Package ‘Ragged Experiment’

January 20, 2026
Title Representation of Sparse Experiments and Assays Across Samples
Version 1.34.0

Description This package provides a flexible representation of copy
number, mutation, and other data that fit into the ragged array
schema for genomic location data. The basic representation of such
data provides a rectangular flat table interface to the user with
range information in the rows and samples/specimen in the columns.
The RaggedExperiment class derives from a GRangesList representation
and provides a semblance of a rectangular dataset.

License Artistic-2.0

biocViews Infrastructure, DataRepresentation
BugReports https://github.com/Bioconductor/RaggedExperiment/issues

URL https://bioconductor.github.io/RaggedExperiment,
https://bioconductor.org/packages/RaggedExperiment

VignetteBuilder knitr

Depends R (>=4.5.0), GenomicRanges (>= 1.61.1)

Imports BiocBaseUtils, BiocGenerics, Seqinfo, IRanges, Matrix,
MatrixGenerics, methods, S4Vectors, stats, SummarizedExperiment
(>=1.39.1), utils

Suggests BiocStyle, knitr, rmarkdown, testthat, GenomelnfoDb,
MultiAssayExperiment

RoxygenNote 7.3.2

Encoding UTF-8

Date 2024-10-17

git_url https://git.bioconductor.org/packages/RaggedExperiment
git_branch RELEASE_3_22

git_last_commit 2cf1b41

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Martin Morgan [aut],
Marcel Ramos [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3242-0582>),
Lydia King [ctb]

Maintainer Marcel Ramos <marcel . ramos@sph.cuny.edu>

1

https://github.com/Bioconductor/RaggedExperiment/issues
https://bioconductor.github.io/RaggedExperiment
https://bioconductor.org/packages/RaggedExperiment
https://orcid.org/0000-0002-3242-0582

2

RaggedExperiment-package

Contents
RaggedExperiment-package o 2
assay-functions L. e e e e e 3
RaggedExperiment-class 6
sparseSummarizedExperiment Lo 14
Index 17

RaggedExperiment-package

RaggedExperiment: Range-based data representation package

Description

RaggedExperiment allows the user to represent, copy number, mutation, and other types of range-
based data formats where optional information about samples can be provided. At the backbone of
this package is the GRangesList class. The RaggedExperiment class uses this representation and
presents the data in a couple of different ways:

* rowRanges

e colData

The rowRanges method will return the internal GRangesList representation of the dataset. A
distinction between the SummarizedExperiment and the RaggedExperiment classes is that the
RaggedExperiment class allows for ragged ranges, meaning that there may be a different number
of ranges or rows per sample.

Author(s)

Maintainer: Marcel Ramos <marcel . ramos@sph. cuny.edu> (ORCID)

Authors:
e Martin Morgan <martin.morgan@roswellpark.org>
Other contributors:

e Lydia King <L.King18@nuigalway. ie> [contributor]

See Also
Useful links:
e https://bioconductor.github.io/RaggedExperiment

* https://bioconductor.org/packages/RaggedExperiment

* Report bugs at https://github.com/Bioconductor/RaggedExperiment/issues

https://orcid.org/0000-0002-3242-0582
https://bioconductor.github.io/RaggedExperiment
https://bioconductor.org/packages/RaggedExperiment
https://github.com/Bioconductor/RaggedExperiment/issues

assay-functions 3

assay-functions Create simplified representation of ragged assay data.

Description

These methods transform assay () from the default (i.e., sparseAssay()) representation to various
forms of more dense representation. compactAssay() collapses identical ranges across samples
into a single row. disjoinAssay() creates disjoint (non-overlapping) regions, simplifies values
within each sample in a user-specified manner, and returns a matrix of disjoint regions x samples.

This method transforms assay () from the default (i.e., sparseAssay ()) representation to a reduced
representation summarizing each original range overlapping ranges in query. Reduction in each cell
can be tailored to indivdual needs using the simplifyReduce functional argument.

