Package ‘RFLOMICS’

January 6, 2026

Title Interactive web application for Omics-data analysis
Version 1.2.0

Description R-package with shiny interface, provides a framework for
the analysis of transcriptomics, proteomics and/or metabolomics data.
The interface offers a guided experience for the user, from the definition
of the experimental design to the integration of several omics table together.
A report can be generated with all settings and analysis results.

URL https://github.com/RFLOMICS/RFLOMICS

BugReports https://github.com/RFLOMICS/RFLOMICS/issues

Depends R (>=4.4.0), SummarizedExperiment, MultiAssayExperiment,
shinyBS, dplyr, ggplot2, htmltools, knitr, coseq

biocViews ShinyApps, DifferentialExpression, Metabolomics, Proteomics,
Transcriptomics

License Artistic-2.0

Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat, shinytest2, BiocStyle, org.Hs.eg.db
VignetteBuilder knitr

Imports vroom, org.At.tair.db, AnnotationDbi, clusterProfiler,
ComplexHeatmap, data.table, DT, edgeR, enrichplot, FactoMineR,
ggpubr, ggrepel, grDevices, grid, httr, limma, magrittr,
methods, mixOmics, MOFA2, plotly, purrr, RColorBrewer,
reshape?2, reticulate, rmarkdown, S4Vectors, shiny,
shinydashboard, shinyWidgets, stats, stringr, tidyr, tibble,
tidyselect, UpSetR,

SystemRequirements Python (>=3), numpy, pandas, hSpy, scipy, argparse,
sklearn, mofapy?2 (>=0.7.1)

git_url https://git.bioconductor.org/packages/RFLOMICS
git_branch RELEASE_3_22

git_last commit cb2ef8a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-05

https://github.com/RFLOMICS/RFLOMICS
https://github.com/RFLOMICS/RFLOMICS/issues

2 createRflomicsMAE

Author Nadia Bessoltane [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6931-2529>),
Delphine Charif [aut] (ORCID: <https://orcid.org/0000-0002-1949-5969>),
Audrey Hulot [aut] (ORCID: <https://orcid.org/0000-0002-9647-6470>),
Christine Paysant-Leroux [aut] (ORCID:
<https://orcid.org/0000-0003-2046-6492>),
Gwendal Cueff [aut]

Maintainer Nadia Bessoltane <nadia.bessoltane@inrae.fr>

Contents

createRflomicsMAE
ecoseed.df e e e
€CoSEed.MAC e e e e e e e e
generateExpressionContrasto
generateModelFormulae Lo oL

generateReport L.
getAnalysis 10
prepareForlIntegration,RflomicsMAE-method 11
RflomicsMAE-class e 12
rflomicsMAE2MAE e 16
RflomicsSE-class 16
runAnnotationEnrichment oL Lo oL 18
runCoExpression 23
runDataProcessing 27
runDiffAnalysis L. 35
runOmicsIntegration,RflomicsMAE-method, .. 42
runRFLOMICS 45

Index 46

createRflomicsMAE RflomicsMAE class constructor
Description

This function is a constructor for the class RflomicsMAE-class. It initializes an object of class
RflomicsMAE-class from a list of omics datasets, a vector of dataset names, a vector of omics
types, and an experimental design.

Usage

createRflomicsMAE(
projectName = NULL,
omicsData = NULL,
omicsNames = NULL,
omicsTypes = NULL,
ExpDesign = NULL,
factorInfo = NULL

https://orcid.org/0000-0001-6931-2529
https://orcid.org/0000-0002-1949-5969
https://orcid.org/0000-0002-9647-6470
https://orcid.org/0000-0003-2046-6492

createRflomicsMAE

Arguments

projectName

omicsData

omicsNames
omicsTypes
ExpDesign

factorInfo

Value

Project name

list of omics dataset: named list of data.frame, matrix or SummarizedExperi-
ment objects, or MultiAssayExperiment object.

Vector of dataset names that we want to analyze.
vector of dataset types: "RNAseq", "metabolomics", "proteomics”
a data.frame which describes the experimental design.
a data.frame describing the experimental factors.
* factorName: factor names
* factorRef: factor references
* factorType: factor type : "Bio", "batch", "Meta"
* factorLevels: levels of each factor with "," separation.

An object of class RflomicsMAE-class

See Also

RflomicsMAE-class

Examples

load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(

"factorName'
"factorType'

)

= c("Repeat”, "temperature”, "imbibition"),
= c("batch”, "Bio", "Bio")

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS

projectName
omicsData
omicsTypes
factorInfo

::createRflomicsMAE(

"Tests",

ecoseed.mae,

c("RNAseq", "proteomics”, "metabolomics”),
factorInfo)

names(MAE) <- c("RNAtest”, "protetest”, "metatest”)

generate upset plot
MultiAssayExperiment: :upsetSamples(MAE)

generate data overview plot
plotDataOverview(MAE)

generate plot of coverage of condition by data
plotConditionsOverview(MAE)

ecoseed.mae

ecoseed.df Ecoseed project data

Description

This dataset is provided by the EcoSeed project (FP7-KBBE; Impacts of Environmental Conditions
on Seed Quality). that investigates the effect of seed production temperature on the germination
potential of Arabidopsis thaliana.

This dataset is a multi-omics dataset composed of three data matrices: transcriptomics (raw RNAseq
read count data matrix), metabolomics and proteomics (relative abundance matrix as XIC).

These data are provided in 2 object: ecoseed.df and ecoseed.mae

Usage

data("ecoseed.df")

Format

A list of data.frame containing

* design: a data.frame with experiment design,
* RNAtest: a data.frame with RNAseq data,
* protetest: a data.frame with proteomics data,

¢ metatest: a data.frame with metabolomics data

References

FP7-KBBE; Impacts of Environmental Conditions on Seed Quality

Examples

data("ecoseed.df")

list of data.frames
names (ecoseed.df)
head(ecoseed.df$design)

ecoseed.mae Ecoseed project data

Description

This dataset is provided by the EcoSeed project (FP7-KBBE; Impacts of Environmental Conditions
on Seed Quality). that investigates the effect of seed production temperature on the germination
potential of Arabidopsis thaliana.

This dataset is a multi-omics dataset composed of three data matrices: transcriptomics (raw RNAseq
read count data matrix), metabolomics and proteomics (relative abundance matrix as XIC).

These data are provided in 2 object: ecoseed.df and ecoseed.mae

generateExpressionContrast 5

Usage

data("ecoseed.mae")

Format

ecoseed.mae: a MultiAssayExperiment object, of RNAtest, protetest and metatest data in Summa-
rizedExperiment

» ExperimentList class object of length 3:

— RNAtest: a SummarizedExperiment object with RNAseq data,
— protetest: a SummarizedExperiment object with proteomics data,
— metatest: a SummarizedExperiment object with metabolomics data

» DataFrame with experiment design

References

FP7-KBBE; Impacts of Environmental Conditions on Seed Quality

Examples

data("ecoseed.mae")

generateExpressionContrast
Contrast expressions

Description
Generate expression of contrasts based on chosed model formula.

* generateExpressionContrast: This function allows, from a model formulae, to give the expres-
sion contrast data frames. Three types of contrasts are expressed:

— pairwise comparison
— averaged expression
— interaction expression

¢ setSelectedContrasts: Set the selected contrasts stored in metadata slot
» getSelectedContrasts: List the selected contrasts

Usage

S4 method for signature 'RflomicsSE'
generateExpressionContrast(object, contrastType = NULL)

S4 method for signature 'RflomicsMAE'
generateExpressionContrast(object, contrastType

NULL)

S4 method for signature 'RflomicsMAE'’

6 generateExpressionContrast

setSelectedContrasts(object, contrastlList = NULL)

S4 method for signature 'RflomicsSE'
setSelectedContrasts(object, contrastlList = NULL)

S4 method for signature 'RflomicsMAE'’
getSelectedContrasts(object)

S4 method for signature 'RflomicsSE'’
getSelectedContrasts(object)

Arguments

object an object of class RflomicsSE or class RflomicsMAE-class

contrastType type of contrasts from which the possible contrasts are extracted ("average",

non

"simple", "interaction"). Default is all contrasts types.

contrastList adata.frame of contrasts generated by generateExpressionContrast

Value

list of 1 or 3 data.frames of contrast expression

an object of RflomicsSE class or RflomicsMAE-class class

Author(s)

Christine Paysant-Le Roux, adapted by Nadia Bessoltane

Examples

library(RFLOMICS)

load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType” = c("batch”, "Bio"”, "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE(

projectName = "Tests”,
omicsData = ecoseed.mae,
omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),

factorInfo = factorInfo)

generate all statistical model formulae
formulae <- generateModelFormulae(MAE)

chose and set model formula to rflomicsMAE object
MAE <- setModelFormula(MAE, formulae[[1]1)

Generate expression of contrasts from chosen model
contrastlList <- generateExpressionContrast(MAE, "averaged")

generateModelFormulae 7

Set the contrasts List and choose the first 3 contrasts of type averaged
MAE <- setSelectedContrasts(MAE, contrastList = contrastList[c(1,2,3),]1)

generateModelFormulae Statistical model formulae

Description

These methods allow the user to select and set the formula of the statistical method.

