Package ‘Reduced Experiment’

January 20, 2026
Type Package

Title Containers and tools for dimensionally-reduced -omics
representations

Version 1.2.0
Date 2024-07-30

Description Provides SummarizedExperiment-like containers for storing and
manipulating dimensionally-reduced assay data. The ReducedExperiment
classes allow users to simultaneously manipulate their original dataset
and their decomposed data, in addition to other method-specific outputs
like feature loadings. Implements utilities and specialised classes for the
application of stabilised independent component analysis (SICA) and
weighted gene correlation network analysis (WGCNA).

License GPL (>=3)
Encoding UTF-8
Depends R (>=4.4.0), SummarizedExperiment, methods

Imports WGCNA, ica, moments, clusterProfiler, msigdbr, RColorBrewer,
car, Ime4, ImerTest, pheatmap, biomaRt, stats, grDevices,
BiocParallel, ggplot2, patchwork, BiocGenerics, S4 Vectors

Suggests knitr, rmarkdown, testthat, biocViews, BiocCheck, BiocStyle,
airway

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
VignetteBuilder knitr

URL https://github.com/jackgisby/ReducedExperiment

BugReports https://github.com/jackgisby/ReducedExperiment/issues

biocViews GeneExpression, Infrastructure, DataRepresentation,
Software, DimensionReduction, Network

git_url https://git.bioconductor.org/packages/ReducedExperiment
git_branch RELEASE_3_22

git_last_commit 5622222

git_last commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

https://github.com/jackgisby/ReducedExperiment
https://github.com/jackgisby/ReducedExperiment/issues

Author Jack Gisby [aut, cre] (ORCID: <https://orcid.org/0000-0003-0511-8123>),
Michael Barnes [aut] (ORCID: <https://orcid.org/0000-0001-9097-7381>)

Maintainer Jack Gisby <jackgisby@gmail.com>

Contents

.DollarNames.FactorisedExperiment
assessSoftThreshold
ASSIGNMENTS o o o e e e e e e e e e e e e e e e
associateComponents L. e e e e e e e e
calcEigengenes
cbind,FactorisedExperiment-method 000
componentNames<-,FactorisedExperiment-method
dendrogram
dim,ReducedExperiment-method L.
estimateFactors
estimateStability
FactorisedExperiment-class o
getAlignedFeatures oL
getCentrality e e
getCommonFeatures e
getGenelDs L e
getMsigdbT2G e
identifyModules
loadings,FactorisedExperiment-method
ModularExperiment-class oL
modulePreservation L.
names<-,FactorisedExperiment-method
nModules,ModularExperiment-method
plotCommonFeatures
plotDendro
plotModulePreservation
plotStability e e
projectData
reduced
ReducedExperiment-class
runEnricho
runlCA . . . e
runWGCNA e
sampleNames L
ShOW . . . L e
stability
[,FactorisedExperiment, ANY,ANY,ANY-method

Index

Contents

https://orcid.org/0000-0003-0511-8123
https://orcid.org/0000-0001-9097-7381

.DollarNames.FactorisedExperiment 3

.DollarNames.FactorisedExperiment
Command line completion for $

Description

Command line completion for $. This function is not intended to be used directly by users but pro-
vides auto-completion capabilities. Autocompletes based on column data names (i.e., the column
names of the colData).

Usage

S3 method for class 'FactorisedExperiment'’
.DollarNames(x, pattern = "")

S3 method for class 'ModularExperiment'’
.DollarNames(x, pattern = "")

S3 method for class 'ReducedExperiment'’

.DollarNames(x, pattern = "")

Arguments
X The ReducedExperiment object.
pattern Search pattern.

Value

The names of the matching columns of colData.

See Also

utils::.DollarNames()

assessSoftThreshold Assess soft thresholding power for WGCNA

Description

A wrapper around pickSoftThreshold, allowing assessment and automatic selection of soft-thresholding
power. Extends the function to accept a SummarizedExperiment as input and additionally considers
mean connectivity when selecting the soft-thresholding power to recommend.

4 assessSoftThreshold

Usage
assessSoftThreshold(
X,
assay_name = "normal”,

powerVector = 1:30,
RsquaredCut = 0.85,
max_mean_connectivity = 100,
cor_type = "pearson”,
networkType = "signed”,
maxBlockSize = 30000,
verbose = 0,

)
Arguments

X Either a SummarizedExperiment object or a matrix containing data to be subject
to WGCNA. X should have rows as features and columns as samples.

assay_name If X is a SummarizedExperiment, then this should be the name of the assay to be
subject to WGCNA.

powerVector a vector of soft thresholding powers for which the scale free topology fit indices
are to be calculated.

RsquaredCut desired minimum scale free topology fitting index R2.

max_mean_connectivity
The maximal mean connectivity required. Used to select the soft-thresholding
power.

cor_type The type of correlation to be used to generate a correlation matrix during net-
work formation. One of "pearson" (cor) and "bicor" (bicor).

networkType network type. Allowed values are (unique abbreviations of) "unsigned”, "signed”,
"signed hybrid". See adjacency.

maxBlockSize The chunk size (in terms of the number of features/genes) to process the data.
The default (30000) should process standard transcriptomic datasets in a single
chunk. Results may differ if the number of features exceeds the chunk size.
Lower values of this parameter will use less memory to calculate networks.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

Additional arguments to be passed to pickSoftThreshold.

Details

The pickSoftThreshold function estimates the power by selecting the lowest value with a minimum
scale free topology fitting index exceeding RsquaredCut. The assessSoftThreshold function
mirrors this behaviour when max_mean_connectivity is NULL. When max_mean_connectivity is
specified, however, we additionally require that the selected power does not exceed this connectivity
threshold.

Value

Returns a data.frame, generated by pickSoftThreshold, with scale free topology fitting indices
and connectivity statistics. Additionally contains a column, estimated_power, indicating the rec-

assignments 5

ommended power to use (see details). We suggest manually considering suitability of the soft-
thresholding power rather than solely relying on this automated approach.

Author(s)
Jack Gisby

See Also
WGCNA: :pickSoftThreshold(), runWGCNA()

Examples

Get the airway data as a SummarizedExperiment (with a subset of features)
set.seed(2)
airway_se <- ReducedExperiment:::.getAirwayData(n_features = 500)

Select soft-thresholding power to use (use capture.output to hide WGCNA's prints)
WGCNA: : disableWGCNAThreads ()
invisible(capture.output(fit_indices <- assessSoftThreshold(airway_se)))

print(fit_indices)
print(paste@(”"Estimated power:

"

, fit_indices$Power[fit_indices$estimated_power]))

assignments Get and set module feature assignments

Description
Retrieves a vector of features (usually genes) named by the modules they belong to. Assignment
can be used to modify all or part of the vector.

Usage

S4 method for signature 'ModularExperiment'’
assignments(object, as_list = FALSE)

S4 replacement method for signature 'ModularExperiment'’
assignments(object) <- value

Arguments
object ModularExperiment object.
as_list If TRUE, the results are returned as a list, with an entry for each module contain-
ing a list of features.
value New value to replace existing assignments.
Value

A vector with values representing features and names representing feature assignments (i.e., mod-
ules).

6 associateComponents

Author(s)
Jack Gisby

Examples

Create ModularExperiment with random data (100 features, 50 samples,

10 modules)

me <- ReducedExperiment:::.createRandomisedModularExperiment(100, 50, 10)
me

Assignment of features to groups/modules
assignments(me)

We can reassign a feature to a new module if we like:
names(assignments(me))[6] <- "new_module”
assignments(me)[1:10]

We shouldn't, however, attempt to change the feature names here:
assignments(me)[5] <- "modified_gene_name”

Instead, we should change the object's feature names as so:
featureNames(me)[5] <- "modified_gene_name”
assignments(me)[1:10]

associateComponents Runs linear models for components and sample-level data

Description

Runs either standard linear or linear mixed models, with reduced components (e.g., factors or mod-
ules) as the outcomes and sample-level information (e.g., treatment, disease status) as predictors.

Usage
associateComponents(
re,
formula,
method = "1m",

scale_reduced = TRUE,
center_reduced = TRUE,
type = "II",
adj_method = "BH",

)
Arguments
re An object inheriting from ReducedExperiment.
formula The model formula to apply. Only the right hand side of the model need be spec-

ified (e.g., "~ x + y"). The left hand side (outcome) represents the components
themselves. The variables in this formula should be present in the colData of
re.

associateComponents 7

method If "Im", then the Im function is used to run linear models (in tandem with Anova
for running anovas on the model terms). If "Imer", then linear mixed models are
run through Imer.

scale_reduced If TRUE, the reduced data are scaled (to have a standard deviation of 1) before
modelling.

center_reduced If TRUE, the reduced data are centered (to have a mean of 0) before modelling.

type The type of anova to be applied to the terms of the linear model.
adj_method The method for adjusting for multiple testing. Passed to the p.adjust method
parameter.

Additional arguments passed to Imer, given that method is set to "lmer".

Details

Multiple testing adjustment is performed separately for each term in the model across all factors. In
other words, p-values are adjusted for the number of factors, but not the number of model terms. If
you are testing a large number of terms, you could consider applying a custom adjustment method
or using penalised regression.

Value

Returns a list with the entry "models" including a list of the model objects, "anovas" containing the
output of anova-based testing, and "summaries" containing the results of running summary on the
models.

Author(s)
Jack Gisby

See Also

stats::1m(), car::Anova(), ImerTest: :1mer ()

Examples

Create FactorisedExperiment with random data (100 features, 50 samples,

10 factors)

set.seed(1)

fe <- ReducedExperiment:::.createRandomisedFactorisedExperiment(100, 50, 10)
fe

Create a sample-level variable describing some sort of treatment
colData(fe)$treated <- c(rep(”control”, 25), rep("treatment”, 25))
colData(fe)$treated <- factor(colData(fe)$treated, c(”control”, "treatment"))

Increase the value of factor 1 for the treated samples, simulating some
kind of treatment-related effect picked up by factor analysis
reduced(fe)[, 1][colData(fe)$treated == "treatment”] <-

reduced(fe)[, 1][colData(fe)$treated == "treatment”] +

rnorm(25, mean = 1.5, sd = 0.1)

Create a sample-level variable describing a covariate we want to adjust for

We will make the treated patients slightly older on average

colData(fe)$age <- @

colData(fe)$age[colData(fe)$treated == "control”] <- rnorm(25, mean = 35, sd = 8)

8 calcEigengenes

colData(fe)$agelcolData(fe)$treated == "treatment”] <- rnorm(25, mean = 40, sd = 8)

Associate the factors with sample-level variable in the colData
Im_res <- associateComponents(

fe,
formula = "~ treated + age”, # Our model formula
method = "1m", # Use a linear model

adj_method = "BH" # Adjust our p-values with Benjamini-Hochberg

We see that treatment is significantly associated with factor 1 (adjusted
p-value < 0.05) and is higher in the treated patients. Age is not
significantly associated with factor 1, but there is a slight positive
relationship
print(head(1m_res$summaries[
c("term”, "component"”, "estimate", "stderr"”, "pvalue", "adj_pvalue")