Usage
sparseAssay(
X’
i=1,

withDimnames = TRUE,
background = NA_integer_,
sparse = FALSE

compactAssay (
X,
i=1,
withDimnames = TRUE,
background = NA_integer_,
sparse = FALSE

disjoinAssay(
X’
simplifyDisjoin,
i=1,
withDimnames = TRUE,
background = NA_integer_

greduceAssay(
X,
query,
simplifyReduce,
i=1,
withDimnames = TRUE,
background = NA_integer_

Arguments

X A RaggedExperiment object

4 assay-functions

i integer(1) or character(1) name of assay to be transformed.

withDimnames logical(1) include dimnames on the returned matrix. When there are no explict
rownames, these are manufactured with as.character(rowRanges(x)); row-
names are always manufactured for compactAssay() and disjoinAssay().

background A value (default NA) for the returned matrix after xAssay operations
sparse logical(1) whether to return a sparseMatrix representation
simplifyDisjoin

A function / functional operating on a *List, where the elements of the list
are all within-sample assay values from ranges overlapping each disjoint range.
For instance, to use the simplifyDisjoin=mean of overlapping ranges, where
ranges are characterized by integer-valued scores, the entries are calculated as

original: |----=—=-—--- |

disjoint: |--—-|------ |---]

values <- IntegerList(a, c(a, b), b)
simplifyDisjoin(values)

query GRanges providing regions over which reduction is to occur.
simplifyReduce A function /functional accepting arguments score, range, and qrange:

* score A *List, where each list element corresponds to a cell in the matrix
to be returned by qreduceAssay. Vector elements correspond to ranges
overlapping query. The *List objects support many vectorized mathemat-
ical operations, so simplifyReduce can be implemented efficiently.

* range A GRangesList instance, ’parallel’ to score. Each element of the
list corresponds to a cell in the matrix to be returned by greduceAssay.
Each range in the element corresponds to the range for which the score
element applies.

* grange A GRanges instance with the same length as unlist(score), pro-
viding the query range window to which the corresponding scores apply.

Value

sparseAssay(): A matrix() with dimensions dim(x). Elements contain the assay value for the ith
range and jth sample. Use ’sparse=TRUE’ to obtain a sparseMatrix assay representation.

compactAssay(): Samples with identical range are placed in the same row. Non-disjoint ranges
are NOT collapsed. Use ’sparse=TRUE’ to obtain a sparseMatrix assay representation.

disjoinAssay(): A matrix with number of rows equal to number of disjoint ranges across all
samples. Elements of the matrix are summarized by applying simplifyDisjoin() to assay values
of overlapping ranges

greduceAssay(): A matrix() with dimensions length(query) x ncol(x). Elements contain assay
values for the ith query range and jth sample, summarized according to the function simplifyReduce.

assay-functions

Examples

re4 <- RaggedExperiment(GRangesList(

GRanges(c(A = "chr1:1-10:-", B = "chr1:8-14:-", C = "chr2:15-18:+"),
score = 3:5),
GRanges(c(D = "chr1:1-10:-", E = "chr2:11-18:+"), score = 1:2)

), colData = DataFrame(id = 1:2))

query <- GRanges(c("chr1:1-14:-", "chr2:11-18:+"))

weightedmean <- function(scores, ranges, granges)

{

weighted average score per query range

the weight corresponds to the size of the overlap of each

overlapping subject range with the corresponding query range
isects <- pintersect(ranges, granges)

sum(scores * width(isects)) / sum(width(isects))

greduceAssay(re4, query, weightedmean)

Not run:

Extended example: non-silent mutations, summarized by genic
region
suppressPackageStartupMessages ({
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
library(GenomeInfoDb)
library(MultiAssayExperiment)
library(curatedTCGAData)
library(TCGAutils)
»

TCGA MultiAssayExperiment with RaggedExperiment data
mae <- curatedTCGAData("ACC", c("RNASeq2GeneNorm”, "CNASNP", "Mutation”),
version = "1.1.38", dry.run = FALSE)

genomic coordinates

gn <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)

gn <- keepStandardChromosomes(granges(gn), pruning.mode="coarse")
seqlevelsStyle(gn) <- "NCBI"

genome(gn)

gn <- unstrand(gn)

reduce mutations, marking any genomic range with non-silent
mutation as FALSE
nonsilent <- function(scores, ranges, qranges)
any(scores != "Silent")
mre <- mae[["ACC_Mutation-20160128"1]
seqlevelsStyle(rowRanges(mre)) <- "NCBI"
hack to make genomes match
genome(mre) <- paste@(correctBuild(unique(genome(mre)), "NCBI"), ".p13")
mutations <- greduceAssay(mre, gn, nonsilent, "Variant_Classification”)
genome(mre) <- correctBuild(unique(genome(mre)), "NCBI")

reduce copy number
re <- mae[["ACC_CNASNP-20160128"1]