» generateModelFormulae(): From a vector of character giving the name of the factors of an
omics experiment, and their type of effect: biological or batch, it returns all models formulae
that can be formulated in association with this factors. Batch effect factors do not appear in
interaction terms with biological factor. Model formulae stop in second order interaction.

¢ setModelFormula(): Set the model formula stored in metadata slot

» getModelFormula: Access to the model formula of the statistical analysis

Usage

S4 method for signature 'RflomicsMAE'
generateModelFormulae(object)

S4 method for signature 'RflomicsMAE'
setModelFormula(object, modelFormula = NULL)

S4 method for signature 'RflomicsSE'
setModelFormula(object, modelFormula = NULL)

S4 method for signature 'RflomicsMAE'
getModelFormula(object)

S4 method for signature 'RflomicsSE'’
getModelFormula(object)

Arguments

object an object of class RflomicsSE or class RflomicsMAE-class

modelFormula a string of model formula generated by generateModelFormulae

Value

a named list of object of class formula

an object of RflomicsSE class or RflomicsMAE-class class

8 generateReport

Examples

library(RFLOMICS)

load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType" = c("batch”, "Bio", "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE(

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

generate all statistical model formulae
formulae <- generateModelFormulae(MAE)

chose and set model formula to rflomicsMAE object
MAE <- setModelFormula(MAE, formulae[[1]])

Generate expression of contrasts from chosen model
contrastlList <- generateExpressionContrast(MAE, "averaged")

Set the contrasts List and choose the first 3 contrasts of type averaged
MAE <- setSelectedContrasts(MAE, contrastList = contrastList[c(1,2,3),])

generateReport Generate RFLOMICS html report or archive

Description

This function is used to generate a html report from a RflomicsMAE-class object or archive with
results.

Usage

S4 method for signature 'RflomicsMAE'
generateReport(

object,

reportName = NULL,

archiveName = NULL,

tmpDir = NULL,

generateReport

Arguments
object a object of RflomicsSE class or RflomicsMAE-class class.
reportName Name of the html report.
archiveName Name of archive with all analysis results
tmpDir temporary directory (default: working directory)
other arguments to pass into the render function.
Value

An html report or archive (tar.gz)

Examples

library(RFLOMICS)
load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType"” = c("batch”, "Bio", "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- createRflomicsMAE(

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, modelFormula = formulae[[1]])

selectedContrasts <-
generateExpressionContrast(MAE, contrastType="simple")

MAE <- setSelectedContrasts(MAE, contrastList = selectedContrasts)

data processing

MAE <- runDataProcessing(
object = MAE,
SE.name = "protetest”,
samples=NULL,
normMethod="none",
transformMethod="none")

diff analysis

MAE <- runDiffAnalysis(
object = MAE,
SE.name = "protetest”,
contrastlList =

selectedContrasts,

p.adj.method="BH",
method = "limmalmFit",
p.adj.cutoff = 0.05,
logFC.cutoff = @)

10 getAnalysis

Enrichment

MAE <- runAnnotationEnrichment(

object = MAE,

SE.name = "protetest”,

database = "G0",

domain = c("MF"),

list_args = list(Orgbb = "org.At.tair.db",
keyType = "TAIR",
pvalueCutoff = 0.05))

R

get name of performed analysis
getAnalyzedDatasetNames (MAE)

generate report

#generateReport(object = MAE, reportName = "ecoseed_report.html")
getAnalysis Get results from RFLOMICS object
Description

Get a specific analysis results from a RflomicsMAE or a SE.

» getAnalyzedDatasetNames: return a list of performed analysis names.

Usage
S4 method for signature 'RflomicsMAE'
getAnalysis(object, name = NULL, subName = NULL)

S4 method for signature 'RflomicsSE'’
getAnalysis(object, name = NULL, subName = NULL)

S4 method for signature 'RflomicsMAE'
getAnalyzedDatasetNames(object, analyses = NULL)

Arguments
object The RflomicsMAE or RflomicsSE object from which to extract the analysis.
name the name of element to add to metadata slot.
subName the name of sub element to add to metadata slot.
analyses vector of list of analysis name
Value

The analysis metadata slot (a list of results)

 getAnalysis: return list of results from a specific analysis.

Examples

See generateReport for an example that includes getAnalyzedDatasetNames

prepareForlntegration,RflomicsMAE-method

11

prepareForIntegration,RflomicsMAE-method
Preparation step for integration

Description

This function transforms a RflomicsMAE produced by rflomics into an untrained MOFA object or
a list to use for mixOmics. It checks for batch effects to correct them before integration. It also
transforms RNASeq counts data into continuous data using voom. This is the second step into the

integration.

Usage

S4 method for signature 'RflomicsMAE'’
prepareForIntegration(

object,

omicsNames = NULL,
rnaSeq_transfo = "limma (voom)",
variablelLists = NULL,

group = NULL,

method = "MOFA",
transformData = TRUE,

cmd = FALSE
)
Arguments
object An object of class RflomicsMAE-class. It is expected the MAE object is pro-
duced by RFLOMICS previous analyses, as it relies on their results.
omicsNames vector of characters strings, referring to the names of the filtered table in *ob-

ject@ExperimentList’.

rnaSeq_transfo character string, only supports ’limma (voom)’ for now. Transformation of the

rnaSeq data from counts to continuous data.

variablelLists list of variables to keep per dataset. Default is keeping all features.

group Not implemented yet in the interface. Useful for MOFA2 run.

method one of MOFA or mixOmics. Method for which the object is prepared.

transformData boolean. Transform the data with the transform and normalization method? De-
fault is TRUE.

cmd used in the interface. Print cmd lines.

Value

An untrained MOFA object or a list of dataset

12 RflomicsMAE-class

Examples

library(RFLOMICS)

load ecoseed data
data("ecoseed.mae")

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType"” = c("batch”, "Bio", "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE(

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

names(MAE) <- c("RNAtest”, "protetest”, "metatest”)

formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, formulael[[1]])
contrastlList <- Reduce(rbind, generateExpressionContrast(MAE))

MAE <- MAE |>

setSelectedContrasts(contrastList[c(3,6,25)]1) |>
runDataProcessing(SE.name = "metatest”,

transformMethod = "log2",

normMethod = "median”) [>
runDataProcessing(SE.name = "protetest”,

transformMethod = "none”,

normMethod = "median”) [>
runDiffAnalysis(SE.name = "metatest”, method = "limmalmFit") |>
runDiffAnalysis(SE.name = "protetest”, method = "limmalmFit")

Integration using MOFA

Prepare mofa object:

mofaObj <- prepareForIntegration(MAE,
omicsNames = c("protetest”, "metatest"),
variablelLists = rownames(MAE),
method = "MOFA")

class(mofaObj)

Integration using MixOmics

mixObj <- prepareForIntegration(MAE,
omicsNames = c("protetest”, "metatest"”),
variableLists = rownames(MAE),
method = "mixOmics")

class(mixObj)

RflomicsMAE-class RflomicsMAE Class

RflomicsMAE-class 13

Description

RflomicsMAE is a class that extends the MultiAssayExperiment class by imposing a structure to
the metadata slot. This class is used by the Rflomics analysis workflow to store the experimental
design, the settings and results of a multi-omics integration analysis.

