(1, -1),

cooksCutoff theshold on Cook’s distance, such that if one or more samples for a row have a
distance higher, the p-value for the row is set to NA. This argument is used only
when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’. See results from
DESeq2 package for more details.

independentFiltering

logical, whether independent filtering should be applied automatically. This ar-
gument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See results from DESeq2 package for more details. Default is TRUE.

alpha the significance cutoff used for optimizing the independent filtering. This ar-
gument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See results from DESeq2 package for more details. Default is 0.1,

filter the vector of filter statistics over which the independent filtering is optimized.
By default the mean of normalized counts is used. This argument is used only
when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’. See results from
DESeq2 package for more details.

theta the quantiles at which to assess the number of rejections from independent fil-
tering. This argument is used only when method = either ’Wald_DESeq2’ or
’LRT_DESeq2’. See results from DESeq2 package for more details.

filterFun an optional custom function for performing independent filtering and p-value
adjustment. This argument is used only when method = either ’Wald_DESeq2’
or ’LRT_DESeq2’. See results from DESeq2 package for more details.

addMLE if betaPrior=TRUE was used, whether the ’unshrunken’ maximum likelihood
estimates (MLE) of log2 fold change should be added as a column to the results
table. This argument is used only when method = either ’Wald_DESeq2’ or
’LRT_DESeq2’. See results from DESeq2 package for more details. Default
is FALSE.

blind logical, whether to blind the transformation to the experimental design. This ar-
gument is used only when method = either ’Wald_DESeq2’ or ’LRT_DESeq2’.
See vst from DESeq2 package for more details. Default is FALSE, which is
different from the default of vst function.

ndups positive integer giving the number of times each distinct probe is printed on
each array. This argument is used only when method = ’limma’. See lmFit
from limma package for more details. Default is 1.

spacing positive integer giving the spacing between duplicate occurrences of the same
probe, spacing=1 for consecutive rows. This argument is used only when method
= ’limma’. See lmFit from limma package for more details. Default is 1.

block vector or factor specifying a blocking variable on the arrays. Has length equal
to the number of arrays. Must be NULL if ndups > 2. This argument is used
only when method = ’limma’. See lmFit from limma package for more details.
Default is NULL.

correlation the inter-duplicate or inter-technical replicate correlation. The correlation value
should be estimated using the duplicateCorrelation function. This argument
is used only when method = ’limma’. See lmFit from limma package for more
details.

weights non-negative precision weights. Can be a numeric matrix of individual weights
of same size as the object expression matrix, or a numeric vector of array weights
with length equal to ncol of the expression matrix, or a numeric vector of gene

RegenrichSet 19

weights with length equal to nrow of the expression matrix. This argument
is used only when method = ’limma’ or ’LRT_LM’. See lmFit from limma
package for more details. Default is NULL.

proportion numeric value between 0 and 1, assumed proportion of genes which are differ-
entially expressed. This argument is used only when method = ’limma’. See
eBayes from limma package for more details. Default is 0.01.

stdev.coef.lim numeric vector of length 2, assumed lower and upper limits for the standard
deviation of log2-fold-changes for differentially expressed genes. This argument
is used only when method = ’limma’. See eBayes from limma package for more
details. Default is c(0.1, 4).

trend logical, should an intensity-trend be allowed for the prior variance? This argu-
ment is used only when method = ’limma’. See eBayes from limma package for
more details. Default is FALSE, meaning that the prior variance is constant.

robust logical, should the estimation of df.prior and var.prior be robustified against
outlier sample variances? This argument is used only when method = ’limma’.
See eBayes from limma package for more details. Default is FALSE.

winsor.tail.p numeric vector of length 1 or 2, giving left and right tail proportions of x to
Winsorize. Used only when method = ’limma’ and robust=TRUE. See eBayes
from limma package for more details. Default is c(0.05,0.1)

reg a vector of regulator names (ID). By default, these are transcription (co-)factors
defined by three literatures/databases, namely RegNet, TRRUST, and Marbach2016.
The type (for example ENSEMBL gene ID, Entrez gene ID, or gene sym-
ble/name) of names or IDs of these regulators must be the same as the type
of names or IDs in the regulator-target network.

