Package ‘Rcpt’

January 20, 2026

Type Package
Version 1.46.0

Title Molecular Informatics Toolkit for Compound-Protein Interaction
in Drug Discovery

Description A molecular informatics toolkit with an integration of
bioinformatics and chemoinformatics tools for drug discovery.

License Artistic-2.0 | file LICENSE
URL https://nanx.me/Rcpi/, https://github.com/nanxstats/Rcpi

BugReports https://github.com/nanxstats/Rcpi/issues
Encoding UTF-8

LazyData true

VignetteBuilder knitr

Depends R (>=3.0.2)

Imports Biostrings, GOSemSim, curl, doParallel, foreach, httr2,
jsonlite, methods, rlang, stats, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

biocViews Software, Datalmport, DataRepresentation, FeatureExtraction,
Cheminformatics, Biomedicallnformatics, Proteomics, GO,
SystemsBiology

Config/testthat/edition 3

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/Rcpi
git_branch RELEASE_3_22

git_last_commit cl14c2a

git_last commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Nan Xiao [aut, cre] (ORCID: <https://orcid.org/0000-0002-0250-5673>),
Dong-Sheng Cao [aut],
Qing-Song Xu [aut]

Maintainer Nan Xiao <me@nanx.me>

https://nanx.me/Rcpi/
https://github.com/nanxstats/Rcpi
https://github.com/nanxstats/Rcpi/issues
https://orcid.org/0000-0002-0250-5673

2 Contents

Contents
Repi-package e 5
AA2DACOR e 6
AA3DMORSE e 6
AAACF . . e 7
AABLOSUMIOOo e 7
AABLOSUMAS e 8
AABLOSUMSO e 8
AABLOSUMBSG2 e 9
AABLOSUMBSO o e 9
AABurden e e e 10
AACONND L e e 10
AACONSt . . . o 11
AACPSA . e 11
AADescAll e 12
AAEdgeAd] e 12
AAFIgldX o 13
AAFGC . . . e 13
AAGeom e 14
AAGETAWAY e 14
AAIndex L 15
AAINfo . . . e 15
AAMetalnfo e 16
AAMOE2D 16
AAMOE3D 17
AAMOIPIop 17
AAPAMI20 e 18
AAPAM250 o e 18
AAPAMS30 e 19
AAPAMA0 e 19
AAPAMTO . . . L e 20
AARandic L. e 20
AARDF . . . 21
AATOPO . . . o o e 21
AATopoChg e 22
AAWalK . . o o 22
AAWHIM e 23
ACC . v v v e e e e e e e e e e e e e e e e e 23
calcDrugFPSim 24
calcDrugMCSSim 25
calcParProtGOSIim 27
calcParProtSeqSim L 28
calcTwoProtGOSIm e 29
calcTwoProtSeqSim 30
checkProt e 31
convMolFormat 32
extractDrugAIO 37
extractDrugALOGP e 38
extractDrugAminoAcidCount 39
extractDrugApol L e 39

extractDrugAromaticAtomsCount Lo o 40

Contents

3
extractDrugAromaticBondsCount Lo o 41
extractDrugAtomCount 42
extractDrugAutocorrelationChargeo 42
extractDrugAutocorrelationMass 43
extractDrugAutocorrelationPolarizability o000 44
extractDrugBCUT 45
extractDrugBondCount 46
extractDrugBPol oL 47
extractDrugCarbonTypes L 48
extractDrugChiChain e 49
extractDrugChiCluster 50
extractDrugChiPath 51
extractDrugChiPathCluster 52
extractDrugCPSA oL 53
extractDrugDescOB 54
extractDrugECI oL 55
extractDrugEstate L L 56
extractDrugEstateComplete 57
extractDrugExtended L o 58
extractDrugExtendedComplete Lo 59
extractDrugFMFE oL e 60
extractDrugFragmentComplexity L o L. 61
extractDrugGraph L 62
extractDrugGraphComplete 63
extractDrugGravitationallndex Lo 64
extractDrugHBondAcceptorCount L o 65
extractDrugHBondDonorCount 66
extractDrugHybridization 66
extractDrugHybridizationComplete 67
extractDrugHybridizationRatio 0oL Lo 68
extractDruglPMolecularLearningo 69
extractDrugKappaShapelndices 70
extractDrugKierHallSmarts oL oo L 71
extractDrugKR oL 73
extractDrugKRComplete 74
extractDruglargestChain 75
extractDruglargestPiSystem oL 76
extractDruglengthOverBreadth 76
extractDrugLongestAliphaticChain 77
extractDrugMACCS e 78
extractDrugMACCSComplete L 79
extractDrugMannholdLogP oo 79
extractDrugMDE L e 80
extractDrugMomentOflnertia L oo 81
extractDrugOBFP2 82
extractDrugOBFP3 e 83
extractDrugOBFP4 84
extractDrugOBMACCS e 85
extractDrugPetitjeanNumber L L 86
extractDrugPetitjeanShapelndex Lo 87
extractDrugPubChem L 88

extractDrugPubChemComplete o 88

Contents

extractDrugRotatableBondsCount Lo oL 89
extractDrugRuleOfFive 90
extractDrugShortestPatho oo 91
extractDrugShortestPathComplete, 92
extractDrugStandard oL 93
extractDrugStandardComplete Lo 94
extractDrugTPSA e 95
extractDrugVABC L 96
extractDrugVAdjMa 96
extractDrugWeight e 97
extractDrugWeightedPath 0o 0oL 98
extractDrugWHIM 99
extractDrugWienerNumbers L L 100
extractDrugXLogP 101
extractDrugZagrebIndex L oL 102
extractPCMBLOSUM e 103
extractPCMDescScales L 104
extractPCMFAScales 105
extractPCMMDSScales 106
extractPCMPropScales 107
extractPCMScales 108
extractProtAAC L 109
extractProtAPAAC 110
extractProtCTDC e 112
extractProtCTDD e 113
extractProtCTDT e 114
extractProtCTriad 115
extractProtDC 115
extractProtGeary e e 116
extractProtMoran L 118
extractProtMoreauBroto Lo o 120
extractProtPAAC L e 121
extractProtPSSMo 123
extractProtPSSMAcc L 126
extractProtPSSMFeature oL o 127
extractProtQSO 128
extractProtSOCN 129
extractProtTC 130
getCPL . . . e 131
getDrug e 132
getFASTAFromKEGG e 133
getFASTAFromUniProt 133
getMolFromCAS e 134
getMolFromChEMBL 135
getMolFromDrugBank oL 136
getMolFromKEGG e 136
getMolFromPubChem oo 137
getPDBFromRCSBPDB 138
getPPL . . e 139
getProt e e 140
getSeqFromKEGG 141

getSeqFromRCSBPDB 141

Rcpi-package 5

getSeqFromUniProt 142
getSmiFromChEMBL 143
getSmiFromDrugBank Lo 144
getSmiFromKEGG 144
getSmiFromPubChemo oo 145
OptAA3d e 146
readFASTA e 146
readMolFromSDF 147
readMolFromSmi L 148
readPDB e 149
searchDrug L 150
segProt . . . e 151
Index 152
Rcpi-package Repi: Molecular Informatics Toolkit for Compound-Protein Interac-

tion in Drug Discovery

Description

A molecular informatics toolkit with an integration of bioinformatics and chemoinformatics tools
for drug discovery.

Author(s)

Maintainer: Nan Xiao <me@nanx.me> (ORCID)

Authors:

* Dong-Sheng Cao

* Qing-Song Xu <gsxu@csu.edu.cn>

See Also
Useful links:
e https://nanx.me/Rcpi/

* https://github.com/nanxstats/Rcpi

* Report bugs at https://github.com/nanxstats/Rcpi/issues

https://orcid.org/0000-0002-0250-5673
https://nanx.me/Rcpi/
https://github.com/nanxstats/Rcpi
https://github.com/nanxstats/Rcpi/issues

6 AA3DMOoRSE

AA2DACOR 2D Autocorrelations Descriptors for 20 Amino Acids calculated by
Dragon

Description

2D Autocorrelations Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the 2D autocorrelations descriptors of the 20 amino acids calculated by Dragon

(version 5.4) used for scales extraction in this package.

Value

AA2DACOR data

Examples

data(AA2DACOR)

AA3DMORSE 3D-MoRSE Descriptors for 20 Amino Acids calculated by Dragon

Description

3D-MoRSE Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the 3D-MoRSE descriptors of the 20 amino acids calculated by Dragon (ver-

sion 5.4) used for scales extraction in this package.

Value

AA3DMORSE data

Examples

data(AA3DMORSE)

AAACF 7

AAACF Atom-Centred Fragments Descriptors for 20 Amino Acids calculated
by Dragon

Description

Atom-Centred Fragments Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the atom-centred fragments descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AAACEF data

Examples

data(AAACF)

AABLOSUM100 BLOSUM100 Matrix for 20 Amino Acids

Description

BLOSUMI100 Matrix for 20 Amino Acids

Details

BLOSUMI100 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings
package of Bioconductor.

Value

AABLOSUMI100 data

Examples

data(AABLOSUM100)

8 AABLOSUMS0

AABLOSUM45 BLOSUM45 Matrix for 20 Amino Acids

Description

BLOSUM45 Matrix for 20 Amino Acids

Details
BLOSUMA45 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-

age of Bioconductor.

Value

AABLOSUM4S5 data

Examples

data(AABLOSUM45)

AABLOSUM50 BLOSUMS0 Matrix for 20 Amino Acids

Description

BLOSUMS0 Matrix for 20 Amino Acids

Details
BLOSUMS0 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-

age of Bioconductor.

Value

AABLOSUMS0 data

Examples

data(AABLOSUM50)

AABLOSUMG62 9

AABLOSUM6?2 BLOSUMG62 Matrix for 20 Amino Acids

Description

BLOSUMG62 Matrix for 20 Amino Acids

Details
BLOSUMG62 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-

age of Bioconductor.

Value

AABLOSUMBS62 data

Examples

data(AABLOSUM62)

AABLOSUM80 BLOSUMS0 Matrix for 20 Amino Acids

Description

BLOSUMS0 Matrix for 20 Amino Acids

Details
BLOSUMS0 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-

age of Bioconductor.

Value

AABLOSUMSO0 data

Examples

data(AABLOSUMS0)

10 AAConn

AABurden Burden Eigenvalues Descriptors for 20 Amino Acids calculated by
Dragon

Description

Burden Eigenvalues Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the Burden eigenvalues descriptors of the 20 amino acids calculated by Dragon

(version 5.4) used for scales extraction in this package.

Value

AABurden data

Examples

data(AABurden)

AAConn Connectivity Indices Descriptors for 20 Amino Acids calculated by
Dragon

Description

Connectivity Indices Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the connectivity indices descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Value

AAConn data

Examples

data(AAConn)

AAConst 11

AAConst Constitutional Descriptors for 20 Amino Acids calculated by Dragon

Description

Constitutional Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the constitutional descriptors of the 20 amino acids calculated by Dragon

(version 5.4) used for scales extraction in this package.

Value

AAConst data

Examples

data(AAConst)

AACPSA CPSA Descriptors for 20 Amino Acids calculated by Discovery Studio

Description

CPSA Descriptors for 20 Amino Acids calculated by Discovery Studio

Details

This dataset includes the CPSA descriptors of the 20 amino acids calculated by Discovery Studio
(version 2.5) used for scales extraction in this package. All amino acid molecules had also been
optimized with MOE 2011.10 (semiempirical AM1) before calculating these CPSA descriptors.
The SDF file containing the information of the optimized amino acid molecules is included in this
package. See OptAA3d for more information.

Value

AACPSA data

Examples

data(AACPSA)

12 AAEdgeAd;

AADescAll All 2D Descriptors for 20 Amino Acids calculated by Dragon

Description

All 2D Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes all the 2D descriptors of the 20 amino acids calculated by Dragon (version
5.4) used for scales extraction in this package.

Value

AADescAll data

Examples

data(AADescAll)

AAEdgeAd] Edge Adjacency Indices Descriptors for 20 Amino Acids calculated by
Dragon

Description

Edge Adjacency Indices Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the edge adjacency indices descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AAEdgeAdj data

Examples

data(AAEdgeAdj)

AAEigldx 13

AAEigIdx Eigenvalue-Based Indices Descriptors for 20 Amino Acids calculated
by Dragon

Description

Eigenvalue-Based Indices Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the eigenvalue-based indices descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AAFigldx data

Examples

data(AAEigIdx)

AAFGC Functional Group Counts Descriptors for 20 Amino Acids calculated
by Dragon

Description

Functional Group Counts Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the functional group counts descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AAFGC data

Examples

data(AAFGC)

14 AAGETAWAY

AAGeom Geometrical Descriptors for 20 Amino Acids calculated by Dragon

Description

Geometrical Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the geometrical descriptors of the 20 amino acids calculated by Dragon (ver-

sion 5.4) used for scales extraction in this package.

Value

AAGeom data

Examples

data(AAGeom)

AAGETAWAY GETAWAY Descriptors for 20 Amino Acids calculated by Dragon

Description

GETAWAY Descriptors for 20 Amino Acids calculated by Dragon

Details

This dataset includes the GETAWAY descriptors of the 20 amino acids calculated by Dragon (ver-
sion 5.4) used for scales extraction in this package.

Value

AAGETAWAY data

Examples

data(AAGETAWAY)

AAindex 15

AAindex AAindex Data of 544 Physicochemical and Biological Properties for
20 Amino Acids

Description

AAindex Data of 544 Physicochemical and Biological Properties for 20 Amino Acids

Details

The data was extracted from the AAindex1 database ver 9.1 (ftp://ftp.genome. jp/pub/db/
community/aaindex/aaindex1) as of November 2012 (Data Last Modified 2006-08-14).

With this data, users could investigate each property’s accession number and other details. Visit
https://www.genome. jp/dbget/aaindex.html for more information.

Value

AAindex data

Examples

data(AAindex)

AAInfo Information Indices Descriptors for 20 Amino Acids calculated by
Dragon

Description

Information Indices Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the information indices descriptors of the 20 amino acids calculated by Dragon

(version 5.4) used for scales extraction in this package.

Value

AAlnfo data

Examples

data(AAInfo)

ftp://ftp.genome.jp/pub/db/community/aaindex/aaindex1
ftp://ftp.genome.jp/pub/db/community/aaindex/aaindex1
https://www.genome.jp/dbget/aaindex.html

16 AAMOE2D

AAMetaInfo Meta Information for the 20 Amino Acids

Description

Meta Information for the 20 Amino Acids

Details

This dataset includes the meta information of the 20 amino acids used for the 2D and 3D descriptor
calculation in this package. Each column represents:

AAName Amino acid name

Short One-letter representation

Abbreviation Three-letter representation

mol SMILES representation

PUBCHEM_COMPOUND_CID PubChem CID for the amino acid
PUBCHEM_LINK PubChem link for the amino acid

Value

AAMetalnfo data

Examples

data(AAMetalnfo)

AAMOE 2D 2D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Description

2D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Details
This dataset includes the 2D descriptors of the 20 amino acids calculated by MOE 2011.10 used for
scales extraction in this package.

Value

AAMOE2D data

Examples

data(AAMOE2D)

AAMOE3D 17

AAMOE 3D 3D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Description

3D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Details

This dataset includes the 3D descriptors of the 20 amino acids calculated by MOE 2011.10 used
for scales extraction in this package. All amino acid molecules had also been optimized with MOE
(semiempirical AM1) before calculating these 3D descriptors. The SDF file containing the infor-
mation of the optimized amino acid molecules is included in this package. See OptAA3d for more
information.

Value

AAMOE3D data

Examples

data(AAMOE3D)

AAMol1Prop Molecular Properties Descriptors for 20 Amino Acids calculated by
Dragon

Description

Molecular Properties Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the molecular properties descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Value

AAMolProp data

Examples

data(AAMolProp)

18 AAPAM?250

AAPAM120 PAM 120 Matrix for 20 Amino Acids

Description

PAM120 Matrix for 20 Amino Acids

Details
PAM 120 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package

of Bioconductor.

Value

AAPAM120 data

Examples

data(AAPAM120)

AAPAM250 PAM?250 Matrix for 20 Amino Acids

Description

PAM?250 Matrix for 20 Amino Acids

Details
PAM?250 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package

of Bioconductor.

Value

AAPAM?250 data

Examples

data(AAPAM250)

AAPAM30 19

AAPAM30 PAM30 Matrix for 20 Amino Acids

Description

PAM?30 Matrix for 20 Amino Acids

Details
PAM30 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of

Bioconductor.

Value

AAPAM30 data

Examples

data(AAPAM30)

AAPAM40 PAMA40 Matrix for 20 Amino Acids

Description

PAMA40 Matrix for 20 Amino Acids

Details
PAMA40 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of

Bioconductor.

Value

AAPAMA40 data

Examples

data(AAPAM40)

20 AARandic

AAPAM70Q PAM70 Matrix for 20 Amino Acids

Description

PAM70 Matrix for 20 Amino Acids

Details
PAM70 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of
Bioconductor.

Value

AAPAM70 data

Examples

data(AAPAM70)

AARandic Randic Molecular Profiles Descriptors for 20 Amino Acids calculated
by Dragon

Description

Randic Molecular Profiles Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the Randic molecular profiles descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AARandic data

Examples

data(AARandic)

AARDF 21

AARDF RDF Descriptors for 20 Amino Acids calculated by Dragon

Description

RDF Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the RDF descriptors of the 20 amino acids calculated by Dragon (version 5.4)

used for scales extraction in this package.

Value

AARDF data

Examples

data(AARDF)

AATopo Topological Descriptors for 20 Amino Acids calculated by Dragon

Description

Topological Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the topological descriptors of the 20 amino acids calculated by Dragon (ver-

sion 5.4) used for scales extraction in this package.

Value

AATopo data

Examples

data(AATopo)

22 AAWalk

AATopoChg Topological Charge Indices Descriptors for 20 Amino Acids calcu-
lated by Dragon

Description

Topological Charge Indices Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the topological charge indices descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AATopoChg data

Examples

data(AATopoChg)

AAWalk Walk and Path Counts Descriptors for 20 Amino Acids calculated by
Dragon

Description

Walk and Path Counts Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the walk and path counts descriptors of the 20 amino acids calculated by

Dragon (version 5.4) used for scales extraction in this package.

Value

AAWalk data

Examples

data(AAWalk)

AAWHIM 23

AAWHIM WHIM Descriptors for 20 Amino Acids calculated by Dragon

Description

WHIM Descriptors for 20 Amino Acids calculated by Dragon

Details
This dataset includes the WHIM descriptors of the 20 amino acids calculated by Dragon (version

5.4) used for scales extraction in this package.

Value

AAWHIM data

Examples

data(AAWHIM)

acc Auto Cross Covariance (ACC) for Generating Scales-Based Descrip-
tors of the Same Length

Description
Calculates auto covariance and auto cross covariance for generating scale-based descriptors of the
same length.

Usage

acc(mat, lag)

Arguments
mat A p * n matrix. Each row represents one scale (total p scales), each column
represents one amino acid position (total n amino acids).
lag The lag parameter. Must be less than the amino acids.
Value

A length lag * p*2 named vector, the element names are constructed by: the scales index (crossed
scales index) and lag index.

Note

To see more details about auto cross covariance, check the references.

24 calcDrugFPSim

References

Wold, S., Jonsson, J., Sjorstrom, M., Sandberg, M., & Rénnar, S. (1993). DNA and peptide se-
quences and chemical processes multivariately modelled by principal component analysis and par-
tial least-squares projections to latent structures. Analytica chimica acta, 277(2), 239-253.

Sjostrom, M., Rinnar, S., & Wieslander, A. (1995). Polypeptide sequence property relationships in
Escherichia coli based on auto cross covariances. Chemometrics and intelligent laboratory systems,
29(2), 295-305.

See Also

See extractPCMScales for generalized scales-based descriptors. For more details, see extractPCMDescScales
and extractPCMPropScales.

Examples

p =28 # p is the scales number

n =200 # n is the amino acid number

lag = 7 # lag parameter

mat = matrix(rnorm(p * n), nrow = p, ncol = n)
acc(mat, lag)

calcDrugFPSim Calculate Drug Molecule Similarity Derived by Molecular Finger-
prints

Description

Calculate Drug Molecule Similarity Derived by Molecular Fingerprints

Usage
calcDrugFPSim(
fp1,
fp2,
fptype = c("compact”, "complete”),
metric = c("tanimoto”, "euclidean”, "cosine”, "dice"”, "hamming")
)
Arguments
fp1 The first molecule’s fingerprints, could be extracted by extractDrugMACCS(),
extractDrugMACCSComplete() etc.
fp2 The second molecule’s fingerprints.
fptype The fingerprint type, must be one of "compact” or "complete”.
metric The similarity metric, one of "tanimoto”, "euclidean”, "cosine"”, "dice”

and "hamming"”.

calcDrugMCSSim 25

Details

This function calculate drug molecule fingerprints similarity. Define a as the features of object A,
b is the features of object B, c is the number of common features to A and B:
¢ Tanimoto: aka Jaccard - ¢/a + b+ ¢
Euclidean: \/(a + b)
* Dice: aka Sorensen, Czekanowski, Hodgkin-Richards - ¢/0.5[(a + ¢) + (b + ¢)]
» Cosine: aka Ochiai, Carbo - ¢/\/((a + ¢)(b+¢c))

* Hamming: aka Manhattan, taxi-cab, city-block distance - (a + b)

Value

The numeric similarity value.

References

Gasteiger, Johann, and Thomas Engel, eds. Chemoinformatics. Wiley.com, 2006.