Usage

S4 method for signature 'RflomicsMAE'
getProjectName (object)

S4 method for signature 'RflomicsMAE'’
getDesignMat (object)

S4 method for signature 'RflomicsMAE'
getDatasetNames(object)

S4 method for signature 'RflomicsMAE'’
getOmicsTypes(object)

S4 method for signature 'RflomicsMAE'’
getFactorNames(object)

S4 method for signature 'RflomicsMAE'’
getFactorTypes(object)

S4 method for signature 'RflomicsMAE'
getBioFactors(object)

S4 method for signature 'RflomicsMAE'
getBatchFactors(object)

S4 method for signature 'RflomicsMAE'
getMetaFactors(object)

S4 method for signature 'RflomicsMAE'
getRflomicsSE (object, datasetName = NULL)

S4 method for signature 'RflomicsMAE'’
getFactorModalities(object, factorName)

S4 method for signature 'RflomicsMAE'
subRflomicsMAE (object, omicNames = NULL)

S4 method for signature 'RflomicsMAE'’
plotDataOverview(

object,

omicNames = NULL,

realSize = FALSE,

raw = FALSE,

completeCases = FALSE

14 RflomicsMAE-class

S4 method for signature 'RflomicsMAE'’
plotConditionsOverview(object, omicNames = NULL)

Arguments
object An object of class RflomicsMAE-class
datasetName the name of the RflomicsSE to retrieve
factorName factor name
omicNames a vector with dataset names
realSize booleen value, influence the display size
raw boolean. If TRUE, displays the raw data without any selection. If FALSE,

displays the data with removed samples.

completeCases boolean. If true, only shows the complete cases of the object.

Value

A RflomicsMAE object.

Slots
» ExperimentList:
— A ExperimentList class object of RflomicsSE object for each assay dataset
e colData: see MultiAssayExperiment
* sampleMap: see MultiAssayExperiment
* metadata:
— projectName: string. Project name.
— omicList: list. Contains the list of omics datasets, with the type and name.
— design: The experimental design.
— IntegrationAnalysis: A list containing the multi-omics integration analysis settings and
results.
— design: The experimental design
— sessionInfo:
— IntegrationAnalysis: A list containing the multi-omics integration analysis settings and
results.
Consructor
createRflomicsMAE
Accessors

 getProjectName: return a string with the name of the project
» getDesignMat: return a data.frame with experimental design.
 getDatasetNames: return a vector with dataset names.

* getOmicsTypes: return a named vector with omics type of each dataset ("RNAseq", "pro-

non

teomics", "metabolomics")

RflomicsMAE-class 15

 getFactorNames: return a vector with the experimental factor names.

 getFactorTypes: return a named vector with experimental factor types ("bio", "batch" or
"meta").

* getBioFactors: return a vector with the biological factor names.
 getBatchFactors: return a vector with the batch factor names.

» getMetaFactors: return a vector with the metadata factor names.
 getRflomicsSE: return a RflomicsSE object with selected dataset

* getFactorModalities: return a vector with the modality names of selected factor.

* subRflomicsMAE: return a RflomicsMAE-class object with selected datasets.

Plots
* plotDataOverview: This function plot an overview of the loaded datasets displaying per sam-
ple (n=number of entities (genes/metabolites/proteins); k=number of samples)
* plotConditionsOverview: A complete design and at least one biological and one batch factors
are required for using RFLOMICS workflow.
Methods

generateModelFormulae generateExpressionContrast runDataProcessing runDataProcessing
runDiffAnalysis runCoExpression runAnnotationEnrichment

See Also

MultiAssayExperiment

Examples

load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType” = c("batch”, "Bio”, "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE(

projectName = "Tests",
omicsData = ecoseed.mae,
omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),

factorInfo = factorInfo)
names(MAE) <- c("RNAtest"”, "protetest”, "metatest")

generate upset plot
MultiAssayExperiment: :upsetSamples(MAE)

generate data overview plot
plotDataOverview(MAE)

16 RflomicsSE-class

generate plot of coverage of condition by data

plotConditionsOverview(MAE)

See createRflomicsMAE for an example that includes plotDataOverview

See createRflomicsMAE for an example that includes plotConditionsOverview

rflomicsMAE2MAE convert a RflomicsMAE to a MultiAssayExperiment

Description

Convert RflomicsMAE object to MultiAssayExperiment object.

Usage

S4 method for signature 'RflomicsMAE'’
rflomicsMAE2MAE (object, raw = FALSE)

Arguments

object The RflomicsMAE object to convert.

raw Boolean. If TRUE raw omics data values.
Value

object of MultiAssayExperiment class.

RflomicsSE-class RflomicsSE Class

Description

RflomicsSE is a class that extends the SummarizedExperiment by imposing a structure on the meta-
data slot. This class is used by the Rflomics analysis workflow to store the experimental design, the
settings and results of a single omic analysis. The slot metadata is structured as follows:

Usage
S4 method for signature 'RflomicsSE'
getDesignMat (object)

S4 method for signature 'RflomicsSE'’
getDatasetNames(object)

S4 method for signature 'RflomicsSE'’
getOmicsTypes(object)

S4 method for signature 'RflomicsSE'’
getFactorNames(object)

RflomicsSE-class 17

S4 method for signature 'RflomicsSE'’
getFactorTypes(object)

S4 method for signature 'RflomicsSE'
getBioFactors(object)

S4 method for signature 'RflomicsSE'’
getBatchFactors(object)

S4 method for signature 'RflomicsSE'
getMetaFactors(object)

S4 method for signature 'RflomicsSE'
getFactorModalities(object, factorName)

Arguments
object An object of class RflomicsSE
factorName factor name

Value

A RflomicsSE object.

Slots

See SummarizedExperiment

The slot metadata is structured as follows:

» omicType: the type of omics dataset

* design: experimental design

» DataProcessing: a list containing the data processing settings and results

e PCAlist: a list containing the PCA settings and results

» DiffExpAnal: a list containing the Differential Analysis settings and results
* CoExpAnal: a list containing the Coexpression Analysis settings and results

* DiffExpEnrichAnal: alist containing the enrichment analysis of the list of DE features settings
and results

* CoExpEnrichAnal: a list containing the enrichment analysis of the list of co-expressed fea-
tures settings and results
Accessors

 getDesignMat: return a data.frame with experimental design.
» getDatasetNames: return a string with dataset name.

non

» getOmicsTypes: return a named vector with omics type of dataset ("RNAseq", "proteomics",
"metabolomics")

» getFactorNames: return a vector with the experimental factor names.

18

runAnnotationEnrichment

 getFactorTypes: return a named vector with experimental factor types ("bio", "batch" or

"meta").

 getBioFactors: return a vector with the biological factor names.
 getBatchFactors: return a vector with the batch factor names.

» getMetaFactors: return a vector with the metadata factor names.

* getFactorModalities: return a vector with the modality names of selected factor.

See Also

SummarizedExperiment

runAnnotationEnrichment

Run Gene Enrichment Analysis and process results

Description

This function performs over representation analysis (ORA) using clusterprofiler functions. It can
be used with custom annotation file (via enricher), GO (enrichGO) or KEGG (enrichKEGG) anno-

tations.