networkConstruction

the method to construct this network. Possible can be:
’COEN’, coexpression network;
’GRN’, gene regulatory network by random forest;
’new’ (default), meaning a network provided by user, rather than infered based
on the expression data.

topNetPercent numeric, what percentage of the top edges in the full network is ratained. Default
is 5, meaning top 5% of edges. This value must be between 0 and 100.

directed logical, whether the network is directed. Default is FALSE.

rowSample logic, if TRUE, each row represents a sample. Otherwise, each column repre-
sents a sample. Default is FALSE.

softPower numeric, a soft power to achieve scale free topology. If not provided, the param-
eter will be picked automatically by plotSoftPower function.

networkType network type. Allowed values are (unique abbreviations of) ’unsigned’ (default),
’signed’, ’signed hybrid’. See adjacency.

TOMDenom a character string specifying the TOM variant to be used. Recognized values
are ’min’ giving the standard TOM described in Zhang and Horvath (2005),
and ’mean’ in which the min function in the denominator is replaced by mean.
The ’mean’ may produce better results but at this time should be considered
experimental.

RsquaredCut desired minimum scale free topology fitting index R^2. Default is 0.85.

edgeThreshold numeric, the threshold to remove the low weighted edges, Default is NULL,
which means no edges will be removed.

20 RegenrichSet

K integer or character. The number of features in each tree, can be either a integer
number, ‘sqrt‘, or ‘all‘. ‘sqrt‘ denotes sqrt(the number of ‘reg‘), ‘all‘ means the
number of ‘reg‘. Default is ‘sqrt‘.

nbTrees integer. The number of trees. Default is 1000.
importanceMeasure

character. importanceMeasure can be ‘%IncMSE‘ or ‘IncNodePurity‘, corre-
sponding to type = 1 and 2 in importance function, respectively. Default is
‘IncNodePurity‘(decrease in node impurity), which is faster than ‘%IncMSE‘
(decrease in accuracy).

trace logical. To show the progress or not (default).

minR numeric. The minimum correlation coefficient of prediction is to control model
accuracy. Default is 0.3.

enrichTest character, specifying the enrichment analysis method, which is either ‘FET‘
(Fisher’s exact test) or ‘GSEA‘ (gene set enrichment analysis).

namedScoresCutoffs

numeric, the significance cutoff for the differential analysis p value. Default is
0.05.

minSize The minimum number (default 5) of target genes.

maxSize The maximum number (default 5000) of target genes.

pvalueCutoff numeric, the significance cutoff for adjusted enrichment p value. This is used
for obtaining the ‘topResult‘ slot in the final ‘Enrich‘ object. Default is 0.05.

qvalueCutoff numeric, the significance cutoff of enrichment q-value. Default is 0.2.

regAltName alternative name for regulator. Default is NULL.

universe a vector of charactors. Background target genes.

nperm integer, number of permutations. The minimial possible nominal p-value is
about 1/nperm. Default is 10000.

Value

an object of RegenrichSet class.

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),

RegenrichSet-class 21

networkConstruction = 'COEN',
enrichTest = 'FET')

object

RegenrichSet-class RegenrichSet class

Description

The RegenrichSet is the fundamental class that RegEnrich package is working with.

Slots

assayRaw matrix, the initial raw expression data.

colData DataFrame object, indicating sample information. Each row represent a sample and each
column represent a feature of samples.

assays SimpleList object, containing the expression data after filtering (and after Variance Sta-
bilizing Transformation, i.e. VST, if the differential analysis method is ’Wald_DESeq2’ or
’LRT_DESeq2’).

elementMetadata DataFrame object, a slot for saving results by differential expression analysis,
containing at least three columns:‘gene‘, ‘p‘ and ‘logFC‘.

topNetwork TopNetwork object, a slot for saving top network edges. After regulator-target net-
work inference, a TopNetwork-class object is assigned to this slot, containing only top
ranked edges in the full network. Default is NULL.

resEnrich Enrich object, a slot for saving enrichment analysis either by Fisher’s exact test (FET)
or gene set enrichment analysis (GSEA).