6 RaggedExperiment-class

class(re)

[1] "RaggedExperiment”

seglevelsStyle(re) <- "NCBI"

genome(re) <- "GRCh37.p13"

cn <- greduceAssay(re, gn, weightedmean, "Segment_Mean")
genome(re) <- "GRCh37"

ALTERNATIVE

##

TCGAutils helper function to convert RaggedExperiment objects to
RangedSummarizedExperiment based on annotated gene ranges

mae2 <- mae

mae2[[1L]] <- re

mae2[[2L]] <- mre

greduceTCGA(mae2)

End(Not run)

RaggedExperiment-class
RaggedExperiment objects

Description

The RaggedExperiment class is a container for storing range-based data, including but not limited
to copy number data, and mutation data. It can store a collection of GRanges objects, as it is derived
from the GenomicRangesList

Usage
RaggedExperiment(..., colData = DataFrame(), metadata = list())

S4 method for signature 'RaggedExperiment’
seqginfo(x)

S4 replacement method for signature 'RaggedExperiment'’
seqinfo(x, new2old = NULL, pruning.mode = c("error”, "coarse”, "fine"”, "tidy")) <- value

S4 method for signature 'RaggedExperiment’
rowRanges(x, ...)

S4 replacement method for signature 'RaggedExperiment,GRanges'
rowRanges(x, ...) <- value

S4 method for signature 'RaggedExperiment’
mcols(x, use.names = FALSE, ...)

S4 replacement method for signature 'RaggedExperiment'
mcols(x, ...) <- value

S4 method for signature 'RaggedExperiment'
rowData(x, use.names = TRUE, ...)

RaggedExperiment-class

S4 replacement method for signature 'RaggedExperiment'’
rowData(x, ...) <- value

S4 method for signature 'RaggedExperiment'’
dim(x)

S4 method for signature 'RaggedExperiment'
dimnames(x)

S4 replacement method for signature 'RaggedExperiment,list’
dimnames(x) <- value

S4 replacement method for signature 'RaggedExperiment,ANY'
dimnames(x) <- value

S4 method for signature 'RaggedExperiment’
length(x)

S4 method for signature 'RaggedExperiment'’
colData(x, ...)

S4 replacement method for signature 'RaggedExperiment,DataFrame’
colData(x) <- value

S4 method for signature 'RaggedExperiment,missing'’
assay(x, i, withDimnames = TRUE, ...)

S4 method for signature 'RaggedExperiment,ANY'
assay(x, i, withDimnames = TRUE, ...)

S4 method for signature 'RaggedExperiment’
assays(x, withDimnames = TRUE, ...)

S4 method for signature 'RaggedExperiment'
assayNames(x, ...)

S4 method for signature 'RaggedExperiment’
show(object)

S4 method for signature 'RaggedExperiment'’
as.list(x, ...)

S4 method for signature 'RaggedExperiment’
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S4 method for signature 'RaggedExperiment'’
x$name

S4 method for signature 'RaggedExperiment,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

8 RaggedExperiment-class

S4 method for signature 'RaggedExperiment,Vector'

overlapsAny(
query,
subject,
maxgap = oL,

minoverlap = 1L,
type = c("any”, "start”, "end”, "within”, "equal"),

)

S4 method for signature 'RaggedExperiment,Vector'
subsetByOverlaps(

X,

ranges,

maxgap = -1L,

minoverlap = 0oL,

type = c("any”, "start”, "end”, "within"”, "equal"),

invert = FALSE,

)
S4 method for signature 'RaggedExperiment’
subset(x, subset, select, ...)

Arguments

Constructor: GRanges, list of GRanges, or GRangesList OR assay: Additional
arguments for assay. See details for more information.

colData A DataFrame describing samples. Length of rowRanges must equal the number
of rows in colData

metadata A list to include in the metadata. Any metadata included in the input objects
are lost.