Usage

S4 method for signature 'RflomicsSE'’

runAnnotationEnrichment(
object,
featureList = NULL,
from = "DiffExp”,
universe = NULL,
database = "custom”,
domain = "no-domain”,
annotation = NULL,
OrgDb = NULL,
organism = NULL,
keyType = NULL,
pvalueCutoff = 0.05,
gvalueCutoff = 1,
minGSSize = 10,
maxGSSize = 500,

S4 method for signature 'RflomicsMAE'

runAnnotationEnrichment(
object,
SE.name,
featurelList = NULL,
from = "DiffExp”,

runAnnotationEnrichment

universe = NULL,
database = "custom”,
domain = "no-domain”,
annotation = NULL,
OrgDb = NULL,
organism = NULL,
keyType = NULL,
pvalueCutoff = 0.05,
gvalueCutoff = 1,
minGSSize = 10,
maxGSSize = 500,

)

S4 method for signature 'RflomicsSE'
plotClusterProfiler(
object,
featureListName = NULL,
database = NULL,
domain = "no-domain”,
plotType = "dotplot”,
showCategory = 15,
searchExpr = "",
nodelLabel = "all",
p.adj.cutoff = NULL,

)

S4 method for signature 'RflomicsSE'
plotEnrichComp(

object,

from = "DiffExp”,

database = NULL,

domain = "no-domain”,

matrixType = "presence”,

clustering = TRUE,

)

S4 method for signature 'RflomicsSE'
getEnrichRes(

object,

featureListName = NULL,

from = "DiffExp”,

database = "GO",

domain = NULL
)

S4 method for signature 'RflomicsMAE'
getEnrichRes(

object,

experiment,

19

20

runAnnotationEnrichment

featureListName = NULL,
from = "DiffExp”,
database = "G0",

domain = NULL

)

S4 method for signature 'RflomicsSE'’
sumORA(object, from = "DiffExp”, database = NULL, featureListName = NULL)

S4 method for signature 'RflomicsSE'
getEnrichSettings(object, from = "DiffExp”, database = "GO")

S4 method for signature 'RflomicsMAE'
getAnnotAnalysesSummary (

object,

from = "DiffExp”,

listNames = NULL,

omicNames = NULL,

databaselList = NULL,

Arguments

object An object of class RflomicsSE or class RflomicsMAE-class

featurelList name of contrasts (tags or names) from which to extract DE genes if from is
DiffExpAnal.

from indicates if the enrichment results are taken from differential analysis results
(DiffExp) or from the co-expression analysis results (CoExp)

universe description

database which database (GO, KEGG, custom...)

domain the subonology or subdomain for the database (eg CC, MF or BP for GO.)

annotation for custom annotation, a data frame of the annotation. The data frame must
contains at least two columns: gene and term, with the omics name and the
associated term id respectively. A column name can be added with the full name
of the term (if term is not the full name already). The column domain can be
used to indicate either different databases (grouped analyses of kegg and go for
example) or different domains for a single database (CC, MF and BP) for GO.

OrgDb OrgDb (with enrichGO)

organism supported organism listed in “https://www.genome.jp/kegg/catalog/org_list.html’
(with enrichKEGG)

keyType keytype of input gene with enrichGO (one of "kegg", "ncbi-geneid’, *ncbi-proteinid’

and "uniprot’ with enrichKEGG)
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report

gvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i)
pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and
iii) qvalueCutoff on gqvalues to be reported.

minGSSize minimal size of genes annotated by Ontology term for testing.

maxGSSize maximal size of genes annotated for testing

SE.name

featurelListName

plotType

showCategory
searchExpr
nodelLabel
p.adj.cutoff
matrixType
clustering

experiment

listNames

omicNames

databaselist

Value

runAnnotationEnrichment 21

more arguments
SE.name the name of the dataset if the input object is a RlomicsMAE-class

the contrastName or clusterName to retrieve the results from. If NULL, all
results are returned.

type of plot. Define the function used inside. One of dotplot, heatplot or cnet-
plot.

max number of terms to show.

expression to search in the showCategory terms.

same as in enrichplot::cnetplot function, defines

pvalueCutoff to define the enrichment threshold.

Heatmap matrix to plot, one of GeneRatio, p.adjust or presence.

if TRUE, a hierarchical clustering is performed on rows and columns and they
will be ordered accordingly. It will not be displayed as a dendrogram.

if the object is a RlomicsMAE, then experiment is the name of the RflomicsSE
to look for.

List of names of differential expression feature lists (from = "DiffExp") or list
of names of annotated co-expression clusters (from = "CoExp")

List of dataset names

List of used databases

A RflomicsMAE or a RflomicsSE, depending on the class of object parameter. The enrichment
results are added to the metadata slot, either in DiffExpEnrichAnal or CoExpEnrichAnal.

a list of tables or a table

a list with all settings

Accessors

A set of getters and setters generic functions to access and modify objects of the slot metadata of a
RflomicsMAE-class object or a RflomicsMAE-class object.

» getEnrichRes: get a particular enrichment result. return enrichment results given in the form
of lists of clusterprofiler results.

* sumORA: Get summary tables from ORA analyses - once an enrichment has been conducted.

 getEnrichSettings: get the settings of an enrichment analysis.

* getAnnotAnalysesSummary: return A list of heatmaps, one for each ontology/domain.

Plots

A collection of functions for plotting results from omics analysis steps.

* plotClusterProfiler: Plot a dotplot, a cnetplot or an heatplot, using enrichplot package. It is a
wrapper method destined for the RflomicsSE class..

¢ plotEnrichComp: plot an heatmap of all the enriched term found for a given database and
a given source (differential analysis or coexpression clusters). Allow for the comparison of
several enrichment results.

22 runAnnotationEnrichment

Examples

load ecoseed data
library(RFLOMICS)
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType” = c("batch”, "Bio"”, "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- createRflomicsMAE(

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

#names(MAE) <- c("RNAtest”, "protetest”, "metatest”)

Set the statistical model and contrasts to test
formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, formulae[[1]])

Get the contrasts List and choose the first 3 contrasts of type averaged
contrastlList <- generateExpressionContrast(MAE, "averaged")

MAE <- setSelectedContrasts(MAE, contrastlList = contrastList[c(1, 2, 3),1)

Run the data preprocessing and perform the differential analysis
MAE <- runDataProcessing(MAE, SE.name = "protetest”,
transformMethod = "log2”,
normMethod = "median”)

MAE <- runDiffAnalysis(MAE,
SE.name = "protetest”,
method = "limmalmFit")

Run GO annotation (enrichGO)

Not run: need org.At.tair.db package

MAE <- runAnnotationEnrichment(MAE, SE.name = "protetest”,

OrgDb = "org.At.tair.db",

keyType = "TAIR",

pvalueCutoff = 0.05),

from = "DiffExp"”, database = "GO",
domain = "CC")

Run KEGG annotation (enrichKEGG)

need internet connection

MAE <- runAnnotationEnrichment(MAE, SE.name = "protetest”,

organism = "ath”,

keyType = "kegg",

pvalueCutoff = 1,

from = "DiffExp"”, database = "KEGG")

3+

Search for the pvalue cutoff:
sumORA(MAE[["protetest”]], from = "DiffExp"”, database = "KEGG")

runCoExpression

T E N

* o#

From differential analysis proteins lists:
plotClusterProfiler (MAE[["protetest”]1],

23

featureListName = "(temperatureElevated - temperatureMedium) in mean”,

database = "KEGG", from = "DiffExp”,
plotType = "heatplot”, p.adj.cutoff = 0.05,
domain = "no-domain")

plotEnrichComp(MAE[["protetest”]], from = "DiffExp",
database = "KEGG", matrixType = "FC")

Get all results from KEGG on differential expression lists:
results <- getEnrichRes(MAE[["protetest”]],
from = "diffexp”, database = "KEGG")

Search for the pvalue cutoff:
usedPvalue <-

getEnrichPvalue(MAE[["protetest”]], from = "diffexp"”, database = "KEGG")

settings <-

getEnrichSettings(MAE[["protetest”]], from = "diffexp"”, database = "KEGG")

runCoExpression

Run CoExpression Analysis and process results

Description

This method performs a co-expression/co-abundance analysis of omic-data.