Examples
mols = readMolFromSDF (system.file('compseq/tyrphostin.sdf', package = 'Rcpi'))

fpl = extractDrugEstate(mols[[1]]1)

fp2 = extractDrugEstate(mols[[2]1])

calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'tanimoto')
calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'euclidean')
calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'cosine')
calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'dice')
calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'hamming')

fp3 = extractDrugEstateComplete(mols[[1]])

fp4 = extractDrugEstateComplete(mols[[2]])

calcDrugFPSim(fp3, fp4, fptype = 'complete', metric = 'tanimoto')
calcDrugFPSim(fp3, fp4, fptype = 'complete', metric = 'euclidean')
calcDrugFPSim(fp3, fp4, fptype = 'complete', metric = 'cosine')
calcDrugFPSim(fp3, fp4, fptype = 'complete', metric = 'dice')
calcDrugFPSim(fp3, fp4, fptype = 'complete', metric = 'hamming')

calcDrugMCSSim Calculate Drug Molecule Similarity Derived by Maximum Common
Substructure Search

Description

Calculate Drug Molecule Similarity Derived by Maximum Common Substructure Search

26 calcDrugMCSSim

Usage
calcDrugMCSSim(
moll,
mol2,
type = c("smile”, "sdf"),
plot = FALSE,
al = 0,
au = 0,
bl = 0,
bu = 0,
matching.mode = "static”,
)
Arguments
mol1 The first molecule. R character string object containing the molecule. See ex-
amples.
mol2 The second molecule. R character string object containing the molecule. See
examples.
type The input molecule format, ’smile’ or *sdf’.
plot Logical. Should we plot the two molecules and their maximum common sub-
structure?
al Lower bound for the number of atom mismatches. Default is 0.
au Upper bound for the number of atom mismatches. Default is 0.
bl Lower bound for the number of bond mismatches. Default is 0.
bu Upper bound for the number of bond mismatches. Default is 0.

matching.mode Three modes for bond matching are supported: 'static', 'aromatic', and
'ring’'.

Other graphical parameters

Details

This function calculate drug molecule similarity derived by maximum common substructure search.
The maximum common substructure search algorithm is provided by the fmcsR package.

Value

A list containing the detail MCS information and similarity values. The numeric similarity value
includes Tanimoto coefficient and overlap coefficient.

References

Wang, Y., Backman, T. W., Horan, K., & Girke, T. (2013). fmcsR: mismatch tolerant maximum
common substructure searching in R. Bioinformatics, 29(21), 2792-2794.

calcParProtGOSim 27

Examples

mol1l = 'CC(C)CCCCCC(=0)NCCI=CC(=C(C=C1)0)0C"

mol2 = '0=C(NCc1cc(0C)c(0)cc1)CCCC/C=C/C(C)C’'

mol3 = readChar(system.file('compseq/DB00859.sdf', package = 'Rcpi'), nchars = 1e+6)
mol4 = readChar(system.file('compseq/DB00860.sdf', package = 'Rcpi'), nchars = 1e+6)
Not run:

siml = calcDrugMCSSim(mol1l, mol2, type = 'smile')

sim2 = calcDrugMCSSim(mol3, mol4, type = 'sdf', plot = TRUE)

print(sim1[[2]]) # Tanimoto Coefficient

print(sim2[[3]1]) # Overlap Coefficient

End(Not run)

calcParProtGOSim Protein Sequence Similarity Calculation based on Gene Ontology
(GO) Similarity

Description

Protein Sequence Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

calcParProtG0Sim(
golist,
type = c("go”, "gene"),
ont = c("MF", "BP", "CC"),

organism = "human”,
measure = "Resnik”,
combine = "BMA"
)
Arguments
golist A character vector, each component contains a character vector of GO terms or
one Entrez Gene ID.
type Input type of golist, 'go' for GO Terms, 'gene' for gene ID.
ont Default is '"MF', could be one of 'MF', 'BP', or 'CC' subontologies.
organism Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine’,
'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly',
"human', 'malaria’, 'mouse’, 'pig', 'rat’', 'rhesus’', 'worm', 'xenopus’,
'yeast' or 'zebrafish'.
measure Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or
'"Wang'.
combine Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for
combining semantic similarity scores of multiple GO terms associated with pro-
tein.
Details

This function calculates protein sequence similarity based on Gene Ontology (GO) similarity.

28 calcParProtSeqSim

Value

A n X n similarity matrix.

See Also

See calcTwoProtGOSim for calculating the GO semantic similarity between two groups of GO
terms or two Entrez gene IDs. See calcParProtSeqSim for paralleled protein similarity calculation
based on sequence alignment.

Examples

By GO Terms

gol = c('G0:0005215"', 'GO:0005488', 'G0:0005515"', 'GO:0005625', 'G0:0005802', 'GO:0005905') # AP4B1
go2 = c('G0:0005515"', 'GO:0005634', 'G0:0005681', 'GO:0008380', 'G0:0031202') # BCAS2

g03 = c('G0:0003735', 'GO:0005622', 'GO:0005840', 'GO:0006412') # PDE4DIP

glist = list(gol, go2, go3)

calcParProtGOSim(glist, type = 'go', ont = 'CC', measure = 'Wang')

By Entrez gene id
genelist = list(c('150', '151', '152', '1814', '1815', '1816"'))
calcParProtGOSim(genelist, type = 'gene', ont = 'BP', measure = 'Wang')

calcParProtSeqSim Parallellized Protein Sequence Similarity Calculation based on Se-
quence Alignment

Description

Parallellized Protein Sequence Similarity Calculation based on Sequence Alignment

Usage

calcParProtSeqSim(protlist, cores = 2, type = "local”, submat = "BLOSUM62")

Arguments

protlist A length n list containing n protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as '’

cores Integer. The number of CPU cores to use for parallel execution, default is 2.
Users could use the detectCores() function in the parallel package to see
how many cores they could use.

type Type of alignment, default is 'local', could be 'global' or 'local’, where
'global’ represents Needleman-Wunsch global alignment; 'local' represents
Smith-Waterman local alignment.

submat Substitution matrix, defaultis 'BLOSUM62 "', could be one of 'BLOSUM45", 'BLOSUM50@ ',

'BLOSUM62", 'BLOSUM8@', 'BLOSUM100"', 'PAM3Q', 'PAM40@', 'PAM70"', 'PAM120",
'PAM250".

calcTwoProtGOSim 29

Details

This function implemented the parallellized version for calculating protein sequence similarity
based on sequence alignment.

Value

A n x n similarity matrix.

See Also

See calcTwoProtSeqSim for protein sequence alignment for two protein sequences. See calcParProtGOSim
for protein similarity calculation based on Gene Ontology (GO) semantic similarity.

Examples

s1 = readFASTA(system.file('protseq/P0750.fasta', package = 'Rcpi'))[[1]1]
s2 = readFASTA(system.file('protseq/P08218.fasta', package = 'Rcpi'))[[1]1]
s3 = readFASTA(system.file('protseq/P10323.fasta', package = 'Rcpi'))[[1]]
s4 = readFASTA(system.file('protseq/P20160.fasta', package = 'Rcpi'))[[1]1]
s5 = readFASTA(system.file('protseq/Q9NZP8.fasta', package = 'Rcpi'))[[1]1]
plist = list(s1, s2, s3, s4, sb5)

psimmat = calcParProtSeqSim(plist, cores = 2, type = 'local',
submat = 'BLOSUM62')
print(psimmat)
calcTwoProtGOSim Protein Similarity Calculation based on Gene Ontology (GO) Similar-
ity
Description

Protein Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

calcTwoProtGOSim(
id1,
id2,
type = c("go”, "gene"),
ont = c("MF", "BP", "CC"),

organism = "human”,
measure = "Resnik”,
combine = "BMA"

)

Arguments
id1 A character vector. length > 1: each element is a GO term; length = 1: the Entrez
Gene ID.
id2 A character vector. length > 1: each element is a GO term; length = 1: the Entrez

Gene ID.

30 calcTwoProtSeqSim

type Input type of id1 and id2, 'go"' for GO Terms, 'gene' for gene ID.
ont Default is '"MF ', could be one of '"MF', 'BP', or 'CC"' subontologies.
organism Default is "human', could be one of 'anopheles', 'arabidopsis', 'bovine’,

'canine’, 'chicken', 'chimp', 'coelicolor', 'ecolik12’', 'ecsakai', 'fly"',
"human', 'malaria’, 'mouse’, 'pig', 'rat’, 'rhesus’, 'worm', 'xenopus’,
'yeast' or 'zebrafish'.

measure Default is 'Resnik’', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or
'"Wang'.
combine Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for
combining semantic similarity scores of multiple GO terms associated with pro-
tein.
Details

This function calculates the Gene Ontology (GO) similarity between two groups of GO terms or
two Entrez gene IDs.

Value

A n X n matrix.

See Also

See calcParProtGOSim for protein similarity calculation based on Gene Ontology (GO) semantic
similarity. See calcParProtSeqSim for paralleled protein similarity calculation based on sequence
alignment.

Examples

By GO terms

gol = c("G0:0004022", "GO:0004024", "G0O:0004023")

go2 = ¢("G0:0009055", "GO:0020037")

calcTwoProtGOSim(go1, go2, type = 'go', ont = 'MF', measure = 'Wang')

By Entrez gene id

genel = '241'
gene2 = '251'
calcTwoProtGOSim(genel, gene2, type = 'gene', ont = 'CC', measure = 'Lin')
calcTwoProtSeqSim Protein Sequence Alignment for Two Protein Sequences
Description

Protein Sequence Alignment for Two Protein Sequences

Usage

calcTwoProtSeqSim(seql, seq2, type = "local”, submat = "BLOSUM62")

checkProt 31

Arguments
seql A character string, containing one protein sequence.
seq2 A character string, containing another protein sequence.
type Type of alignment, default is 'local', could be 'global' or 'local’, where
'global’ represents Needleman-Wunsch global alignment; 'local' represents
Smith-Waterman local alignment.
submat Substitution matrix, defaultis 'BLOSUM62 ', could be one of 'BLOSUM45"', 'BLOSUM50Q ',
'BLOSUM62', 'BLOSUM8Q', 'BLOSUM100Q"', 'PAM30Q', 'PAM40Q"', 'PAM70', 'PAM120",
'PAM250".
Details

This function implements the sequence alignment between two protein sequences.

Value

An Biostrings object containing the scores and other alignment information.

See Also
See calcParProtSeqSim for paralleled pairwise protein similarity calculation based on sequence

alignment. See calcTwoProtGOSim for calculating the GO semantic similarity between two groups
of GO terms or two Entrez gene IDs.

Examples

s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
s2 = readFASTA(system.file('protseq/P10323.fasta', package = 'Rcpi'))[[1]1]

segalign = calcTwoProtSeqSim(s1, s2)
seqalign
slot(segalign, "score”)

checkProt Check if the protein sequence’s amino acid types are the 20 default
types

Description

Check if the protein sequence’s amino acid types are the 20 default types

Usage

checkProt(x)

Arguments

X A character vector, as the input protein sequence.

Details

This function checks if the protein sequence’s amino acid types are the 20 default types.

32 convMolFormat

Value

Logical. TRUE if all of the amino acid types of the sequence are within the 20 default types.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
checkProt(x) # TRUE

checkProt(paste(x, 'Z', sep = '')) # FALSE
convMolFormat Chemical File Formats Conversion
Description

Chemical File Formats Conversion

Usage

convMolFormat(infile, outfile, from, to)

Arguments
infile A character string. Indicating the input file location.
outfile A character string. Indicating the output file location.
from The format of infile. A character string supported by OpenBabel. See the note
section for the supported formats.
to The desired format of outfile. A character string supported by OpenBabel.
See the note section for the supported formats.
Details

This function converts between various chemical file formats via OpenBabel. The complete sup-
ported file format list could be found at https: //openbabel.org/docs/FileFormats/Overview.
html.

Value

NULL

Note

The supported formats include:

* abinit — ABINIT Output Format [Read-only]

* acr — ACR format [Read-only]

* adf — ADF cartesian input format [Write-only]
* adfout — ADF output format [Read-only]

e alc — Alchemy format

* arc — Accelrys/MSI Biosym/Insight I CAR format [Read-only]

https://openbabel.org/docs/FileFormats/Overview.html
https://openbabel.org/docs/FileFormats/Overview.html

convMolFormat

* axsf — XCrySDen Structure Format [Read-only]
* bgf — MSI BGF format

* box — Dock 3.5 Box format

* bs — Ball and Stick format

e c3d1l — Chem3D Cartesian 1 format

e ¢3d2 — Chem3D Cartesian 2 format

 cac — CAChe MolStruct format [Write-only]

* caccrt — Cacao Cartesian format

* cache — CAChe MolStruct format [Write-only]
* cacint — Cacao Internal format [Write-only]

* can — Canonical SMILES format

e car — Accelrys/MSI Biosym/Insight I CAR format [Read-only]
¢ castep — CASTEP format [Read-only]

* ccc — CCC format [Read-only]

* cdx — ChemDraw binary format [Read-only]

e cdxml — ChemDraw CDXML format

* cht — Chemtool format [Write-only]

e cif — Crystallographic Information File

* ck — ChemKin format

* cml — Chemical Markup Language

e cmlr — CML Reaction format

* com — Gaussian 98/03 Input [Write-only]

* CONFIG - DL-POLY CONFIG

* CONTCAR - VASP format [Read-only]

* copy — Copy raw text [Write-only]

* crk2d — Chemical Resource Kit diagram(2D)

* crk3d — Chemical Resource Kit 3D format

* csr— Accelrys/MSI Quanta CSR format [Write-only]
* cssr— CSD CSSR format [Write-only]

e ct— ChemDraw Connection Table format

* cub — Gaussian cube format

* cube — Gaussian cube format

* dat — Generic Output file format [Read-only]

* dmol — DMol3 coordinates format

* dx — OpenDX cube format for APBS

* ent — Protein Data Bank format

e fa — FASTA format

* fasta — FASTA format

* fch — Gaussian formatted checkpoint file format [Read-only]

* fchk — Gaussian formatted checkpoint file format [Read-only]

convMolFormat

fck — Gaussian formatted checkpoint file format [Read-only]
feat — Feature format

fh — Fenske-Hall Z-Matrix format [Write-only]
fhiaims — FHIaims XYZ format

fix — SMILES FIX format [Write-only]

fpt — Fingerprint format [Write-only]

fract — Free Form Fractional format

fs — Fastsearch format

fsa — FASTA format

203 — Gaussian Output [Read-only]

209 — Gaussian Output [Read-only]

292 — Gaussian Output [Read-only]

€94 — Gaussian Output [Read-only]

298 — Gaussian Output [Read-only]

gal — Gaussian Output [Read-only]

gam — GAMESS Output [Read-only]

gamess — GAMESS Output [Read-only]
gamin — GAMESS Input

gamout — GAMESS Output [Read-only]

gau — Gaussian 98/03 Input [Write-only]

gjc — Gaussian 98/03 Input [Write-only]

gjf — Gaussian 98/03 Input [Write-only]

got — GULP format [Read-only]

gpr — Ghemical format

2r96 — GROMOS96 format [Write-only]

gro — GRO format

gukin — GAMESS-UK Input

gukout — GAMESS-UK Output

gzmat — Gaussian Z-Matrix Input

hin — HyperChem HIN format

HISTORY — DL-POLY HISTORY [Read-only]
inchi — InChI format

inchikey — InChIKey [Write-only]

inp — GAMESS Input

ins — ShelX format [Read-only]

jin — Jaguar input format [Write-only]

jout — Jaguar output format [Read-only]

k — Compare molecules using InChl [Write-only]
log — Generic Output file format [Read-only]
mcdl - MCDL format

convMolFormat

* mcif — Macromolecular Crystallographic Info

* mdl - MDL MOL format

* ml2 — Sybyl Mol2 format

* mmcif — Macromolecular Crystallographic Info

* mmd — MacroModel format

* mmod — MacroModel format

* mna — Multilevel Neighborhoods of Atoms (MNA) [Write-only]
* mol - MDL MOL format

* mol2 — Sybyl Mol2 format

* mold — Molden format

* molden — Molden format

* molf — Molden format

* molreport — Open Babel molecule report [Write-only]
* moo — MOPAC Output format [Read-only]

* mop — MOPAC Cartesian format

» mopcrt — MOPAC Cartesian format

* mopin — MOPAC Internal

* mopout — MOPAC Output format [Read-only]

* mp — Molpro input format [Write-only]

* mpc — MOPAC Cartesian format

* mpd — MolPrint2D format [Write-only]

* mpo — Molpro output format [Read-only]

* mpqc — MPQC output format [Read-only]

* mpqcin — MPQC simplified input format [Write-only]
* mrv — Chemical Markup Language

* msi — Accelrys/MSI Cerius IT MSI format [Read-only]
* msms — M.F. Sanner’s MSMS input format [Write-only]
* nul — Outputs nothing [Write-only]

* nw — NWChem input format [Write-only]

* nwo — NWChem output format [Read-only]

* out — Generic Output file format [Read-only]

* outmol — DMol3 coordinates format

* output — Generic Output file format [Read-only]

* pc — PubChem format [Read-only]

* pcm — PCModel Format

* pdb — Protein Data Bank format

¢ pdbqt — AutoDock PDQBT format

* png — PNG 2D depiction

* POSCAR - VASP format [Read-only]

* pov — POV-Ray input format [Write-only]

36 convMolFormat

* pqr — PQR format

* pgs — Parallel Quantum Solutions format
* prep — Amber Prep format [Read-only]

* pwscf — PWscf format [Read-only]

* gcin — Q-Chem input format [Write-only]
* gcout — Q-Chem output format [Read-only]
* report — Open Babel report format [Write-only]
¢ res — ShelX format [Read-only]

* rsmi — Reaction SMILES format

e rxn — MDL RXN format

* sd - MDL MOL format

* sdf - MDL MOL format

* smi — SMILES format

* smiles — SMILES format

* svg — SVG 2D depiction [Write-only]

* sy2 — Sybyl Mol2 format

* t41 — ADF TAPE41 format [Read-only]

¢ tdd — Thermo format

* text — Read and write raw text

¢ therm — Thermo format

* tmol — TurboMole Coordinate format

o txt — Title format

¢ txyz — Tinker XYZ format

* unixyz — UniChem XYZ format

* vmol — ViewMol format

* xed — XED format [Write-only]

¢ xml — General XML format [Read-only]
* xsf — XCrySDen Structure Format [Read-only]
* xyz — XYZ cartesian coordinates format
* yob — YASARA.org YOB format

* zin — ZINDO input format [Write-only]

Examples

sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

SDF to SMILES

Not run:

convMolFormat(infile = sdf, outfile = 'aa.smi',
from = 'sdf', to = 'smiles')

End(Not run)

SMILES to MOPAC Cartesian format

Not run:

convMolFormat(infile = 'aa.smi', outfile = 'aa.mop',
from = 'smiles', to = 'mop')

End(Not run)

extractDrugAIO 37

extractDrugAIO Calculate All Molecular Descriptors in Rcpi at Once

Description

Calculate All Molecular Descriptors in Repi at Once

Usage

extractDrugAIO(molecules, silent = TRUE, warn = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
warn Logical. Whether the warning about some descriptors need the 3D coordinates
should be shown or not after the calculation, default is TRUE.
Details

This function calculates all the molecular descriptors in the Rcpi package at once.

Value

A data frame, each row represents one of the molecules, each column represents one descriptor.
Currently, this function returns total 293 descriptors composed of 48 descriptor types.

Note

Note that we need 3-D coordinates of the molecules to calculate some of the descriptors, if not
provided, these descriptors values will be NA.

Examples

Load 20 small molecules that have 3D coordinates
sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

mol = readMolFromSDF (sdf)
dat = extractDrugAIO(mol, warn = FALSE)

38 extractDrugALOGP

extractDrugALOGP Calculate Atom Additive logP and Molar Refractivity Values Descrip-
tor

Description

Calculate Atom Additive logP and Molar Refractivity Values Descriptor

Usage

extractDrugALOGP(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates ALOGP (Ghose-Crippen LogKow) and the Ghose-Crippen molar refractivity as de-
scribed by Ghose, A.K. and Crippen, G.M. Note the underlying code in CDK assumes that aro-
maticity has been detected before evaluating this descriptor. The code also expects that the molecule
will have hydrogens explicitly set. For SD files, this is usually not a problem since hydrogens are
explicit. But for the case of molecules obtained from SMILES, hydrogens must be made explicit.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns three columns named ALogP, ALogp2 and AMR.

References

Ghose, A.K. and Crippen, G.M. , Atomic physicochemical parameters for three-dimensional structure-
directed quantitative structure-activity relationships. I. Partition coefficients as a measure of hy-
drophobicity, Journal of Computational Chemistry, 1986, 7:565-577.