»m

But what if these aren't 50 independent patients, but rather 25 patients
sampled before and after treatment? We can account for this using a

linear mixed model, which can account for repeated measures and paired
designs

First we add in this information

colData(fe)$patient_id <- c(paste@("patient_", 1:25), paste@("patient_", 1:25))
Then we run the linear mixed model with a random intercept for patient
Imm_res <- associateComponents(

fe,
formula = "~ treated + age + (1 | patient_id)", # Add a random intercept
method = "lmer”, # Use a linear mixed model

adj_method = "BH"

We used a different method, but can obtain a similar summary output
print(head(1lmm_res$summaries[

’

c("term”, "component”, "estimate”, "stderr"”, "pvalue”, "adj_pvalue")
1b))
calcEigengenes Calculate eigengenes for new data
Description

Calculates eigengenes for modules in new data. By default, eigengenes are calculated from scratch

using PCA, in a similar manner to the moduleEigengenes function. The function also offers a

projection approach, which functions in a similar fashion to the predict method of prcomp.
Usage

S4 method for signature 'ModularExperiment,matrix’

calcEigengenes 9

calcEigengenes(
object,
newdata,
project = FALSE,
scale_reduced = TRUE,
return_loadings = FALSE,
scale_newdata = NULL,
center_newdata = NULL,
realign = TRUE,
min_module_genes = 10

)

S4 method for signature 'ModularExperiment,data.frame'’
calcEigengenes(
object,
newdata,
project = FALSE,
scale_reduced = TRUE,
return_loadings = FALSE,
scale_newdata = NULL,
center_newdata = NULL,
realign = TRUE,
min_module_genes = 10

)

S4 method for signature 'ModularExperiment,SummarizedExperiment'’
calcEigengenes(
object,
newdata,
project = FALSE,
scale_reduced = TRUE,
assay_name = "normal”,
scale_newdata = NULL,
center_newdata = NULL,
realign = TRUE,
min_module_genes = 10

)
S4 method for signature 'ModularExperiment’
predict(object, newdata, ...)
Arguments
object A ModularExperiment object. By default, the scale and center slots are used

to apply the original transformation to the new data. The loadings slot of this
class will be used if project is TRUE.

newdata New data for eigengenes to be calculated in. Must be a data.frame or matrix
with features as rows and samples as columns, or a SummarizedExperiment ob-
ject. Assumes that the rows of newdata match those of the ModularExperiment
object.

project If FALSE (default), calculate eigengenes from scratch in the new dataset using an
approach similar to moduleEigengenes (i.e., performing PCA for each module

10 calcEigengenes

in newdata). If FALSE, perform projection, using PCA rotation matrix from the
original data to calculate module eigengenes. Projection approach is experimen-
tal.

scale_reduced Whether or not the reduced data should be scaled after calculation.
return_loadings
If TRUE, additionally returns the feature loadings for the eigengenes.

scale_newdata Controls whether the newdata are scaled. If NULL, performs scaling based on
the ModularExperiment object’s scale slot. The value of this argument will be
passed to the scale argument of scale.

center_newdata Controls whether the newdata are centered If NULL, performs centering based on
the ModularExperiment object’s center slot. The value of this argument will
be passed to the center argument of scale.

realign If project is TRUE, this argument is ignored. Else, controls whether eigengenes
are realigned after PCA is performed to ensure the resultant signatures are pos-
itively correlated with average expression of the module. Similar to the align
argument of moduleEigengenes.

min_module_genes
If project is FALSE, this argument is ignores. Else, controls the minimum num-
ber of genes required in a module for projection. Projected eigengenes are not
calculated for modules with sizes below this threshold.

assay_name If a SummarizedExperiment object is passed as new data, this argument indi-
cates which assay should be used for projection.

Additional arguments to be passed to calcEigengenes.

Details

If scale_newdata and center_newdata are left as NULL, then the projection method assumes that
the newdata are on the same scale as the original data of the object. It will therefore use the values
of the center and scale slots of the object. For instance, if the scale slot is TRUE, the newdata
will be scaled. If the scale slot is a vector, the values of this vector will be applied to scale the
newdata.

Value

If return_loadings is TRUE, returns a list with the "reduced" matrix and "loadings" vector (one value
per feature). If FALSE, returns only the reduced matrix.

The reduced matrix has samples as rows and modules as columns. If newdata was a matrix or
data.frame, this will be returned as a matrix. If a SummarizedExperiment object was passed
instead, then a If a ModularExperiment object will be created containing this matrix in its reduced
slot.

Author(s)

Jack Gisby

See Also

projectData, moduleEigengenes

cbind,FactorisedExperiment-method 11

Examples

Create ModularExperiment with random data (100 features, 50 samples,
10 modules)
me_1 <- ReducedExperiment:::.createRandomisedModularExperiment(100, 50, 10)

Generate a new dataset with the same features (100 rows) but different
samples/observations (20 columns)
X_2 <- ReducedExperiment:::.makeRandomData(100, 20, "gene", "sample")

We can use the projection approach to calculate the eigengenes for
the modules identified in dataset 1 for the samples in dataset 2
This approach is based on the module loadings

me_2_project <- calcEigengenes(me_1, X_2, project = TRUE)
me_2_project[1:5, 1:5]

Alternatively, we can calculate eigengenes from scratch in the second

dataset. This still uses the modules identified in the first dataset (me_1)
but does not make use of the loadings. This approach is similar to

that applied by WGCNA::moduleEigengenes.

me_2_eig <- calcEigengenes(me_1, X_2, project = FALSE)

me_2_eig[1:5, 1:5]

cbind,FactorisedExperiment-method
Combine ReducedExperiment objects by columns or rows

Description

Combines ReducedExperiment objects by columns (samples) or rows (features).

Usage

S4 method for signature 'FactorisedExperiment'
cbind(..., deparse.level = 1)

S4 method for signature 'FactorisedExperiment'’
rbind(..., deparse.level = 1)

S4 method for signature 'ModularExperiment'’
cbind(..., deparse.level = 1)

S4 method for signature 'ModularExperiment’
rbind(..., deparse.level = 1)

S4 method for signature 'ReducedExperiment’
cbind(..., deparse.level = 1)

S4 method for signature 'ReducedExperiment'
rbind(..., deparse.level = 1)

12 cbind,FactorisedExperiment-method

Arguments

A series of ReducedExperiment objects to be combined. See cbind,SummarizedExperiment-
method for further details.

deparse.level Integer, see cbind.

Details

cbind assumes that objects have identical features and components (i.e., factors or modules). If
they are not, an error is returned.

So, this means that the feature-level slots should be equivalent, for example the assay rownames
and values of the loadings available in FactorisedExperiment and ModularExperimentobjects. The
component slots should also be equivalent, such as the column names of the reduced matrix or the
column names of the aformentioned factor loadings matrix.

rbind assumes that objects have identical samples and components. If they are not, an error is
returned. This means that the sample-level slots should be equivalent, including for example the
assay column names.

The SummarizedExperiment package includes separate methods for cbind (cbind,SummarizedExperiment-
method) and (combineRows). The latter is supposed to be more flexible, permitting differences in

the number and identity of the rows. For ReducedExperiment objects we only implement a single,

less flexible, method that assumes the rows and components (i.e., factors or modules) are identical

across objects. Attempting to apply combineRows to a ReducedExperiment object will result in the
objects being treated as if they were SummarizedExperiments, and a single SummarizedExperiment

object will be returned.

Value

Returns a single ReducedExperiment object containing all of the columns in the objects passed to
cbind.

Author(s)
Jack Gisby

See Also

base::cbind(), base: :rbind(), cbind,SummarizedExperiment-method, rbind,SummarizedExperiment-
method

Examples

Create randomised containers with different numbers of samples
i <- 300 # Number of features
k <- 10 # Number of components (i.e., factors/modules)

Same features and components, different samples (30 vs. 50 columns)
re_1 <- ReducedExperiment:::.createRandomisedReducedExperiment(i, 50, k)
re_2 <- ReducedExperiment:::.createRandomisedReducedExperiment(i, 30, k)

Make a new object with 80 columns
cbind(re_1, re_2)

Create randomised containers with different numbers of features
j <- 100 # Number of samples

componentNames<-,FactorisedExperiment-method 13

k <- 10 # Number of components (i.e., factors/modules)

Same features and components, different samples (30 vs. 50 columns)
re_3 <- ReducedExperiment:::.createRandomisedReducedExperiment (200, j, k)
re_4 <- ReducedExperiment:::.createRandomisedReducedExperiment (150, j, k)
reduced(re_3) <- reduced(re_4) # rbind assumes identical reduced data

Make a new object with 80 columns
rbind(re_3, re_4)

We can apply combineRows and combineCols to ~ReducedExperiment” objects
but the resulting object will be a ~SummarizedExperiment”
combineCols(re_1, re_2)

combineRows(re_3, re_4)

componentNames<-,FactorisedExperiment-method
Get names of dimensionally-reduced components

Description

Retrieves the feature names post-dimensionality reduction In the case of module analysis, these are
the names of the gene modules; in the case of factor analysis, these are the names of the factors.

Usage

S4 replacement method for signature 'FactorisedExperiment'
componentNames (object) <- value

S4 replacement method for signature 'ModularExperiment’
componentNames (object) <- value

S4 method for signature 'ModularExperiment'’
moduleNames (object)

S4 replacement method for signature 'ModularExperiment'’
moduleNames(object) <- value

S4 method for signature 'ReducedExperiment’
componentNames (object)

S4 replacement method for signature 'ReducedExperiment'’
componentNames (object) <- value

Arguments

object A ReducedExperiment object.

value New value to replace existing names.

14 dendrogram

Details

componentNames is valid for all ReducedExperiment objects, whereas moduleNames is only valid
for ModularExperiments.

Value

A vector containing the names of the components.

Author(s)
Jack Gisby

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <- 100 # Number of samples

k <- 10 # Number of factors

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene"”, "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component")

re <- ReducedExperiment(
assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data

)

stopifnot(all.equal (componentNames(re), colnames(rand_reduced_data)))
print(paste@(”Component name at [2]: ", componentNames(re)[2]))
componentNames(re)[2] <- "custom_component_name"

print(paste@(”Component name at [2]: ", componentNames(re)[2]))

dendrogram Get the dendrogram stored in a ModularExperiment

Description

Get the dendrogram stored in a ModularExperiment

Usage

S4 method for signature 'ModularExperiment'’
dendrogram(object)

S4 replacement method for signature 'ModularExperiment
dendrogram(object) <- value
Arguments

object A ModularExperiment object.

value New value to replace existing dendrogram.

dim,ReducedExperiment-method 15

Value

Returns a dendrogram describing relationships between genes. Usually produced through hierar-
chical clustering using the blockwiseModules function.

Author(s)
Jack Gisby

See Also

WGCNA: :blockwiseModules(), stats: :hclust()

Examples

Create ModularExperiment with random data (100 features, 50 samples,

10 modules)

me <- ReducedExperiment:::.createRandomisedModularExperiment(100, 50, 10)
me

The dendrogram is usually produced during module discovery, but we can

assign any dendrogram to the slot. Let's do hierarchical clustering on the
features in our object and assign it

dendrogram(me) <- hclust(dist(assay(me)))

dendrogram(me)

Can use default plotting approach
plot(dendrogram(me))

Or class method that calls WGCNA: :plotDendroAndColors
plotDendro(me)

dim,ReducedExperiment-method
Get the dimensions of a Reducedexperiment object

Description

Get the dimensions of a Reducedexperiment object

Usage
S4 method for signature 'ReducedExperiment'’
dim(x)

Arguments

X A ReducedExperiment object.