resScore Score object, a slot for saving regulator ranking results. It contains five components,
which are ’reg’ (regulator), ’negLogPDEA’ (-log10(p values of differential expression analy-
sis)), ’negLogPEnrich’ (-log10(p values of enrichment analysis)), ’logFC’ (log2 fold changes),
and ’score’ (RegEnrich ranking score).

paramsIn list. The parameters used in the whole RegEnrich analysis. This slot can be updated by
respecifying arguments in each step of RegEnrich analysis.

paramsOut a list of four elements: DeaMethod (differential expression method), networkType
(regulator-target network construction method), percent (what percentage of edges from the
full network is used), and enrichTest (enrichment method). By default, each element is NULL.

network TopNetwork object, a slot for saving a full network.

regenrich_diffExpr Differential expression analysis step

Description

This is the first step of RegEnrich analysis. differential expression analysis by this function needs
to be performed on a ‘RegenrichSet‘ object.

22 regenrich_diffExpr

Usage

regenrich_diffExpr(object, ...)

S4 method for signature 'RegenrichSet'
regenrich_diffExpr(object, ...)

Arguments

object a ‘RegenrichSet‘ object, which is initialized by RegenrichSet function.

... arguments for differential analysis. After constructing a ‘RegenrichSet‘ object,
all arguments for RegEnrich analysis have been initialized and stored in ‘param-
sIn“ slot. while the arguments for differential analysis can be re-specified here.

These arguments include ’method’, ’minMeanExpr’, ’design’, ’reduced’, ’con-
trast’, ’coef’, ’name’, ’fitType’, ’sfType’, ’betaPrior’, ’minReplicatesForReplace’,
’useT’, ’minmu’, ’parallel’, ’BPPARAM’, ’altHypothesis’, ’listValues’, ’cooks-
Cutoff’, ’independentFiltering’, ’alpha’, ’filter’, ’theta’, ’filterFun’, ’addMLE’,
’blind’, ’ndups’, ’spacing’, ’block’, ’correlation’, ’weights’, ’proportion’, ’stdev.coef.lim’,
’trend’, ’robust’, and ’winsor.tail.p’.
See RegenrichSet function for more details about these arguments.

Value

This function returns a ‘RegenrichSet‘ object with an updated ‘resDEA‘ slot, which is a ‘DeaSet‘
object, and an updated ‘paramsIn‘ slot. See newDeaSet function for more details about ‘DeaSet‘
class. If an argument not in the above list is specified in the regenrich_diffExpr function, a warning
or error will be raised.

See Also

Initialization of a ‘RegenrichSet‘ object RegenrichSet,and next step regenrich_network.

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')

regenrich_enrich 23

Using the predifined parameters in the previous step
(object = regenrich_diffExpr(object))

re-specifying parameter 'minMeanExpr'
print(slot(object, 'paramsIn')$minMeanExpr)
(object = regenrich_diffExpr(object, minMeanExpr = 1))
print(slot(object, 'paramsIn')$minMeanExpr)

Unrecognized argument 'unrecognizedArg' (Error)
object = regenrich_diffExpr(object, minMeanExpr = 1,
unrecognizedArg = 23)

Argument not for differential expression analysis (Warning)
print(slot(object, 'paramsIn')$networkConstruction)
(object = regenrich_diffExpr(object, minMeanExpr = 1,
networkConstruction = 'GRN'))
print(slot(object, 'paramsIn')$networkConstruction) # not changed

regenrich_enrich Enrichment analysis step

Description

As the thrid step of RegEnrich analysis, enrichment analysis is followed by differential expression
analysis (regenrich_diffExpr), and regulator-target network inference (regenrich_network).

Usage

regenrich_enrich(object, ...)

S4 method for signature 'RegenrichSet'
regenrich_enrich(object, ...)

Arguments

object a ‘RegenrichSet‘ object, to which regenrich_diffExpr, and regenrich_network,
functions have been already applied.

... arguments for enrichment analysis. After constructing a ‘RegenrichSet‘ object
using RegenrichSet function, all arguments for RegEnrich analysis have been
initialized and stored in ‘paramsIn“ slot. The arguments for enrichment analysis
can be re-specified here.