Ghose, A.K. and Crippen, G.M., Atomic physicochemical parameters for three-dimensional-structure-
directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic in-
teractions, Journal of Chemical Information and Computer Science, 1987, 27:21-35.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol readMolFromSmi(smi, type = 'mol')
dat = extractDrugALOGP(mol)
head(dat)

extractDrugAminoAcidCount 39

extractDrugAminoAcidCount
Calculate the Number of Amino Acids Descriptor

Description

Calculate the Number of Amino Acids Descriptor

Usage

extractDrugAminoAcidCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the number of each amino acids (total 20 types) found in the molecues.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 20 columns named nA, nR, nN, nD, nC, nF, nQ, nE, nG, nH, nI, nP, nL nK, nM, nS, nT,
nY nV, nW.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugAminoAcidCount(mol)
head(dat)

extractDrugApol Calculate the Sum of the Atomic Polarizabilities Descriptor

Description

Calculate the Sum of the Atomic Polarizabilities Descriptor

Usage

extractDrugApol (molecules, silent = TRUE)

extractDrugAromaticAtomsCount

40
Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details
Calculates the sum of the atomic polarizabilities (including implicit hydrogens) descriptor. Polariz-
abilities are taken from https://bit.1ly/3PvNbhe.
Value
A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named apol.
Examples

system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

smi =

mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugApol(mol)
head(dat)

extractDrugAromaticAtomsCount
Calculate the Number of Aromatic Atoms Descriptor

Description
Calculate the Number of Aromatic Atoms Descriptor

Usage
extractDrugAromaticAtomsCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the number of aromatic atoms of a molecule.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This

function returns one column named naAromAtom.

https://bit.ly/3PvNbhe

extractDrugAromaticBondsCount 41

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugAromaticAtomsCount(mol)
head(dat)

extractDrugAromaticBondsCount
Calculate the Number of Aromatic Bonds Descriptor

Description

Calculate the Number of Aromatic Bonds Descriptor

Usage

extractDrugAromaticBondsCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the number of aromatic bonds of a molecule.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nAromBond.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugAromaticBondsCount(mol)
head(dat)

42 extractDrugAutocorrelationCharge

extractDrugAtomCount Calculate the Number of Atom Descriptor

Description

Calculate the Number of Atom Descriptor

Usage

extractDrugAtomCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the number of atoms of a certain element type in a molecule. By default it returns the
count of all atoms.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nAtom.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugAtomCount(mol)
head(dat)

extractDrugAutocorrelationCharge
Calculate the Moreau-Broto Autocorrelation Descriptors using Partial
Charges

Description

Calculate the Moreau-Broto Autocorrelation Descriptors using Partial Charges

Usage

extractDrugAutocorrelationCharge(molecules, silent = TRUE)

extractDrugAutocorrelationMass 43

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the ATS autocorrelation descriptor, where the weight equal to the charges.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 5 columns named ATSc1, ATSc2, ATSc3, ATSc4, ATSc5.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugAutocorrelationCharge(mol)
head(dat)

extractDrugAutocorrelationMass
Calculate the Moreau-Broto Autocorrelation Descriptors using
Atomic Weight

Description

Calculate the Moreau-Broto Autocorrelation Descriptors using Atomic Weight

Usage

extractDrugAutocorrelationMass(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the ATS autocorrelation descriptor, where the weight equal to the scaled atomic mass.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 5 columns named ATSm1, ATSm2, ATSm3, ATSm4, ATSm5.

extractDrugAutocorrelationPolarizability

44

References
Moreau, Gilles, and Pierre Broto. The autocorrelation of a topological structure: a new molecular

descriptor. Nouv. J. Chim 4 (1980): 359-360.

Examples
= 'Repi')

smi = system.file('vignettedata/FDAMDD.smi', package

mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugAutocorrelationMass(mol)
head(dat)

extractDrugAutocorrelationPolarizability
Calculate the Moreau-Broto Autocorrelation Descriptors using Polar-

izability

Description
Calculate the Moreau-Broto Autocorrelation Descriptors using Polarizability

Usage
extractDrugAutocorrelationPolarizability(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the ATS autocorrelation descriptor using polarizability.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This

function returns 5 columns named ATSp1, ATSp2, ATSp3, ATSp4, ATSp5.

Examples
system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

smi =
mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugAutocorrelationPolarizability(mol)

head(dat)

extractDrugBCUT 45

extractDrugBCUT BCUT - Eigenvalue Based Descriptor

Description

BCUT - Eigenvalue Based Descriptor

Usage
extractDrugBCUT(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Eigenvalue based descriptor noted for its utility in chemical diversity. Described by Pearlman et
al. The descriptor is based on a weighted version of the Burden matrix which takes into account
both the connectivity as well as atomic properties of a molecule. The weights are a variety of atom
properties placed along the diagonal of the Burden matrix. Currently three weighting schemes are
employed:

* Atomic Weight

* Partial Charge (Gasteiger Marsilli)

* Polarizability (Kang et al.)

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 6 columns:

e BCUTw-11, BCUTw-21 ... - n high lowest atom weighted BCUTS
e BCUTw-1h, BCUTw-2h ... - n low highest atom weighted BCUTS
e BCUTc-11, BCUTc-21 ... - n high lowest partial charge weighted BCUTS
e BCUTc-1h, BCUTc-2h ... - n low highest partial charge weighted BCUTS
e BCUTp-11, BCUTp-21 ... - n high lowest polarizability weighted BCUTS
e BCUTp-1h, BCUTp-2h ... - n low highest polarizability weighted BCUTS

Note

By default, the descriptor will return the highest and lowest eigenvalues for the three classes of
descriptor in a single ArrayList (in the order shown above). However it is also possible to sup-
ply a parameter list indicating how many of the highest and lowest eigenvalues (for each class of
descriptor) are required. The descriptor works with the hydrogen depleted molecule.

A side effect of specifying the number of highest and lowest eigenvalues is that it is possible to get
two copies of all the eigenvalues. That is, if a molecule has 5 heavy atoms, then specifying the 5

46 extractDrugBondCount

highest eigenvalues returns all of them, and specifying the 5 lowest eigenvalues returns all of them,
resulting in two copies of all the eigenvalues.

Note that it is possible to specify an arbitrarily large number of eigenvalues to be returned. How-
ever if the number (i.e., nhigh or nlow) is larger than the number of heavy atoms, the remaining
eignevalues will be NaN.

Given the above description, if the aim is to gt all the eigenvalues for a molecule, you should set
nlow to 0 and specify the number of heavy atoms (or some large number) for nhigh (or vice versa).

References

Pearlman, R.S. and Smith, K.M., Metric Validation and the Receptor-Relevant Subspace Concept,
J. Chem. Inf. Comput. Sci., 1999, 39:28-35.

Burden, F.R., Molecular identification number for substructure searches, J. Chem. Inf. Comput.
Sci., 1989, 29:225-227.

Burden, F.R., Chemically Intuitive Molecular Index, Quant. Struct. -Act. Relat., 1997, 16:309-314

Kang, Y.K. and Jhon, M.S., Additivity of Atomic Static Polarizabilities and Dispersion Coefficients,
Theoretica Chimica Acta, 1982, 61:41-48

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugBCUT(mol)
head(dat)

extractDrugBondCount Calculate the Descriptor Based on the Number of Bonds of a Certain
Bond Order

Description

Calculate the Descriptor Based on the Number of Bonds of a Certain Bond Order

Usage

extractDrugBondCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the descriptor based on the number of bonds of a certain bond order.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nB.

extractDrugBPol 47

Examples
= 'Repi')

smi = system.file('vignettedata/FDAMDD.smi', package

mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugBondCount(mol)

head(dat)
extractDrugBPol Calculate the Descriptor that Describes the Sum of the Absolute Value
of the Difference between Atomic Polarizabilities of All Bonded Atoms
in the Molecule
Description

Calculates the Descriptor that Describes the Sum of the Absolute Value of the Difference between
Atomic Polarizabilities of All Bonded Atoms in the Molecule

Usage
extractDrugBPol (molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the sum of the absolute value of the difference between atomic polariz-
abilities of all bonded atoms in the molecule (including implicit hydrogens) with polarizabilities
taken from https://bit.1ly/3PvNbhe. This descriptor assumes 2-centered bonds.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This

function returns one column named bpol.

Examples
= 'Repi')

smi = system.file('vignettedata/FDAMDD.smi', package

mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugBPol(mol)
head(dat)

https://bit.ly/3PvNbhe

48 extractDrugCarbonTypes

extractDrugCarbonTypes
Topological Descriptor Characterizing the Carbon Connectivity in
Terms of Hybridization

Description

Topological Descriptor Characterizing the Carbon Connectivity in Terms of Hybridization

Usage

extractDrugCarbonTypes(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the carbon connectivity in terms of hybridization. The function calculates 9 descriptors
in the following order:

e C1SP1 - triply hound carbon bound to one other carbon

e C2SP1 - triply bound carbon bound to two other carbons

* C1SP2 - doubly hound carbon bound to one other carbon

* C2SP2 - doubly bound carbon bound to two other carbons
* C3SP2 - doubly bound carbon bound to three other carbons
* C1SP3 - singly bound carbon bound to one other carbon

* C2SP3 - singly bound carbon bound to two other carbons

* C3SP3 - singly bound carbon bound to three other carbons

* C4SP3 - singly bound carbon bound to four other carbons

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 9 columns named C1SP1, C2SP1, C1SP2, C2SP2, C3SP2, C1SP3, C2SP3, C3SP3 and
C4SP3.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugCarbonTypes(mol)
head(dat)

extractDrugChiChain 49

extractDrugChiChain Calculate the Kier and Hall Chi Chain Indices of Orders 3, 4, 5, 6 and
7

Description

Calculate the Kier and Hall Chi Chain Indices of Orders 3, 4, 5, 6 and 7

Usage

extractDrugChiChain(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Evaluates chi chain descriptors. The code currently evluates the simple and valence chi chain de-
scriptors of orders 3, 4, 5, 6 and 7. It utilizes the graph isomorphism code of the CDK to find frag-
ments matching SMILES strings representing the fragments corresponding to each type of chain.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 10 columns, in the following order:

* SCH. 3 - Simple chain, order 3

* SCH.4 - Simple chain, order 4

* SCH.5 - Simple chain, order 5

* SCH.6 - Simple chain, order 6

* SCH.7 - Simple chain, order 7

e VCH. 3 - Valence chain, order 3

* VCH. 4 - Valence chain, order 4

e VCH.5 - Valence chain, order 5

e VCH. 6 - Valence chain, order 6

e VCH.7 - Valence chain, order 7

Note

These descriptors are calculated using graph isomorphism to identify the various fragments. As a
result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment
definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex
fragment definitions.

50 extractDrugChiCluster

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugChiChain(mol)
head(dat)

extractDrugChiCluster Evaluates the Kier and Hall Chi cluster indices of orders 3, 4, 5 and 6

Description

Evaluates the Kier and Hall Chi cluster indices of orders 3, 4, 5 and 6

Usage

extractDrugChiCluster(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Evaluates chi cluster descriptors. It utilizes the graph isomorphism code of the CDK to find frag-
ments matching SMILES strings representing the fragments corresponding to each type of chain.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 8 columns, the order and names of the columns returned is:

* SC.3 - Simple cluster, order 3

* SC.4 - Simple cluster, order 4

* SC.5 - Simple cluster, order 5

* SC.6 - Simple cluster, order 6

* VC.3 - Valence cluster, order 3

* VC.4 - Valence cluster, order 4

* VC.5 - Valence cluster, order 5

e VC.6 - Valence cluster, order 6

Note

These descriptors are calculated using graph isomorphism to identify the various fragments. As a
result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment
definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex
fragment definitions.

extractDrugChiPath 51

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugChiCluster(mol)
head(dat)

extractDrugChiPath Calculate the Kier and Hall Chi Path Indices of Orders 0 to 7

Description

Calculate the Kier and Hall Chi Path Indices of Orders O to 7

Usage
extractDrugChiPath(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Evaluates chi path descriptors. This function utilizes the graph isomorphism code of the CDK to
find fragments matching SMILES strings representing the fragments corresponding to each type of
chain.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 16 columns, The order and names of the columns returned is:

* SP.Q, SP.1, ..., SP.7 - Simple path, orders O to 7
* VP.Q, VP.1, ..., VP.7 - Valence path, orders O to 7

Note

These descriptors are calculated using graph isomorphism to identify the various fragments. As a
result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment
definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex
fragment definitions.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugChiPath(mol)
head(dat)

52 extractDrugChiPathCluster

extractDrugChiPathCluster
Calculate the Kier and Hall Chi Path Cluster Indices of Orders 4, 5
and 6

Description

Calculate the Kier and Hall Chi Path Cluster Indices of Orders 4, 5 and 6

Usage

extractDrugChiPathCluster(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Evaluates chi path cluster descriptors. The code currently evluates the simple and valence chi chain
descriptors of orders 4, 5 and 6. It utilizes the graph isomorphism code of the CDK to find fragments
matching SMILES strings representing the fragments corresponding to each type of chain.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 6 columns named SPC. 4, SPC.5, SPC.6, VPC.4, VPC.5, VPC.6:

* SPC.4 - Simple path cluster, order 4

* SPC.5 - Simple path cluster, order 5

* SPC.6 - Simple path cluster, order 6

* VPC.4 - Valence path cluster, order 4

* VPC.5 - Valence path cluster, order 5

* VPC.6 - Valence path cluster, order 6

Note

These descriptors are calculated using graph isomorphism to identify the various fragments. As a
result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment
definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex
fragment definitions.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugChiPathCluster(mol)
head(dat)

extractDrugCPSA 53

extractDrugCPSA A Variety of Descriptors Combining Surface Area and Partial Charge
Information

Description

A Variety of Descriptors Combining Surface Area and Partial Charge Information

Usage
extractDrugCPSA(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates 29 Charged Partial Surface Area (CPSA) descriptors. The CPSA’s were developed by
Stanton et al.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 29 columns:

* PPSA.1 - partial positive surface area — sum of surface area on positive parts of molecule

* PPSA.2 - partial positive surface area * total positive charge on the molecule

* PPSA. 3 - charge weighted partial positive surface area

* PNSA.1 - partial negative surface area — sum of surface area on negative parts of molecule

* PNSA.2 - partial negative surface area * total negative charge on the molecule

* PNSA. 3 - charge weighted partial negative surface area

* DPSA.1 - difference of PPSA.1 and PNSA.1

* DPSA.?2 - difference of FPSA.2 and PNSA.2

* DPSA. 3 - difference of PPSA.3 and PNSA.3

* FPSA.1 - PPSA.1/ total molecular surface area

* FFSA.2 - PPSA.2 / total molecular surface area

* FPSA.3 - PPSA.3/ total molecular surface area

* FNSA.1 - PNSA.1 / total molecular surface area

* FNSA.2 - PNSA.2 / total molecular surface area

* FNSA. 3 - PNSA.3/ total molecular surface area

* WPSA.1 - PPSA.1 * total molecular surface area / 1000

* WPSA.2 - PPSA.2 * total molecular surface area /1000

* WPSA.3 - PPSA.3 * total molecular surface area / 1000

54 extractDrugDescOB

* WNSA.1 - PNSA.I * total molecular surface area /1000

* WNSA.2 - PNSA.2 * total molecular surface area / 1000

* WNSA.3 - PNSA.3 * total molecular surface area / 1000

* RPCG - relative positive charge — most positive charge / total positive charge

* RNCG - relative negative charge — most negative charge / total negative charge

* RPCS - relative positive charge surface area — most positive surface area * RPCG
* RNCS - relative negative charge surface area — most negative surface area * RNCG

* THSA - sum of solvent accessible surface areas of atoms with absolute value of partial charges
less than 0.2

* TPSA - sum of solvent accessible surface areas of atoms with absolute value of partial charges
greater than or equal 0.2

e RHSA - THSA / total molecular surface area

¢ RPSA - TPSA / total molecular surface area

References

Stanton, D.T. and Jurs, P.C. , Development and Use of Charged Partial Surface Area Structural
Descriptors in Computer Assissted Quantitative Structure Property Relationship Studies, Analytical
Chemistry, 1990, 62:2323.2329.

Examples

sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

mol = readMolFromSDF (sdf)
dat = extractDrugCPSA(mol)
head(dat)

extractDrugDescOB Calculate Molecular Descriptors Provided by OpenBabel

Description

Calculate Molecular Descriptors Provided by OpenBabel

Usage

extractDrugDescOB(molecules, type = c("smile"”, "sdf"))

Arguments
molecules R character string object containing the molecules. See the example section for
details.
type 'smile' or 'sdf'.
Details

This function calculates 14 types of the numerical molecular descriptors provided in OpenBabel.

extractDrugECI

Value

55

A data frame, each row represents one of the molecules, each column represents one descriptor.
This function returns 14 columns named abonds, atoms, bonds, dbonds, HBA1, HBA2, HBD, logP,
MR, MW, nF, sbonds, tbonds, TPSA:

abonds - Number of aromatic bonds

atoms - Number of atoms

bonds - Number of bonds

dbonds - Number of double bonds

HBAT - Number of Hydrogen Bond Acceptors 1
HBA2 - Number of Hydrogen Bond Acceptors 2
HBD - Number of Hydrogen Bond Donors

logP - Octanol/Water Partition Coefficient

MR - Molar Refractivity

MW - Molecular Weight Filter

nF - Number of Fluorine Atoms

sbonds - Number of single bonds

tbonds - Number of triple bonds

TPSA - Topological Polar Surface Area

Examples
moll = 'CC(=0)NCCC1=CNc2clcc(0C)cc2' # one molecule SMILE in a vector
mol2 = c('0CCclc(C)[n+]1(=cs1)Cc2cnc(C)nc(N)2',

mol3

mol4

'CCc(c1)ccc2[n+]1ccec3c2Nc4c3ceccd ',
'[Cu+2].[0-1S(=0)(=0)[0-]"') # multiple SMILEs in a vector
= readChar(system.file('compseq/DB00860@.sdf"', package = 'Rcpi'),
nchars = 1e+6) # single molecule in a sdf file
= readChar(system.file('sysdata/OptAA3d.sdf"', package = 'Rcpi'),
nchars = 1e+6) # multiple molecules in a sdf file

Not run:
smidesc@® = extractDrugDescOB(moll, type = 'smile')

smidescl = extractDrugDescOB(mol2, type

'smile')

sdfdesc@ = extractDrugDescOB(mol3, type = 'sdf')

sdfdescl = extractDrugDescOB(mol4, type = 'sdf')
End(Not run)
extractDrugECI Calculate the Eccentric Connectivity Index Descriptor

Description

Calculate the Eccentric Connectivity Index Descriptor

Usage

extractDrugECI(molecules, silent = TRUE)

56 extractDrugEstate

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Eccentric Connectivity Index (ECI) is a topological descriptor combining distance and adjacency
information. This descriptor is described by Sharma et al. and has been shown to correlate well
with a number of physical properties. The descriptor is also reported to have good discriminatory
ability. The eccentric connectivity index for a hydrogen supressed molecular graph is given by

zf = Z E(i)V (i)

where E(i) is the eccentricity of the i-th atom (path length from the i-th atom to the atom farthest
from it) and V(i) is the vertex degree of the i-th atom.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named ECCEN.

References

Sharma, V. and Goswami, R. and Madan, A.K. (1997), Eccentric Connectivity Index: A Novel
Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Stud-
ies, Journal of Chemical Information and Computer Sciences, 37:273-282

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugECI(mol)
head(dat)
extractDrugEstate Calculate the E-State Molecular Fingerprints (in Compact Format)
Description

Calculate the E-State Molecular Fingerprints (in Compact Format)

Usage

extractDrugEstate(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

extractDrugEstateComplete 57

Details

79 bit fingerprints corresponding to the E-State atom types described by Hall and Kier.

Value

A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also

extractDrugEstateComplete

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugEstate(mol)
head(fp)

extractDrugEstateComplete
Calculate the E-State Molecular Fingerprints (in Complete Format)

Description

Calculate the E-State Molecular Fingerprints (in Complete Format)

Usage

extractDrugEstateComplete(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

79 bit fingerprints corresponding to the E-State atom types described by Hall and Kier.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugEstate

58 extractDrugExtended

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugEstateComplete(mol)
dim(fp)

extractDrugExtended Calculate the Extended Molecular Fingerprints (in Compact Format)

Description

Calculate the Extended Molecular Fingerprints (in Compact Format)

Usage

extractDrugExtended(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the extended molecular fingerprints. Considers paths of a given length, similar to the
standard type, but takes rings and atomic properties into account into account. This is hashed
fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also

extractDrugExtendedComplete

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

fp = extractDrugExtended(mol)
head(fp)

extractDrugExtendedComplete 59

extractDrugExtendedComplete
Calculate the Extended Molecular Fingerprints (in Complete Format)

Description

Calculate the Extended Molecular Fingerprints (in Complete Format)

Usage

extractDrugExtendedComplete(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the extended molecular fingerprints. Considers paths of a given length, similar to the
standard type, but takes rings and atomic properties into account into account. This is hashed
fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugExtended

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugExtendedComplete(mol)
dim(fp)

60 extractDrugFMF

extractDrugFMF Calculate the FMF Descriptor

Description

Calculate the FMF Descriptor

Usage

extractDrugFMF (molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the FMF descriptor characterizing molecular complexity in terms of its Murcko frame-
work. This descriptor is the ratio of heavy atoms in the framework to the total number of heavy
atoms in the molecule. By definition, acyclic molecules which have no frameworks, will have a
value of 0. Note that the authors consider an isolated ring system to be a framework (even though
there is no linker).

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named FMF.

References

Yang, Y., Chen, H., Nilsson, 1., Muresan, S., & Engkvist, O. (2010). Investigation of the relationship
between topology and selectivity for druglike molecules. Journal of medicinal chemistry, 53(21),
7709-7714.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugFMF(mol)
head(dat)

extractDrugFragmentComplexity 61

extractDrugFragmentComplexity
Calculate Complexity of a System

Description

Calculate Complexity of a System

Usage

extractDrugFragmentComplexity(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the complexity of a system. The complexity is defined in Nilakantan, R.
et al. as:

H
—abs(B? — A2+ A) + —
C = abs(+)+100

where C is complexity, A is the number of non-hydrogen atoms, B is the number of bonds and H is
the number of heteroatoms.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named fragC.