Value

Returns a named vector containing the dimensions of the samples, features and reduced dimensions.

16 estimateFactors

Author(s)
Jack Gisby

Examples

Create a randomised ReducedExperiment
re <- ReducedExperiment:::.createRandomisedReducedExperiment (100, 50, 10)

Get the dimensions

dim(re)
estimateFactors Perform dimensionality reduction using Independent Component
Analysis
Description

Performs independent component analysis (ICA) and packages both the input data and subsequent
results into a FactorisedExperiment container. Calls runICA to perform the analysis; see its docu-
mentation page for more information on the ICA method, parameters and outputs.

Usage

estimateFactors(
X,
nc,
center_X = TRUE,
scale_X = FALSE,

assay_name = "normal”,
)
Arguments

X Either a SummarizedExperiment object or a matrix containing data to be subject
to ICA. X should have rows as features and columns as samples.

nc The number of components to be identified. See estimateStability for a method
to estimate the optimal number of components.

center_X If TRUE, X is centered (i.e., features / rows are transformed to have a mean of 0)
prior to ICA. Generally recommended.

scale_X If TRUE, X is scaled (i.e., features / rows are transformed to have a standard
deviation of 1) before ICA.

assay_name If X is a SummarizedExperiment, then this should be the name of the assay to be

subject to ICA.

Additional arguments to be passed to runICA.

estimateStability 17

Value

A FactorisedExperiment is returned containing the input data (i.e., the original data matrix in ad-
dition to other slots if a SummarizedExperiment was used as input). Additionally contains the
results of factor analysis, stored in the reduced and loadings slots. The center_X, scale_X and
stability slots may also be filled depending on the arguments given to estimateFactors.

Author(s)
Jack Gisby

See Also

runICA(), ica::ica()

Examples

Get a random matrix with rnorm, with 100 rows (features)
and 20 columns (observations)
X <- ReducedExperiment:::.makeRandomData(10@, 20, "feature", "obs")

Estimate 5 factors based on the data matrix
set.seed(1)

fe_1 <- estimateFactors(X, nc = 5)

fe_1

Convert the data matrix to a SummarizedExperiment, then estimate 5 factors
se <- SummarizedExperiment(assays = list("normal” = X))

set.seed(1)

fe_2 <- estimateFactors(se, nc = 5)

fe_2

estimateStability Estimate stability of factors as a function of the number of components

Description

Estimates the stability of factors over a range of component numbers to aid in the identification of
the optimal factor number. Based on the Most Stable Transcriptome Dimension (MSTD) approach
(see details).

Usage

estimateStability(
X,
min_components = 10,
max_components 60,
by = 2,
n_runs = 30,
resample = FALSE,
mean_stability_threshold = NULL,
center_X = TRUE,

18 estimateStability

scale_X = FALSE,

assay_name = "normal”,
BPPARAM = BiocParallel::SerialParam(),
verbose = TRUE,
)
Arguments
X Either a SummarizedExperiment object or a matrix containing data to be subject

to ICA. X should have rows as features and columns as samples.
min_components The minimum number of components to estimate the stability for.
max_components The maximum number of components to estimate the stability for.
by The number by which to increment the numbers of components tested.

n_runs The number of times to run ICA to estimate factors and quantify stability. Ig-
nored if use_stability is FALSE.

resample If TRUE, a boostrap approach is used to estimate factors and quantify stability.
Else, random initialisation of ICA is employed. Ignored if use_stability is
FALSE.

mean_stability_threshold
A threshold for the mean stability of factors.

center_X If TRUE, X is centered (i.e., features / rows are transformed to have a mean of 0)
prior to ICA. Generally recommended.

scale_X If TRUE, X is scaled (i.e., features / rows are transformed to have a standard
deviation of 1) before ICA.

assay_name If X is a SummarizedExperiment, then this should be the name of the assay to be
subject to ICA.

BPPARAM A class containing parameters for parallel evaluation. Uses SerialParam by de-
fault, running only a single ICA computation at a time. Ignored if use_stability
is FALSE.

verbose If TRUE, shows a progress bar that updates for each number of components

tested. Note that the time taken may not be linear, because the time taken to
run ICA generally increases with the number of components.

Additional arguments to be passed to runlCA.

Details

Runs the stability-based ICA algorithm (see runICA) for a range of component numbers. Estimates
stability for each, allowing for selection of the optimal number of components to be used for ICA.
The results of this function can be plotted by plotStability.

This algorithm is based on the Most Stable Transcriptome Dimension (MSTD) approach (https:
//bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4112-9).

The function automatically selects a number of components based on mean_stability_threshold.
However, this choice should be made after visualisating the stabilities as a function of the number
of components, which may be done using plotStability. The aformentioned MSTD paper provides
additional context and advice for choosing the number of components based on these results.

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4112-9
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4112-9

FactorisedExperiment-class 19

Value
Returns a list containing:

stability A data.frame indicating factor stabilities as a function of the number of components.

selected_nc anaive estimate for the optimal number of components based on the mean_stability_threshold.

Author(s)
Jack Gisby

See Also
runICA(), plotStability()

Examples

Get a random matrix with rnorm, with 200 rows (features)
and 100 columns (observations)
X <- ReducedExperiment:::.makeRandomData(200, 100, "feature”, "obs")

Estimate stability across 10 to 3@ components
Note: We could have provided a SummarizedExperiment object instead of a matrix
stab_res_1 <- estimateStability(

X,

min_components = 10,

max_components = 30,

n_runs = 5,

verbose = FALSE

FactorisedExperiment-class
FactorisedExperiment: A container for the results of factor analysis

Description

A container inheriting from the ReducedExperiment class, that contains one or more data matrices,
to which factor analysis has been applied to identify a reduced set of features. A FactorisedExper-
iment can be created directly in a similar manner to a SummarizedExperiment. Alternatively, the
estimateFactors function can be used to both apply factor analysis and generate a FactorisedExper-
iment from the results.

Usage

FactorisedExperiment(
reduced = new("matrix"),
scale = TRUE,
center = TRUE,
loadings = new("matrix"),
stability = NULL,

20

FactorisedExperiment-class

Arguments
reduced A matrix, produced by factor analysis, with rows representing samples and
columns representing factors.
scale Either a boolean, representing whether or not the original data has been scaled
to unit variance, or a numeric vector indicating the standard deviations of the
original features (as produced by scale.)
center Either a boolean, representing whether or not the original data has been centered
to have a mean of 0, or a numeric vector indicating the means of the original
features (as produced by scale.)
loadings A matrix, produced by factor analysis, with rows representing features and
columns representing factors.
stability A vector containing some measure of stability or variance explained for each
factor. If factor analysis was performed using estimateFactors and use_stability
= TRUE, this slot will indicate the stability of the factors across multiple runs of
ICA.
Additional arguments to be passed to ReducedExperiment.
Value

Constructor method returns a FactorisedExperiment object.

Author(s)

Jack Gisby

See Also

ReducedExperiment (), ModularExperiment(), estimateFactors()

Examples
Create randomised data with the following dimensions
i <- 300 # Number of features
j <- 100 # Number of samples
k <- 10 # Number of factors
In this case we use random assay, reduced and loadings data, but in
practice these will likely be the result of applying some kind of factor
analysis to the assay data (e.g., gene expression data) from some study.
rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene", "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "factor")
rand_loadings <- ReducedExperiment:::.makeRandomData(i, k, "gene", "factor”)

fe <- FactorisedExperiment(

fe

assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data,
loadings = rand_loadings

getAlignedFeatures 21

getAlignedFeatures Get feature alignments with factors

Description

Retrieves features (usually genes) and their alignment (Loadings) with the factors. Allows for the
selection of features whose alignments are high relative to other features. Useful for functional
interpretation of factors.

Usage

S4 method for signature 'FactorisedExperiment'’
getAlignedFeatures(

object,

loading_threshold = 0.5,

proportional_threshold = 0.01,

feature_id_col = "rownames",
format = "list",
center_loadings = FALSE
)
Arguments
object A FactorisedExperiment object.

loading_threshold
A value between 0 and 1 indicating the proportion of the maximal loading to be
used as a threshold. A value of 0.5 (default) means that genes will be selected if
their factor alignment (derived from the loadings slot) exceeds or equals 50%
of the maximally aligned feature.

proportional_threshold
A value between 0 and 1 indicating the maximal proportion of features to be
returned. A value of 0.01 (default) means that a maximum of 1% of the input
features (usually genes) will be returned for each factor. These will be the genes
in the top percentile with respect to the loadings

feature_id_col The column in rowData(object) that will be used as a feature ID. Setting this
to "rownames" (default) instead uses rownames(object).

format A string specifying the format in which to return the results. See the value
section below.
center_loadings

If TRUE, loadings will be centered column-wise to have a mean of 0.
Value

If the format argument is "list", then a list will be returned with an entry for each factor, each con-
taining a vector of input features. Otherwise, if format is "data.frame”, a data.frame is returned
with a row for each gene-factor combination. The format argument can also be a function to be
applied to the output data.frame before returning the results.

Author(s)
Jack Gisby

22 getCentrality

See Also

getCommonFeatures()

Examples

Get a random matrix with rnorm, with 100 rows (features)
and 20 columns (observations)
X <- ReducedExperiment:::.makeRandomData(10@, 20, "feature", "obs")

Estimate 5 factors based on the data matrix
fe <- estimateFactors(X, nc = 5)

Get the genes highly aligned with each factor as a list
aligned_features <- getAlignedFeatures(fe, proportional_threshold = 0.03)
aligned_features

Can also view as a data.frame
head(getAlignedFeatures(fe, format = "data.frame"”, proportional_threshold = 0.03))

getCentrality Get correlation of features with module eigengenes

Description

Provides a wrapper around signedKME. Provides a measure of module centrality/connectivity of
each feature. Calculates correlation (Pearson’s r) of each feature with the module eigengene (i.e.,
the column of reduced to which the feature belongs).

Usage

S4 method for signature 'ModularExperiment'

getCentrality(object, assay_name = "normal”, feature_id_col = "rownames")
Arguments

object A ModularExperiment object.

assay_name The name of the assay to be used for calculation of module centrality.

feature_id_col The column in rowData(object) that will be used as a feature ID. Setting this
to "rownames" (default) instead uses rownames(object).
Value

Returns a data. frame with columns for feature, r (signed correlation with the eigengene), rsq
(squared correlation with the eigengene), rank_r (feature rank based on r) and rank_rsq (feature
rank based on rsq).

Author(s)
Jack Gisby

getCommonPFeatures 23

See Also
WGCNA: : signedKME ()

Examples

Create ModularExperiment with random data (100 features, 50 samples,

10 modules)

me <- ReducedExperiment:::.createRandomisedModularExperiment (100, 50, 10)
me

Calculate centrality of each feature for the corresponding module
head(getCentrality(me))

getCommonFeatures Get common factor features

Description

Function to count how many genes are aligned with multiple factors.