X A RaggedExperiment object.

new2old The new20ld argument allows the user to rename, drop, add and/or reorder the

"sequence levels" in x.

new2old can be NULL or an integer vector with one element per entry in Seqinfo
object value (i.e. new2old and value must have the same length) describing
how the "new" sequence levels should be mapped to the "old" sequence levels,
that is, how the entries in value should be mapped to the entries in seqinfo(x).
The values in new20ld must be >= 1 and <= length(seqinfo(x)). NAs are al-
lowed and indicate sequence levels that are being added. Old sequence levels
that are not represented in new2old will be dropped, but this will fail if those
levels are in use (e.g. if x is a GRanges object with ranges defined on those
sequence levels) unless a pruning mode is specified via the pruning.mode argu-
ment (see below).

If new201d=NULL, then sequence levels can only be added to the existing ones,

that is, value must have at least as many entries as seqinfo(x) (i.e. length(values)

>= length(seqinfo(x))) and also seqlevels(values)[seq_len(length(seqlevels(x)))]
must be identical to seqlevels(x).

Note that most of the times it’s easier to proceed in 2 steps:

RaggedExperiment-class 9

1. First align the seqlevels on the left (seqlevels(x)) with the seqlevels on
the right.

2. Then call seqinfo(x) <- value. Because seqlevels(x) and seqlevels(value)
now are identical, there’s no need to specify new2old.

This 2-step approach will typically look like this:

seqlevels(x) <- seqglevels(value) # align seqlevels
segqinfo(x) <- seqinfo(value) # guaranteed to work

Or, if x has seqlevels not in value, it will look like this:

seqlevels(x, pruning.mode="coarse") <- seqlevels(value)
seqinfo(x) <- seqinfo(value) # guaranteed to work

The pruning.mode argument will control what happens to x when some of its
seqlevels get droppped. See below for more information.

pruning.mode When some of the seqlevels to drop from x are in use (i.e. have ranges on
them), the ranges on these sequences need to be removed before the seqlevels
can be dropped. We call this pruning. The pruning.mode argument controls
how to prune x. Four pruning modes are currently defined: "error”, "coarse”,
"fine", and "tidy". "error” is the default. In this mode, no pruning is done

and an error is raised. The other pruning modes do the following:

* "coarse"”: Remove the elements in x where the seqlevels to drop are in
use. Typically reduces the length of x. Note that if x is a list-like ob-
ject (e.g. GRangesList, GAlignmentPairs, or GAlignmentsList), then any
list element in x where at least one of the sequence levels to drop is in
use is fully removed. In other words, when pruning.mode="coarse", the
seqlevels setter will keep or remove full list elements and not try to change
their content. This guarantees that the exact ranges (and their order) inside
the individual list elements are preserved. This can be a desirable property
when the list elements represent compound features like exons grouped
by transcript (stored in a GRangesList object as returned by exonsBy(,
by="tx")), or paired-end or fusion reads, etc...

* "fine": Supported on list-like objects only. Removes the ranges that are
on the sequences to drop. This removal is done within each list element
of the original object x and doesn’t affect its length or the order of its list
elements. In other words, the pruned object is guaranteed to be parallel to
the original object.

* "tidy": Like the "fine"” pruning above but also removes the list elements
that become empty as the result of the pruning. Note that this pruning mode
is particularly well suited on a GRangesList object that contains transcripts
grouped by gene, as returned by transcriptsBy(, by="gene"). Finally
note that, as a convenience, this pruning mode is supported on non list-
like objects (e.g. GRanges or GAlignments objects) and, in this case, is
equivalent to the "coarse"” mode.

See the "B. DROP SEQLEVELS FROM A LIST-LIKE OBJECT" section in the
examples below for an extensive illustration of these pruning modes.

value ¢ dimnames: A list of dimension names
* mcols: A DataFrame representing the assays

use.names (logical default FALSE) whether to propagate rownames from the object to row-
names of metadata DataFrame

10

withDimnames
object

row.names

optional

name

drop
query

subject, ranges

maxgap

minoverlap

RaggedExperiment-class

logical(1), integer(1), or character(1) indicating the assay to be reported. For [,
i can be any supported Vector object, e.g., GRanges.

logical (default TRUE) whether to use dimension names in the resulting object
A RaggedExperiment object.

NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment, ba-
sically with the meaning of data.frame(*, check.names = !optional). See
also the make . names argument of the matrix method.

a literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

integer(), character(), or logical() index selecting columns from RaggedExperi-
ment

logical (default TRUE) whether to drop empty samples
A RaggedExperiment instance.