References

Nilakantan, R. and Nunn, D.S. and Greenblatt, L. and Walker, G. and Haraki, K. and Mobilio, D.,
A family of ring system-based structural fragments for use in structure-activity studies: database
mining and recursive partitioning., Journal of chemical information and modeling, 2006, 46:1069-
1077

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugFragmentComplexity(mol)
head(dat)

62 extractDrugGraph

extractDrugGraph Calculate the Graph Molecular Fingerprints (in Compact Format)

Description

Calculate the Graph Molecular Fingerprints (in Compact Format)

Usage

extractDrugGraph(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the graph molecular fingerprints. Similar to the standard type by simply considers con-
nectivity. This is hashed fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also

extractDrugGraphComplete

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

fp = extractDrugGraph(mol)
head(fp)

extractDrugGraphComplete 63

extractDrugGraphComplete
Calculate the Graph Molecular Fingerprints (in Complete Format)

Description

Calculate the Graph Molecular Fingerprints (in Complete Format)

Usage

extractDrugGraphComplete(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the graph molecular fingerprints. Similar to the standard type by simply considers con-
nectivity. This is hashed fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugGraph

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugGraphComplete(mol)
dim(fp)

64 extractDrugGravitationallndex

extractDrugGravitationalIndex
Descriptor Characterizing the Mass Distribution of the Molecule.

Description

Descriptor Characterizing the Mass Distribution of the Molecule.

Usage

extractDrugGravitationalIndex(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Descriptor characterizing the mass distribution of the molecule described by Katritzky et al. For
modelling purposes the value of the descriptor is calculated both with and without H atoms. Fur-
thermore the square and cube roots of the descriptor are also generated as described by Wessel et
al.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 9 columns:

* GRAV.1 - gravitational index of heavy atoms

* GRAV.2 - square root of gravitational index of heavy atoms

* GRAV. 3 - cube root of gravitational index of heavy atoms

* GRAVH.1 - gravitational index - hydrogens included

* GRAVH. 2 - square root of hydrogen-included gravitational index

* GRAVH. 3 - cube root of hydrogen-included gravitational index

* GRAV.4 - gravl for all pairs of atoms (not just bonded pairs)

* GRAV.5 - grav2 for all pairs of atoms (not just bonded pairs)

* GRAV.6 - grav3 for all pairs of atoms (not just bonded pairs)

References

Katritzky, A.R. and Mu, L. and Lobanov, V.S. and Karelson, M., Correlation of Boiling Points
With Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple
Inorganics, J. Phys. Chem., 1996, 100:10400-10407.

Wessel, M.D. and Jurs, P.C. and Tolan, J.W. and Muskal, S.M. , Prediction of Human Intestinal
Absorption of Drug Compounds From Molecular Structure, Journal of Chemical Information and
Computer Sciences, 1998, 38:726-735.

extractDrugHBondAcceptorCount 65

Examples
sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')
mol = readMolFromSDF (sdf)

dat = extractDrugGravitationalIndex(mol)
head(dat)

extractDrugHBondAcceptorCount
Number of Hydrogen Bond Acceptors

Description

Number of Hydrogen Bond Acceptors

Usage

extractDrugHBondAcceptorCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the number of hydrogen bond acceptors using a slightly simplified version
of the PHACIR atom types. The following groups are counted as hydrogen bond acceptors: any
oxygen where the formal charge of the oxygen is non-positive (i.e. formal charge <= 0) except

1. an aromatic ether oxygen (i.e. an ether oxygen that is adjacent to at least one aromatic carbon)

2. an oxygen that is adjacent to a nitrogen

and any nitrogen where the formal charge of the nitrogen is non-positive (i.e. formal charge <= 0)
except a nitrogen that is adjacent to an oxygen.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nHBAcc.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugHBondAcceptorCount(mol)
head(dat)

extractDrugHybridization

66

extractDrugHBondDonorCount
Number of Hydrogen Bond Donors

Description
Number of Hydrogen Bond Donors

Usage
extractDrugHBondDonorCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the number of hydrogen bond donors using a slightly simplified version
of the PHACIR atom types (https://bit.1ly/3gXQELf). The following groups are counted as

hydrogen bond donors:
* Any-OH where the formal charge of the oxygen is non-negative (i.e. formal charge >= 0)

* Any-NH where the formal charge of the nitrogen is non-negative (i.e. formal charge >= 0)

Value
A data frame, each row represents one of the molecules, each column represents one feature. This

function returns one column named nHBDon.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugHBondDonorCount(mol)

head(dat)

extractDrugHybridization
Calculate the Hybridization Molecular Fingerprints (in Compact For-

mat)

Description
Calculate the Hybridization Molecular Fingerprints (in Compact Format)

https://bit.ly/3qXQELf

extractDrugHybridizationComplete 67

Usage

extractDrugHybridization(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the hybridization molecular fingerprints. Similar to the standard type, but only consider
hybridization state. This is hashed fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also

extractDrugHybridizationComplete

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

fp = extractDrugHybridization(mol)

head(fp)

extractDrugHybridizationComplete
Calculate the Hybridization Molecular Fingerprints (in Complete For-
mat)

Description

Calculate the Hybridization Molecular Fingerprints (in Complete Format)

Usage

extractDrugHybridizationComplete(
molecules,
depth = 6,
size = 1024,
silent = TRUE

68 extractDrugHybridizationRatio

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the hybridization molecular fingerprints. Similar to the standard type, but only consider
hybridization state. This is hashed fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugHybridization

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugHybridizationComplete(mol)
dim(fp)

extractDrugHybridizationRatio
Descriptor that Characterizing Molecular Complexity in Terms of
Carbon Hybridization States

Description

Descriptor that Characterizing Molecular Complexity in Terms of Carbon Hybridization States

Usage

extractDrugHybridizationRatio(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

extractDrugIPMolecularLearning 69

Details

This descriptor calculates the fraction of sp3 carbons to sp2 carbons. Note that it only considers
carbon atoms and rather than use a simple ratio it reports the value of Nsp3/(Nsp3 + Nsp2). The
original form of the descriptor (i.e., simple ratio) has been used to characterize molecular com-
plexity, especially in the are of natural products, which usually have a high value of the sp3 to sp2
ratio.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named HybRatio.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugHybridizationRatio(mol)
head(dat)

extractDrugIPMolecularLearning
Calculate the Descriptor that Evaluates the lonization Potential

Description

Calculate the Descriptor that Evaluates the Ionization Potential

Usage

extractDrugIPMolecularLearning(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the ionization potential of a molecule. The descriptor assumes that explicit hydrogens
have been added to the molecules.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named MolIP.

70 extractDrugKappaShapelndices

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugIPMolecularlLearning(mol)
head(dat)

extractDrugKappaShapelIndices
Descriptor that Calculates Kier and Hall Kappa Molecular Shape In-

dices

Description

Descriptor that Calculates Kier and Hall Kappa Molecular Shape Indices

Usage
extractDrugKappaShapeIndices(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Kier and Hall Kappa molecular shape indices compare the molecular graph with minimal and max-
imal molecular graphs; see https://bit.ly/3ramdBy for details: "they are intended to capture
different aspects of molecular shape. Note that hydrogens are ignored. In the following description,
n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the
hydrogen suppressed graph. Also, let p2 denote the number of paths of length 2 and let p3 denote
the number of paths of length 3".

Value
A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 3 columns named Kier1, Kier2 and Kier3:
* Kier?1 - First kappa shape index
* Kier2 - Second kappa shape index
* Kier3 - Third kappa shape index

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugKappaShapeIndices(mol)
head(dat)

https://bit.ly/3ramdBy

extractDrugKierHallSmarts 71

extractDrugKierHallSmarts
Descriptor that Counts the Number of Occurrences of the E-State

Fragments

Description

Descriptor that Counts the Number of Occurrences of the E-State Fragments

Usage

extractDrugKierHallSmarts(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

A fragment count descriptor that uses e-state fragments. Traditionally the e-state descriptors iden-
tify the relevant fragments and then evaluate the actual e-state value. However it has been shown
in Butina et al. that simply using the counts of the e-state fragments can lead to QSAR models that
exhibit similar performance to those built using the actual e-state indices.

Atom typing and aromaticity perception should be performed prior to calling this descriptor. The
atom type definitions are taken from Hall et al. The SMARTS definitions were obtained from

RDAKit.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 79 columns:

ID Name Pattern
Q khs.sLi [LiD1]-*
1 khs.ssBe [BeD2](-*)-*
2 khs.ssssBe [BeD4] (%) (%) (-%)—*
3 khs.ssBH [BD2H](-*)-*
4 khs.sssB [BD3](-*) (-*)-*
5 khs.ssssB [BD4T (%) (=) (=%)-*
6 khs.sCH3 [CD1H3]-*
7 khs.dCH2 [CD1H2]=*
8 khs.ssCH2 [CD2H2] (-*)—*
9 khs.tCH [CDTH]#x*
10 khs.dsCH [CD2H] (=) -*
11 khs.aaCH [C,c;D2HI(:*):*
12 khs.sssCH [CD3HT(=*) (%) -
13 khs.ddC [CD2HO] (=x)=*
14 khs.tsC [CD2HO] (#x*)-*

15 khs.dssC [CD3HO] (=*) (%) -*

72

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

khs.aasC
khs.aaaC
khs.ssssC
khs.sNH3
khs.sNH2
khs.ssNH2
khs.dNH
khs.ssNH
khs.aaNH
khs.tN
khs.sssNH
khs.dsN
khs.aaN
khs.sssN
khs.ddsN
khs.aasN
khs.ssssN
khs.sOH
khs.dO
khs.ssO
khs.aa0
khs.sF
khs.sSiH3
khs.ssSiH2
khs.sssSiH
khs.ssssSi
khs.sPH2
khs.ssPH
khs.sssP
khs.dsssP
khs.sssssP
khs.sSH
khs.dS
khs.ssS
khs.aa$S
khs.dssS
khs.ddssS
khs.sCl
khs.sGeH3
khs.ssGeH2
khs.sssGeH
khs.ssssGe
khs.sAsH2
khs.ssAsH
khs.sssAs
khs.sssdAs
khs.sssssAs
khs.sSeH
khs.dSe
khs.ssSe
khs.aaSe
khs.dssSe

[C,c;D3HOT(: %) (:x)—x*
[C,c;D3HOT(:*) (:%):*
[CD4HOT (-*) (-*) (—=*)-*

[NDTH3]-*
[NDT1H2]-*

[ND2H2] (~%)-*

[NDT1H]=*

[ND2H] (-*)-*
[N,nD2H] (: %) :

[NDTHOJ#x*

[ND3HI (%) (-%)-*
[ND2HO] (=%)-*
[N,nD2HRT (: %) : %
[ND3HO] (-*) (-*)-*
[ND3H@](~[0D1H@]) (~[OD1HO1) -, : *
[N,nD3HOT(: %) (:%)-, : %
[ND4HQ] (-*) (%) (-*)-*

[OD1H]-*
[ODTH@]=*

[OD2HO] (~%)-*
[0,0D2HRT(: %) : %

[FD1]-*
[SiDTH3]-*

[SiD2H2](-*)-*
[SiD3H1](~%) (-*)-*
[SiDAHOT(~x) (~%) (~*)—%

[PDTH2]-*

[PD2H1](-*)-*
[PD3HOT(-*) (-*)-*
[PD4HO] (=%) (-*) (—*)-*
[PD5HOT (-*) (-%) (-%) (—%) -*

[SDTH1]-*
[SD1HO]=*

[SD2HO] (-*)-*
[S,sD2HO](:%):%
[SD3HOT (=*) (-*) -*
[SD4H@](~[ODTHO]) (~[ODTHOT) (-*)-*

[C1D1]-*
[GeD1H3]1(-*)

[GeD2H2] (-*)-*
[GeD3H1I(-*) (—*)-*
[GeDAHOT (~) (~%) (~*)—*

[AsD1H2]-*

[AsD2H1](-*)-*
[AsD3HO] (-*) (—*)-*
[ASD4HOT (=) (—*) (—*)—*
[ASD5SHO] (—%) (=%) (=%) (%) —-*

[SeD1H1]-*
[SeDTHO]=*

[SeD2HO] (—-*)-*
[SeD2HO] (:*):*
[SeD3HO] (=*) (-*)-*

extractDrugKierHallSmarts

extractDrugKR 73
68 khs.ddssSe [SeD4HO] (=*) (=) (—*)—*
69 khs.sBr [BrD1]-*
70 khs.sSnH3 [SnD1H3]-*
71 khs.ssSnH2 [SnD2H2] (-*)-*
72 khs.sssSnH [SND3HT](-*) (-*)-*
73 khs.ssssSn [SND4HOT (—*) (=*) (—*)—*
74 khs.sI CID1]-*
75 khs.sPbH3 [PbDT1H3]-*
76 khs.ssPbH2 [PbD2H2] (-*) -
77 khs.sssPbH [PbD3HT](-*) (-*)-*
78 khs.ssssPb [PbD4HOT (=*) (=*) (=*)-*
References

Butina, D. , Performance of Kier-Hall E-state Descriptors in Quantitative Structure Activity Rela-
tionship (QSAR) Studies of Multifunctional Molecules, Molecules, 2004, 9:1004-1009.

Hall, L.H. and Kier, L.B. , Electrotopological State Indices for Atom Types: A Novel Combination
of Electronic, Topological, and Valence State Information, Journal of Chemical Information and
Computer Science, 1995, 35:1039-1045.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugKierHallSmarts(mol)
head(dat)

extractDrugkR Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Com-

pact Format)

Description

Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Compact Format)

Usage

extractDrugkR(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the 4860 bit fingerprint defined by Klekota and Roth.

74 extractDrugKRComplete

Value
A list, each component represents one of the molecules, each element in the component represents

the index of which element in the fingerprint is 1. Each component’s name is the length of the

fingerprints.

See Also
extractDrugKRComplete

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')

fp = extractDrugkR(mol)
head(fp)

extractDrugkRComplete Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Com-
plete Format)

Description
Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Complete Format)

Usage
extractDrugkRComplete(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the 4860 bit fingerprint defined by Klekota and Roth.

Value
An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-

prints.

See Also
extractDrugKR

extractDruglargestChain 75

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugKRComplete(mol)
dim(fp)

extractDruglLargestChain
Descriptor that Calculates the Number of Atoms in the Largest Chain

Description

Descriptor that Calculates the Number of Atoms in the Largest Chain

Usage

extractDrugLargestChain(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the number of atoms in the largest chain. Note that a chain exists if there
are two or more atoms. Thus single atom molecules will return .

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nAtomLC.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugLargestChain(mol)
head(dat)

76 extractDruglengthOverBreadth

extractDruglLargestPiSystem

Descriptor that Calculates the Number of Atoms in the Largest Pi
Chain

Description

Descriptor that Calculates the Number of Atoms in the Largest Pi Chain

Usage

extractDruglLargestPiSystem(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the number of atoms in the largest pi chain.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nAtomP.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDruglLargestPiSystem(mol)
head(dat)

extractDruglLengthOverBreadth
Calculate the Ratio of Length to Breadth Descriptor

Description

Calculate the Ratio of Length to Breadth Descriptor

Usage

extractDruglLengthOverBreadth(molecules, silent = TRUE)

extractDruglongestAliphaticChain 77

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculates the Ratio of Length to Breadth, as a result ti does not perform any orientation and only
considers the X & Y extents for a series of rotations about the Z axis (in 10 degree increments).

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns two columns named LOBMAX and LOBMIN:

¢ LOBMAX - The maximum L/B ratio;
* LOBMIN - The L/B ratio for the rotation that results in the minimum area (defined by the product

of the X & Y extents for that orientation).
Note

The descriptor assumes that the atoms have been configured.

Examples

sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

mol = readMolFromSDF (sdf)
dat = extractDruglLengthOverBreadth(mol)
head(dat)

extractDruglLongestAliphaticChain
Descriptor that Calculates the Number of Atoms in the Longest
Aliphatic Chain

Description

Descriptor that Calculates the Number of Atoms in the Longest Aliphatic Chain

Usage

extractDruglLongestAliphaticChain(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

78 extractDrugMACCS

Details

This descriptor calculates the number of atoms in the longest aliphatic chain.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nAtomLAC.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDruglLongestAliphaticChain(mol)
head(dat)

extractDrugMACCS Calculate the MACCS Molecular Fingerprints (in Compact Format)

Description

Calculate the MACCS Molecular Fingerprints (in Compact Format)

Usage
extractDrugMACCS(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

The popular 166 bit MACCS keys described by MDL.

Value
A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also
extractDrugM ACCSComplete

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

fp = extractDrugMACCS(mol)
head(fp)

extractDrugM ACCSComplete 79

extractDrugMACCSComplete
Calculate the MACCS Molecular Fingerprints (in Complete Format)

Description

Calculate the MACCS Molecular Fingerprints (in Complete Format)

Usage

extractDrugMACCSComplete(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

The popular 166 bit MACCS keys described by MDL.

Value
An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also
extractDrugMACCS

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugMACCSComplete(mol)
dim(fp)

extractDrugMannholdLogP
Descriptor that Calculates the LogP Based on a Simple Equation Us-
ing the Number of Carbons and Hetero Atoms

Description

Descriptor that Calculates the LogP Based on a Simple Equation Using the Number of Carbons and
Hetero Atoms

80 extractDrugMDE

Usage

extractDrugMannholdLogP(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the LogP based on a simple equation using the number of carbons and
hetero atoms. The implemented equation was proposed in Mannhold et al.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named MLogP.

References

Mannhold, R., Poda, G. I, Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilic-
ity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. Journal of
pharmaceutical sciences, 98(3), 861-893.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugMannholdLogP(mol)
head(dat)

extractDrugMDE Calculate Molecular Distance Edge (MDE) Descriptors for C, N and
0

Description

Calculate Molecular Distance Edge (MDE) Descriptors for C, N and O

Usage

extractDrugMDE (molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

extractDrugMomentOfInertia 81

Details
This descriptor calculates the 10 molecular distance edge (MDE) descriptor described in Liu, S.,
Cao, C., & Li, Z, and in addition it calculates variants where O and N are considered.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nAtomLAC.

References

Liu, S., Cao, C., & Li, Z. (1998). Approach to estimation and prediction for normal boiling point
(NBP) of alkanes based on a novel molecular distance-edge (MDE) vector, lambda. Journal of
chemical information and computer sciences, 38(3), 387-394.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugMDE(mol)
head(dat)

extractDrugMomentOflInertia

Descriptor that Calculates the Principal Moments of Inertia and Ra-
tios of the Principal Moments

Description

Descriptor that Calculates the Principal Moments of Inertia and Ratios of the Principal Moments

Usage

extractDrugMomentOfInertia(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

A descriptor that calculates the moment of inertia and radius of gyration. Moment of inertia (MI)
values characterize the mass distribution of a molecule. Related to the MI values, ratios of the
MI values along the three principal axes are also well know modeling variables. This descriptor
calculates the MI values along the X, Y and Z axes as well as the ratio’s X/Y, X/Z and Y/Z. Finally
it also calculates the radius of gyration of the molecule.

82 extractDrugOBFP2

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 7 columns named MOMI . X, MOMI .Y, MOMI.Z, MOMI. XY, MOMI.XZ, MOMI.YZ, MOMI.R:

* MOMI.X - MI along X axis

* MOMI.Y - MI along Y axis

* MOMI.Z - MI along Z axis

e MOMI.XY - X/Y

e MOMI.XZ - X/Z

e MOMI.YZ - Y/Z

* MOMI.R - Radius of gyration

One important aspect of the algorithm is that if the eigenvalues of the MI tensor are below Te-3,
then the ratio’s are set to a default of 1000.