Usage

S4 method for signature 'RflomicsSE'’
runCoExpression(

object,

K = 2:20,

replicates = 5,
contrastNames = NULL,
merge = "union”,

model = "Normal”,
GaussianModel = NULL,
transformation = NULL,
normFactors = NULL,
meanFilterCutoff = NULL,
scale = NULL,
min.data.size = 100,

S4 method for signature 'RflomicsMAE'’
runCoExpression(

object,
SE.name,
K = 2:20,

24

replicates = 5,
contrastNames = NULL,
merge = "union"”,

model = "Normal”,
GaussianModel = NULL,
transformation = NULL,
normFactors = NULL,
meanFilterCutoff = NULL,
scale = NULL,
min.data.size = 100,

)

S4 method for signature 'RflomicsMAE'

getCoExpAnalysesSummary (object, omicNames = NULL)

S4 method for signature 'RflomicsSE'’
plotCoExpression(object)

S4 method for signature 'RflomicsMAE'
plotCoExpression(object, SE.name)

S4 method for signature 'RflomicsSE'’
plotCoExpressionProfile(

object,

cluster =1,
condition = "groups",
features = NULL

)

S4 method for signature 'RflomicsMAE'
plotCoExpressionProfile(

object,

SE.name,

cluster =1,
condition = "groups”,
features = NULL

)

S4 method for signature 'RflomicsSE'
plotCoseqContrasts(object)

S4 method for signature 'RflomicsMAE'
plotCoseqgContrasts(object, SE.name)

S4 method for signature 'RflomicsSE'
getCoexpSettings(object)

S4 method for signature 'RflomicsMAE'’
getCoexpSettings(object, SE.name)

S4 method for signature 'RflomicsSE'

runCoExpression

runCoExpression 25

getCoexpClusters(object, clusterName = NULL)

S4 method for signature 'RflomicsMAE'
getCoexpClusters(object, SE.name, clusterName = NULL)

Arguments
object An object of class RflomicsSE or class RflomicsMAE-class
K Number of clusters (a single value or a vector of values)
replicates The number of iteration for each K.

contrastNames names of the contrasts from which the DE entities have to be taken. Can be
NULL, in that case every contrasts from the differential analysis are taken into

consideration.

merge "union” or "intersection”

model Type of mixture model to use "Poisson” or "normal”. By default, it is the
normal.

GaussianModel Type of GaussianModel to be used for the Normal mixture model only. This
parameters is set to "Gaussian_pk_Lk_Ck" by default and doesn’t have to be
changed except if an error message proposed to try another model like "Gaussian_pk_Lk_Bk".

transformation The transformation type to be used. By default, it is the "arcsin" one.

normFactors The type of estimator to be used to normalize for differences in library size. By
default, it is the "TMM" one.
meanFilterCutoff

a cutoff to filter a gene with a mean expression lower than this value. (only for
RNAseq data, set to NULL for others).

scale Boolean. If TRUE scale all variables to unit variance.
min.data.size The minimum allowed number of variables (default: 100)

Additional arguments.

SE.name SE.name the name of the dataset if the input object is a RlomicsMAE-class
omicNames the name of the experiment to summarize.
cluster cluster number
condition Default is group.
features Default is NULL.
clusterName name of the cluster
Details

For now, only the coseq function of the coseq package is used. For RNAseq data, parameters

used are those recommended in DiCoExpress workflow (see the reference). This parameters are:
model="normal", transformation="arcsin”, GaussianModel="Gaussian_pk_Lk_Ck", normFactors="TMM",
meanFilterCutoff = 50 For proteomics or metabolomics, data are scaled by protein or metabolite

to group them by expression profiles rather than by expression intensity. After data scaling, rec-

ommended parameters (from coseq developers) for co-expression analysis are: model="normal”,
transformation="none", GaussianModel="Gaussian_pk_Lk_Ck", normFactors="none", meanFilterCutoff
= NULL.

26

Value

runCoExpression

An S4 object of class RflomicsSE All the results are stored as a named list CoExpAnal in the
metadata slot of a given RflomicsSE object. Objects are: The runCoExpression method return
several results, for coseq method, objects are:

* settings: co-expression analysis settings. See getCoexpSetting

* results: boolean indicating if the co-expression analysis succeed

cosegResults: the raw results of coseq

clusters: aList of clusters

cluster.nb: The number of cluster

plots: The plots of coseq results

stats: A tibble summarizing failed jobs: reason, proportion, if any

e errors: error list.

Accessors

A set of getters and setters generic functions to access and modify objects of the slot metadata of a
RflomicsMAE-class object or a RflomicsMAE-class object.

» getCoexpSettings: Access to the co-expression analysis settings of a given omics dataset

» getCoexpClusters: get members of a cluster. return The list of entities inside this cluster.

Plots

A collection of functions for plotting results from omics analysis steps.

» getCoExpAnalysesSummary: ...

* plotCoExpression: list plot of ICL, logLikelihood and coseq object with min ICL

* plotCoExpressionProfile: ...

* plotCoseqContrasts: This function describes the composition of clusters according to the con-
trast to which the gene belongs

References

Lambert, 1., Paysant-Le Roux, C., Colella, S. et al. DiCoExpress: a tool to process multifactorial
RNAseq experiments from quality controls to co-expression analysis through differential analysis
based on contrasts inside GLM models. Plant Methods 16, 68 (2020).

See Also

coseq

createRflomicsMAE

generateModelFormulae

generateExpressionContrast

runDataProcessing

runDiffAnalysis

runDataProcessing 27

Examples

load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType” = c("batch”, "Bio", "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE (

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

Set the statistical model and contrasts to test
formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, formulae[[1]1)

Get the contrasts List and choose the first 3 contrasts of type averaged
contrastlList <- generateExpressionContrast(MAE, "averaged")

MAE <- setSelectedContrasts(MAE, contrastList = contrastList[c(1, 2, 3),1)

Run the data preprocessing and perform the differential analysis
MAE <- runDataProcessing(MAE, SE.name = "protetest”,
transformMethod = "log2",
normMethod = "median")
MAE <- runDiffAnalysis(MAE, SE.name = "protetest”)

Run co-expression analysis

MAE <- runCoExpression(MAE, SE.name = "protetest”,
K = 2:5, replicates = 5,
merge = "union”)

get parametres used to run co-expression analysis
coExp.set.list <- getCoexpSettings(MAE[["protetest”]])
coExp.set.list$method

get results
clusters <- getCoexpClusters(MAE[["protetest”]], clusterName = "cluster_1")

plots
#plotCoExpression(MAE[["protetest”]1])

#plotCoExpressionProfile(MAE[["protetest”]], cluster = 2)

#plotCoseqContrasts(MAE[["protetest”]])

runDataProcessing Data Exploratory and processing

28 runDataProcessing

Description

These functions applied a data processing (filtering, normalization and/or transformation, PCA) on
RNAseq, proteomics, or metabolomics data.

runDataProcessing() calls the following functions:
» runSampleFiltering: This function applied sample filtering on an dataset.

* runFeatureFiltering: This function allows filtering variables in omics data. In the case of RNA-
seq data, it involves filtering out transcripts with low counts, while in the case of proteomics
and metabolomics data, it applies the imputation procedure.

* runTransformData: This function applied a transformation to the dataset. The transformation
method is chosen according to the dataset omicstype (RNAseq: none, metabolomics/proteomics:
log2)

» runNormalization: This function applied a normalization on a dataset. The normalization
method is chosen according to the dataset omics type (RNAseq: TMM, metabolomics/proteomics:
median)

e runOmicsPCA: This function performs a principal component analysis on omic data stored
in an object of class RflomicsSE-class Results are stored in the metadata slot of the same
object. If a "Normalization" slot is present in the metadata slot, then data are normalized
before running the PCA according to the indicated transform method.

This function performs a principal component analysis on omic data stored in an object of class
RflomicsSE-class Results are stored in the metadata slot of the same object. If a "Normalization"
slot is present in the metadata slot, then data are normalized before running the PCA according to
the indicated transform method.

* checkExpDesignCompleteness: return a string with message. This method checks some ex-
perimental design characteristics. A complete design (all combinations of factor modalities
with at least 2 replicates for each have to be present) with at least one biological and one batch
factors are required to use the RFLOMICS workflow.

* plotDataDistribution: return boxplot or density plot of expression or abundance distribution.