Each of them can be an IntegerRanges (e.g. IRanges, Views) or IntegerRanges-
List (e.g. [RangesList, ViewsList) derivative. In addition, if subject or ranges
is an IntegerRanges object, query or x can be an integer vector to be converted
to length-one ranges.

If query (or x) is an IntegerRangesList object, then subject (or ranges) must
also be an IntegerRangesList object.

If both arguments are list-like objects with names, each list element from the 2nd
argument is paired with the list element from the 1st argument with the matching
name, if any. Otherwise, list elements are paired by position. The overlap is then
computed between the pairs as described below.

If subject is omitted, query is queried against itself. In this case, and only this
case, the drop.self and drop.redundant arguments are allowed. By default,
the result will contain hits for each range against itself, and if there is a hit from
A to B, there is also a hit for B to A. If drop.self is TRUE, all self matches are
dropped. If drop. redundant is TRUE, only one of A->B and B->A is returned.

A single integer >=-1.

If type is set to "any", maxgap is interpreted as the maximum gap that is al-
lowed between 2 ranges for the ranges to be considered as overlapping. The
gap between 2 ranges is the number of positions that separate them. The gap
between 2 adjacent ranges is 0. By convention when one range has its start or
end strictly inside the other (i.e. non-disjoint ranges), the gap is considered to
be -1.

If type is set to anything else, maxgap has a special meaning that depends on
the particular type. See type below for more information.

A single non-negative integer.

Only ranges with a minimum of minoverlap overlapping positions are consid-
ered to be overlapping.

When type is "any", at least one of maxgap and minoverlap must be set to its
default value.

RaggedExperiment-class 11

type

invert

subset

select

Value

By default, any overlap is accepted. By specifying the type parameter, one can
select for specific types of overlap. The types correspond to operations in Allen’s
Interval Algebra (see references). If type is start or end, the intervals are
required to have matching starts or ends, respectively. Specifying equal as the
type returns the intersection of the start and end matches. If type is within,
the query interval must be wholly contained within the subject interval. Note
that all matches must additionally satisfy the minoverlap constraint described
above.

The maxgap parameter has special meaning with the special overlap types. For
start, end, and equal, it specifies the maximum difference in the starts, ends or
both, respectively. For within, it is the maximum amount by which the subject
may be wider than the query. If maxgap is set to -1 (the default), it’s replaced
internally by 0.

If TRUE, keep only the ranges in x that do not overlap ranges.

logical expression indicating elements or rows to keep: missing values are taken
as false.

If query is an IntegerRanges derivative: When select is "all” (the default),
the results are returned as a Hits object. Otherwise the returned value is an
integer vector parallel to query (i.e. same length) containing the first, last, or
arbitrary overlapping interval in subject, with NA indicating intervals that did
not overlap any intervals in subject.

If query is an IntegerRangesList derivative: When select is "all” (the de-
fault), the results are returned as a HitsList object. Otherwise the returned
value depends on the drop argument. When select !="all"” && !drop, an
IntegerList is returned, where each element of the result corresponds to a space
in query. When select !="all" && drop, an integer vector is returned con-
taining indices that are offset to align with the unlisted query.

constructor returns a RaggedExperiment object

‘rowRanges’ returns a GRanges object summarizing ranges corresponding to assay () rows.

‘rowRanges<-’ returns a RaggedExperiment object with replaced ranges

’mcols’ returns a DataFrame object of the metadata columns

’assays’ returns a SimplelList

’overlapsAny’ returns a logical vector of length equal to the number of rows in the query; TRUE
when the copy number region overlaps the subject.

’subsetByOverlaps’ returns a RaggedExperiment containing only copy number regions overlapping

subject.