Usage

getCommonFeatures(factor_features)

Arguments

factor_features
A data.frame as returned by getAlignedFeatures.
Value
A data. frame for each factor pair with the numbers and proportions of the genes in the input that
overlap.
Author(s)
Jack Gisby

See Also

plotCommonFeatures(), getAlignedFeatures()

Examples

Get a random matrix with rnorm, with 100 rows (features)
and 20 columns (observations)
X <- ReducedExperiment:::.makeRandomData(100, 20, "feature”, "obs")

Estimate 5 factors based on the data matrix
fe <- estimateFactors(X, nc = 5)

Get the genes highly aligned with each factor

24 getGenelDs

aligned_features <- getAlignedFeatures(
fe,
format = "data.frame”,
proportional_threshold = 0.3

)

Identify overlap between common features for each factor
common_features <- getCommonFeatures(aligned_features)
head(common_features)

getGenelDs Gets alternative gene annotations from biomaRt

Description

Uses getBM to get alternative gene IDs for ReducedExperiment objects. The new annotations are
added as columns to the input object’s rowData

Usage
S4 method for signature 'ReducedExperiment'’
getGeneIDs(
object,
gene_id_col = "rownames”,
gene_id_type = "ensembl_gene_id",
ids_to_get = c("hgnc_symbol”, "entrezgene_id"),
dataset = "hsapiens_gene_ensembl”,
mart = NULL,
biomart_out = NULL
)
Arguments
object ReducedExperiment object.
gene_id_col The column in rowData(object) that will be used to query biomaRt. Setting

this to "rownames" instead uses rownames(object) for matching.

gene_id_type The type of attribute to be used to query with biomaRt. See the filters argu-

ment of getBM.

ids_to_get The type of attribute to get from biomaRt. See the attributes argument of
getBM.

dataset The Ensembl dataset to retrieve. See the dataset argument of useEnsembl. If

mart is not NULL, this argument is ignored.

mart An optional mart object to use. See the mart argument of getBM. If pro-
vided, this object is used to query biomart for the conversion of gene IDs. If
biomart_out is not NULL, this argument is ignored.

biomart_out An optional data. frame containing the output of a call to getBM. If provided,
this object is used for the conversion of gene IDs.

getMsigdbT2G 25

Value

Returns the original object, with additional variables added to the rowData slot.

Author(s)
Jack Gisby

See Also

biomaRt: :useEnsembl(), biomaRt: :getBM()

Examples

set.seed(2)
airway <- ReducedExperiment:::.getAirwayData(n_features = 500)

set.seed(1)
airway_fe <- estimateFactors(airway, nc = 2, use_stability = FALSE, method = "imax")

rowData before getting additional gene IDs
rowData(airway_fe)

For this example we run ~getGeneIDs™ using a preloaded biomart query
(Cbiomart_out™) to avoid actually querying ensembl during testing

Note: do not use this file for your actual data

biomart_out <- readRDS(system.file(

"extdata",
"biomart_out.rds"”,
package = "ReducedExperiment”

)

airway_fe <- getGenelDs(airway_fe, biomart_out = biomart_out)

rowData after getting additional gene IDs
rowData(airway_fe)

getMsigdbT2G Get TERM2GENE dataframe from MSigDB

Description

Gets pathways from the MSigDB database in the format required by clusterProfiler enrichment
functions, such as enricher and GSEA. May be used as input to runEnrich. By default, retrieves the
C2 canonical pathways.

Usage

getMsigdbT2G(
species = "Homo sapiens”,
category = "C2",
subcategory = NULL,
subcategory_to_remove = "CGP",
gene_id = "ensembl_gene”

26 identifyModules

Arguments
species The species for which to obtain MSigDB pathways. See msigdbr for more de-
tails.
category The MSigDB category to retrieve pathways for. See msigdbr for more details.

subcategory The MSigDB subcategory to retrieve pathways for. See msigdbr for more de-

tails.
subcategory_to_remove

If not NULL, this is a character string indicating a subcategory to be removed
from the results of msigdbr.

gene_id The name to be given to the gene_id column of the resulting data.frame.

Value

Returns a data.frame, where the gs_name column indicates the name of a pathway, and the gene_id
column indicates genes that belong to said pathway.

Author(s)
Jack Gisby
Examples
pathways <- getMsigdbT2G(
species = "Homo sapiens”,
category = "C2",
subcategory_to_remove = "CGP",
gene_id = "ensembl_gene”
)
A data.frame indicating gene-pathway mappings for use in pathway analysis
head(pathways)
identifyModules Apply dimensionality reduction using Weighted Gene Correlation Net-
work Analysis
Description

Performs Weighted gene correlation network analysis (WGCNA) and packages both the input data
and subsequent results into a ModularExperiment. Calls runWGCNA to perform the analysis; see
its documentation page for more information on the ICA method, parameters and outputs.

Usage

identifyModules(
X,
power,
center_X = TRUE,
scale_X = TRUE,
assay_name = "normal”,

identifyModules

Arguments

X

power

center_X

scale_X

assay_name

Value

27

Either a SummarizedExperiment object or a matrix containing data to be subject
to WGCNA. X should have rows as features and columns as samples.

An integer representing the soft-thresholding power to be used to define mod-
ules. See the assessSoftThreshold function for aid in determining this parameter.

If TRUE, X is centered (i.e., features / rows are transformed to have a mean of 0)
prior to WGCNA.

If TRUE, X is scaled (i.e., features / rows are transformed to have a standard
deviation of 1) before WGCNA.

If X is a SummarizedExperiment, then this should be the name of the assay to be
subject to WGCNA.

Additional arguments to be passed to runWGCNA.

A ModularExperiment is returned containing the input data (i.e., the original data matrix in ad-
dition to other slots if a SummarizedExperiment was used as input). Additionally contains the
results of module analysis, stored in the reduced and assignments slots. The center_X, scale_X,
loadings, threshold and dendrogram slots may also be filled depending on the arguments given
to identifyModules.

Author(s)

Jack Gisby

See Also

runWGCNA (), WGCNA: :blockwiseModules (), WGCNA: : pickSoftThreshold()

Examples

Get the airway data as a SummarizedExperiment (with a subset of features)

set.seed(2)

airway_se <- ReducedExperiment:::.getAirwayData(n_features = 500)

Select soft-thresholding power to use (use capture.output to hide WGCNA's prints)
WGCNA: : disableWGCNAThreads ()

invisible(capture.output(fit_indices <- assessSoftThreshold(airway_se)))
estimated_power <- fit_indices$Power[fit_indices$estimated_power]

Identify modules using WGCNA
airway_me <- identifyModules(airway_se, verbose = @, power = estimated_power)

airway_me

28 loadings,FactorisedExperiment-method

loadings,FactorisedExperiment-method
Get and set loadings

Description

Method for getting and setting loadings for a ReducedExperiment object.

Usage

S4 method for signature 'FactorisedExperiment'’
loadings(

object,

scale_loadings = FALSE,

center_loadings = FALSE,

abs_loadings = FALSE

)

S4 replacement method for signature 'FactorisedExperiment'
loadings(object) <- value

S4 method for signature 'ModularExperiment’
loadings(

object,

scale_loadings = FALSE,

center_loadings = FALSE,

abs_loadings = FALSE

)

S4 replacement method for signature 'ModularExperiment'’
loadings(object) <- value

Arguments

object ReducedExperiment object or an object that inherits from this class.
scale_loadings If TRUE, loadings will be scaled to have a standard deviation of 0. If the loadings
are a matrix, this operation is performed column-wise.

center_loadings
If TRUE, loadings will be centered to have a mean of 0. If the loadings are a
matrix, this operation is performed column-wise.

abs_loadings If TRUE, the absolute values of the loadings will be returned.

value New value to replace existing loadings.

Details

When available, the module loadings provide the values of the rotation matrix (usually generated by
prcomp) used to calculate the sample-level module vectors available in the reduced slot. Normally,
these loadings are calculated for each module separately, so their values are not comparable across
modules.

ModularExperiment-class 29

Value

If object is a FactorisedExperiment, the loadings matrix will be returned, with features as rows and
reduced components as columns. If object is a ModularExperiment, the loadings will be returned
as a vector, with a value for each feature (usually genes).

Author(s)

Jack Gisby

Examples

Create ModularExperiment with random data (100 features, 50 samples,

10 modules)

me <- ReducedExperiment:::.createRandomisedModularExperiment (100, 50, 10)
me

Retrieve the loadings
loadings(me)[1:10]

Change a loading
loadings(me)[9] <- 8
loadings(me)[1:10]

ModularExperiment-class
ModularExperiment: A container for the results of module analysis

Description

A container inheriting from the ReducedExperiment class, that contains one or more data matrices,
to which module analysis has been applied to identify a reduced set of features. A ModularExper-
iment can be created directly in a similar manner to a SummarizedExperiment. Alternatively, the
identifyModules function can be used to both define modules and generate a ModularExperiment
from the results.

Usage

ModularExperiment(
reduced = new("matrix"),
scale = TRUE,
center = TRUE,
loadings = NULL,
assignments = character(),
dendrogram = NULL,
threshold = NULL,

30

Arguments

reduced

scale

center

loadings

assignments

dendrogram
threshold

Value

ModularExperiment-class

A matrix, produced by module analysis, with rows representing samples and
columns representing module expression profiles. Typically, this matrix con-
tains "eigengenes" produced by the Weighted Gene Correlation Network Anal-
ysis (WGCNA) approach, as is applied by identifyModules.

Either a boolean, representing whether or not the original data has been scaled
to unit variance, or a numeric vector indicating the standard deviations of the
original features (as produced by scale.)

Either a boolean, representing whether or not the original data has been centered
to have a mean of 0, or a numeric vector indicating the means of the original
features (as produced by scale.)

A numeric vector representing the loadings used to generate module expression
profiles. Typically, these values are obtained from the rotation matrix produced
by prcomp, which is used to identify the first principal component of each mod-
ule. The vector names represent features.

A vector of features, named according to the module to which the feature be-
longs.

Either NULL, or the dendrogram used to identify modules from the original data.

Either NULL, or a matrix produced by pickSoftThreshold indicating the parame-
ters used for network construction.

Additional arguments to be passed to ReducedExperiment.

Constructor method returns a ModularExperiment object.

Author(s)
Jack Gisby

See Also

ReducedExperiment (), FactorisedExperiment(), identifyModules()

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <= 100 # Number of samples

k <- 10 # Number of modules

ETgE S

In this case we use random assay data and reduced data (i.e., module

eigengenes). We also randomly assign each feature to a module. In practice,
we would identify modules and eigengenes using a method like WGCNA applied
to the analysis of assay data (e.g., gene expression data) from some study.

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene", "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "module")
rand_assignments <- paste@("gene_", seq_len(i))

names(rand_assignments) <- paste@("module_", round(stats::runif(i, 1, k), 0))

me <- ModularExperiment(
assays = list("normal” = rand_assay_data),

modulePreservation 31

reduced = rand_reduced_data,
assignments = rand_assignments

me

modulePreservation Get module preservation statistics

Description

Tests whether a set of modules defined in the reference dataset are preserved in the test dataset.
Provides a convenient wrapper around modulePreservation for ModularExperiment and Summa-
rizedExperiment objects.