Examples

sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

mol = readMolFromSDF (sdf)
dat = extractDrugMomentOfInertia(mol)
head(dat)

extractDrugOBFP2 Calculate the FP2 Molecular Fingerprints

Description

Calculate the FP2 Molecular Fingerprints

Usage

extractDrugOBFP2(molecules, type = c("smile”, "sdf"))

Arguments
molecules R character string object containing the molecules. See the example section for
details.
type 'smile' or 'sdf'.
Details

Calculate the 1024 bit FP2 fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

extractDrugOBFP3 83

Examples

mol1 "C1CCCICC(CN(C)(C))CCc(=0)CC" # one molecule SMILE in a vector
mol2 = c('CCC', 'CCN', 'CCN(C)(C)', 'clccccclCclcececl ',
"CICCCICC(CN(C)(C))CC(=0)CC') # multiple SMILEs in a vector
mol3 = readChar(system.file('compseq/DB00860@.sdf', package = 'Rcpi'),
nchars = 1e+6) # single molecule in a sdf file
mol4 = readChar(system.file('sysdata/OptAA3d.sdf', package = 'Rcpi'),
nchars = 1e+6) # multiple molecules in a sdf file

Not run:

smifp@ = extractDrugOBFP2(moll, type = 'smile')
smifpl = extractDrugOBFP2(mol2, type 'smile')
sdffp@ = extractDrugOBFP2(mol3, type = 'sdf')
sdffpl = extractDrugOBFP2(mol4, type = 'sdf')
End(Not run)

extractDrugOBFP3 Calculate the FP3 Molecular Fingerprints

Description

Calculate the FP3 Molecular Fingerprints

Usage
extractDrugOBFP3(molecules, type = c("smile”, "sdf"))

Arguments
molecules R character string object containing the molecules. See the example section for
details.
type 'smile' or 'sdf"'.
Details

Calculate the 64 bit FP3 fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

Examples

moll = '"CI1CCCICC(CN(C)(C))CC(=0)CC"' # one molecule SMILE in a vector
mol2 = c('CCC', '"CCN', 'CCN(C)(C)', 'clccccclCclcececl ',
"CICCCICC(CN(C)(C))CC(=0)CC') # multiple SMILEs in a vector

mol3 = readChar(system.file('compseq/DB00860@.sdf', package = 'Rcpi'),
nchars = 1e+6) # single molecule in a sdf file

mol4 = readChar(system.file('sysdata/OptAA3d.sdf', package = 'Rcpi'),
nchars = 1e+6) # multiple molecules in a sdf file

Not run:

smifp@ = extractDrugOBFP3(moll, type = 'smile')

smifpl = extractDrugOBFP3(mol2, type 'smile')

84 extractDrugOBFP4

sdffp@ = extractDrugOBFP3(mol3, type = 'sdf')

sdffpl = extractDrugOBFP3(mol4, type = 'sdf')
End(Not run)
extractDrugOBFP4 Calculate the FP4 Molecular Fingerprints

Description

Calculate the FP4 Molecular Fingerprints

Usage

extractDrugOBFP4(molecules, type = c("smile”, "sdf"))

Arguments
molecules R character string object containing the molecules. See the example section for
details.
type 'smile' or 'sdf'.
Details

Calculate the 512 bit FP4 fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

Examples

mol1 "C1CCC1CC(CN(C)(C))CC(=0)CC"' # one molecule SMILE in a vector
mol2 = c('CCC', '"CCN', 'CCN(C)(C)', 'clccccclCclcccec ',
"C1CCCICC(CN(C)(C))CC(=0)CC') # multiple SMILEs in a vector
mol3 = readChar(system.file('compseq/DB00860@.sdf', package = 'Rcpi'),
nchars = 1e+6) # single molecule in a sdf file
mol4 = readChar(system.file('sysdata/OptAA3d.sdf', package = 'Rcpi'),
nchars = 1e+6) # multiple molecules in a sdf file

Not run:

smifp@ = extractDrugOBFP4(moll, type 'smile')
smifpl = extractDrugOBFP4(mol2, type = 'smile')
sdffp@ = extractDrugOBFP4(mol3, type 'sdf')
sdffpl = extractDrugOBFP4(mol4, type = 'sdf')
End(Not run)

extractDrugOBMACCS 85

extractDrugOBMACCS Calculate the MACCS Molecular Fingerprints

Description

Calculate the MACCS Molecular Fingerprints

Usage

extractDrugOBMACCS(molecules, type = c("smile”, "sdf"))

Arguments
molecules R character string object containing the molecules. See the example section for
details.
type 'smile' or 'sdf"'.
Details

Calculate the 256 bit MACCS fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

Examples

moll = '"CICCCICC(CN(C)(C))CC(=0)CC"' # one molecule SMILE in a vector
mol2 = c('CCC', 'CCN', 'CCN(C)(C)', 'clccccclCclccececl',
"CICCCICC(CN(C)(C))CC(=0)CC') # multiple SMILEs in a vector
mol3 = readChar(system.file('compseq/DB00860.sdf', package = 'Rcpi'),
nchars = 1e+6) # single molecule in a sdf file
mol4 = readChar(system.file('sysdata/OptAA3d.sdf', package = 'Rcpi'),
nchars = 1e+6) # multiple molecules in a sdf file

Not run:

MACCS may not be available in current version of ChemmineOB
smifp@ = extractDrugOBMACCS(moll, type = 'smile')

smifpl = extractDrugOBMACCS(mol2, type = 'smile')

sdffp@ = extractDrugOBMACCS(mol3, type = 'sdf')

sdffpl = extractDrugOBMACCS(mol4, type = 'sdf')

End(Not run)

86 extractDrugPetitjeanNumber

extractDrugPetitjeanNumber
Descriptor that Calculates the Petitjean Number of a Molecule

Description

Descriptor that Calculates the Petitjean Number of a Molecule

Usage

extractDrugPetitjeanNumber(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the Petitjean number of a molecule. According to the Petitjean definition,
the eccentricity of a vertex corresponds to the distance from that vertex to the most remote vertex
in the graph.

The distance is obtained from the distance matrix as the count of edges between the two vertices. If
r(i) is the largest matrix entry in row i of the distance matrix D, then the radius is defined as the
smallest of the r(i). The graph diameter D is defined as the largest vertex eccentricity in the graph.
(http://www.edusoft-1c.com/molconn/manuals/400/chaptwo.html)

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named PetitjeanNumber.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugPetitjeanNumber(mol)
head(dat)

http://www.edusoft-lc.com/molconn/manuals/400/chaptwo.html

extractDrugPetitjeanShapelndex 87

extractDrugPetitjeanShapelndex
Descriptor that Calculates the Petitjean Shape Indices

Description

Descriptor that Calculates the Petitjean Shape Indices

Usage

extractDrugPetitjeanShapeIndex(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

The topological and geometric shape indices described Petitjean and Bath et al. respectively. Both
measure the anisotropy in a molecule.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns two columns named topoShape (Topological Shape Index) and geomShape (Geo-
metric Shape Index).

References

Petitjean, M., Applications of the radius-diameter diagram to the classification of topological and
geometrical shapes of chemical compounds, Journal of Chemical Information and Computer Sci-
ence, 1992, 32:331-337

Bath, P.A. and Poirette, A.R. and Willet, P. and Allen, F.H. , The Extent of the Relationship between
the Graph-Theoretical and the Geometrical Shape Coefficients of Chemical Compounds, Journal of
Chemical Information and Computer Science, 1995, 35:714-716.

Examples

sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

mol = readMolFromSDF (sdf)
dat = extractDrugPetitjeanShapeIndex(mol)
head(dat)

extractDrugPubChemComplete

88
extractDrugPubChem Calculate the PubChem Molecular Fingerprints (in Compact Format)
Description
Calculate the PubChem Molecular Fingerprints (in Compact Format)
Usage
extractDrugPubChem(molecules, silent = TRUE)
Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details
Calculate the 881 bit fingerprints defined by PubChem.
Value

A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the

fingerprints.

See Also
extractDrugPubChemComplete

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugPubChem(mol)

head(fp)

extractDrugPubChemComplete
Calculate the PubChem Molecular Fingerprints (in Complete Format)

Description
Calculate the PubChem Molecular Fingerprints (in Complete Format)

Usage
extractDrugPubChemComplete(molecules, silent = TRUE)

extractDrugRotatableBondsCount 89

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the 881 bit fingerprints defined by PubChem.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugPubChem

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugPubChemComplete(mol)
dim(fp)

extractDrugRotatableBondsCount
Descriptor that Calculates the Number of Nonrotatable Bonds on A
Molecule

Description

Descriptor that Calculates the Number of Nonrotatable Bonds on A Molecule

Usage

extractDrugRotatableBondsCount(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

The number of rotatable bonds is given by the SMARTS specified by Daylight on SMARTS tutorial
(https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html)

https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html

90 extractDrugRuleOfFive

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named nRotB.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugRotatableBondsCount(mol)
head(dat)

extractDrugRuleOfFive Descriptor that Calculates the Number Failures of the Lipinski’s Rule
Of Five

Description

Descriptor that Calculates the Number Failures of the Lipinski’s Rule Of Five

Usage

extractDrugRuleOfFive(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the number failures of the Lipinski’s Rule Of Five: http://en.wikipedia.
org/wiki/Lipinski%27s_Rule_of_Five.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named LipinskiFailures.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugRuleOfFive(mol)
head(dat)

http://en.wikipedia.org/wiki/Lipinski%27s_Rule_of_Five
http://en.wikipedia.org/wiki/Lipinski%27s_Rule_of_Five

extractDrugShortestPath 91

extractDrugShortestPath
Calculate the Shortest Path Molecular Fingerprints (in Compact For-
mat)

Description

Calculate the Shortest Path Molecular Fingerprints (in Compact Format)

Usage

extractDrugShortestPath(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the fingerprint based on the shortest paths between pairs of atoms and takes into account
ring systems, charges etc.

Value

A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also

extractDrugShortestPathComplete

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugShortestPath(mol)
head(fp)

92 extractDrugShortestPathComplete

extractDrugShortestPathComplete
Calculate the Shortest Path Molecular Fingerprints (in Complete For-
mat)

Description

Calculate the Shortest Path Molecular Fingerprints (in Complete Format)

Usage
extractDrugShortestPathComplete(
molecules,
depth = 6,
size = 1024,
silent = TRUE
)
Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the fingerprint based on the shortest paths between pairs of atoms and takes into account
ring systems, charges etc.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugShortestPath

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugShortestPathComplete(mol)
dim(fp)

extractDrugStandard 93

extractDrugStandard Calculate the Standard Molecular Fingerprints (in Compact Format)

Description

Calculate the Standard Molecular Fingerprints (in Compact Format)

Usage

extractDrugStandard(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the standard molecular fingerprints. Considers paths of a given length. This is hashed
fingerprints, with a default length of 1024.

Value
A list, each component represents one of the molecules, each element in the component represents
the index of which element in the fingerprint is 1. Each component’s name is the length of the
fingerprints.

See Also

extractDrugStandardComplete

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

fp = extractDrugStandard(mol)
head(fp)

94 extractDrugStandardComplete

extractDrugStandardComplete
Calculate the Standard Molecular Fingerprints (in Complete Format)

Description

Calculate the Standard Molecular Fingerprints (in Complete Format)

Usage

extractDrugStandardComplete(molecules, depth = 6, size = 1024, silent = TRUE)

Arguments
molecules Parsed molucule object.
depth The search depth. Default is 6.
size The length of the fingerprint bit string. Default is 1024.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the standard molecular fingerprints. Considers paths of a given length. This is hashed
fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-
prints.

See Also

extractDrugStandard

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
fp = extractDrugStandardComplete(mol)
dim(fp)

extractDrugTPSA 95

extractDrugTPSA Descriptor of Topological Polar Surface Area Based on Fragment
Contributions (TPSA)

Description

Descriptor of Topological Polar Surface Area Based on Fragment Contributions (TPSA)

Usage

extractDrugTPSA(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Calculate the descriptor of topological polar surface area based on fragment contributions (TPSA).

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named TopoPSA.

References
Ertl, P, Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum

of fragment-based contributions and its application to the prediction of drug transport properties.
Journal of medicinal chemistry, 43(20), 3714-3717.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugTPSA(mol)

head(dat)

96 extractDrugVAdjMa

extractDrugVABC Descriptor that Calculates the Volume of A Molecule

Description

Descriptor that Calculates the Volume of A Molecule

Usage
extractDrugVABC(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the volume of a molecule.

Value
A data frame, each row represents one of the molecules, each column represents one feature. This

function returns one column named VABC.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugVABC(mol)
head(dat)
extractDrugVAdjMa Descriptor that Calculates the Vertex Adjacency Information of A
Molecule
Description

Descriptor that Calculates the Vertex Adjacency Information of A Molecule

Usage
extractDrugVAdjMa(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

extractDrugWeight 97

Details

Vertex adjacency information (magnitude): 1+log5" where m is the number of heavy-heavy bonds.
If m is zero, then 0 is returned.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named VAdjMat.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugVAdjMa(mol)
head(dat)
extractDrugWeight Descriptor that Calculates the Total Weight of Atoms
Description

Descriptor that Calculates the Total Weight of Atoms

Usage
extractDrugWeight(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the molecular weight.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named MW.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugWeight(mol)
head(dat)

98 extractDrugWeightedPath

extractDrugWeightedPath
Descriptor that Calculates the Weighted Path (Molecular ID)

Description

Descriptor that Calculates the Weighted Path (Molecular ID)

Usage

extractDrugWeightedPath(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the weighted path (molecular ID) described by Randic, characterizing
molecular branching. Five descriptors are calculated, based on the implementation in the ADAPT
software package. Note that the descriptor is based on identifying all paths between pairs of atoms
and so is NP-hard. This means that it can take some time for large, complex molecules.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 5 columns named WTPT. 1, WTPT. 2, WTPT. 3, WTPT. 4, WTPT.5:

* WTPT.1 - molecular ID

e WTPT. 2 - molecular ID / number of atoms

* WTPT. 3 - sum of path lengths starting from heteroatoms
* WTPT.4 - sum of path lengths starting from oxygens

* WTPT.5 - sum of path lengths starting from nitrogens

References

Randic, M., On molecular identification numbers (1984). Journal of Chemical Information and
Computer Science, 24:164-175.

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugWeightedPath(mol)

head(dat)

extractDrugWHIM 99

extractDrugWHIM Calculate Holistic Descriptors Described by Todeschini et al.

Description

Calculate Holistic Descriptors Described by Todeschini et al.

Usage

extractDrugWHIM(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Holistic descriptors described by Todeschini et al, the descriptors are based on a number of atom
weightings. There are six different possible weightings:

* unit weights

* atomic masses

* van der Waals volumes

* Mulliken atomic electronegativites

* atomic polarizabilities

 E-state values described by Kier and Hall
Currently weighting schemes 1, 2, 3, 4 and 5 are implemented. The weight values are taken from
Todeschini et al. and as a result 19 elements are considered. For each weighting scheme we can
obtain

* 11 directional WHIM descriptors (lambdal .. 3, nul .. 2, gammal .. 3, etal .. 3)

* 6 non-directional WHIM descriptors (T, A, V, K, G, D)

Though Todeschini et al. mentions that for planar molecules only 8 directional WHIM descriptors
are required the current code will return all 11.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns 17 columns:

* Wlambdal

* Wlambda2

* wlambda3

e Wnul

e Wnu2

100 extractDrugWienerNumbers

e Wgammal

e Wgamma?2

* Wgamma3

* Wetal

* Weta2

* Weta3

* WT

* WA

* WV

* WK

* WG

* WD
Each name will have a suffix of the form . X where X indicates the weighting scheme used. Possible
values of X are

* unity

* mass

* volume

* eneg

* polar

References

Todeschini, R. and Gramatica, P., New 3D Molecular Descriptors: The WHIM theory and QAR
Applications, Persepectives in Drug Discovery and Design, 1998, 7:355-380.

Examples

sdf = system.file('sysdata/OptAA3d.sdf', package = 'Rcpi')

mol = readMolFromSDF (sdf)
dat = extractDrugWHIM(mol)
head(dat)

extractDrugWienerNumbers

Descriptor that Calculates Wiener Path Number and Wiener Polarity
Number

Description

Descriptor that Calculates Wiener Path Number and Wiener Polarity Number

Usage

extractDrugWienerNumbers(molecules, silent = TRUE)

extractDrugXLogP 101

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

This descriptor calculates the Wiener numbers, including the Wiener Path number and the Wiener
Polarity Number. Wiener path number: half the sum of all the distance matrix entries; Wiener
polarity number: half the sum of all the distance matrix entries with a value of 3.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns two columns named WPATH (weiner path number) and WPOL (weiner polarity num-
ber).

References

Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American
Chemical Society, 69(1), 17-20.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugWienerNumbers(mol)
head(dat)
extractDrugXLogP Descriptor that Calculates the Prediction of logP Based on the Atom-
Type Method Called XLogP
Description

Descriptor that Calculates the Prediction of logP Based on the Atom-Type Method Called XLogP

Usage

extractDrugXLogP(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Prediction of logP based on the atom-type method called XLogP.

102 extractDrugZagrebIndex

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named XLogP.

References

Wang, R., Fu, Y., and Lai, L., A New Atom-Additive Method for Calculating Partition Coefficients,
Journal of Chemical Information and Computer Sciences, 1997, 37:615-621.

Wang, R., Gao, Y., and Lai, L., Calculating partition coefficient by atom-additive method, Perspec-
tives in Drug Discovery and Design, 2000, 19:47-66.

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')
dat = extractDrugXLogP(mol)
head(dat)

extractDrugZagrebIndex
Descriptor that Calculates the Sum of the Squared Atom Degrees of
All Heavy Atoms

Description

Descriptor that Calculates the Sum of the Squared Atom Degrees of All Heavy Atoms

Usage

extractDrugZagrebIndex(molecules, silent = TRUE)

Arguments
molecules Parsed molucule object.
silent Logical. Whether the calculating process should be shown or not, default is
TRUE.
Details

Zagreb index: the sum of the squares of atom degree over all heavy atoms i.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This
function returns one column named Zagreb.

extractPCMBLOSUM 103

Examples
smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')
mol = readMolFromSmi(smi, type = 'mol')

dat = extractDrugZagrebIndex(mol)
head(dat)

extractPCMBLOSUM Generalized BLOSUM and PAM Matrix-Derived Descriptors

Description

Generalized BLOSUM and PAM Matrix-Derived Descriptors

Usage
extractPCMBLOSUM(x, submat = "AABLOSUM62", k, lag, scale = TRUE, silent = TRUE)

Arguments
X A character vector, as the input protein sequence.
submat Substitution matrix for the 20 amino acids. Should be one of AABLOSUM45,

AABLOSUM50, AABLOSUM62, AABLOSUM80, AABLOSUM100, AAPAM30, AAPAM40, AAPAM70,
AAPAM120, AAPAM250. Default is ' AABLOSUM62'.

k Integer. The number of selected scales (i.e. the first k scales) derived by the
substitution matrix. This could be selected according to the printed relative im-
portance values.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the substitution matrix (submat) before doing
eigen decomposition? Default is TRUE.

silent Logical. Whether we print the relative importance of each scales (diagnal value
of the eigen decomposition result matrix B) or not. Default is TRUE.
Details

This function calculates the generalized BLOSUM matrix-derived descriptors. For users’ conve-
nience, Repi provides the BLOSUM45, BLOSUMS0, BLOSUM62, BLOSUM80, BLOSUM100,
PAM30, PAM40, PAM70, PAM120, and PAM250 matrices for the 20 amino acids to select.

Value

A length lag * p*2 named vector, p is the number of scales selected.

References
Georgiev, A. G. (2009). Interpretable numerical descriptors of amino acid space. Journal of Com-
putational Biology, 16(5), 703-723.

Examples

x = readFASTA(system.file('protseq/P00750.fasta’', package = 'Rcpi'))[[1]]
blosum = extractPCMBLOSUM(x, submat = "AABLOSUM62', k =5, lag = 7, scale = TRUE, silent = FALSE)

104

extractPCMDescScales

extractPCMDescScales Scales-Based Descriptors with 20+ classes of Molecular Descriptors

Description
Scales-Based Descriptors with 20+ classes of Molecular Descriptors
Usage
extractPCMDescScales(
X,
propmat,
index = NULL,
pc,
lag,
scale = TRUE,
silent = TRUE
)
Arguments
X A character vector, as the input protein sequence.
propmat The matrix containing the descriptor set for the amino acids, which could be
chosen from AAMOE2D, AAMOE3D, AACPSA, AADescAll, AA2DACOR, AA3DMoRSE
AAACF, AABurden, AAConn, AAConst, AAEdgeAdj, AAEigIdx, AAFGC, AAGeom,
AAGETAWAY, AAInfo, AAMolProp, AARandic, AARDF, AATopo, AATopoChg, AAWalk,
AAWHIM.
index Integer vector or character vector. Specify which molecular descriptors to select
from one of these deseriptor sets by specify the numerical or character index of
the molecular descriptors in the descriptor set. Default is NULL, means selecting
all the molecular descriptors in this descriptor set.
pc Integer. The maximum dimension of the space which the data are to be repre-
sented in. Must be no greater than the number of AA properties provided.
lag The lag parameter. Must be less than the amino acids.
scale Logical. Should we auto-scale the property matrix (propmat) before doing
MDS? Default is TRUE.
silent Logical. Whether we print the standard deviation, proportion of variance and
the cumulative proportion of the selected principal components or not. Default
is TRUE.
Details

This function calculates the scales-based descriptors with molecular descriptors sets calculated by
Dragon, Discovery Studio and MOE. Users could specify which molecular descriptors to select
from one of these deseriptor sets by specify the numerical or character index of the molecular
descriptors in the descriptor set.

Value

A length lag * p*2 named vector, p is the number of scales selected.

extractPCMFAScales 105

See Also

See extractPCMScales for generalized AA-descriptor based scales descriptors.

Examples

X = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
descscales = extractPCMDescScales(x, propmat = 'AATopo', index = c(37:41, 43:47),
pc =5, lag = 7, silent = FALSE)

extractPCMFAScales Generalized Scales-Based Descriptors derived by Factor Analysis

Description

Generalized Scales-Based Descriptors derived by Factor Analysis

Usage
extractPCMFAScales(
X ’
propmat,
factors,
scores = "regression”,
lag,
scale = TRUE,
silent = TRUE
)
Arguments
X A character vector, as the input protein sequence.
propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.
factors Integer. The number of factors to be fitted. Must be no greater than the number
of AA properties provided.
scores Type of scores to produce. The default is "regression”, which gives Thomp-
son’s scores, "Bartlett"” given Bartlett’s weighted least-squares scores.
lag The lag parameter. Must be less than the amino acids number in the protein
sequence.
scale Logical. Should we auto-scale the property matrix (propmat) before doing Fac-
tor Analysis? Default is TRUE.
silent Logical. Whether we print the SS loadings, proportion of variance and the cu-
mulative proportion of the selected factors or not. Default is TRUE.
Details

This function calculates the generalized scales-based descriptors derived by Factor Analysis (FA).
Users could provide customized amino acid property matrices.