Usage

S4 method for signature 'RflomicsSE'’
runDataProcessing(
object,
samples = NULL,
filterStrategy = NULL,
cpmCutoff = NULL,
transformMethod = NULL,
normMethod = NULL,
imputMethod = NULL,
userTransMethod = "unknown”,
userNormMethod = "unknown”

)

S4 method for signature 'RflomicsMAE'
runDataProcessing(

runDataProcessing

object,

SE.name,

samples = NULL,
filterStrategy = NULL,
cpmCutoff = NULL,
transformMethod = NULL,
normMethod = NULL,
userTransMethod = "unknown",
userNormMethod = "unknown"”

)

S4 method for signature 'RflomicsSE'’
runSampleFiltering(object, samples = NULL)

S4 method for signature 'RflomicsMAE'
runSampleFiltering(object, SE.name, samples = NULL)

S4 method for signature 'RflomicsSE'’
runFeatureFiltering(

object,

filterMethod = NULL,

filterStrategy = NULL,

cpmCutoff = NULL,

imputMethod = NULL
)

S4 method for signature 'RflomicsMAE'
runFeatureFiltering(

object,

SE.name,

filterMethod = NULL,

filterStrategy = NULL,

cpmCutoff = NULL,

imputMethod = NULL
)

S4 method for signature 'RflomicsSE'
runTransformData(object, transformMethod = NULL, userTransMethod = "unknown")

S4 method for signature 'RflomicsMAE'

runTransformData(
object,
SE.name,
transformMethod = NULL,
userTransMethod = "unknown”
)

S4 method for signature 'RflomicsSE'’
runNormalization(object, normMethod = NULL, userNormMethod = "unknown")

S4 method for signature 'RflomicsMAE'
runNormalization(

30

object,

SE.name,

normMethod = NULL,
userNormMethod = "unknown"”

)

S4 method for signature 'RflomicsSE'’
runOmicsPCA(object, ncomp = 5, raw = FALSE)

S4 method for signature 'RflomicsMAE'
runOmicsPCA(object, SE.name, ncomp = 5, raw = FALSE)

S4 method for signature 'RflomicsSE'’
checkExpDesignCompleteness(object, sampleList = NULL)

S4 method for signature 'RflomicsMAE'

checkExpDesignCompleteness(object, omicName, sampleList = NULL)

S4 method for signature 'RflomicsSE'
getProcessedData(

object,

filter = FALSE,

trans = FALSE,

norm = FALSE,

log = FALSE
)

S4 method for signature 'RflomicsMAE'’
getProcessedData(

object,

SE.name,

filter = FALSE,

trans = FALSE,

norm = FALSE,

log = FALSE
)

S4 method for signature 'RflomicsSE'’
getTransSettings(object)

S4 method for signature 'RflomicsMAE'’
getTransSettings(object, SE.name)

S4 method for signature 'RflomicsSE'’
getFilterSettings(object)

S4 method for signature 'RflomicsMAE'
getFilterSettings(object, SE.name)

S4 method for signature 'RflomicsSE'’
getFilteredFeatures(object)

runDataProcessing

runDataProcessing

S4 method for signature 'RflomicsMAE'’
getFilteredFeatures(object, SE.name)

S4 method for signature 'RflomicsSE'
getSelectedSamples(object)

S4 method for signature 'RflomicsMAE'
getSelectedSamples(object, SE.name)

S4 method for signature 'RflomicsSE'
getCoeffNorm(object)

S4 method for signature 'RflomicsMAE'
getCoeffNorm(object, SE.name)

S4 method for signature 'RflomicsSE'’
getNormSettings(object)

S4 method for signature 'RflomicsMAE'
getNormSettings(object, SE.name)

S4 method for signature 'RflomicsSE'’
plotLibrarySize(object, raw = FALSE)

S4 method for signature 'RflomicsMAE'
plotLibrarySize(object, SE.name, raw = FALSE)

S4 method for signature 'RflomicsSE'’
plotDataDistribution(object, plot = "boxplot"”, raw = FALSE)

S4 method for signature 'RflomicsMAE'
plotDataDistribution(object, SE.name, plot = "boxplot"”, raw = FALSE)

S4 method for signature 'RflomicsSE'’
plotOmicsPCA(object, raw = TRUE, axes = c(1, 2), groupColor = "groups")

S4 method for signature 'RflomicsMAE'
plotOmicsPCA(

object,

SE.name,

raw = FALSE,

axes = c(1, 2),

groupColor = "groups”

)

S4 method for signature 'RflomicsSE'
plotExpDesignCompleteness(object, sampleList = NULL)

S4 method for signature 'RflomicsMAE'’
plotExpDesignCompleteness(object, omicName, sampleList = NULL)

S4 method for signature 'RflomicsSE'

32 runDataProcessing
isProcessedData(
object,
filter = FALSE,
trans = FALSE,
norm = FALSE,
log = FALSE
)
S4 method for signature 'RflomicsMAE'
isProcessedData(
object,
SE.name,
filter = TRUE,
trans = TRUE,
norm = TRUE,
log = FALSE
)
Arguments
object An object of class RflomicsSE-class.

samples

samples to keep.

filterStrategy The filtering strategy ("NbConditions" or "NbReplicates") for RNAseq data.

cpmCutoff

transformMethod

normMethod

imputMethod

userTransMethod

userNormMethod

SE.name

filterMethod

ncomp
raw
samplelist
omicName
filter
trans

norm

log

plot

axes

groupColor

The CPM cutoff for RNAseq data.

The transformation method to store in the metadata

Normalization method. Accepted values: TMM for RNAseq, and median, total-
Sum, or none for proteomics and metabolomics data. Default values: TMM for
RNAseq data and median for proteomics and metabolomics data

The imputation method ("MVI") for proteomics and metabolomics data.

method used by user to transform data.

method used by user to normalize data.

the name of the data the normalization have to be applied to.

The filtering model ("CPM") for RNAseq data.

Number of components to compute. Default is 5.

boolean. Does the pca have to be ran on raw data or transformed

list of samples to check.

a character string with the name of the dataset

boolean. If TRUE, check if data is filtered (low counts/RNAseq)
boolean. If TRUE, check if data is transformed

boolean. If TRUE, check if data is normalized

boolean. If TRUE, check if the data has been log-transformed (RNAseq).
plot type ("boxplot" or "density")

A vector giving the two axis that have to be drawn for the factorial map

All combination of level’s factor

runDataProcessing 33

Details

Low count filtering procedure: By default, transcript with O count are removed from the data. The
function then computes the count per million or read (CPM) for each gene in each sample and gives
by genes the number of sample(s) which are over the cpmCutoff (NbOfsample_over_cpm). Then
Two filtering strategies are proposed:

* NbConditions: keep gene if the NbOfsample_over_cpm >= NbConditions
* NbReplicates: keep gene if the NbOfsample_over_cpm >= min(NbReplicates)
* filterByExpr: the default filtering method implemented in the edgeR filterByExpr() function.

Missing value imputation: This approach, applied to proteomics and metabolomics data, replaces
missing values (0 or NA) with the minimum value among all non-zero values. Additionally, vari-
ables with at least one condition group without any missing values are retained without further
filtering.

Value

An object of class RflomicsSE or class RflomicsSE

An object of class RflomicsSE The applied normalization method and computed scaling factors (by
samples) are stored as a named list ("normalization") of two elements (respectively "method" and
"coefNorm") in the metadata slot of a given data set, stored itself in the ExperimentList slot of a
RflomicsSE object.

An object of class RflomicsSE

Accessors

 getProcessedData: return RflomicsSE object with a processed data (filtering, normalization
and/or transformation)

» getTransSettings: return a list of transformation settings of a given omics dataset

* getFilterSettings: return a list the filtering settings of a given omics dataset

« getFilteredFeatures: return a vector of filtered features of a given omics dataset

» getSelectedSamples: return a vector of selected samples of a given omics dataset
 getCoeffNorm: return a named vector with normalization coefficients of a given omics dataset
» getNormSettings: return a list of normalization settings of a given omics dataset

* isProcessedData: return

Plots

* plotLibrarySize: return barplot of library size by sample.

* plotOmicsPCA: This function plot the factorial map from a PCA object stored in a RflomicsSE-
class object. By default, samples are colored by groups (all combinations of level’s factor)

* plotExpDesignCompleteness: This method checks that experimental design constraints are
satisfied and plot a summary of the design. A complete design (all combinations of factor
modalities with at least 2 replicates for each have to be present) with at least one biological
and one batch factors are required to use the RFLOMICS workflow.

34 runDataProcessing

References

Lambert, 1., Paysant-Le Roux, C., Colella, S. et al. DiCoExpress: a tool to process multifactorial
RNAseq experiments from quality controls to co-expression analysis through differential analysis
based on contrasts inside GLM models. Plant Methods 16, 68 (2020).