These arguments include ’enrichTest’, ’namedScoresCutoffs’, ’minSize’, ’max-
Size’, ’pvalueCutoff’,’qvalueCutoff’, ’regAltName’, ’universe’, ’minSize’, ’max-
Size’, ’pvalueCutoff’, and ’nperm’.

See RegenrichSet function for more details about these arguments.

Value

This function returns a ‘RegenrichSet‘ object with an updated ‘resEnrich‘ slots, which is ‘Enrich‘
objects, and an updated ‘paramsIn‘ slot. See Enrich-class function for more details about ‘Enrich‘
class.

24 regenrich_network

See Also

Previous step regenrich_network, and next step regenrich_rankScore.

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')

Differential expression analysis
object = regenrich_diffExpr(object)

Network inference using 'COEN' method
object = regenrich_network(object)

Enrichment analysis by Fisher's exact test (FET)
(object = regenrich_enrich(object))

Enrichment analysis by Fisher's exact test (GSEA)
(object = regenrich_enrich(object, enrichTest = "GSEA"))

regenrich_network Regulator-target network inference step

Description

As the second step of RegEnrich analysis, network inference is followed by differential expression
analysis (regenrich_diffExpr).

Provide a network to ‘RegenrichSet‘ object.

Usage

regenrich_network(object, ...)

regenrich_network 25

S4 method for signature 'RegenrichSet'
regenrich_network(object, ...)

regenrich_network(object) <- value

S4 replacement method for signature 'RegenrichSet,TopNetwork'
regenrich_network(object) <- value

S4 replacement method for signature 'RegenrichSet,data.frame'
regenrich_network(object) <- value

Arguments

object a ‘RegenrichSet‘ object, to which regenrich_diffExpr function has been al-
ready applied.

... arguments for network inference. After constructing a ‘RegenrichSet‘ object
using RegenrichSet function, all arguments for RegEnrich analysis have been
initialized and stored in ‘paramsIn“ slot. The arguments for network inference
can be re-specified here.

These arguments include ’networkConstruction’, ’reg’, ’rowSample’, ’softPower’,
’networkType’, ’TOMDenom’, ’RsquaredCut’, ’edgeThreshold’, ’K’, ’nbTrees’,
’importanceMeasure’, ’trace’, ’BPPARAM’, ’minR’, ’topNetPercent’, and ’di-
rected’.

See RegenrichSet function for more details about these arguments.

value either a ‘TopNetwork‘ object or ‘data.frame‘ object. If value is a ‘data.frame‘
object, then the number of columns of

Value

This function returns a ‘RegenrichSet‘ object with an updated ‘network‘ and ‘topNetP‘ slots, which
are ‘TopNetwork‘ objects, and an updated ‘paramsIn‘ slot. See TopNetwork-class class for more
details.

This function returns a ‘RegenrichSet‘ object with an updated ‘network‘ and ‘topNetP‘ slots, which
are ‘TopNetwork‘ objects, and an updated ‘paramsIn‘ slot. See TopNetwork-class class for more
details.

See Also

Previous step regenrich_diffExpr, and next step regenrich_enrich. User defined network
regenrich_network<-

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example

26 regenrich_rankScore

data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')

Differential expression analysis
(object = regenrich_diffExpr(object))

Network inference using 'COEN' method
(object = regenrich_network(object))

regenrich_rankScore Regulator scoring and ranking

Description

As the fourth step of RegEnrich analysis, regulator ranking is followed by differential expression
analysis (regenrich_diffExpr), regulator-target network inference (regenrich_network), and enrich-
ment analysis (regenrich_enrich).

Usage

regenrich_rankScore(object)

S4 method for signature 'RegenrichSet'
regenrich_rankScore(object)

Arguments

object a ‘RegenrichSet‘ object, to which regenrich_diffExpr, regenrich_network,
and regenrich_enrich functions all have been already applied.