Methods (by generic)

* seqinfo(RaggedExperiment): seqinfo accessor

* seqinfo(RaggedExperiment) <- value: Replace seqinfo metadata of the ranges

* rowRanges(RaggedExperiment): rowRanges accessor

* rowRanges(x = RaggedExperiment) <- value: rowRanges replacement

* mcols(RaggedExperiment): get the metadata columns of the ranges, rectangular representa-
tion of the ’assays’

12 RaggedExperiment-class

* mcols(RaggedExperiment) <- value: set the metadata columns of the ranges corresponding
to the assays

* rowData(RaggedExperiment): get the rowData or metadata for the ranges
* rowData(RaggedExperiment) <- value: set the rowData or metadata for the ranges

* dim(RaggedExperiment): get dimensions (number of sample-specific row ranges by number
of samples)

* dimnames(RaggedExperiment): get row (sample-specific) range names and sample names

e dimnames(x = RaggedExperiment) <- value: set row (sample-specific) range names and
sample names

* dimnames(x = RaggedExperiment) <- value: set row range names and sample names to
NULL

* length(RaggedExperiment): get the length of row vectors in the object, similar to Summa-
rizedExperiment

* colData(RaggedExperiment): get column data
* colData(x = RaggedExperiment) <- value: change the colData

* assay(x = RaggedExperiment, i =missing): assay missing method uses first metadata col-
umn

* assay(x = RaggedExperiment, i = ANY): assay numeric method.

* assays(RaggedExperiment): assays

* assayNames(RaggedExperiment): names in each assay

¢ show(RaggedExperiment): show method

* as.list(RaggedExperiment): Allow extraction of metadata columns as a plain list
* as.data.frame(RaggedExperiment): Allow conversion to plain data. frame

* $: Easily access the colData columns with the dollar sign operator

» x[i: Subset a RaggedExperiment object

* overlapsAny(query = RaggedExperiment, subject = Vector): Determine whether copy
number ranges defined by query overlap ranges of subject.

* subsetByOverlaps(x = RaggedExperiment, ranges = Vector): Subset the RaggedExperi-
ment to contain only copy number ranges overlapping ranges of subject.

* subset(RaggedExperiment): subset helper function for dividing by rowData and / or col-
Data values

Constructors

RaggedExperiment(. .., colData=DataFrame()): Creates a RaggedExperiment object using mul-
tiple GRanges objects or a list of GRanges objects. Additional column data may be provided as a
DataFrame object.

Accessors

In the following, X’ represents a RaggedExperiment object:
rowRanges(x):

Get the ranged data. Value is a GenomicRanges object.
assays(x):

Get the assays. Value is a SimplelList.

RaggedExperiment-class 13

assay(x, i):
An alternative to assays(x)[[i]] to get the ith (default first) assay element.
mcols(x), mcols(x) <- value:

Get or set the metadata columns. For RaggedExperiment, the columns correspond to the assay ith
elements.

rowData(x), rowData(x) <- value:
Get or set the row data. Value is a DataFrame object. Also corresponds to the mcols data.

Note for advanced users and developers. Both mcols and rowData setters may reduce the size of
the internal RaggedExperiment data representation. Particularly after subsetting, the internal row
index is modified and such setter operations will use the index to subset the data and reduce the
"rows" of the internal data representation.

Subsetting

x[i, j1: Getranges or elements (i and j, respectively) with optional metadata columns where i or
j can be missing, an NA-free logical, numeric, or character vector.

Coercion

In the following, ’object’ represents a RaggedExperiment object:
as(object, "GRangesList"):

Creates a GRangesList object from a RaggedExperiment.
as(from, "RaggedExperiment”):

Creates a RaggedExperiment object from a GRangesList, or GRanges object.

Examples

Create an empty RaggedExperiment instance
re@ <- RaggedExperiment()
red

Create a couple of GRanges objects with row ranges names
samplel <- GRanges(
c(a = "chr1:1-10:-", b
score = 1:2)
sample2 <- GRanges(
c(c = "chr2:1-10:-", d = "chr2:11-18:+"),
score = 3:4)

"chr1:11-18:+"),

Include column data
colDat <- DataFrame(id = 1:2)

Create a RaggedExperiment object from a couple of GRanges
rel <- RaggedExperiment(samplel=samplel, sample2=sample2, colData = colDat)
rel

With list of GRanges
lgr <- list(samplel = samplel, sample2 = sample2)

Create a RaggedExperiment from a list of GRanges
re2 <- RaggedExperiment(lgr, colData = colDat)

14 sparseSummarizedExperiment

grl <- GRangesList(samplel = samplel, sample2 = sample2)

Create a RaggedExperiment from a GRangesList
re3 <- RaggedExperiment(grl, colData = colDat)

Subset a RaggedExperiment
assay(re3fc(1, 3),D
subsetByOverlaps(re3, GRanges("chr1:1-5")) # by ranges

sparseSummarizedExperiment

Create SummarizedExperiment representations by transforming
ragged assays to rectangular form.