See Also

RflomicsMAE-class RflomicsSE-class getProcessedData getTransSettings getFilterSettings getFil-
teredFeatures getCoeffNorm getNormSettings plotLibrarySize plotDataDistribution plotOmicsPCA

Examples

load ecoseed data
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType"” = c("batch”, "Bio", "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE(

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

Set the statistical model
formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, formulae[[1]1)

set the contrast list
contrastlList <- generateExpressionContrast(MAE, "averaged")
MAE <- setSelectedContrasts(MAE, contrastlList = contrastList[c(1, 2, 3),1)

Data processing of RNAseq dataset : RNAtest

using data processing functions for RNAseq data

filter low RNAseq count

MAE <- filterLowAbundance(MAE, SE.name = "RNAtest”,

filterStrategy = "NbReplicates”,
cpmCutoff = 1)

filter outlier samples

MAE <- runSampleFiltering(MAE, SE.name = "RNAtest"”,
samples = colnames(MAE[["RNAtest”11)[-11)

data normalisation outlier samples

MAE <- runNormalization(MAE, SE.name = "RNAtest”,

normMethod = "TMM")

e T R

use runDataProcessing function that combines the previous three functions
MAE <- runDataProcessing(MAE, SE.name = "RNAtest”,
samples = colnames(MAE[["RNAtest"]1]1)[-1],
filterStrategy = "NbReplicates”,
cpmCutoff = 1,
normMethod = "TMM")

runDiffAnalysis

check completness of RNAtest data
checkExpDesignCompleteness(MAE, omicName =

Data processing of proteimics dataset :

transform data
MAE <- runTransformData(MAE, SE.name
normalise data
MAE <- runNormalization(MAE, SE.name

use runDataProcessing function
MAE <- runDataProcessing(MAE, SE.name
normMethod = "median”,
transformMethod = "log2")

"RNAtest")$messages

protetest
= "protetest”, transformMethod = "log2")
= "protetest”, normMethod = "median”)
"protetest”,

plotExpDesignCompleteness(MAE[L["RNAtest”]1])

plot Library Size

plotDataDistribution(MAE[["RNAtest"]],
plotDataDistribution(MAE[["RNAtest"”]1],

plot gene expression distribution

plotDataDistribution(MAE[["RNAtest"”]1],
plotDataDistribution(MAE[["RNAtest”1],

plot PCA

*

See
See
See
See
See
See
See
See
See
See

e R E E E R

runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing
runDataProcessing

for
for
for
for
for
for
for
for
for
for

an
an
an
an
an
an
an
an
an
an

example
example
example
example
example
example
example
example
example
example

that
that
that
that
that
that
that
that
that
that

raw=TRUE)
raw=FALSE)

includes
includes
includes
includes
includes
includes
includes
includes
includes
includes

raw=TRUE, plot = "boxplot")
raw=FALSE, plot = "boxplot")

plotOmicsPCA(MAEL["RNAtest”]], raw="raw", groupColor = "imbibition")
plotOmicsPCA(MAE[["RNAtest"]], raw="norm”, groupColor = "imbibition")

getTransSettings
getFilterSettings
getFilteredFeatures
getSelectedSamples
getCoeffNorm
getNormSettings
plotLibrarySize
plotDataDistribution
plotOmicsPCA
plotExpDesignCompleteness

35

runDiffAnalysis

Run Differential Expression Analysis and process results

Description

This is an interface method which run a differential analysis on omics datasets stored in an object of
class RflomicsSE or RflomicsMAE-class. According to the type of omics and to a list of contrasts,
a differential analysis is performed for each contrasts. Two methods are available according to the
type of object:

» For RNAseq data: the glmFit function/model of the edgeR package is applied.

* For proteomics and metabolomics data: the ImFit function/model of the 1imma package is

applied.

* filterDiff Analysis: The filterDiff Analysis method allows filtering the results of the differential

analysis based on a new cutoff for p-value and fold change.

36 runDiffAnalysis

¢ setValidContrasts: Set the valid contrasts stored in metadata slot.

Usage

S4 method for signature 'RflomicsSE'
runDiffAnalysis(

object,

contrastList = NULL,

method = NULL,

p.adj.method = "BH",

p.adj.cutoff = 0.05,

logFC.cutoff = 0,

cmd = FALSE,
)
S4 method for signature 'RflomicsMAE'
runDiffAnalysis(

object,

SE.name,

contrastList = NULL,
method = NULL,

p.adj.method = "BH",
p.adj.cutoff = 0.05,
logFC.cutoff = 0,

cmd = FALSE,

)...

S4 method for signature 'RflomicsSE'’
filterDiffAnalysis(object, p.adj.cutoff = 0.05, logFC.cutoff = Q)

S4 method for signature 'RflomicsMAE'
filterDiffAnalysis(object, SE.name, p.adj.cutoff = .05, logFC.cutoff = @)

S4 method for signature 'RflomicsSE'
setValidContrasts(object, contrastList = NULL)

S4 method for signature 'RflomicsMAE'’
setValidContrasts(object, omicName = NULL, contrastList = NULL)

S4 method for signature 'RflomicsSE'
plotDiffAnalysis(

object,

contrastName,

typeofplots = c("MA.plot”, "volcano”, "histogram”)

)

S4 method for signature 'RflomicsMAE'’
plotDiffAnalysis(

object,

SE.name,

contrastName,

runDiffAnalysis

typeofplots = c("MA.plot”, "volcano”, "histogram")

)
S4 method for signature 'RflomicsSE'
plotHeatmapDesign(

object,

contrastName,

splitFactor = "none",

title = "",

annotNames = NULL,

modalities = NULL,

drawArgs = list(),

heatmapArgs = list()
)

S4 method for signature 'RflomicsMAE'

plotHeatmapDesign(
object,
SE.name,
contrastName,
splitFactor = "none",
title = "",
annotNames = NULL,
modalities = NULL,
drawArgs = list(),
heatmapArgs = list()

)

S4 method for signature 'RflomicsSE'
plotBoxplotDE(object, featureName = NULL, groupColor = "groups”, raw = FALSE)

S4 method for signature 'RflomicsMAE'’
plotBoxplotDE(

object,

SE.name,

featureName = NULL,

groupColor = "groups”,

raw = FALSE
)

S4 method for signature 'RflomicsSE'
getDEMatrix(object)

S4 method for signature 'RflomicsMAE'’
getDEMatrix(object, SE.name)

S4 method for signature 'RflomicsSE'
getDEList(object, contrasts = NULL, operation = "union")

S4 method for signature 'RflomicsMAE'’
getDEList(object, SE.name, contrasts = NULL, operation = "union")

38

S4 method for signature

runDiffAnalysis

'RflomicsSE'

getDiffSettings(object)

S4 method for signature
getDiffSettings(object, SE.

S4 method for signature

'RflomicsMAE'
name)

'RflomicsSE'

getValidContrasts(object)

S4 method for signature 'RflomicsMAE'
getValidContrasts(object, omicName)

S4 method for signature 'RflomicsSE'’
getDiffStat(object)

S4 method for signature 'RflomicsMAE'
getDiffStat(object, SE.name = NULL)

S4 method for signature 'RflomicsMAE'
getDiffAnalysesSummary (

object,

plot = FALSE,
ylabellength = 30,
nbMaxLabel = 20,

interface

Arguments

object
contrastList

method

p.adj.method

p.adj.cutoff
logFC.cutoff

cmd

SE.name
omicName
contrastName

typeofplots

splitFactor

title

FALSE

An object of class RflomicsSE or class RflomicsMAE-class
A data.frame of contrast

A character vector giving the name of the differential analysis method to run.
Either "edgeRglmfit" or "limmalmFit".

The method chosen to adjust pvalue. Takes the same values as the ones of
adj.p.adjust method.

adjusted pvalue cutoff. Default is the parameter from the differential analysis.

cutoff for absolute value of log2FC. Default is the parameter from the differen-
tial analysis.

Boolean. Used in the interface. If TRUE, print cmd for the user.

Additional arguments.