106 extractPCMMDSScales

Value

A length lag * p*2 named vector, p is the number of scales (factors) selected.

References

Atchley, W. R., Zhao, J., Fernandes, A. D., & Druke, T. (2005). Solving the protein sequence
metric problem. Proceedings of the National Academy of Sciences of the United States of America,
102(18), 6395-6400.

Examples

x = readFASTA(system.file('protseq/P00750.fasta’', package = 'Rcpi'))[[1]]
data(AATopo)

tprops = AATopo[, c(37:41, 43:47)] # select a set of topological descriptors

fa = extractPCMFAScales(x, propmat = tprops, factors = 5, lag = 7, silent = FALSE)

extractPCMMDSScales Generalized Scales-Based Descriptors derived by Multidimensional
Scaling

Description

Generalized Scales-Based Descriptors derived by Multidimensional Scaling

Usage

extractPCMMDSScales(x, propmat, k, lag, scale = TRUE, silent = TRUE)

Arguments
X A character vector, as the input protein sequence.
propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.
k Integer. The maximum dimension of the space which the data are to be repre-
sented in. Must be no greater than the number of AA properties provided.
lag The lag parameter. Must be less than the amino acids.
scale Logical. Should we auto-scale the property matrix (propmat) before doing
MDS? Default is TRUE.
silent Logical. Whether we print the k eigenvalues computed during the scaling pro-
cess or not. Default is TRUE.
Details

This function calculates the generalized scales-based descriptors derived by Multidimensional Scal-
ing (MDS). Users could provide customized amino acid property matrices.

extractPCMPropScales 107

Value

A length lag * p*2 named vector, p is the number of scales (dimensionality) selected.

References

Venkatarajan, M. S., & Braun, W. (2001). New quantitative descriptors of amino acids based on
multidimensional scaling of a large number of physical-chemical properties. Molecular modeling
annual, 7(12), 445-453.

See Also

See extractPCMScales for generalized scales-based descriptors derived by Principal Components
Analysis.

Examples

x = readFASTA(system.file('protseq/P00750.fasta’', package = 'Rcpi'))[[1]]
data(AATopo)

tprops = AATopo[, c(37:41, 43:47)] # select a set of topological descriptors
mds = extractPCMMDSScales(x, propmat = tprops, k = 5, lag = 7, silent = FALSE)

extractPCMPropScales Generalized AA-Properties Based Scales Descriptors

Description

Generalized AA-Properties Based Scales Descriptors

Usage

extractPCMPropScales(x, index = NULL, pc, lag, scale = TRUE, silent = TRUE)

Arguments

X A character vector, as the input protein sequence.

index Integer vector or character vector. Specify which AAindex properties to select
from the AAindex database by specify the numerical or character index of the
properties in the AAindex database. Default is NULL, means selecting all the AA
properties in the AAindex database.

pc Integer. Use the first pc principal components as the scales. Must be no greater
than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix before PCA? Default is TRUE.

silent Logical. Whether we print the standard deviation, proportion of variance and

the cumulative proportion of the selected principal components or not. Default
is TRUE.

108 extractPCMScales

Details

This function calculates the generalized amino acid properties based scales descriptors. Users could
specify which AAindex properties to select from the AAindex database by specify the numerical or
character index of the properties in the AAindex database.

Value

A length lag * p*2 named vector, p is the number of scales (principal components) selected.

See Also

See extractPCMScales for generalized scales-based descriptors.

Examples

X = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
propscales = extractPCMPropScales(x, index = c(160:165, 258:296), pc =5, lag =7, silent = FALSE)

extractPCMScales Generalized Scales-Based Descriptors derived by Principal Compo-
nents Analysis

Description

Generalized Scales-Based Descriptors derived by Principal Components Analysis

Usage

extractPCMScales(x, propmat, pc, lag, scale = TRUE, silent = TRUE)

Arguments

X A character vector, as the input protein sequence.

propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.

pc Integer. Use the first pc principal components as the scales. Must be no greater
than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix (propmat) before PCA? De-
fault is TRUE.

silent Logical. Whether we print the standard deviation, proportion of variance and

the cumulative proportion of the selected principal components or not. Default
is TRUE.

extractProtAAC 109

Details

This function calculates the generalized scales-based descriptors derived by Principal Components
Analysis (PCA). Users could provide customized amino acid property matrices. This function im-
plements the core computation procedure needed for the generalized scales-based descriptors de-
rived by AA-Properties (AAindex) and generalized scales-based descriptors derived by 20+ classes
of 2D and 3D molecular descriptors (Topological, WHIM, VHSE, etc.).

Value

A length lag * p*2 named vector, p is the number of scales (principal components) selected.

See Also

See extractPCMDescScales for generalized AA property based scales descriptors, and extractPCMPropScales
for (19 classes) AA descriptor based scales descriptors.

Examples

X = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
data(AAindex)

AAidxmat = t(na.omit(as.matrix(AAindex[, 7:261)))

scales = extractPCMScales(x, propmat = AAidxmat, pc = 5, lag = 7, silent = FALSE)

extractProtAAC Amino Acid Composition Descriptor

Description

Amino Acid Composition Descriptor

Usage

extractProtAAC(x)
Arguments

X A character vector, as the input protein sequence.
Details

This function calculates the Amino Acid Composition descriptor (Dim: 20).

Value

A length 20 named vector

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composi-
tion and Dipeptide Composition. Journal of Biological Chemistry, 2004, 279, 23262.

110 extractProtAPAAC

See Also
See extractProtDC and extractProtTC for Dipeptide Composition and Tripeptide Composition
descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtAAC(x)

extractProtAPAAC Amphiphilic Pseudo Amino Acid Composition Descriptor

Description

Amphiphilic Pseudo Amino Acid Composition Descriptor

Usage
extractProtAPAAC(
X,
props = c("Hydrophobicity"”, "Hydrophilicity"),
lambda = 30,
w = 0.05,
customprops = NULL
)
Arguments
X A character vector, as the input protein sequence.
props A character vector, specifying the properties used. 2 properties are used by
default, as listed below:
"Hydrophobicity’ Hydrophobicity value of the 20 amino acids
"Hydrophilicity’ Hydrophilicity value of the 20 amino acids
lambda The lambda parameter for the APAAC descriptors, default is 30.
w The weighting factor, default is 0.05.
customprops A n x 21 named data frame contains n customize property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A’,
lRI’ INI’ IDI’ IC!, IEI, IQ', IGl’ IHI’ III’ lLI’ IKI’ lMI’ lFI’ IPI’ lsl’
'T', "W, 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.
Details

This function calculates the Amphiphilic Pseudo Amino Acid Composition (APAAC) descriptor
(Dim: 20 + (n * lambda), n is the number of properties selected, default is 80).

extractProtAPAAC 111

Value

A length 20 + n * 1ambda named vector, n is the number of properties selected.

Note

Note the default 20 * 2 prop values have been already independently given in the function. Users
could also specify other (up to 544) properties with the Accession Number in the AAindex data, with
or without the default three properties, which means users should explicitly specify the properties
to use.

References

Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Composition.
PROTEINS: Structure, Function, and Genetics, 2001, 43: 246-255.

Type 2 pseudo amino acid composition. http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type2.
htm

Kuo-Chen Chou. Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Sub-
family Classes. Bioinformatics, 2005, 21, 10-19.

JACS, 1962, 84: 4240-4246. (C. Tanford). (The hydrophobicity data)
PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods). (The hydrophilicity data)

See Also

See extractProtPAAC for pseudo amino acid composition descriptor.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtAPAAC(x)

myprops = data.frame(AccNo = c("MyProp1”, "MyProp2", "MyProp3"),
A =c(0.62, -0.5, 15), R = c(-2.53, 3, 101),

N=c(-0.78, 0.2, 58), D =c(-0.9, 3, 59),
C=c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, ©.2, 72), G =c(0.48, 0, 1),

H=c(-0.4, -0.5, 82), I =c(1.38, -1.8, 57),
L=c(1.06, -1.8, 57), K =c(-1.5, 3, 73),
M=c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P =c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))

Use 2 default properties, 4 properties in the AAindex database,
and 3 cutomized properties
extractProtAPAAC(x, customprops = myprops,
props = c('Hydrophobicity', 'Hydrophilicity',
'CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type2.htm
http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type2.htm

112 extractProtCTDC

extractProtCTDC CTD Descriptors - Composition

Description

CTD Descriptors - Composition

Usage

extractProtCTDC(x)
Arguments

X A character vector, as the input protein sequence.
Details

This function calculates the Composition descriptor of the CTD descriptors (Dim: 21).

Value

A length 21 named vector

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractProtCTDT and extractProtCTDD for the Transition and Distribution descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtCTDC(x)

extractProtCTDD 113

extractProtCTDD CTD Descriptors - Distribution

Description

CTD Descriptors - Distribution

Usage

extractProtCTDD(x)
Arguments

X A character vector, as the input protein sequence.
Details

This function calculates the Distribution descriptor of the CTD descriptors (Dim: 105).

Value

A length 105 named vector

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractProtCTDC and extractProtCTDT for the Composition and Transition descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtCTDD(x)

114 extractProtCTDT

extractProtCTDT CTD Descriptors - Transition

Description

CTD Descriptors - Transition

Usage

extractProtCTDT(x)
Arguments

X A character vector, as the input protein sequence.
Details

This function calculates the Transition descriptor of the CTD descriptors (Dim: 21).

Value

A length 21 named vector

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractProtCTDC and extractProtCTDD for the Composition and Distribution descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtCTDT(x)

extractProtCTriad 115

extractProtCTriad Conjoint Triad Descriptor

Description

Conjoint Triad Descriptor

Usage

extractProtCTriad(x)
Arguments

X A character vector, as the input protein sequence.
Details

This function calculates the Conjoint Triad descriptor (Dim: 343).

Value

A length 343 named vector

References

J.W. Shen, J. Zhang, X.M. Luo, W.L. Zhu, K.Q. Yu, K.X. Chen, Y.X. Li, H.L. Jiang. Predicting
Protein-protein Interactions Based Only on Sequences Information. Proceedings of the National
Academy of Sciences. 007, 104, 4337-4341.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtCTriad(x)

extractProtDC Dipeptide Composition Descriptor

Description

Dipeptide Composition Descriptor

Usage

extractProtDC(x)

Arguments

X A character vector, as the input protein sequence.

116 extractProtGeary

Details

This function calculates the Dipeptide Composition descriptor (Dim: 400).

Value

A length 400 named vector

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composi-
tion and Dipeptide Composition. Journal of Biological Chemistry, 2004, 279, 23262.

See Also
See extractProtAAC and extractProtTC for Amino Acid Composition and Tripeptide Composi-

tion descriptors.

Examples

X = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
extractProtDC(x)

extractProtGeary Geary Autocorrelation Descriptor

Description

Geary Autocorrelation Descriptor

Usage

extractProtGeary/(
X,
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",
"BIGC670101", "CHAM810101", "DAYM780201"),
nlag = 30L,
customprops = NULL

)
Arguments
X A character vector, as the input protein sequence.
props A character vector, specifying the Accession Number of the target properties. 8

properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al.,
1992)

AccNo. BHARS880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)

AccNo. CHAMS820101 Polarizability parameter (Charton-Charton, 1982)

AccNo. CHAMS820102 Free energy of solution in water, kcal/mole (Charton-
Charton, 1982)

extractProtGeary

nlag

customprops

Details

117

AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia,
1976)

AccNo. BIGC670101 Residue volume (Bigelow, 1967)

AccNo. CHAMS810101 Steric parameter (Charton, 1981)

AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

Maximum value of the lag parameter. Default is 30.

A n x 21 named data frame contains n customize property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A’,
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I'", 'L', 'K', 'M', "F', '"P', 'S",
'T', "W, "Y', '"V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

This function calculates the Geary autocorrelation descriptor (Dim: length(props) * nlag).

Value

A length nlag named vector

References

AAindex: Amino acid index database. https://www.genome. jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence
hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrela-
tion: an usage from an Amerindian tribal population. American Journal of Physical Anthropology,

129, 121-131.

See Also

See extractProtMoreauBroto and extractProtMoran for Moreau-Broto autocorrelation descrip-
tors and Moran autocorrelation descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta’', package = 'Rcpi'))[[1]]
extractProtGeary(x)

myprops = data.frame(AccNo = c("MyProp1”, "MyProp2", "MyProp3"),

A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),

N =c(-0.78, 0.2, 58), D =c(-0.9, 3, 59),
C=c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G =c(0.48, 0, 1),

H=c(-0.4, -0.5, 82), I =c(1.38, -1.8, 57),
L =c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M=c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P=c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),

https://www.genome.jp/dbget/aaindex.html

118 extractProtMoran

Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))

Use 4 properties in the AAindex database, and 3 cutomized properties
extractProtGeary(x, customprops = myprops,
props = c('CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

extractProtMoran Moran Autocorrelation Descriptor

Description

Moran Autocorrelation Descriptor

Usage

extractProtMoran(
X!
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",
"BIGC670101", "CHAM810101", "DAYM780201"),

nlag = 30L,
customprops = NULL
)
Arguments
X A character vector, as the input protein sequence.
props A character vector, specifying the Accession Number of the target properties. 8
properties are used by default, as listed below:
AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al.,
1992)
AccNo. BHARS880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)
AccNo. CHAMS820101 Polarizability parameter (Charton-Charton, 1982)
AccNo. CHAMS820102 Free energy of solution in water, kcal/mole (Charton-
Charton, 1982)
AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia,
1976)
AccNo. BIGC670101 Residue volume (Bigelow, 1967)
AccNo. CHAMS810101 Steric parameter (Charton, 1981)
AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)
nlag Maximum value of the lag parameter. Default is 30.
customprops A n x 21 named data frame contains n customize property. Each row contains

one property. The column order for different amino acid types is 'AccNo', 'A’,
'R', 'N', 'D', 'C', 'E', 'Q', 'G", 'H', 'I', 'L', 'K', 'M', "F', 'P', 'S",
'T', "W, 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

extractProtMoran

Details

119

This function calculates the Moran autocorrelation descriptor (Dim: length(props) * nlag).

Value

A length nlag named vector

References

AAindex: Amino acid index database. https://www.genome. jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence

hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrela-
tion: an usage from an Amerindian tribal population. American Journal of Physical Anthropology,

129, 121-131.

See Also

See extractProtMoreauBroto and extractProtGeary for Moreau-Broto autocorrelation descrip-

tors and Geary autocorrelation descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]

extractProtMoran(x)

myprops = data.frame(AccNo = c("MyPropl1”, "MyPro

A = c(0.62, -0.5, 15),
N = c(-0.78, 0.2, 58),
C=c(0.29, -1, 47),
Q = c(-0.85, 0.2, 72),
H=c(-0.4, -0.5, 82),
L =c(1.06, -1.8, 57),
M= c(0.64, -1.3, 75),
P=c(0.12, 0, 42),
T = c(-0.05, -0.4, 45),
Y = c(0.26, -2.3, 107),

R

D
E
G
I
K
F
S
W
\

Use 4 properties in the AAindex database, and

extractProtMoran(x, customprops = myprops,

p2", "MyProp3"),

= c(-2.53, 3, 101),
= c(-0.9, 3, 59),
= c(-0.74, 3, 73),
= c(0.48, o, 1),

= c(1.38, -1.8, 57),
= c(-1.5, 3, 73),
= c(1.19, -2.5, 91),
= c(-0.18, 0.3, 31),
= c(0.81, -3.4, 130),
= c(1.08, -1.5, 43))

3 cutomized properties

props = c('CIDH920105', 'BHAR880101",
'CHAM820101', 'CHAMS20102',

'"MyProp1', 'MyProp2',

'MyProp3'))

https://www.genome.jp/dbget/aaindex.html

120 extractProtMoreauBroto

extractProtMoreauBroto
Normalized Moreau-Broto Autocorrelation Descriptor

Description

Normalized Moreau-Broto Autocorrelation Descriptor

Usage

extractProtMoreauBroto(
X)
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",
"BIGC670101", "CHAM810101", "DAYM780201"),
nlag = 30L,
customprops = NULL
)

Arguments

X A character vector, as the input protein sequence.

props A character vector, specifying the Accession Number of the target properties. 8
properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al.,
1992)

AccNo. BHARS880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)

AccNo. CHAMS820101 Polarizability parameter (Charton-Charton, 1982)

AccNo. CHAMS820102 Free energy of solution in water, kcal/mole (Charton-
Charton, 1982)

AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia,
1976)

AccNo. BIGC670101 Residue volume (Bigelow, 1967)
AccNo. CHAMS10101 Steric parameter (Charton, 1981)
AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

nlag Maximum value of the lag parameter. Default is 30.

customprops A n x 21 named data frame contains n customize property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A’,
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S",
'T', "W, 'Y', '"V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

Details

This function calculates the normalized Moreau-Broto autocorrelation descriptor (Dim: length(props)

* nlag).

extractProtPAAC 121

Value

A length nlag named vector

References

AAindex: Amino acid index database. https://www.genome. jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence
hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrela-
tion: an usage from an Amerindian tribal population. American Journal of Physical Anthropology,
129, 121-131.

See Also
See extractProtMoran and extractProtGeary for Moran autocorrelation descriptors and Geary

autocorrelation descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta’', package = 'Rcpi'))[[1]]
extractProtMoreauBroto(x)

myprops = data.frame(AccNo = c("MyPropl1”, "MyProp2"”, "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),

N=c(-0.78, 0.2, 58), D =c(-0.9, 3, 59),
C=c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G =c(0.48, 0, 1),

H=c(-0.4, -0.5, 82), I =c(1.38, -1.8, 57),
L=c(1.06, -1.8, 57), K =c(-1.5, 3, 73),
M=c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P=c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))

Use 4 properties in the AAindex database, and 3 cutomized properties
extractProtMoreauBroto(x, customprops = myprops,
props = c('CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

extractProtPAAC Pseudo Amino Acid Composition Descriptor

Description

Pseudo Amino Acid Composition Descriptor

https://www.genome.jp/dbget/aaindex.html

122 extractProtPAAC

Usage
extractProtPAAC(
X ’
props = c("Hydrophobicity"”, "Hydrophilicity"”, "SideChainMass"),
lambda = 30,
w = 0.05,
customprops = NULL
)
Arguments
X A character vector, as the input protein sequence.
props A character vector, specifying the properties used. 3 properties are used by
default, as listed below:
"Hydrophobicity’ Hydrophobicity value of the 20 amino acids
"Hydrophilicity’ Hydrophilicity value of the 20 amino acids
’SideChainMass’ Side-chain mass of the 20 amino acids
lambda The lambda parameter for the PAAC descriptors, default is 30.
W The weighting factor, default is 0.05.
customprops A n x 21 named data frame contains n customize property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A’,
lRI’ INI’ IDI’ IC!, IEI, IQ', IGl7 IHI, III’ lLI’ IKI’ lMI’ lFI’ IPI’ ISI’
'T', "W', "Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.
Details

This function calculates the Pseudo Amino Acid Composition (PAAC) descriptor (Dim: 2@ + 1lambda,
default is 50).

Value

A length 20 + 1ambda named vector

Note

Note the default 20 * 3 prop values have been already independently given in the function. Users
could also specify other (up to 544) properties with the Accession Number in the AAindex data, with
or without the default three properties, which means users should explicitly specify the properties
to use.

References

Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Composition.
PROTEINS: Structure, Function, and Genetics, 2001, 43: 246-255.

Type 1 pseudo amino acid composition. http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/typel.
htm

Kuo-Chen Chou. Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Sub-
family Classes. Bioinformatics, 2005, 21, 10-19.

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type1.htm
http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type1.htm

extractProtPSSM 123

JACS, 1962, 84: 4240-4246. (C. Tanford). (The hydrophobicity data)
PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods). (The hydrophilicity data)

CRC Handbook of Chemistry and Physics, 66th ed., CRC Press, Boca Raton, Florida (1985). (The
side-chain mass data)

R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for Biochemical Research 3rd ed.,
Clarendon Press Oxford (1986). (The side-chain mass data)
See Also

See extractProtAPAAC for amphiphilic pseudo amino acid composition descriptor.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtPAAC(x)

myprops = data.frame(AccNo = c("MyPropl1”, "MyProp2"”, "MyProp3"),
A =c(0.62, -0.5, 15), R = c(-2.53, 3, 101),

N =c(-0.78, 0.2, 58), D =c(-0.9, 3, 59),
C=c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G =c(0.48, 0, 1),

H=c(-0.4, -0.5, 82), I =c(1.38, -1.8, 57),
L=c(1.06, -1.8, 57), K =c(-1.5, 3, 73),
M=c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P=c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))

Use 3 default properties, 4 properties in the AAindex database,
and 3 cutomized properties
extractProtPAAC(x, customprops = myprops,
props = c('Hydrophobicity', 'Hydrophilicity', 'SideChainMass',
'CIDH920105', 'BHAR880101',
'CHAM820101', 'CHAM820102',
'MyProp1', 'MyProp2', 'MyProp3'))

extractProtPSSM Compute PSSM (Position-Specific Scoring Matrix) for given protein
sequence

Description

Compute PSSM (Position-Specific Scoring Matrix) for given protein sequence

Usage

extractProtPSSM(
seq,
start.pos = 1L,
end.pos = nchar(seq),
psiblast.path = NULL,

124 extractProtPSSM

makeblastdb.path = NULL,
database.path = NULL,
iter = 5,

silent = TRUE,

evalue = 10L,
word.size = NULL,
gapopen = NULL,
gapextend = NULL,
matrix = "BLOSUM62",
threshold = NULL,

seg = "no",

soft.masking = FALSE,
culling.limit = NULL,
best.hit.overhang = NULL,
best.hit.score.edge = NULL,
xdrop.ungap = NULL,
xdrop.gap = NULL,
xdrop.gap.final = NULL,
window.size = NULL,
gap.trigger = 22L,
num.threads = 1L,
pseudocount = 0L,
inclusion.ethresh = 0.002

)
Arguments
seq Character vector, as the input protein sequence.
start.pos Optional integer denoting the start position of the fragment window. Default is
1, i.e. the first amino acid of the given sequence.
end.pos Optional integer denoting the end position of the fragment window. Default is

nchar(seq), i.e. the last amino acid of the given sequence.

psiblast.path Character string indicating the path of the psiblast program. If NCBI Blast+
was previously installed in the operation system, the path will be automatically
detected.

makeblastdb.path
Character string indicating the path of the makeblastdb program. If NCBI
Blast+ was previously installed in the system, the path will be automatically
detected.

database.path Character string indicating the path of a reference database (a FASTA file).

iter Number of iterations to perform for PSI-Blast.

silent Logical. Whether the PSI-Blast running output should be shown or not (May
not work on some Windows versions and PSI-Blast versions), default is TRUE.

evalue Expectation value (E) threshold for saving hits. Default is 10.

word.size Word size for wordfinder algorithm. An integer >= 2.

gapopen Integer. Cost to open a gap.

gapextend Integer. Cost to extend a gap.

matrix Character string. The scoring matrix name (default is 'BLOSUM62").

threshold Minimum word score such that the word is added to the BLAST lookup table.