Usage

modulePreservation(
reference_dataset,
test_dataset,
reference_assay_name = "normal”,
test_assay_name = "normal”,
module_assignments = NULL,
greyName = "module_0",
goldName = "random”,
networkType = "signed”,
corFnc = "cor",
savePermutedStatistics = FALSE,

Arguments

reference_dataset
The dataset that was used to define the modules. Must be a data.frame or
matrix with features as rows and samples as columns, or a ModularExperiment
or SummarizedExperiment object.

test_dataset The dataset that will be used to test for module preservation. Must be a data. frame
or matrix with features as rows and samples as columns, or a SummarizedEx-
periment object. The features of test_dataset should be the same as reference_dataset
and in the same order.
reference_assay_name
If the reference dataset is a ModularExperiment or SummarizedExperiment ob-
ject, this argument specifies which assay slot was used to define the modules.
test_assay_name
If the reference dataset is a ModularExperiment or SummarizedExperiment ob-
ject, this argument specifies which assay slot is to be used in preservation tests.

module_assignments
If the reference dataset is not a ModularExperiment object, this argument is
necessary to specify the module assignments.

32 names<-,FactorisedExperiment-method

greyName The name of the "module" of unassigned genes. Usually "module_0" (Reduced-
Experiment default) or "grey" (WGCNA default). See modulePreservation.

goldName The name to be used for the "gold" module (which is made up of a random
sample of all network genes). See modulePreservation.

networkType A string referring to the type of WGCNA network used for the reference and test
datasets. One of"unsigned", "signed" or "signed hybrid". See adjacency. See
modulePreservation.

corFnc A string referring to the function to be used to calculate correlation. One of
"cor" or "bicor". See modulePreservation.
savePermutedStatistics

If TRUE, saves the permutation statistics as a .RData file. See modulePreserva-
tion.

Additional arguments to be passed to modulePreservation.

Value

A data.frame containing preservation statistics, as described by modulePreservation.

Author(s)
Jack Gisby

Examples

Get random ModularExperiments with rnorm, with 100 rows (features),

20 columns (observations) and 5/10 modules

me_1 <- ReducedExperiment:::.createRandomisedModularExperiment (100, 20, 5)
me_2 <- ReducedExperiment:::.createRandomisedModularExperiment (100, 20, 10)

Test module preservation (test modules from dataset 1 in dataset 2)
mp <- modulePreservation(me_1, me_2, verbose = @, nPermutations = 3)

names<-,FactorisedExperiment-method
Get feature names

Description

Gets and sets feature names (i.e., rownames, usually genes).

Usage

S4 replacement method for signature 'FactorisedExperiment'
names(x) <- value

S4 replacement method for signature 'FactorisedExperiment'
featureNames(x) <- value

S4 replacement method for signature 'FactorisedExperiment'
rownames(x) <- value

names<-,FactorisedExperiment-method 33

S4 replacement method for signature 'ModularExperiment’
names(x) <- value

S4 replacement method for signature 'ModularExperiment'’
featureNames(x) <- value

S4 replacement method for signature 'ModularExperiment'’
rownames(x) <- value

S4 method for signature 'ReducedExperiment’
featureNames(x)

S4 replacement method for signature 'ReducedExperiment’
names(x) <- value

S4 replacement method for signature 'ReducedExperiment'’
rownames(x) <- value

S4 replacement method for signature 'ReducedExperiment'’
ROWNAMES(x) <- value

S4 replacement method for signature 'ReducedExperiment'’
featureNames(x) <- value

Arguments

X ReducedExperiment object.

value New value to replace existing names.
Value

A vector containing the names of the features.

Author(s)
Jack Gisby

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <- 100 # Number of samples

k <- 10 # Number of factors

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene"”, "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component”)

re <- ReducedExperiment(
assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data

)

Methods return equivalent results

34 nModules,ModularExperiment-method

stopifnot(all.equal(featureNames(re), rownames(rand_assay_data)))
stopifnot(all.equal(rownames(re), rownames(rand_assay_data)))
stopifnot(all.equal(names(re), rownames(rand_assay_data)))

We can change the feature name at a particular position

print(paste@(”"Feature name at position 55: ", featureNames(re)[55]1))
featureNames(re)[55] <- "custom_feature_name"”
print(paste@(”"Reduced data at position 55: ", featureNames(re)[55]))

nModules,ModularExperiment-method
Prints individual lengths of samples, components and features

Description

Prints individual lengths of samples, components and features

Usage

S4 method for signature 'ModularExperiment’
nModules(object)

S4 method for signature 'ReducedExperiment'’
nComponents(object)

S4 method for signature 'ReducedExperiment’
nSamples(object)

S4 method for signature 'ReducedExperiment'’

nFeatures(object)
Arguments

object ReducedExperiment object.
Value

The number of samples (nSamples), features (nFeatures) or dimensionally-reduced components
(nComponents) are returned.

Author(s)

Jack Gisby

See Also

dim,ReducedExperiment-method

plotCommonFeatures 35

Examples

Create a randomised ReducedExperiment
re <- ReducedExperiment:::.createRandomisedReducedExperiment (100, 50, 10)

Get the dimensions
nComponents(re) # 10
nSamples(re) # 50
nFeatures(re) # 10

For a ModularExperiment we can alternatively use nModules

me <- ReducedExperiment:::.createRandomisedModularExperiment (100, 50, 10)
nComponents(me) # 10

nModules(me) # 10

plotCommonFeatures Heatmap comparing commonality across factors

Description

Heatmap comparing commonality across factors

Usage

plotCommonFeatures(
common_features,
filename = NA,

color = (grDevices::colorRampPalette(RColorBrewer: :brewer.pal(n = 7, name =
"Y10rRd"))) (100)

Arguments

common_features
The output of getCommonFeatures.

filename The path at which to save the plot.
color The colour palette to be used in the heatmap.
Value

An object generated by pheatmap.

Author(s)
Jack Gisby

See Also

getCommonFeatures(), getAlignedFeatures()

36 plotDendro

Examples

Get a random matrix with rnorm, with 100 rows (features)
and 20 columns (observations)
X <- ReducedExperiment:::.makeRandomData(10@, 20, "feature", "obs")

Estimate 5 factors based on the data matrix
fe <- estimateFactors(X, nc = 5)

Get the genes highly aligned with each factor
aligned_features <- getAlignedFeatures(
fe,
format = "data.frame”,
proportional_threshold = 0.3
)

Identify overlap between common features for each factor
common_features <- getCommonFeatures(aligned_features)

Plot the common features as a heatmap
plotCommonFeatures(common_features)

plotDendro Plot a dendrogram stored in a ModularExperiment

Description

Plots the dendrogram in the dendrogam slot of a ModularExperiment object using the plotDen-
droAndColors function.

Usage
S4 method for signature 'ModularExperiment'’
plotDendro(
object,
groupLabels = "Module colors”,
dendrolLabels = FALSE,
hang = 9.03,

addGuide = TRUE,

guideHang = 0.05,

color_func = WGCNA: :labels2colors,
modules_are_colors = FALSE,

Arguments

object ModularExperiment object.
grouplLabels Module label axis label. See plotDendroAndColors.
dendroLabels If TRUE, shows feature names in the dendrogram. See plotDendroAndColors.

hang The fraction of the plot height by which labels should hang below the rest of the
plot. See plot.hclust.

plotModulePreservation 37

addGuide If TRUE, adds vertical guide lines to the dendrogram. See plotDendroAndColors.

guideHang The fraction of the dendrogram’s height to leave between the top end of the
guide line and the dendrogram merge height. See plotDendroAndColors.

color_func Function for converting module names to colors. Only used if modules_are_colors

is FALSE.

modules_are_colors

Value

If TRUE, expects the module names to be colors. Else, assumes that module
names are are numbers that can be converted into colours by color_func.

Additional arguments to be passed to plotDendroAndColors.

A plot produced by plotDendroAndColors.

Author(s)

Jack Gisby

See Also

WGCNA: :plotDendroAndColors(), plot.hclust

Examples

Create ModularExperiment with random data (100 features, 50 samples,

10 modules)

me <- ReducedExperiment:::.createRandomisedModularExperiment(100, 50, 10)

me

The dendrogram is usually produced during module discovery, but we can

assign any dendrogram to the slot. Let's do hierarchical clustering on the
features in our object and assign it

dendrogram(me) <- hclust(dist(assay(me)))

dendrogram(me)

Plot the dendrogram - modules are random in this instance, but in general
features within a module should cluster together
plotDendro(me)

plotModulePreservation
Plot module preservation statistics

Description

Plot module preservation statistics

38 plotStability

Usage

plotModulePreservation(
modulePreservation_results,
show_random = TRUE,
remove_module = NULL

Arguments

modulePreservation_results
The output of modulePreservation

show_random If TRUE, shows the random module in the plots.

remove_module The name of a module to be hidden from the plots.

Value

Two ggplot2 plot objects combined by patchwork. Plots the module preservation statistics gener-
ated by modulePreservation.

Author(s)
Jack Gisby

Examples

Get random ModularExperiments with rnorm, with 100 rows (features),

20 columns (observations) and 5/10 modules

me_1 <- ReducedExperiment:::.createRandomisedModularExperiment (100, 20, 5)
me_2 <- ReducedExperiment:::.createRandomisedModularExperiment (100, 20, 10)

Test module preservation (test modules from dataset 1 in dataset 2)
mp <- modulePreservation(me_1, me_2, verbose = 0, nPermutations = 3)

No significant preservation, since these were random modules
plotModulePreservation(mp)

plotStability Plot component stability as a function of the number of components

Description

Plots the results of estimateStability. See this function’s documentation for more information.

Usage

plotStability(
stability,
plot_path = NULL,
stability_threshold = NULL,
mean_stability_threshold = NULL,
height = 4,

plotStability 39

width = 10,
)
Arguments
stability The results of estimateStability.
plot_path The path at which the plot will be saved

stability_threshold
Plots a stability threshold, below which components can be pruned by runICA.
mean_stability_threshold

Plots a stability threshold, which is used by estimateStability to provide a naive
estimate for the optimal number of components.

height The height of the plot, to be passed to ggsave.
width The width of the plot, to be passed to ggsave.

Additional arguments to be passed to ggsave.

Value

Returns a list of three plots as ggplot2 objects:

combined_plot The two other plots combined with patchwork.

stability_plot A plot in which each line indicates stability as a function of the number of compo-
nents. A line is shown for each number of components tested.

mean_plot The average component stability as a function of the number of components.

Author(s)

Jack Gisby

Examples

Get a random matrix with rnorm, with 200 rows (features)
and 100 columns (observations)
X <- ReducedExperiment:::.makeRandomData(200, 100, "feature”, "obs")

Estimate stability across 10 to 3@ components
stab_res <- estimateStability(
X,
min_components
max_components
n_runs = 5,
verbose = FALSE

10,
30,

)

Intracluster stability similar to extracluster since this is random data
plotStability(stab_res)$combined_plot

40 projectData

projectData Project new data using pre-defined factors

Description

Uses a projection approach to calculate factors in new data. Functions in a similar fashion to the
predict method of prcomp. The transposed newdata are multiplied by the original loadings matrix.