Description

These methods transform RaggedExperiment objects to similar SummarizedExperiment objects.
They do so by transforming assay data to more rectangular representations, following the rules
outlined for similarly names transformations sparseAssay (), compactAssay(), disjoinAssay(),
and greduceAssay(). Because of the complexity of the transformation, ti usually only makes
sense transform RaggedExperiment objects with a single assay; this is currently enforced at time
of coercion.

Usage

sparseSummarizedExperiment(x, i = 1, withDimnames = TRUE, sparse = FALSE)
compactSummarizedExperiment(x, i = 1L, withDimnames = TRUE, sparse = FALSE)
disjoinSummarizedExperiment(x, simplifyDisjoin, i = 1L, withDimnames = TRUE)

greduceSummarizedExperiment (

X)
query,
simplifyReduce,
i=1L,
withDimnames = TRUE

)

Arguments
X RaggedExperiment
i integer(1), character(1), or logical() selecting the assay to be trans-

formed.
withDimnames logical (1) default TRUE. propagate dimnames to SummarizedExperiment.
sparse logical(1) whether to return a sparseMatrix representation
simplifyDisjoin

function of 1 argument, used to transform assays. See assay-functions.
query GRanges provding regions over which reduction is to occur.

simplifyReduce function of 3 arguments used to transform assays. See assay-functions.

sparseSummarizedExperiment 15

Value

All functions return RangedSummarizedExperiment.

sparseSummarizedExperiment has rowRanges() identical to the row ranges of x, and assay()
data as sparseAssay (). This is very space-inefficient representation of ragged data. Use ’sparse=TRUE’
to obtain a sparseMatrix assay representation.

compactSummarizedExperiment has rowRanges() identical to the row ranges of x, and assay ()
data as compactAssay(). This is space-inefficient representation of ragged data when samples
are primarily composed of different ranges. Use ’sparse=TRUE’ to obtain a sparseMatrix assay
representation.

disjoinSummarizedExperiment has rowRanges() identical to the disjoint row ranges of x, disjoint(rowRanges(x)),
and assay() data as disjoinAssay().

greduceSummarizedExperiment has rowRanges() identical to query, and assay () data as greduceAssay ().

sparseMatrix

Convert a dgCMatrix to a RaggedExperiment given that the rownames are coercible to GRanges.

In the following example, x is a dgCMatrix from the Matrix package.

“as(x, "RaggedExperiment”)"

Examples

x <- RaggedExperiment(GRangesList(
GRanges(c("A:1-5", "A:4-6", "A:10-15"), score=1:3),
GRanges(c("A:1-5", "B:1-3"), score=4:5)

)

sparseSummarizedExperiment

sse <- sparseSummarizedExperiment(x)
assay(sse)
rowRanges(sse)

compactSummarizedExperiment

cse <- compactSummarizedExperiment(x)
assay(cse)
rowRanges(cse)

disjoinSummarizedExperiment

disjoinAssay(x, lengths)

dse <- disjoinSummarizedExperiment(x, lengths)
assay(dse)

rowRanges (dse)

qreduceSummarizedExperiment

x <- RaggedExperiment(GRangesList(
GRanges(c("A:1-3", "A:4-5", "A:10-15"), score=1:3),
GRanges(c("A:4-5", "B:1-3"), score=4:5)

))

query <- GRanges(c("A:1-2", "A:4-5", "B:1-5"))

16

sparseSummarizedExperiment

weightedmean <- function(scores, ranges, granges)

{

weighted average score per query range

the weight corresponds to the size of the overlap of each

overlapping subject range with the corresponding query range
isects <- pintersect(ranges, granges)

sum(scores * width(isects)) / sum(width(isects))

greduceAssay(x, query, weightedmean)

gse <- greduceSummarizedExperiment(x, query, weightedmean)
assay(qgse)

rowRanges(qse)

sm <- Matrix::sparseMatrix(

i c(2, 3, 4, 3, 4, 3, 4),

j=c@, 1,1, 3,3, 4 4),

x = c(2L, 4L, 2L, 2L, 2L, 4L, 2L),

dims = c(4, 4),

dimnames = list(
c("chr2:1-10", "chr2:2-10", "chr2:3-10", "chr2:4-10"),
LETTERS[1:4]

as(sm, "RaggedExperiment”)