A real value >= 0.

extractProtPSSM 125

seg Character string. Filter query sequence with SEG ('yes"', 'window locut hicut’,
or 'no’' to disable) Defaultis 'no"'.

soft.masking Logical. Apply filtering locations as soft masks? Default is FALSE.

culling.limit An integer >= 0. If the query range of a hit is enveloped by that of at least this
many higher-scoring hits, delete the hit. Incompatible with best.hit.overhang
and best_hit_score_edge.

best.hit.overhang

Best Hit algorithm overhang value (A real value >= 0 and =< 0.5, recommended
value: 0.1). Incompatible with culling_limit.

best.hit.score.edge
Best Hit algorithm score edge value (A real value >=0 and =< 0.5, recommended
value: 0.1). Incompatible with culling_limit.

xdrop.ungap X-dropoff value (in bits) for ungapped extensions.

xdrop.gap X-dropoff value (in bits) for preliminary gapped extensions.
xdrop.gap.final

X-dropoff value (in bits) for final gapped alignment.
window.size An integer >= 0. Multiple hits window size, To specify 1-hit algorithm, use .
gap.trigger Number of bits to trigger gapping. Default is 22.
num. threads Integer. Number of threads (CPUs) to use in the BLAST search. Default is 1.

pseudocount Integer. Pseudo-count value used when constructing PSSM. Default is 0.
inclusion.ethresh
E-value inclusion threshold for pairwise alignments. Default is 0. 002.

Details

This function calculates the PSSM (Position-Specific Scoring Matrix) derived by PSI-Blast for
given protein sequence or peptides. For given protein sequences or peptides, PSSM represents the
log-likelihood of the substitution of the 20 types of amino acids at that position in the sequence.
Note that the output value is not normalized.

Value

The original PSSM, a numeric matrix which has end.pos - start.pos + 1 columns and 20 named
rows.

Note

The function requires the makeblastdb and psiblast programs to be properly installed in the
operation system or their paths provided.

The two command-line programs are included in the NCBI-BLAST+ software package. To install
NCBI Blast+, just open the NCBI FTP site using web browser or FTP software: ftp://anonymous@
ftp.ncbi.nlm.nih.gov:21/blast/executables/blast+/LATEST/ then download the executable
version of BLAST+ according to your operation system, and compile or install the downloaded
source code or executable program.

Ubuntu/Debian users can directly use the command sudo apt-get install ncbi-blast+ to install
NCBI Blast+. For OS X users, download ncbi-blast-dmg then install. For Windows users,
download ncbi-blast-exe then install.

ftp://anonymous@ftp.ncbi.nlm.nih.gov:21/blast/executables/blast+/LATEST/
ftp://anonymous@ftp.ncbi.nlm.nih.gov:21/blast/executables/blast+/LATEST/

126 extractProtPSSMAcc

References

Altschul, Stephen F., et al. "Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs." Nucleic acids research 25.17 (1997): 3389-3402.

Ye, Xugang, Guoli Wang, and Stephen F. Altschul. "An assessment of substitution scores for protein
profile-profile comparison." Bioinformatics 27.24 (2011): 3356-3363.

Rangwala, Huzefa, and George Karypis. "Profile-based direct kernels for remote homology detec-
tion and fold recognition." Bioinformatics 21.23 (2005): 4239-4247.

See Also

extractProtPSSMFeature extractProtPSSMAcc

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[11]

dbpath = tempfile('tempdb', fileext = '.fasta')

invisible(file.copy(from = system.file('protseq/Plasminogen.fasta', package = 'Rcpi'), to = dbpath))
pssmmat = extractProtPSSM(seq = x, database.path = dbpath)

dim(pssmmat) # 20 x 562 (PQ@750: length 562, 20 Amino Acids)

extractProtPSSMAcc Profile-based protein representation derived by PSSM (Position-
Specific Scoring Matrix) and auto cross covariance

Description

Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix) and auto
cross covariance

Usage

extractProtPSSMAcc(pssmmat, lag)

Arguments
pssmmat The PSSM computed by extractProtPSSM.
lag The lag parameter. Must be less than the number of amino acids in the sequence
(i.e. the number of columns in the PSSM matrix).
Details

This function calculates the feature vector based on the PSSM by running PSI-Blast and auto cross
covariance tranformation.

Value

A length 1lag * 20*2 named numeric vector, the element names are derived by the amino acid name
abbreviation (crossed amino acid name abbreviation) and lag index.

extractProtPSSMFeature 127

References

Wold, S., Jonsson, J., Sjorstrom, M., Sandberg, M., & Rinnar, S. (1993). DNA and peptide se-
quences and chemical processes multivariately modelled by principal component analysis and par-
tial least-squares projections to latent structures. Analytica chimica acta, 277(2), 239-253.

See Also

extractProtPSSM extractProtPSSMFeature

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[11]

dbpath = tempfile('tempdb', fileext = '.fasta')

invisible(file.copy(from = system.file('protseq/Plasminogen.fasta', package = 'Rcpi'), to = dbpath))
pssmmat = extractProtPSSM(seq = x, database.path = dbpath)

pssmacc = extractProtPSSMAcc(pssmmat, lag = 3)

tail (pssmacc)

extractProtPSSMFeature

Profile-based protein representation derived by PSSM (Position-
Specific Scoring Matrix)

Description

Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix)

Usage

extractProtPSSMFeature(pssmmat)

Arguments

pssmmat The PSSM computed by extractProtPSSM.

Details

This function calculates the profile-based protein representation derived by PSSM. The feature vec-
tor is based on the PSSM computed by extractProtPSSM. For a given sequence, The PSSM feature
represents the log-likelihood of the substitution of the 20 types of amino acids at that position in the
sequence. Each PSSM feature value in the vector represents the degree of conservation of a given
amino acid type. The value is normalized to interval (0, 1) by the transformation 1/(1+e"(-x)).

Value

A numeric vector which has 20 x N named elements, where N is the size of the window (number of
rows of the PSSM).

128 extractProtQSO

References

Ye, Xugang, Guoli Wang, and Stephen F. Altschul. "An assessment of substitution scores for protein
profile-profile comparison." Bioinformatics 27.24 (2011): 3356-3363.

Rangwala, Huzefa, and George Karypis. "Profile-based direct kernels for remote homology detec-
tion and fold recognition." Bioinformatics 21.23 (2005): 4239-4247.

See Also

extractProtPSSM extractProtPSSMAcc

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[11]

dbpath = tempfile('tempdb', fileext = '.fasta')

invisible(file.copy(from = system.file('protseq/Plasminogen.fasta', package = 'Rcpi'), to = dbpath))
pssmmat = extractProtPSSM(seq = x, database.path = dbpath)

pssmfeature = extractProtPSSMFeature(pssmmat)

head(pssmfeature)

extractProtQSO Quasi-Sequence-Order (QSO) Descriptor

Description

Quasi-Sequence-Order (QSO) Descriptor

Usage

extractProtQSO(x, nlag = 30, w = 0.1)

Arguments
X A character vector, as the input protein sequence.
nlag The maximum lag, defualt is 30.
w The weighting factor, default is 0.1.

Details

This function calculates the Quasi-Sequence-Order (QSO) descriptor (Dim: 20 + 20 + (2 * nlag),
default is 100).

Value

A length 20 + 20 + (2 * nlag) named vector

extractProtSOCN 129

References
Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-
Order Effect. Biochemical and Biophysical Research Communications, 2000, 278, 477-483.

Kuo-Chen Chou and Yu-Dong Cai. Prediction of Protein Sucellular Locations by GO-FunD-PseAA
Predictor. Biochemical and Biophysical Research Communications, 2004, 320, 1236-1239.

Gisbert Schneider and Paul Wrede. The Rational Design of Amino Acid Sequences by Artifical
Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized Leader
Cleavge Site. Biophys Journal, 1994, 66, 335-344.

See Also

See extractProtSOCN for sequence-order-coupling numbers.

Examples
x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
extractProtQS0O(x)
extractProtSOCN Sequence-Order-Coupling Numbers
Description

Sequence-Order-Coupling Numbers

Usage
extractProtSOCN(x, nlag = 30)

Arguments
X A character vector, as the input protein sequence.
nlag The maximum lag, defualt is 30.

Details

This function calculates the Sequence-Order-Coupling Numbers (Dim: nlag * 2, default is 60).

Value

A length nlag * 2 named vector

References

Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-
Order Effect. Biochemical and Biophysical Research Communications, 2000, 278, 477-483.

Kuo-Chen Chou and Yu-Dong Cai. Prediction of Protein Sucellular Locations by GO-FunD-PseAA
Predictor. Biochemical and Biophysical Research Communications, 2004, 320, 1236-1239.

Gisbert Schneider and Paul Wrede. The Rational Design of Amino Acid Sequences by Artifical
Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized Leader
Cleavge Site. Biophys Journal, 1994, 66, 335-344.

130 extractProtTC

See Also

See extractProtQSO for quasi-sequence-order descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtSOCN(x)

extractProtTC Tripeptide Composition Descriptor

Description

Tripeptide Composition Descriptor

Usage

extractProtTC(x)
Arguments

X A character vector, as the input protein sequence.
Details

This function calculates the Tripeptide Composition descriptor (Dim: 8000).

Value

A length 8000 named vector

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composi-
tion and Dipeptide Composition. Journal of Biological Chemistry, 2004, 279, 23262.

See Also
See extractProtAAC and extractProtDC for Amino Acid Composition and Dipeptide Composi-

tion descriptors.

Examples

x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]1]
extractProtTC(x)

getCPI 131

getCPI Generating Compound-Protein Interaction Descriptors

Description

Generating Compound-Protein Interaction Descriptors

Usage

getCPI(drugmat, protmat, type = c("”combine”, "tensorprod”))

Arguments

drugmat The compound descriptor matrix.

protmat The protein descriptor matrix.

type The interaction type, one or two of "combine” and "tensorprod”.
Details

This function calculates the compound-protein interaction descriptors by three types of interaction:

e combine - combine the two descriptor matrix, result has (p1 + p2) columns

* tensorprod - calculate column-by-column (pseudo)-tensor product type interactions, result
has (p1 * p2) columns

Value

A matrix containing the compound-protein interaction descriptors

See Also

See getPPI for generating protein-protein interaction descriptors.

Examples
x = matrix(1:10, ncol = 2)
= matrix(1:15, ncol = 3)

getCPI(x, y, 'combine')

getCPI(x, y, 'tensorprod')

getCPI(x, y, type = c('combine', 'tensorprod'))
getCPI(x, y, type = c('tensorprod', 'combine'))

132 getDrug
getDrug Retrieve Drug Molecules in MOL and SMILES Format from
Databases
Description

Retrieve Drug Molecules in MOL and SMILES Format from Databases

Usage
getDrug(
id,
from =
type =

Arguments
id
from

type
parallel

Details

n n

c("pubchem”, "chembl”, "cas", "kegg", "drugbank"),
c("mol"”, "smile"),
parallel = 5

A character vector, as the drug ID(s).

The database, one of 'pubchem', 'chembl’, 'cas', 'kegg', 'drugbank"'.

The returned molecule format, mol or smile.

An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.

This function retrieves drug molecules in MOL and SMILES format from five databases.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getProt for retrieving protein sequences from three databases.

Examples

id = c('DB00@859",

getDrug(id,

'DB00860 ")

'drugbank', 'smile')

getFASTAFromKEGG 133

getFASTAFromKEGG Retrieve Protein Sequence in FASTA Format from the KEGG Database

Description

Retrieve Protein Sequence in FASTA Format from the KEGG Database

Usage
getFASTAFromKEGG(id, parallel = 5)

Arguments
id A character vector, as the protein ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein sequences in FASTA format from the KEGG database.

Value

A list, each component contains one of the protein sequences in FASTA format.

See Also

See getSeqgFromKEGG for retrieving protein represented by amino acid sequence from the KEGG
database. See readFASTA for reading FASTA format files.

Examples

id = c¢('hsa:10161"', 'hsa:10162")

getFASTAFromKEGG(id)

getFASTAFromUniProt Retrieve Protein Sequence in FASTA Format from the UniProt
Database

Description

Retrieve Protein Sequence in FASTA Format from the UniProt Database

Usage

getFASTAFromUniProt(id, parallel = 5)

134 getMolFromCAS

Arguments
id A character vector, as the protein ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein sequences in FASTA format from the UniProt database.

Value

A list, each component contains one of the protein sequences in FASTA format.

References

UniProt. https://www.uniprot.org/
UniProt REST API Documentation. https://www.uniprot.org/help/api

See Also

See getSeqFromUniProt for retrieving protein represented by amino acid sequence from the UniProt
database. See readFASTA for reading FASTA format files.

Examples

id = c('P0@750', 'PO@751', 'P0Q752')

getFASTAFromUniProt (id)

getMolFromCAS Retrieve Drug Molecules in InChl Format from the CAS Database

Description

Retrieve Drug Molecules in InChl Format from the CAS Database

Usage
getMolFromCAS(id, parallel = 5)

Arguments
id A character vector, as the CAS drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would

like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.

https://www.uniprot.org/
https://www.uniprot.org/help/api

getMolFromChEMBL 135

Details

This function retrieves drug molecules in InChl format from the CAS database. CAS database only
provides InChl data, so here we return the molecule in InChl format, users could convert them to
SMILES format using Open Babel or other third-party tools.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getDrug for retrieving drug molecules in MOL and SMILES Format from other databases.

Examples

id = '52-67-5" # Penicillamine

getMolFromCAS(id)

getMolFromChEMBL Retrieve Drug Molecules in MOL Format from the ChEMBL Database

Description

Retrieve Drug Molecules in MOL Format from the ChEMBL Database

Usage
getMolFromChEMBL(id, parallel = 5)

Arguments
id A character vector, as the ChEMBL drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in MOL format from the ChEMBL database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getSmiFromChEMBL for retrieving drug molecules in SMILES format from the ChREMBL database.

Examples

id = '"CHEMBL1430' # Penicillamine

getMolFromChEMBL (id)

136 getMolFromKEGG

getMolFromDrugBank Retrieve Drug Molecules in MOL Format from the DrugBank
Database

Description

Retrieve Drug Molecules in MOL Format from the DrugBank Database

Usage

getMolFromDrugBank(id, parallel = 5)

Arguments
id A character vector, as the DrugBank drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in MOL format from the DrugBank database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getSmiFromDrugBank for retrieving drug molecules in SMILES format from the DrugBank
database.

Examples

id = 'DBQ@859' # Penicillamine

getMolFromDrugBank (id)

getMolFromKEGG Retrieve Drug Molecules in MOL Format from the KEGG Database

Description

Retrieve Drug Molecules in MOL Format from the KEGG Database

Usage
getMolFromKEGG(id, parallel = 5)

getMolFromPubChem 137

Arguments
id A character vector, as the KEGG drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in MOL format from the KEGG database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getSmiFromKEGG for retrieving drug molecules in SMILES format from the KEGG database.

Examples

id = 'DOQ496' # Penicillamine

getMolFromKEGG(id)

getMolFromPubChem Retrieve Drug Molecules in MOL Format from the PubChem Database

Description

Retrieve Drug Molecules in MOL Format from the PubChem Database

Usage
getMolFromPubChem(id, parallel = 5)

Arguments
id A character vector, as the PubChem drug ID.
parallel An integer, the parallel parameter, indicates how many processes the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in MOL format from the PubChem database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

138 getPDBFromRCSBPDB

See Also

See getSmiFromPubChem for retrieving drug molecules in SMILES format from the PubChem
database.

Examples

id = c('7847562', '7847563') # Penicillamine

getMolFromPubChem(id)

getPDBFromRCSBPDB Retrieve Protein Sequence in PDB Format from RCSB PDB

Description

Retrieve Protein Sequence in PDB Format from RCSB PDB

Usage

getPDBFromRCSBPDB(id, parallel = 5)

Arguments
id A character vector, as the protein ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein sequences in PDB format from RCSB PDB.

Value

A list, each component contains one of the protein sequences in PDB format.

See Also

See getSeqFromRCSBPDB for retrieving protein represented by amino acid sequence from the RCSB
PDB database.

Examples
id = c('4HHB', '4FF9')

getPDBFromRCSBPDB(id)

getPPI 139

getPPI Generating Protein-Protein Interaction Descriptors

Description

Generating Protein-Protein Interaction Descriptors

Usage

getPPI(protmatl, protmat2, type = c("combine”, "tensorprod”, "entrywise"))

Arguments
protmat1 The first protein descriptor matrix, must have the same ncol with protmat2.
protmat2 The second protein descriptor matrix, must have the same ncol with protmat1.
type The interaction type, one or more of "combine”, "tensorprod”, and "entrywise”.
Details

This function calculates the protein-protein interaction descriptors by three types of interaction:

* combine - combine the two descriptor matrix, result has (p + p) columns

* tensorprod - calculate column-by-column (pseudo)-tensor product type interactions, result
has (p * p) columns

* entrywise - calculate entrywise product and entrywise sum of the two matrices, then combine
them, result has (p + p) columns

Value

A matrix containing the protein-protein interaction descriptors

See Also

See getCPI for generating compound-protein interaction descriptors.

Examples
X = matrix(1:10, ncol = 2)
= matrix(5:14, ncol = 2)

getPPI(x, y, type = 'combine')

getPPI(x, y, type = 'tensorprod')

getPPI(x, y, type = 'entrywise')

getPPI(x, y, type = c('combine', 'tensorprod'))

getPPI(x, y, type = c('combine', 'entrywise'))

getPPI(x, y, type = c('entrywise', 'tensorprod'))

getPPI(x, y, type = c('combine', 'entrywise', 'tensorprod'))

140 getProt

getProt Retrieve Protein Sequence in various Formats from Databases

Description

Retrieve Protein Sequence in various Formats from Databases

Usage

getProt(
id,
from = c("uniprot”, "kegg", "pdb"),
type = c("fasta”, "pdb", "aaseq"),

parallel = 5
)
Arguments
id A character vector, as the protein ID(s).
from The database, one of 'uniprot', 'kegg', or 'pdb'.
type The returned protein format, one of fasta, pdb, or aaseq.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein sequence in various formats from three databases.

Value

A length of id character list, each element containing the corresponding protein sequence(s) or
file(s).

See Also

See getDrug for retrieving drug molecules from five databases.

Examples

id = c('P@O750', 'POO751', 'P0O752')

getProt(id, from = 'uniprot', type = 'aaseq')

getSeqFromKEGG 141

getSegFromKEGG Retrieve Protein Sequence from the KEGG Database

Description

Retrieve Protein Sequence from the KEGG Database

Usage

getSegFromKEGG(id, parallel = 5)

Arguments
id A character vector, as the protein ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein represented by amino acid sequence from the KEGG database.

Value

A list, each component contains one of the protein represented by amino acid sequence(s).

See Also

See getFASTAFromKEGG for retrieving protein sequence in FASTA format from the KEGG database.

Examples

id = c¢('hsa:10161"', 'hsa:10162")

getSeqFromKEGG(id)

getSeqFromRCSBPDB Retrieve Protein Sequence from RCSB PDB

Description

Retrieve Protein Sequence from RCSB PDB

Usage

getSegFromRCSBPDB(id, parallel = 5)

142 getSeqFromUniProt

Arguments
id A character vector, as the protein ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein sequences from RCSB PDB.

Value

A list, each component contains one of the protein represented by amino acid sequence(s).

See Also

See getPDBFromRCSBPDB for retrieving protein in PDB format from the RCSB PDB database.

Examples
id = c('4HHB', '4FF9')

getSeqFromRCSBPDB(id)

getSeqFromUniProt Retrieve Protein Sequence from the UniProt Database

Description

Retrieve Protein Sequence from the UniProt Database

Usage

getSegFromUniProt(id, parallel = 5)

Arguments
id A character vector, as the protein ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves protein represented by amino acid sequence from the UniProt database.