Usage

S4 method for signature 'FactorisedExperiment,matrix’
projectData(

object,

newdata,

standardise_reduced = TRUE,

scale_newdata = NULL,

center_newdata = NULL

S4 method for signature 'FactorisedExperiment,data.frame’
projectData(

object,

newdata,

standardise_reduced = TRUE,

scale_newdata = NULL,

center_newdata = NULL

)

S4 method for signature 'FactorisedExperiment,SummarizedExperiment'
projectData(

object,

newdata,

standardise_reduced = TRUE,

scale_newdata = NULL,

center_newdata = NULL,

assay_name = "normal”
)
S4 method for signature 'FactorisedExperiment'’
predict(object, newdata, ...)
Arguments
object A FactorisedExperiment object. The loadings slot of this class will be used

for projection. Additionally, by default, the scale and center slots are used to
apply the original transformation to the new data.

newdata New data for projection. Must be a data. frame or matrix with features as rows
and samples as columns, or a SummarizedExperiment object. Assumes that the
rows of newdata match those of the FactorisedExperiment object.

projectData

41

standardise_reduced

scale_newdata

center_newdata

assay_name

Details

Whether or not the reduced data should be standardised (i.e., transformed to
have a mean of 0 and standard deviation of 1) after calculation.

Controls whether the newdata are scaled. If NULL, performs scaling based on the
FactorisedExperiment object’s scale slot. The value of this argument will be
passed to the scale argument of scale.

Controls whether the newdata are centered If NULL, performs centering based on
the FactorisedExperiment object’s center slot. The value of this argument
will be passed to the center argument of scale.

If a SummarizedExperiment object is passed as new data, this argument indi-
cates which assay should be used for projection.

Additional arguments to be passed to projectData.

If scale_newdata and center_newdata are left as NULL, then the projection method assumes that
the newdata are on the same scale as the original data of the object. It will therefore use the values
of the center and scale slots of the object. For instance, if the scale slot is TRUE, the newdata
will be scaled. If the scale slot is a vector, the values of this vector will be applied to scale the

newdata.

Value

Calculates a matrix with samples as rows and factors as columns. If newdata was a matrix or
data.frame, this will be returned as a matrix. If a SummarizedExperiment object was passed
instead, then a FactorisedExperiment object will be created containing this matrix inits reduced

slot.

Author(s)
Jack Gisby

See Also

calcEigengenes, stats::prcomp

Examples

Get two random matrices with rnorm
1: 100 rows (features) and 20 columns (observations)
X_1 <- ReducedExperiment:::.makeRandomData(100, 20, "feature"”, "obs")

Both matrices must have the same features, but they may have different obs
2: 100 rows (features) and 30 columns (observations)
X_2 <- ReducedExperiment:::.makeRandomData(10@, 30, "feature”, "obs")

Estimate 5 factors based on the data matrix
fe_1 <- estimateFactors(X_1, nc = 5)

fe_1

Project the fe_1 factors for the samples in X_2
projected_data <- projectData(fe_1, X_2)

projected_data

42 reduced

reduced Get and set reduced data

Description

Retrieves the reduced data matrix, with samples as rows and reduced components as columns. Setter
method can be used to replace or modify all or part of the matrix.

Usage
S4 method for signature 'ReducedExperiment’
reduced(object, scale_reduced = FALSE, center_reduced = FALSE)

S4 replacement method for signature 'ReducedExperiment’
reduced(object) <- value

Arguments

object An object that inherits from ReducedExperiment.
scale_reduced If TRUE, data will be scaled column-wise to have a standard deviation of 0.
center_reduced If TRUE, data will be centered column-wise to have a mean of 0.

value New value to replace existing reduced data matrix.

Value

A matrix with samples/observations as rows and columns referring to the dimensionally-reduced
components.

Author(s)
Jack Gisby

See Also

ReducedExperiment ()

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <- 100 # Number of samples

k <- 10 # Number of factors

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene"”, "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component”)

re <- ReducedExperiment(
assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data

)

stopifnot(all.equal(reduced(re), rand_reduced_data))

ReducedExperiment-class 43

print(paste@(”"Reduced data at position (2, 2): ", reduced(re)[2, 21))
reduced(re)[2, 2] <- 5
print(paste@(”"Reduced data at position (2, 2): ", reduced(re)[2, 21))

ReducedExperiment-class

ReducedExperiment: A container for dimensionally-reduced repre-
sentations

Description

Inherits from SummarizedExperiment, a container for one or more matrices with features as rows
(e.g., genes) and columns as samples. Additional information on features and samples are contained
in DataFrame tables. The ReducedExperiment extends SummarizedExperiment by additionally
providing access to a "reduced" data matrix, in which rows represent samples and columns represent
a second set of dimensionally-reduced features.

The methods available for SummarizedExperiment objects are also available for ReducedExperiment
and its children, which include FactorisedExperiment and ModularExperiment.

Typically, ReducedExperiment objects contain two main assays. The first is, by default, named
"normal" and contains some type of normalised assay data, such as gene expression. The second is
"transformed", which is typically the result of applying scaling and/or centering to the normalised
data matrix.

Usage
ReducedExperiment(reduced = new("matrix"), scale = TRUE, center = TRUE, ...)
Arguments
reduced A matrix, usually the result of some type of dimensionality-reduction, with
rows representing samples and columns representing a new set of features.
scale Either a boolean, representing whether or not the original data has been scaled
to unit variance, or a numeric vector indicating the standard deviations of the
original features (as produced by scale.)
center Either a boolean, representing whether or not the original data has been centered
to have a mean of 0, or a numeric vector indicating the means of the original
features (as produced by scale.)
Additional arguments to be passed to SummarizedExperiment.
Value

Constructor method returns a ReducedExperiment object.

Author(s)
Jack Gisby

44 runEnrich

See Also

FactorisedExperiment(), ModularExperiment ()

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <- 100 # Number of samples

k <- 10 # Number of factors

In this case we use random assay and reduced data, but in

practice these will likely be the result of applying some kind of

dimensionality-reduction method to the assay data (e.g., gene

expression data) from some study.

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene"”, "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component™)

re <- ReducedExperiment(
assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data

re

runEnrich Functional enrichment analyses for dimensionally-reduced data

Description

Method for applying pathway enrichment analysis to components identified through dimensionality
reduction (e.g., factors or modules). Enrichment analyses are applied to each component separately.

Usage
S4 method for signature 'FactorisedExperiment'
rungnrich(
object,
method = "gsea”,
feature_id_col = "rownames”,

center_loadings = FALSE,
abs_loadings = FALSE,
loading_threshold = 0.5,
proportional_threshold = 9.01,
as_dataframe = FALSE,

S4 method for signature 'ModularExperiment’
runkEnrich(

object,

method = "overrepresentation”,

runEnrich

45

feature_id_col = "rownames”,

as_dataframe

Arguments

object
method

feature_id_col

center_loadings

abs_loadings

= FALSE,

FactorisedExperiment or ModularExperiment object.

The method to use for identifying enriched pathways. One of "overrepresen-
tation" or "gsea". The "overrepresentation" method calls enricher whereas the
"gsea" method calls GSEA. Note that "gsea" is not available for modules.

The column in rowData(object) that will be used as a feature ID. Setting this
to "rownames” (default) instead uses rownames (object).

If TRUE, loadings will be centered column-wise to have a mean of 0.

If TRUE, the absolute values of the loadings will be used for enrichment anal-
ysis. If FALSE, the signed loadings will be used for GSEA enrichment. Note
that, regardless of the value of this term, the process used to select genes for
overrepresentation analysis will be based on absolute loadings.

loading_threshold

See getAlignedFeatures. Only relevant for overrepresentation analysis.

proportional_threshold

as_dataframe

Details

See getAlignedFeatures. Only relevant for overrepresentation analysis.

If TRUE, the results will be returned as a data.frame. Otherwise, the results will
be returned as a list of objects created by either enricher, in the case of overrep-
resentation analysis, or GSEA, in the case of GSEA.

Additional arguments to be passed to GSEA (if method == "gsea") or enricher
(if method == "overrepresentation”).

When running module analysis, the overrepresentation method identifies pathways that are overrep-
resented in each module.

For factor analysis, the overrepresentation method first identifies the genes most highly aligned
with each factor (using getAlignedFeatures), then uses the resulting gene lists to perform overrep-
resentation analysis. The GSEA method instead uses the entire set of factor loadings, and identifies
pathways that are overrepresented in the tails of this distribution.

Value

If as_dataframe is TRUE, the results will be returned as a data.frame. Otherwise, the results will be

returned as a list of objects created by either enricher, in the case of overrepresentation analysis, or
GSEA, in the case of GSEA.

Author(s)
Jack Gisby

See Also
getMsigdbT2G()

46

Examples

set.seed(2)

airway <- ReducedExperiment:::.getAirwayData(n_features
airway_fe <- estimateFactors(

airway,

nc = 2,

use_stability = FALSE,

method = "imax"
)

= 2000)

Get pathways (e.g., by using ReducedExperiment::getMsigdbT2G())

t2g <- read.csv(system.file(

"extdata",
"msigdb_t2g_filtered.csv”,
package = "ReducedExperiment”

)

Run overrepresentation analysis
overrep_res <- runkEnrich(

airway_fe,
method = "overrepresentation”,
feature_id_col = "rownames”,

as_dataframe = TRUE,

p_cutoff = 0.1,

TERM2GENE = t2g,

universe = rownames(airway_fe)

)

head(overrep_res)

runlCA

runICA Run standard or stabilised Independent Component Analysis

Description

Runs ICA through ica. If use_stability is FALSE, then X is passed directly to ica and a standard
ICA analysis is performed. If use_stability is TRUE, then the stabilised ICA procedure is carried

out (see details).

Usage

runICA(
X)
nc,
use_stability = FALSE,
resample = FALSE,
method = "fast"”,
stability_threshold = NULL,
center_X = TRUE,
scale_X = FALSE,
reorient_skewed = TRUE,
scale_components = TRUE,

runlCA 47

scale_reduced = TRUE,
n_runs = 30,
BPPARAM = BiocParallel::SerialParam(),

)
Arguments
X Either a SummarizedExperiment object or a matrix containing data to be subject
to ICA. X should have rows as features and columns as samples.
nc The number of components to be identified. See estimateStability for a method

to estimate the optimal number of components.

use_stability Whether to use a stability-based approach to estimate factors. See details for
further information.

resample If TRUE, a boostrap approach is used to estimate factors and quantify stability.
Else, random initialisation of ICA is employed. Ignored if use_stability is
FALSE.

method The ICA method to use. Passed to ica, the options are "fast", "imax" or "jade".

stability_threshold
A stability threshold for pruning factors. Factors with a stability below this
threshold will be removed. If used, the threshold can lead to fewer factors being
returned than that specified by nc.

center_X If TRUE, X is centered (i.e., features / rows are transformed to have a mean of 0)
prior to ICA. Generally recommended.

scale_X If TRUE, X is scaled (i.e., features / rows are transformed to have a standard
deviation of 1) before ICA.

reorient_skewed
If TRUE, factors are reorientated to ensure that the loadings of each factor (i.e.,
the source signal matrix) have positive skew. Helps ensure that the most influ-
ential features for each factor are positively associated with it.

scale_components
If TRUE, the loadings are standardised (to have a mean of 0 and standard devia-
tion of 1).

scale_reduced If TRUE, the reduced data (mixture matrix) are standardised (to have a mean of 0
and standard deviation of 1).

n_runs The number of times to run ICA to estimate factors and quantify stability. Ig-
nored if use_stability is FALSE.