Value

This function returns a ‘RegenrichSet‘ object with an updated ‘resScore‘ slots, which is a ‘regEn-
richScore‘ (also ‘data.frame‘) object, and an updated ‘paramsIn‘ slot. In the ‘regEnrichScore‘ object
there are five columns, which are ’reg’ (regulator), ’negLogPDEA’ (-log10(p values of differential
expression analysis)), ’negLogPEnrich’ (-log10(p values of enrichment analysis), ’logFC’ (log2
fold changes), and ’score’ (RegEnrich ranking score).

See Also

Previous step regenrich_enrich.

results_expr 27

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')

Differential expression analysis
object = regenrich_diffExpr(object)

Network inference using 'COEN' method
object = regenrich_network(object)

Enrichment analysis by Fisher's exact test (FET)
object = regenrich_enrich(object)

Regulators ranking
(object = regenrich_rankScore(object))

results_expr Result accessor functions

Description

• results_expr accesses raw expression data.

• results_DEA accesses results from differential expression analysis.

• results_topNet accesses results from network inference.

• retults_enrich accesses results from FET/GSEA enrichment analysis.

• results_score accesses results from regulator scoring and ranking.

Usage

results_expr(object)

results_DEA(object)

28 results_expr

results_topNet(object)

results_enrich(object)

results_score(object)

Arguments

object RegenrichSet object.

Value

results_expr retures an expression matrix.

results_DEA returns a list result of differentila analysis.

results_topNet returns a TopNetwork object.

results_enrich returns an Enrich object by either FET or GSEA method.

results_score returns an data frame of summarized ranking scores of regulators.

Examples

library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")

data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo

Take first 2000 rows for example
data1 = data[seq(2000),]

design = model.matrix(~0 + patientID + week, data = colData)

Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,

colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')

Differential expression analysis
object = regenrich_diffExpr(object)
results_expr(object)
results_DEA(object)

Network inference using 'COEN' method
object = regenrich_network(object)
results_topNet(object)

Enrichment analysis by Fisher's exact test (FET)
object = regenrich_enrich(object)
results_enrich(object)

Score-class 29

Regulators ranking
object = regenrich_rankScore(object)
results_score(object)

Score-class Score class

Description

‘Score‘ class inherits tibble ("tbl"). The objects of ‘Score‘ class are to store information of regulator
ranking scores.

Usage

newScore(
reg = character(),
negLogPDEA = numeric(),
negLogPEnrich = numeric(),
logFC = numeric(),
score = numeric()

)

Arguments

reg character, regulator IDs.

negLogPDEA numeric, -log(p_DEA).

negLogPEnrich numeric, -log(p_Enrich).

logFC numeric, log2 fold change.

score numeric, RegEnrich ranking score.

Value

newScore function returns a Score object.

Slots

names character vector, containing "reg", "negLogPDEA", "negLogPEnrich", "logFC", and "score".

.Data a list of length 5, each elements corresponds to the names slots.

row.names character, regulators corresponding to .Data slot.

.S3Class character vector, containing "tbl_df", "tbl", "data.frame", indicating the classes that
‘Score‘ class inherits.

Examples

newScore()
newScore(letters[1:5], 1:5, 1:5, -2:2, seq(2, 1, len = 5))

30 TFs

show,DeaSet-method methods of generic function "show"

Description

methods of generic function "show"

Usage

S4 method for signature 'DeaSet'
show(object)

S4 method for signature 'TopNetwork'
show(object)

S4 method for signature 'Enrich'
show(object)

S4 method for signature 'Score'
show(object)

S4 method for signature 'RegenrichSet'
show(object)

Arguments

object one object of either DeaSet, TopNetwork, Enrich, Score, or RegenrichSet
class.

Value

show returns an invisible original object.

Examples

x = newScore(letters[1:5], 1:5, 1:5, -2:2, seq(2, 1, len = 5))
show(x)

TFs Human gene regulators

Description

The transcrpiton factors and co-factors in humans are considered the regulators in RegEnrich. And
these regulators are obtained from (Han et al. 2015; Marbach et al. 2016; and Liu et al. 2015).

Usage

data(TFs)

TopNetwork-class 31

Format

An object of 2-column data.frame; The first column is ENSEMBL ID of gene regulators. The
second column is gene name of gene regulators. The row name of this data frame is identical to the
ENSEMBL ID column.