Value

A list, each component contains one of the protein represented by amino acid sequence(s).

getSmiFromChEMBL 143

References

UniProt. https://www.uniprot.org/
UniProt REST API Documentation. https://www.uniprot.org/help/api

See Also

See getFASTAFromUniProt for retrieving protein sequences in FASTA format from the UniProt
database.

Examples

id = c('PO750', 'POO751', 'P00752')

getSegFromUniProt (id)

getSmiFromChEMBL Retrieve Drug Molecules in SMILES Format from the ChEMBL
Database

Description

Retrieve Drug Molecules in SMILES Format from the ChEMBL Database

Usage
getSmiFromChEMBL(id, parallel = 5)

Arguments
id A character vector, as the ChEMBL drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in SMILES format from the ChEMBL database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getMolFromChEMBL for retrieving drug molecules in MOL format from the ChEMBL database.

Examples

id = 'CHEMBL1430' # Penicillamine

getSmiFromChEMBL (id)

https://www.uniprot.org/
https://www.uniprot.org/help/api

144 getSmiFromKEGG

getSmiFromDrugBank Retrieve Drug Molecules in SMILES Format from the DrugBank
Database

Description

Retrieve Drug Molecules in SMILES Format from the DrugBank Database

Usage

getSmiFromDrugBank (id, parallel = 5)

Arguments
id A character vector, as the DrugBank drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in SMILES format from the DrugBank database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getMolFromDrugBank for retrieving drug molecules in MOL format from the DrugBank database.

Examples

id = 'DBQ@859' # Penicillamine

getSmiFromDrugBank(id)

getSmiFromKEGG Retrieve Drug Molecules in SMILES Format from the KEGG Database

Description

Retrieve Drug Molecules in SMILES Format from the KEGG Database

Usage
getSmiFromKEGG(id, parallel = 5)

getSmiFromPubChem 145

Arguments
id A character vector, as the KEGG drug ID.
parallel An integer, the parallel parameter, indicates how many process the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in SMILES format from the KEGG database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

See Also

See getMolFromKEGG for retrieving drug molecules in MOL format from the KEGG database.

Examples

id = 'DOQ496' # Penicillamine

getSmiFromKEGG(id)
getSmiFromPubChem Retrieve Drug Molecules in SMILES Format from the PubChem
Database
Description

Retrieve Drug Molecules in SMILES Format from the PubChem Database

Usage

getSmiFromPubChem(id, parallel = 5)

Arguments
id A character vector, as the PubChem drug ID.
parallel An integer, the parallel parameter, indicates how many processes the user would
like to use for retrieving the data (using RCurl), default is 5. For regular cases,
we recommend a number less than 20.
Details

This function retrieves drug molecules in SMILES format from the PubChem database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

146 readFASTA

See Also

See getMolFromPubChem for retrieving drug molecules in MOL format from the PubChem database.

Examples

id = c('7847562', '7847563') # Penicillamine

getSmiFromPubChem(id)

OptAA3d OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10
(Semiempirical AM1)

Description

OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10 (Semiempirical AM1)

Details
OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10 (Semiempirical AM1)

Value

OptAA3d data

Examples

This example requires the rcdk package

library('rcdk')

optaa3d = load.molecules(system.file('sysdata/OptAA3d.sdf', package = 'Rcpi'))
view.molecule.2d(optaa3d[[1]]) # view the first amino acid

readFASTA Read Protein Sequences in FASTA Format

Description

Reads protein sequences in FASTA format.

Usage

readFASTA(
file = system.file("protseq/P@0750.fasta”, package = "Rcpi"),
legacy.mode = TRUE,
seqonly = FALSE

)

readMolFromSDF 147

Arguments
file The name of the file which the sequences in fasta format are to be read from. If
it does not contain an absolute or relative path, the file name is relative to the
current working directory, getwd. The default here is to read the P@@750. fasta
file which is present in the protseq directory of the Rcpi package.
legacy.mode If set to TRUE, lines starting with a semicolon ’;’ are ignored. Default value is
TRUE.
seqonly If set to TRUE, only sequences as returned without attempt to modify them or to
get their names and annotations (execution time is divided approximately by a
factor 3). Default value is FALSE.
Value

Character vector.

References
Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of the United States of America, 85: 2444-2448.
See Also

See readPDB for reading protein sequences in PDB format.

Examples

PRO750 = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))

P00750
readMolFromSDF Read Molecules from SDF Files and Return Parsed Java Molecular
Object
Description

Read Molecules from SDF Files and Return Parsed Java Molecular Object

Usage
readMolFromSDF (sdffile)

Arguments

sdffile Character vector, containing SDF file location(s).

Details

This function reads molecules from SDF files and return parsed Java molecular object needed by
extractDrug. .. functions.

148 readMolFromSmi

Value

A list, containing parsed Java molecular object.

See Also

See readMolFromSmi for reading molecules by SMILES string and returning parsed Java molecular
object.

Examples

sdf = system.file('compseq/DB00859.sdf"', package = 'Rcpi')
sdfs = c(system.file('compseq/DB0O0859.sdf', package = 'Rcpi'),
system.file('compseq/DB0086@.sdf', package = 'Rcpi'))

mol readMolFromSDF (sdf)
mols = readMolFromSDF (sdfs)

readMolFromSmi Read Molecules from SMILES Files and Return Parsed Java Molecu-
lar Object or Plain Text List

Description

Read Molecules from SMILES Files and Return Parsed Java Molecular Object or Plain Text List

Usage

readMolFromSmi(smifile, type = c("mol”, "text"))

Arguments
smifile Character vector, containing SMILES file location(s).
type 'mol’ or 'text'. 'mol’' returns parsed Java molecular object, used for 'text'
returns (plain-text) character string list. For common molecular descriptors and
fingerprints, use 'mol’. For descriptors and fingerprints calculated by OpenBa-
bel, i.e. functions named extractDrugOB. .. () ,use 'text'.
Details

This function reads molecules from SMILES strings and return parsed Java molecular object or
plain text list needed by extractDrug. .. () functions.

Value

A list, containing parsed Java molecular object or character strings.

See Also

See readMolFromSDF for reading molecules from SDF files and returning parsed Java molecular
object.

readPDB 149

Examples

smi = system.file('vignettedata/FDAMDD.smi', package = 'Rcpi')

moll = readMolFromSmi(smi, type = 'mol')
mol2 = readMolFromSmi(smi, type = 'text')

readPDB Read Protein Sequences in PDB Format

Description

Read Protein Sequences in PDB Format

Usage

readPDB(file = system.file("protseq/4HHB.pdb", package = "Rcpi”))

Arguments
file The name of the file which the sequences in PDB format are to be read from.
If it does not contain an absolute or relative path, the file name is relative to the
current working directory, getwd. The default here is to read the 4HHB.PDB file
which is present in the protseq directory of the Rcpi package.
Details

This function reads protein sequences in PDB (Protein Data Bank) format, and return the amino
acid sequences represented by single-letter code.
Value

A character vector, representing the amino acid sequence of the single-letter code.

References

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description, Version 3.30.
Accessed 2013-06-26. https://files.wwpdb.org/pub/pdb/doc/format_descriptions/Format_
v33_Letter.pdf

See Also

See readFASTA for reading protein sequences in FASTA format.

Examples

Seq4HHB = readPDB(system.file('protseq/4HHB.pdb', package = 'Rcpi'))
Seq4HHB

https://files.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf
https://files.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf

150 searchDrug

searchDrug Parallelized Drug Molecule Similarity Search by Molecular Finger-
prints Similarity or Maximum Common Substructure Search

Description

Parallelized Drug Molecule Similarity Search by Molecular Fingerprints Similarity or Maximum
Common Substructure Search

Usage
searchDrug(
mol,
moldb,
cores = 2,

method = c("fp", "mcs"),
fptype = c("standard”, "extended”, "graph”, "hybrid”, "maccs”, "estate”, "pubchem”,
"kr", "shortestpath”, "fp2", "fp3", "fp4", "obmaccs"),

fpsim = c("tanimoto”, "euclidean”, "cosine”, "dice”, "hamming"),
mcssim = c(”tanimoto”, "overlap"),
)
Arguments

mol The query molecule. The location of a sdf file containing one molecule.

moldb The molecule database. The location of a sdf file containing all the molecules
to be searched with.

cores Integer. The number of CPU cores to use for parallel search, default is 2. Users
could use the detectCores() function in the parallel package to see how
many cores they could use.

method "fp' or 'mcs'. Search by molecular fingerprints or by maximum common sub-
structure searching.

fptype The fingerprint type, only available when method = 'fp'. Rcpi supports 13
types of fingerprints, including 'standard', 'extended', 'graph', "hybrid',
'maccs', 'estate', 'pubchem’', 'kr', 'shortestpath', 'fp2', 'fp3"', 'fp4’,
'obmaccs’'.

fpsim Similarity measure type for fingerprint, only available when method = 'fp'. In-
cluding 'tanimoto’', 'euclidean’, 'cosine', 'dice' and 'hamming'. See
calcDrugFPSim for details.

mcssim Similarity measure type for maximum common substructure search, only avail-
able when method = 'mcs'. Including 'tanimoto' and 'overlap'.
Other possible parameter for maximum common substructure search, see calcDrugMCSSim
for available options.

Details

This function does compound similarity search derived by various molecular fingerprints with var-
ious similarity measures or derived by maximum common substructure search. This function runs
for a query compound against a set of molecules.

segProt 151

Value

Named numerical vector. With the decreasing similarity value of the molecules in the database.

Examples

mol = system.file('compseq/DB00530.sdf', package = 'Rcpi')

DrugBank ID DBQ@530: Erlotinib

moldb = system.file('compseq/tyrphostin.sdf', package = 'Rcpi')

Database composed by searching 'tyrphostin' in PubChem and filtered by Lipinski's Rule of Five

searchDrug(mol, moldb, cores = 4, method = 'fp', fptype = 'maccs', fpsim = 'hamming')
searchDrug(mol, moldb, cores = 4, method = 'fp', fptype = 'fp2', fpsim = 'tanimoto')
searchDrug(mol, moldb, cores = 4, method = 'mcs', mcssim = 'tanimoto')
segProt Protein Sequence Segmentation
Description

Protein Sequence Segmentation

Usage

segProt(
X’
aa = C(“A", IIRH’ “Nll, HDIIy IICII’ IIEII, IIQII’ IIGII, IIHII’ HIH’ HI_IIy IIKH, IIMH, IIFH, IIPH’ HSH,
IITH s IIWII , ”YII , IIVH) ,

k=7

)
Arguments

X A character vector, as the input protein sequence.

aa A character, the amino acid type. one of 'A', 'R', 'N', 'D', 'C', 'E', 'Q", 'G",

|HI’ |II’ |Ll’ |Kl’ |Ml’ IFI’ IPI! ISI’ ITI, IWI, lYl, IV',

k A positive integer, specifys the window size (half of the window), default is 7.

Details

This function extracts the segmentations from the protein sequence.

Value

A named list, each component contains one of the segmentations (a character string), names of the
list components are the positions of the specified amino acid in the sequence.

Examples

X = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
segProt(x, aa = 'R', k = 5)

Index

* internal
Rcpi-package, 5

AA2DACOR, 6
AA3DMORSE, 6
AAACF, 7
AABLOSUM100, 7
AABLOSUM45, 8
AABLOSUM50, 8
AABLOSUM62, 9
AABLOSUM80, 9
AABurden, 10
AAConn, 10
AAConst, 11
AACPSA, 11
AADescAll, 12
AAEdgeAdj, 12
AAEigIdx, 13
AAFGC, 13
AAGeom, 14
AAGETAWAY, 14
AAindex, 15,111,122
AAInfo, 15
AAMetalInfo, 16
AAMOE2D, 16
AAMOE3D, 17
AAMol1Prop, 17
AAPAM120, 18
AAPAM250, 18
AAPAM30, 19
AAPAM40, 19
AAPAM70, 20
AARandic, 20
AARDF, 21
AATopo, 21
AATopoChg, 22
AAWalk, 22
AAWHIM, 23
acc, 23

calcDrugFPSim, 24
calcDrugMCSSim, 25
calcParProtG0Sim, 27, 29, 30
calcParProtSeqSim, 28, 28, 30, 31

152

calcTwoProtGOSim, 28, 29, 31
calcTwoProtSeqSim, 30
checkProt, 31
convMolFormat, 32

extractDrugAIO, 37
extractDrugALOGP, 38
extractDrugAminoAcidCount, 39
extractDrugApol, 39
extractDrugAromaticAtomsCount, 40
extractDrugAromaticBondsCount, 41
extractDrugAtomCount, 42
extractDrugAutocorrelationCharge, 42
extractDrugAutocorrelationMass, 43
extractDrugAutocorrelationPolarizability,
44
extractDrugBCUT, 45
extractDrugBondCount, 46
extractDrugBPol, 47
extractDrugCarbonTypes, 48
extractDrugChiChain, 49
extractDrugChiCluster, 50
extractDrugChiPath, 51
extractDrugChiPathCluster, 52
extractDrugCPSA, 53
extractDrugDescOB, 54
extractDrugECI, 55
extractDrugEstate, 56, 57
extractDrugEstateComplete, 57, 57
extractDrugExtended, 58, 59
extractDrugExtendedComplete, 58, 59
extractDrugFMF, 60
extractDrugFragmentComplexity, 61
extractDrugGraph, 62, 63
extractDrugGraphComplete, 62, 63
extractDrugGravitationallIndex, 64
extractDrugHBondAcceptorCount, 65
extractDrugHBondDonorCount, 66
extractDrugHybridization, 66, 68
extractDrugHybridizationComplete, 67,
67
extractDrugHybridizationRatio, 68
extractDrugIPMolecularLearning, 69
extractDrugKappaShapeIndices, 70

INDEX

extractDrugKierHallSmarts, 71
extractDrugkR, 73, 74
extractDrugKRComplete, 74, 74
extractDruglLargestChain, 75
extractDruglLargestPiSystem, 76
extractDruglLengthOverBreadth, 76
extractDruglLongestAliphaticChain, 77
extractDrugMACCS, 78, 79
extractDrugMACCSComplete, 78, 79
extractDrugMannholdLogP, 79
extractDrugMDE, 80
extractDrugMomentOfInertia, 81
extractDrugOBFP2, 82
extractDrugOBFP3, 83
extractDrugOBFP4, 84
extractDrugOBMACCS, 85
extractDrugPetitjeanNumber, 86
extractDrugPetitjeanShapelIndex, 87
extractDrugPubChem, 88, 89
extractDrugPubChemComplete, 88, 88
extractDrugRotatableBondsCount, 89
extractDrugRuleOfFive, 90
extractDrugShortestPath, 91, 92
extractDrugShortestPathComplete, 91, 92
extractDrugStandard, 93, 94
extractDrugStandardComplete, 93, 94
extractDrugTPSA, 95
extractDrugVABC, 96
extractDrugVAdjMa, 96
extractDrugWeight, 97
extractDrugWeightedPath, 98
extractDrugWHIM, 99
extractDrugWienerNumbers, 100
extractDrugXLogP, 101
extractDrugZagrebIndex, 102
extractPCMBLOSUM, 103
extractPCMDescScales, 24, 104, 109
extractPCMFAScales, 105
extractPCMMDSScales, 106
extractPCMPropScales, 24, 107, 109
extractPCMScales, 24, 105, 107, 108, 108
extractProtAAC, 109, 116, 130
extractProtAPAAC, 110, /123
extractProtCTDC, 112, 113, 114
extractProtCTDD, /12, 113, 114
extractProtCTDT, /12, 113,114
extractProtCTriad, 115
extractProtDC, /10, 115, 130
extractProtGeary, 116, 119, 121
extractProtMoran, 117,118, 121
extractProtMoreauBroto, /17, 119, 120
extractProtPAAC, 111, 121

extractProtPSSM, 123, 126—128
extractProtPSSMAcc, 126, 126, 128
extractProtPSSMFeature, 126, 127, 127
extractProtQSo, 128, /130
extractProtSOCN, /29, 129
extractProtTC, /10, 116, 130

getCPI, 131, 139
getDrug, 132, 135, 140
getFASTAFromKEGG, 133, 141
getFASTAFromUniProt, 133, 743
getMolFromCAS, 134
getMolFromChEMBL, 135, 143
getMolFromDrugBank, 136, 144
getMolFromKEGG, 136, 145
getMolFromPubChem, 137, 146
getPDBFromRCSBPDB, 138, /42
getPPI, 131, 139
getProt, 132, 140
getSeqFromKEGG, 133, 141
getSeqFromRCSBPDB, 138, 141
getSegFromUniProt, 134, 142
getSmiFromChEMBL, 135, 143
getSmiFromDrugBank, 136, 144
getSmiFromKEGG, 137, 144
getSmiFromPubChem, 138, 145
getwd, 147, 149

OptAA3d, 11, 17, 146

Rcpi (Repi-package), 5
Rcpi-package, 5
readFASTA, 133, 134, 146, 149
readMolFromSDF, 147, 148
readMolFromSmi, /48, 148
readPDB, /47, 149

searchDrug, 150
segProt, 151

153

	Rcpi-package
	AA2DACOR
	AA3DMoRSE
	AAACF
	AABLOSUM100
	AABLOSUM45
	AABLOSUM50
	AABLOSUM62
	AABLOSUM80
	AABurden
	AAConn
	AAConst
	AACPSA
	AADescAll
	AAEdgeAdj
	AAEigIdx
	AAFGC
	AAGeom
	AAGETAWAY
	AAindex
	AAInfo
	AAMetaInfo
	AAMOE2D
	AAMOE3D
	AAMolProp
	AAPAM120
	AAPAM250
	AAPAM30
	AAPAM40
	AAPAM70
	AARandic
	AARDF
	AATopo
	AATopoChg
	AAWalk
	AAWHIM
	acc
	calcDrugFPSim
	calcDrugMCSSim
	calcParProtGOSim
	calcParProtSeqSim
	calcTwoProtGOSim
	calcTwoProtSeqSim
	checkProt
	convMolFormat
	extractDrugAIO
	extractDrugALOGP
	extractDrugAminoAcidCount
	extractDrugApol
	extractDrugAromaticAtomsCount
	extractDrugAromaticBondsCount
	extractDrugAtomCount
	extractDrugAutocorrelationCharge
	extractDrugAutocorrelationMass
	extractDrugAutocorrelationPolarizability
	extractDrugBCUT
	extractDrugBondCount
	extractDrugBPol
	extractDrugCarbonTypes
	extractDrugChiChain
	extractDrugChiCluster
	extractDrugChiPath
	extractDrugChiPathCluster
	extractDrugCPSA
	extractDrugDescOB
	extractDrugECI
	extractDrugEstate
	extractDrugEstateComplete
	extractDrugExtended
	extractDrugExtendedComplete
	extractDrugFMF
	extractDrugFragmentComplexity
	extractDrugGraph
	extractDrugGraphComplete
	extractDrugGravitationalIndex
	extractDrugHBondAcceptorCount
	extractDrugHBondDonorCount
	extractDrugHybridization
	extractDrugHybridizationComplete
	extractDrugHybridizationRatio
	extractDrugIPMolecularLearning
	extractDrugKappaShapeIndices
	extractDrugKierHallSmarts
	extractDrugKR
	extractDrugKRComplete
	extractDrugLargestChain
	extractDrugLargestPiSystem
	extractDrugLengthOverBreadth
	extractDrugLongestAliphaticChain
	extractDrugMACCS
	extractDrugMACCSComplete
	extractDrugMannholdLogP
	extractDrugMDE
	extractDrugMomentOfInertia
	extractDrugOBFP2
	extractDrugOBFP3
	extractDrugOBFP4
	extractDrugOBMACCS
	extractDrugPetitjeanNumber
	extractDrugPetitjeanShapeIndex
	extractDrugPubChem
	extractDrugPubChemComplete
	extractDrugRotatableBondsCount
	extractDrugRuleOfFive
	extractDrugShortestPath
	extractDrugShortestPathComplete
	extractDrugStandard
	extractDrugStandardComplete
	extractDrugTPSA
	extractDrugVABC
	extractDrugVAdjMa
	extractDrugWeight
	extractDrugWeightedPath
	extractDrugWHIM
	extractDrugWienerNumbers
	extractDrugXLogP
	extractDrugZagrebIndex
	extractPCMBLOSUM
	extractPCMDescScales
	extractPCMFAScales
	extractPCMMDSScales
	extractPCMPropScales
	extractPCMScales
	extractProtAAC
	extractProtAPAAC
	extractProtCTDC
	extractProtCTDD
	extractProtCTDT
	extractProtCTriad
	extractProtDC
	extractProtGeary
	extractProtMoran
	extractProtMoreauBroto
	extractProtPAAC
	extractProtPSSM
	extractProtPSSMAcc
	extractProtPSSMFeature
	extractProtQSO
	extractProtSOCN
	extractProtTC
	getCPI
	getDrug
	getFASTAFromKEGG
	getFASTAFromUniProt
	getMolFromCAS
	getMolFromChEMBL
	getMolFromDrugBank
	getMolFromKEGG
	getMolFromPubChem
	getPDBFromRCSBPDB
	getPPI
	getProt
	getSeqFromKEGG
	getSeqFromRCSBPDB
	getSeqFromUniProt
	getSmiFromChEMBL
	getSmiFromDrugBank
	getSmiFromKEGG
	getSmiFromPubChem
	OptAA3d
	readFASTA
	readMolFromSDF
	readMolFromSmi
	readPDB
	searchDrug
	segProt
	Index