BPPARAM A class containing parameters for parallel evaluation. Uses SerialParam by de-
fault, running only a single ICA computation at a time. Ignored if use_stability
is FALSE.

Additional arguments to be passed to ica.

Details

Function performs ICA for a data matrix. If use_stability is TRUE, then ICA is performed mul-
tiple times with either: 1) random initialisation (default); or ii) bootstrap resampling of the data (if
resample is TRUE).

Note that the seed must be set if reproducibility is needed. Specifically, one can use set. seed prior
to running standard ICA (use_stability = FALSE) or set the RNGseed argument of BPPARAM when
running stabilised ICA (use_stability = TRUE).

48

runlCA

The stability-based ICA algorithm is similar to the the ICASSO approach (https://www.cs.
helsinki.fi/u/ahyvarin/papers/Himberg@3.pd) thatis implemented in the stabilized-ica Python
package (https://github.com/ncaptier/stabilized-ica/tree/master).

In short, the stability-based algorithm consists of:

* Running ICA multiple times with either random initialisation or bootstrap resampling of the
input data.

* Clustering the resulting factors across all runs based on the signature matrix.

* Calculating intra- (aics) and extra- (aecs) cluster stability, and defining the final cluster stability
as aics - aecs.

* Calculating the cluster centrotype as the factor with the highest intra-cluster stability.

» Optionally removing factors below a specified stability threshold (stability_threshold).

Results from this function should be broadly similar to those generated by other implementations
of stabilised ICA, although they will not be identical. Notable differences include:

ICA algorithm Differences in the underlying implementation of ICA.

Stability threshold The stability_threshold argument, if specified, removes unstable compo-
nents. Such a threshold is not used by stabilized-ica.

Mixture matrix recovery ICA is generally formulated as X =MS, where X is the input data, M is
the mixture matrix (reduced data) and S is the source signal matrix (feature loadings). The
stabilised ICA approach first calculates a source signal matrix before recovering the mixture
matrix. To do this, other implementations, including that of the stabilized-ica package, mul-
tiply X by the pseudo-inverse of S. Such an operation is implemented in the ginv function of
the MASS R package. In the development of ReducedExperiment, we noticed that taking the
inverse of S often failed, particularly when there were correlated factors. For this reason, we
instead formulate the mixture matrix as M = XS. After standardisation of M, both approaches
return near-identical results, given that the matrix inverse was successfully calculated.

Value

A list containing the following:

M The mixture matrix (reduced data) with samples as rows and columns as factors.
S The source signal matrix (loadings) with rows as features and columns as factors.

stab If use_stability is TRUE, "stab" will be a component of the list. It is a vector indicating
the relative stability, as described above.

Author(s)

Jack Gisby

See Also

ica::ica(), estimateStability()

Examples

Get a random matrix with rnorm, with 100 rows (features)
and 20 columns (observations)
X <- ReducedExperiment:::.makeRandomData(100, 20, "feature”, "obs")

https://www.cs.helsinki.fi/u/ahyvarin/papers/Himberg03.pd
https://www.cs.helsinki.fi/u/ahyvarin/papers/Himberg03.pd
https://github.com/ncaptier/stabilized-ica/tree/master

runWGCNA

49

Run standard ICA on the data with 5 components

set.seed(1)

ica_res <- runICA(X, nc = 5, use_stability = FALSE)

Run stabilised ICA on the data with 5 components (low runs for example)
ica_res_stab <- runICA(X, nc = 5, use_stability = TRUE, n_runs = 5,

BPPARAM = BiocParallel::SerialParam(RNGseed = 1))

runWGCNA

Run WGCNA for a data matrix

Description

Runs WGCNA. Largely a wrapper for the blockwiseModules function that reformats data into a for-
mat convenient for creating a ModularExperiment object and changes module names from colours
to numbers by default.

Usage

runWGCNA (
X,
power,
cor_type =

networkType
module_labels
maxBlockSize
verbose = 0,

"pearson”,

"signed”,
= "numbers”,

= 30000,

standardise_reduced = TRUE,

Arguments

X

power

cor_type

networkType

module_labels

maxBlockSize

Either a SummarizedExperiment object or a matrix containing data to be subject
to WGCNA. X should have rows as features and columns as samples.

soft-thresholding power for network construction.

The type of correlation to be used to generate a correlation matrix during net-
work formation. One of "pearson" (cor) and "bicor" (bicor).

network type. Allowed values are (unique abbreviations of) "unsigned”, "signed”,
"signed hybrid". See adjacency.

Specifies whether the modules should be named based on "numbers" or "colours.
If module_labels is set to "numbers", then "module_0" represents unclustered
genes, whereas if it is set to "colours" then "grey" represents unclustered genes.

The chunk size (in terms of the number of features/genes) to process the data.
See blockwiseModules for more details. The default (30000) should process
standard transcriptomic datasets in a single chunk. Results may differ if the
number of features exceeds the chunk size. Lower values of this parameter may
use less memory to calculate networks.

50 runWGCNA

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

standardise_reduced

If TRUE, the reduced data (eigengenes) are standardised to have a mean of 0 and
a standard deviation of 1.

Additional arguments to be passed to blockwiseModules.

Details
Note that if module_labels is set to "numbers", then "module_0" represents unclustered genes,
whereas if it is set to "colours" then "grey" represents unclustered genes.

The function also stores the loadings matrices generated when PCA is performed for each module
to calculate eigengenes. These loadings can be used to recalculate the reduced data matrix (eigen-
genes).

Value
Returns a list containing:

"E" The reduced data (eigengenes).

"L" The module loadings. This represents the values of the PCA rotation matrix for the first
principal component generated for each module.

""assignments'' A named vector representing the assignments of genes to modules.

Author(s)
Jack Gisby

See Also
WGCNA: :blockwiseModules(), assessSoftThreshold(), WGCNA: :pickSoftThreshold(),

Examples

Get the airway data as a SummarizedExperiment (with a subset of features)
set.seed(2)
airway_se <- ReducedExperiment:::.getAirwayData(n_features = 500)

Choose an appropriate soft-thresholding power

WGCNA: : disableWGCNAThreads ()

fit_indices <- assessSoftThreshold(airway_se)

estimated_power <- fit_indices$Power[fit_indices$estimated_power]

Identify modules using the airway expression matrix
wgcna_res <- runWGCNA(

assay(airway_se, "normal”),

verbose = 0,

power = estimated_power

)

We find just one module for this small dataset (module_@ indicates unclustered genes)
table(names(wgcna_res$assignments))

sampleNames 51

sampleNames Get sample names

Description

Retrieves sample names (colnames).

Usage

S4 method for signature 'ReducedExperiment'
sampleNames(x)

S4 replacement method for signature 'ReducedExperiment'’
sampleNames(x) <- value

S4 replacement method for signature 'ReducedExperiment’
colnames(x) <- value

Arguments

X ReducedExperiment object.

value New value to replace existing names.
Value

A vector containing the names of the features.

Author(s)
Jack Gisby

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <- 100 # Number of samples

k <- 10 # Number of factors

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene", "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component”)

re <- ReducedExperiment(
assays = list(”normal” = rand_assay_data),
reduced = rand_reduced_data

)

stopifnot(all.equal (sampleNames(re), colnames(rand_assay_data)))
stopifnot(all.equal(colnames(re), colnames(rand_assay_data)))

print(paste@(”Sample name at [80]: ", sampleNames(re)[801))
sampleNames(re)[80] <- "custom_feature_name"
print(paste@(”Sample data at [80]: ", sampleNames(re)[80]))

52 show

show Prints a summary of a ReducedExperiment object

Description

Prints a summary of a ReducedExperiment object

Usage

S4 method for signature 'ReducedExperiment'
show(object)

Arguments

object ReducedExperiment object.

Value

A character summary describing the object.

Author(s)

Jack Gisby

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features

j <- 100 # Number of samples

k <- 10 # Number of factors

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene", "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component”)

re <- ReducedExperiment(
assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data

)

Equivalent to ~show(re)-
re

stability 53

stability Get and setting the stability values for factors

Description

Get and setting the stability values for factors

Usage

S4 method for signature 'FactorisedExperiment'’
stability(object)

S4 replacement method for signature 'FactorisedExperiment'
stability(object) <- value

Arguments

object FactorisedExperiment object.

value New value to replace existing stability vector.
Value

A vector with a value for each factor indicating the factor stability. More details are available from
the estimateStability help page.
Author(s)

Jack Gisby

See Also

estimateStability()

Examples

Get a random matrix with rnorm, with 100 rows (features)
and 20 columns (observations)
X <- ReducedExperiment:::.makeRandomData(100, 20, "feature”, "obs")

Run stabilised ICA on the data with 5 components
fe <- estimateFactors(X, nc = 5, use_stability = TRUE)

stability(fe)

stability(fe)[2] <- 10
stability(fe)

54 [,FactorisedExperiment, ANY,ANY,ANY-method

[,FactorisedExperiment, ANY,ANY,ANY-method
Extract and replace parts of ReducedExperiment objects

Description

Method permits slicing of ReducedExperiment objects.

Usage

S4 method for signature 'FactorisedExperiment,ANY,ANY,ANY'
x[i, j, k, ..., drop = FALSE]

S4 replacement method for signature 'FactorisedExperiment, ANY,ANY,FactorisedExperiment'’
x[i, j, k, ...]1 <= value

S4 method for signature 'ModularExperiment,ANY,ANY,ANY'

x[i, j, k, ..., drop = FALSE]

S4 replacement method for signature 'ModularExperiment,ANY,ANY,ModularExperiment'’
x[i, j, k, ...]1 <= value

S4 method for signature 'ReducedExperiment,ANY,ANY,ANY'
x[i, j, k, ..., drop = FALSE]

S4 replacement method for signature 'ReducedExperiment,ANY,ANY,ReducedExperiment

x[i, j, k, ...]1 <= value
Arguments
X ReducedExperiment object.
i Slicing by rows (features, usually genes).
j Slicing by columns (samples/observations).
k Slicing by reduced dimensions.

Additional arguments to be passed to the parent method.

drop Included for consistency with other slicing methods.
value Value to be used to replace part of the object.
Value

A ReducedExperiment object, potentially sliced by rows (i), columns (j) and components (k).