Index

[,RaggedExperiment, ANY,ANY,ANY-method dim,RaggedExperiment-method
(RaggedExperiment-class), 6 (RaggedExperiment-class), 6
$,RaggedExperiment-method dimnames,RaggedExperiment-method
(RaggedExperiment-class), 6 (RaggedExperiment-class), 6
dimnames<-,RaggedExperiment, ANY-method
as.data.frame,RaggedExperiment-method (RaggedExperiment-class), 6
(RaggedExperiment-class), 6 dimnames<-,RaggedExperiment,list-method
as.list,RaggedExperiment-method (RaggedExperiment-class), 6
(RaggedExperiment-class), 6 disjoinAssay (assay-functions), 3
assay,RaggedExperiment, ANY-method disjoinSummarizedExperiment
(RaggedExperiment-class), 6 (sparseSummarizedExperiment),
assay,RaggedExperiment,missing-method 14
(RaggedExperiment-class), 6
assay-functions, 3 exonsBy, 9

assayNames,RaggedExperiment-method
(RaggedExperiment-class), 6

assays,RaggedExperiment-method
(RaggedExperiment-class), 6

GAlignmentPairs, 9
GAlignments, 9

GAlignmentslList, 9
GRanges, 8, 9, 11, 13

backtick, 70 GRangeslList, 2,9, 13

Hits, /1

class:RaggedExperiment HitsList, /7

(RaggedExperiment-class), 6

coerce,dgCMatrix,RaggedExperiment-method IntegerlList, 1]
(sparseSummarizedExperiment), IntegerRanges, 10, 11
14 IntegerRangeslist, 10, 11
coerce,GRangesList,RaggedExperiment-method IRanges, 10
(RaggedExperiment-class), 6 IRangesList, 10
coerce,RaggedExperiment,GRangesList-method
(RaggedExperiment-class), 6 length,RaggedExperiment-method
coerce-RaggedExperiment (RaggedExperiment-class), 6
(sparseSummarizedExperiment),
14 make.names, 10

mcols,RaggedExperiment-method
(RaggedExperiment-class), 6

mcols<-,RaggedExperiment-method
(RaggedExperiment-class), 6

colData,RaggedExperiment-method
(RaggedExperiment-class), 6

colData<-,RaggedExperiment,DataFrame-method
(RaggedExperiment-class), 6

compactAssay (assay-functions), 3

s vedE) name, 10
compactSummarize xperlment . names, 10
(sparseSummarizedExperiment),
14 overlapsAny,RaggedExperiment,Vector-method

(RaggedExperiment-class), 6
data.frame, 10

DataFrame, 8, 9, 11, 13 greduceAssay (assay-functions), 3

17

18 INDEX

greduceSummarizedExperiment
(sparseSummarizedExperiment),
14

RaggedExperiment, 2, 11
RaggedExperiment
(RaggedExperiment-class), 6
RaggedExperiment-class, 6
RaggedExperiment-package, 2
rowData,RaggedExperiment-method
(RaggedExperiment-class), 6
rowData<-,RaggedExperiment-method
(RaggedExperiment-class), 6
rowRanges, 2
rowRanges,RaggedExperiment-method
(RaggedExperiment-class), 6
rowRanges<-,RaggedExperiment, GRanges-method
(RaggedExperiment-class), 6

Seqginfo, 8
seqinfo,RaggedExperiment-method
(RaggedExperiment-class), 6
seqinfo<-,RaggedExperiment-method
(RaggedExperiment-class), 6
show, RaggedExperiment-method
(RaggedExperiment-class), 6
Simplelist, 11, 12
sparseAssay (assay-functions), 3
sparseMatrix, 4, 14, 15
sparseSummarizedExperiment, 14
subset,RaggedExperiment-method
(RaggedExperiment-class), 6
subsetByOverlaps,RaggedExperiment,Vector-method
(RaggedExperiment-class), 6
SummarizedExperiment, 2, 12

transcriptsBy, 9

Views, 10
ViewslList, /10

	RaggedExperiment-package
	assay-functions
	RaggedExperiment-class
	sparseSummarizedExperiment
	Index