References

Han et al. (2015) Scientific Reports, 5:11432 (PubMed), Liu et al. (2015) Database, bav095
(PubMed), Marbach et al. (2016) Nature Methods, 13(4):366-70 (PubMed).

TopNetwork-class TopNetwork class

Description

The ‘TopNetwork‘ object is to store either a full network (the percentage of top edges is 100 between
0 to 10).

Slots

element tibble, the pool of targets in the network.

set tibble, the pool of valid regulators.

elementset tibble, regulator-target edges with edge weights. and the elements are regulators of
the targets indicated by the element name.

directed logical, whether the network is directed.

networkConstruction character, by which method this network is constructed. Either ’COEN’
(coexpression network using WGCNA), or ’GRN’ (gene regulatory network using random
forest), or ’new’ (a network provided by the user).

percent numeric, what percentage of the top edges are remained. The value must be between 0
(excluding) and 100 (including).

active character, which data table is activated, the default is "elementset".

https://www.ncbi.nlm.nih.gov/pubmed/26066708
https://www.ncbi.nlm.nih.gov/pubmed/26424082
https://www.ncbi.nlm.nih.gov/pubmed/26424082

Index

∗ datasets
Lyme_GSE63085, 6
TFs, 30

∗ internal
reexports, 13

%>% (reexports), 13
%>%, 13

adjacency, 11, 19

DeaSet-class, 2
DESeq, 17
dim,TopNetwork-method, 3
duplicateCorrelation, 18

eBayes, 19
Enrich-class, 4

getResultsNames, 4
ggplot, 9

head,Score-method, 5

importance, 20

lmFit, 18, 19
Lyme_GSE63085, 6

newDeaSet, 6, 22
newScore (Score-class), 29
newTopNetwork, 7

plot_Enrich, 11
plot_Enrich,RegenrichSet-method

(plot_Enrich), 11
plotOrders, 8
plotRegTarExpr, 9
plotSoftPower, 10, 19
print.Score, 13

reexports, 13
regenrich_diffExpr, 4, 9, 21, 23, 25, 26
regenrich_diffExpr,RegenrichSet-method

(regenrich_diffExpr), 21
regenrich_enrich, 23, 25, 26

regenrich_enrich,RegenrichSet-method
(regenrich_enrich), 23

regenrich_network, 9, 22–24, 24, 26
regenrich_network,RegenrichSet-method

(regenrich_network), 24
regenrich_network<-

(regenrich_network), 24
regenrich_network<-,RegenrichSet,data.frame-method

(regenrich_network), 24
regenrich_network<-,RegenrichSet,TopNetwork-method

(regenrich_network), 24
regenrich_rankScore, 24, 26
regenrich_rankScore,RegenrichSet-method

(regenrich_rankScore), 26
RegenrichSet, 14, 22, 23, 25
RegenrichSet-class, 21
results, 4, 17, 18
results_DEA (results_expr), 27
results_enrich (results_expr), 27
results_expr, 27
results_score (results_expr), 27
results_topNet (results_expr), 27
resultsNames, 4

Score-class, 29
show,DeaSet-method, 30
show,Enrich-method

(show,DeaSet-method), 30
show,RegenrichSet-method

(show,DeaSet-method), 30
show,Score-method (show,DeaSet-method),

30
show,TopNetwork-method

(show,DeaSet-method), 30

tail,Score-method (head,Score-method), 5
TFs, 30
TopNetwork-class, 31

vst, 18

32

	DeaSet-class
	dim,TopNetwork-method
	Enrich-class
	getResultsNames
	head,Score-method
	Lyme_GSE63085
	newDeaSet
	newTopNetwork
	plotOrders
	plotRegTarExpr
	plotSoftPower
	plot_Enrich
	print.Score
	reexports
	RegenrichSet
	RegenrichSet-class
	regenrich_diffExpr
	regenrich_enrich
	regenrich_network
	regenrich_rankScore
	results_expr
	Score-class
	show,DeaSet-method
	TFs
	TopNetwork-class
	Index