Author(s)
Jack Gisby

[,FactorisedExperiment, ANY,ANY,ANY-method

Examples

Create randomised data with the following dimensions
i <- 300 # Number of features
j <= 100 # Number of samples
k <- 10 # Number of components (i.e., factors/modules)

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene"”, "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample”, "component")

Create a randomised ReducedExperiment container
re <- ReducedExperiment(
assays = list("normal” = rand_assay_data),
reduced = rand_reduced_data

)

Slice our object by rows (1:50), columns (1:20) and components (1:5)
reli, j, k, ...]

sliced_re <- re[1:50, 1:20, 1:5]

sliced_re

We can also assign our subsetted object back to the original
re[1:50, 1:20, 1:5] <- sliced_re
re

Index

.DollarNames.FactorisedExperiment, 3 base::cbind(), 12

.DollarNames.ModularExperiment base::rbind(), 12
(.DollarNames.FactorisedExperiment), bicor, 4,49
3 biomaRt::getBM(), 25

.DollarNames.ReducedExperiment biomaRt: :useEnsembl(), 25
(.DollarNames.FactorisedExperiment), blockwiseModules, 15,49, 50
3

.FactorisedExperiment calcEigengenes, 8, 10, 41
(FactorisedExperiment-class), calcEigengenes,ModularExperiment,data. frame-method
19 (calcEigengenes), 8

.ModularExperiment calcEigengenes,ModularExperiment,matrix-method
(ModularExperiment-class), 29 (calcEigengenes), 8

.ReducedExperiment calcEigengenes,ModularExperiment, SummarizedExperiment-r

(ReducedExperiment-class), 43 (calcEigengenes), 8

[,FactorisedExperiment,ANY,ANY,ANY-method, car::Anova(),”

54 cbind, 12
[,ModularExperiment, ANY, ANY, ANY-method chind,FactorisedExperiment-method, 11
([,FactorisedExperiment,ANY,ANY,ANY-m&PH&gLMOdUIarEXperlment_methOd
54 (cbind,FactorisedExperiment-method),
11

[,ReducedExperiment, ANY,ANY,ANY-method

([,FactorisedExperiment,ANY,ANY,ANY-mgPﬂggLRedUC?dEXperiment_mEthoq
54 (cbind,FactorisedExperiment-method),

[<-,FactorisedExperiment,ANY,ANY,FactorisedExperimentL%ethod

([,FactorisedExperiment,ANY,ANY,ANY-mgPﬁggﬁsummarlzedEXperiment_methOd’]2
54 cbind_rbind

[<-,ModularExperiment,ANY,ANY,ModularExperiment-meth&§b1nd’FaCtorlSedEXperlment_methOdL

([,FactorisedExperiment, ANY,ANY, ANY-method),
54 colnames<-,ReducedExperiment-method

[<—,ReducedExperiment,ANY,ANY,ReducedExperiment—lgnethﬁ&famp}lzeNames)’51
([,FactorisedExperiment, ANY, ANY, ANY-m&ERod]I €OWS:

54 componentNames
(componentNames<-,FactorisedExperiment-method),
13
adjacency, 4, 32,49 componentNames ,ReducedExperiment-method
Anova, 7 (componentNames<-,FactorisedExperiment-method),
assessSoftThreshold, 3, 27 13
assessSoftThreshold(), 50 componentNames<-,FactorisedExperiment-method,
assignments, 5 13
assignments,ModularExperiment-method componentNames<-
(assignments), 5 (componentNames<-,FactorisedExperiment-method),
assignments<- (assignments), 5 13
assignments<-,ModularExperiment-method componentNames<-,ModularExperiment-method
(assignments), 5 (componentNames<-,FactorisedExperiment-method),
associateComponents, 6 13

56

INDEX 57

componentNames<-,ReducedExperiment-method getBM, 24
(componentNames<-,FactorisedExperimenget€ehdadality, 22

13 getCentrality,ModularExperiment-method

cor, 4,49 (getCentrality), 22
getCommonFeatures, 23, 35

DataFrame, 43 getCommonFeatures(), 22, 35
dendrogram, 14 getGenelDs, 24
dendrogram,ModularExperiment-method getGenelDs,ReducedExperiment-method

(dendrogram), 14 (getGenelDs), 24
dendrogram<- (dendrogram), 14 getMsigdbT2G, 25
dendrogram<-,ModularExperiment-method getMsigdbT2G(), 45

(dendrogram), 14 ggsave, 39
dim,ReducedExperiment-method, 15, 34 GSEA, 25,45

dollar_names
(.DollarNames.FactorisedExperiment), ica, 46, 47

3 ica::ica(), 17,48
identifyModules, 26, 29, 30
enricher, 25,45 identifyModules(), 30
estimateFactors, 16, 19, 20 individual_dim
estimateFactors(), 20 (nModules,ModularExperiment-method),
estimateStability, 16, 17, 38, 39,47, 53 34
estimateStability(), 48, 53
Im, 7
FactorisedExperiment, 12, 16, 17, 19-21, lmer, 7
29,40, 43,45, 53 ImerTest::1mer(),7
FactorisedExperiment loadings
(FactorisedExperiment-class), (loadings,FactorisedExperiment-method),
19 28
FactorisedExperiment(), 30, 44 loadings,FactorisedExperiment-method,
FactorisedExperiment-class, 19 28
featureNames loadings,ModularExperiment-method
(names<-,FactorisedExperiment-method), (loadings,FactorisedExperiment-method),
32 28
featureNames,ReducedExperiment-method loadings<-
(names<-,FactorisedExperiment-method), (loadings,FactorisedExperiment-method),
32 28
featureNames<- loadings<-,FactorisedExperiment-method
(names<-,FactorisedExperiment-method), (loadings,FactorisedExperiment-method),
32 28
featureNames<-,FactorisedExperiment-method loadings<-,ModularExperiment-method
(names<-,FactorisedExperiment-method), (loadings,FactorisedExperiment-method),
32 28

featureNames<-,ModularExperiment-method
(names<-,FactorisedExperiment-method)ModularExperiment, 5,9, 10, 12, 14, 22, 26

32 27,29, 31, 36,43,45,49
featureNames<-,ReducedExperiment-method ModularExperiment

(names<-,FactorisedExperiment-method), (ModularExperiment-class), 29

32 ModularExperiment(), 20, 44

ModularExperiment-class, 29

getAlignedFeatures, 21, 23, 45 moduleEigengenes, 8—10
getAlignedFeatures(), 23, 35 moduleNames
getAlignedFeatures,FactorisedExperiment-method (componentNames<-,FactorisedExperiment-method),

(getAlignedFeatures), 21 13

58 INDEX

moduleNames,ModularExperiment-method plotModulePreservation, 37
(componentNames<-,FactorisedExperimenpiodtiabjlity, /8, 38
13 plotStability(), 19
moduleNames<- prcomp, 8, 28, 30, 40
(componentNames<-,FactorisedExperimenprreikddfactorisedExperiment-method
13 (projectData), 40
moduleNames<-,ModularExperiment-method predict,ModularExperiment-method
(componentNames<-,FactorisedExperiment-methodjcalcEigengenes), 8
13 projectData, 10, 40
modulePreservation, 31, 31, 32, 38 projectData,FactorisedExperiment,data.frame-method
msigdbr, 26 (projectData), 40
projectData,FactorisedExperiment,matrix-method
names<-,FactorisedExperiment-method, (projectData), 40
32 projectData,FactorisedExperiment, SummarizedExperiment-r
names<-,ModularExperiment-method (projectData), 40
(names<-,FactorisedExperiment-method),
32 rbind,FactorisedExperiment-method
names<-,ReducedExperiment-method (cbind,FactorisedExperiment-method),
(names<-,FactorisedExperiment-method), 11
32 rbind,ModularExperiment-method
nComponents (cbind,FactorisedExperiment-method),
(nModules,ModularExperiment-method), 11
34 rbind,ReducedExperiment-method
nComponents,ReducedExperiment-method (cbind,FactorisedExperiment-method),
(nModules,ModularExperiment-method), 11
34 rbind, SummarizedExperiment-method, /12
nFeatures reduced, 42
(nModules,ModularExperiment-method), reduced,ReducedExperiment-method
34 (reduced), 42
nFeatures,ReducedExperiment-method reduced<- (reduced), 42
(nModules,ModularExperiment-method), reduced<-,ReducedExperiment-method
34 (reduced), 42
nModules ReducedExperiment, 3, 6, 11-15, 19, 20, 24,
(nModules,ModularExperiment-method), 28-30, 33, 34,42, 43,51, 52, 54
34 ReducedExperiment
nModules,ModularExperiment-method, 34 (ReducedExperiment-class), 43
nSamples ReducedExperiment (), 20, 30, 42
(nModules,ModularExperiment-method), ReducedExperiment-class, 43
34 rownames<-,FactorisedExperiment-method
nSamples,ReducedExperiment-method (names<-,FactorisedExperiment-method),
(nModules,ModularExperiment-method), 32
34 rownames<-,ModularExperiment-method
(names<-,FactorisedExperiment-method),
p.adjust, 7 32
pheatmap, 35 ROWNAMES<-,ReducedExperiment-method
pickSoftThreshold, 3, 4, 30 (names<-,FactorisedExperiment-method),
plot.hclust, 36, 37 32
plotCommonFeatures, 35 rownames<-,ReducedExperiment-method
plotCommonFeatures(), 23 (names<-,FactorisedExperiment-method),
plotDendro, 36 32
plotDendro,ModularExperiment-method runEnrich, 25, 44
(plotDendro), 36 runEnrich,FactorisedExperiment-method

plotDendroAndColors, 36, 37 (runEnrich), 44

INDEX

runkEnrich,ModularExperiment-method
(runEnrich), 44

runICA, 16, 18, 39, 46

runICAQ), 17,19

runWGCNA, 26, 27, 49

runWGCNAQ), 5, 27

sampleNames, 51

sampleNames,ReducedExperiment-method
(sampleNames), 51

sampleNames<- (sampleNames), 51

sampleNames<-,ReducedExperiment-method
(sampleNames), 51

scale, 10, 20, 30, 41, 43

SerialParam, 18, 47

show, 52

show,ReducedExperiment-method (show), 52

signedKME, 22

slice
([,FactorisedExperiment,ANY,ANY, ANY-method),
54

stability, 53

stability,FactorisedExperiment-method
(stability), 53

stability<- (stability), 53

stability<-,FactorisedExperiment-method
(stability), 53

stats::hclust(), 15

stats::1m(), 7

stats: :prcomp, 41

SummarizedExperiment, 3, 4, 9, 10, 12,
16-19, 27,29, 31,40, 41, 43,47, 49

useEnsembl, 24
utils::.DollarNames(), 3

WGCNA: :blockwiseModules(), 15, 27, 50
WGCNA: :pickSoftThreshold(), 5, 27, 50
WGCNA: :plotDendroAndColors(), 37
WGCNA: : signedKME (), 23

	.DollarNames.FactorisedExperiment
	assessSoftThreshold
	assignments
	associateComponents
	calcEigengenes
	cbind,FactorisedExperiment-method
	componentNames<-,FactorisedExperiment-method
	dendrogram
	dim,ReducedExperiment-method
	estimateFactors
	estimateStability
	FactorisedExperiment-class
	getAlignedFeatures
	getCentrality
	getCommonFeatures
	getGeneIDs
	getMsigdbT2G
	identifyModules
	loadings,FactorisedExperiment-method
	ModularExperiment-class
	modulePreservation
	names<-,FactorisedExperiment-method
	nModules,ModularExperiment-method
	plotCommonFeatures
	plotDendro
	plotModulePreservation
	plotStability
	projectData
	reduced
	ReducedExperiment-class
	runEnrich
	runICA
	runWGCNA
	sampleNames
	show
	stability
	[,FactorisedExperiment,ANY,ANY,ANY-method
	Index