SE.name the name of the dataset if the input object is a RlomicsMAE-class
a dataset name

The contrastName for which the MAplot has to be drawn

The plots you want to return. Default is all possible plots: MA plot, Volcano
plot and non adjusted pvalues histogram.

characters. Default to none. Name of a feature in the design matrix, splits the
samples on the heatmap according to its modalities.

characters. Title of the heatmap.

runDiffAnalysis 39

annotNames vector. Names of the annotations to keep in the Heatmap. Default takes all
available information.

modalities named list of vectors of modalities to subset and print on the heatmap.

drawArgs, heatmapArgs

named lists. Any additional parameter passed to ComplexHeatmap::Heatmap or
ComplexHeatmap::draw

featureName variable name (gene/protein/metabolite name)

groupColor default to groups, indicate a variable in the design to color the boxplots accord-
ingly.

raw Boolean. Plot the raw data or the transformed ones (TRUE)

contrasts Vector of characters, expect to be contrast names. Default is null, the operation
(union) is performed on every contrasts found.

operation character. Either union or intersection. Defines the operation to perform on the
DE lists from the contrasts.

plot FALSE or TRUE

ylabelLength max length of the labels (characters)

nbMaxLabel number of labels to print

interface Boolean. Is this plot for the interface or commandline?

Details

Functions and parameters used for RNAseq are those recommended in DiCoExpress workflow (see
the paper in reference). Functions and parameters used for proteomics and metabolomics data are
those recommended in the (Efstathiou *et al.*, 2017)

Value

A RflomicsSE or a RflomicsMAE-class object. All the results are stored as a named list DiffExpAnal
in the metadata slot of a given RflomicsSE object. Objects are:

* stats: data.frame giving a summary of the differential statistical analysis results by contrast:
number of DE features, number of up and down regulated features

* setting: Parameters used for the differential analysis

* method: The method used for the differential analysis

* p.adj.method: The applied p-value correction method

* p.adj.cutoff: The cut-off applied for the adjusted p-value

* logFC.cutoft: The absolute log FC cut-off

* RawDEFres: a list giving for each contrast the raw results of the differential analysis method

* DEF: a list giving for each contrast a data.frame of non filtered differential expressed features
with their statistics

» TopDEF: a list giving for each contrast a data.frame of differential expressed features ordered
and filtered by p.adj.cutoff with their statistics

* mergeDEF: a data frame of 0 and 1 indicating for each features in row, if it is DE in a given
contrasts in column

* contrasts: a data.table of the contrasts used for the differential analysis

a data.frame with differential analyses summary

40

runDiffAnalysis

Accessors

Plots

getDEMatrix: return a matrix of experimental design.

getDEList: return a vector of union or intersection of differential expressed features from list
of contrasts.

getDiffSettings: return a list of differential expression analysis settings of a given omics
dataset

getValidContrasts: return a data.frame of validated contrasts
getDiffStat: Get summary table from diffExpAnalysis analysis

getDiffAnalysesSummary: ...

plotDiffAnalysis method draws a MAplot, a volcano plot and the p-values distribution from
the results of a differential analysis.

plotHeatmapDesign method draws a heatmap from the results of a differential analysis.

plotBoxplotDE method draws a boxplot showing the expression of given differentially ex-
pressed feature.

References

Lambert, 1., Paysant-Le Roux, C., Colella, S. et al. DiCoExpress: a tool to process multifactorial
RNAseq experiments from quality controls to co-expression analysis through differential analysis
based on contrasts inside GLM models. Plant Methods 16, 68 (2020).

Efstathiou G, Antonakis AN, Pavlopoulos GA, et al. ProteoSign: an end-user online differential
proteomics statistical analysis platform. Nucleic Acids Res. 2017;45(W1):W300-W306.

See Also

getDiffSettings, getDEList, getDEMatrix

plotDiffAnalysis, plotHeatmapDesign, plotBoxplotDE

Examples

load ecoseed data
library(RFLOMICS)
data(ecoseed.mae)

factorInfo <- data.frame(

"factorName” = c("Repeat”, "temperature”, "imbibition"),

"factorType” = c("batch”, "Bio"”, "Bio")
)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS::createRflomicsMAE(

projectName = "Tests”,
omicsData = ecoseed.mae,
omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),

factorInfo = factorInfo)

runDiffAnalysis 41

Set the statistical model and contrasts to test
formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, formulae[[1]1)

Get the contrasts List and choose the first 3 contrasts of type averaged
contrastlList <- generateExpressionContrast(MAE, "averaged")

MAE <- setSelectedContrasts(MAE, contrastList = contrastList[c(1, 2, 3),1)

Run the data preprocessing and perform the differential analysis
MAE <- runDataProcessing(MAE, SE.name = "protetest”,
transformMethod = "log2",
normMethod = "median")

MAE <- runDiffAnalysis(MAE, SE.name = "protetest”,
method = "limmalmFit")

or

MAE[["protetest”]] <- runDiffAnalysis(MAE[["protetest”]],

method = "limmalmFit",

contrastlList = contrastlList)

Filter the results of the differential analysis with new cut-off values
for p-value and fold change.
MAE <- filterDiffAnalysis(MAE, SE.name = "protetest”,

p.adj.cutoff = 0.01,

logFC.cutoff = @)
or
MAE[["protetest”]] <- filterDiffAnalysis(MAE[["protetest”]],
p.adj.cutoff = 0.01,
logFC.cutoff = 0)

Access to the diff analysis settings
Get DE matrix from DiffExpAnalysis
head(getDEMatrix (MAE[["protetest”]1]))

Get union or intersection from list of contrasts
getDEList(MAE[["protetest”]], contrasts = "(temperatureMedium - temperatureLow) in mean")

Get diff setting
getDiffSettings(MAE[["protetest”]])

generate plot results of a differential analysis
thiscontrast <- "(temperatureMedium - temperatureLow) in mean"

generate MAplot from diff analysis

plotDiffAnalysis(MAE[["protetest”]],

contrastName = thiscontrast,
typeofplots = "MA.plot")

plot the heatmap
plotHeatmapDesign(MAE[["protetest”]],
contrastName = thiscontrast)

plot boxplot with feature expression
plotBoxplotDE(MAE[["protetest”]],
features = "AT1G47128",

42

= oH

See
See
See
See
See
See

od o o

runOmicsIntegration,RflomicsMAE-method

groupColor = "temperature")

plotBoxplotDE(MAE[["protetest”]],

features = "AT1G79550",

groupColor = "imbibition")

runDiffAnalysis for
runDiffAnalysis for
runDiffAnalysis for
runDiffAnalysis for
runDiffAnalysis for
runDiffAnalysis for

an
an
an
an
an
an

example
example
example
example
example
example

that
that
that
that
that
that

includes plotDiffAnalysis
includes plotHeatmapDesign
includes plotBoxplotDE
includes getDEMatrix
includes getDEList
includes getDiffSettings

runOmicsIntegration,RflomicsMAE-method

runOmicslntegration

Description

Runs the integration according to the selected method (MOFA or mixOmics) and the settings given
by the user. Requires to have the correct entry format in preparedObject before running.

These methods are used to directly access the results of multi-omics analyses or their settings,
usually stored in the metadata of the RlomicsMAE-class object. Setters are also available.

Usage

S4 method for signature 'RflomicsMAE'

runOmicsIntegration(
object,
preparedObject = NULL,
method = "MOFA",
scale_views = FALSE,
maxiter = 1000,
num_factors = 10,

selectedResponse = NULL,

ncomp = 2,

link_datasets

T,

link_response = 1,
sparsity = FALSE,
cases_to_try = 5,
cmd = FALSE,

S4 method for signature 'RflomicsMAE'’
getMixOmics(object, response = NULL, onlyResults = TRUE)

S4 method for signature 'RflomicsMAE'
getMOFA(object, onlyResults = TRUE)

S4 method for signature 'RflomicsMAE'

getMOFASettings(object)

runOmicsIntegration,RflomicsMAE-method 43

S4 method for signature 'RflomicsMAE'
getMixOmicsSettings(object)

S4 method for signature 'RflomicsMAE'
setMOFA(object, results = NULL)

S4 method for signature 'RflomicsMAE'
setMixOmics(object, results = NULL)

S4 method for signature 'RflomicsMAE'
sumMixOmics(object, selectedResponse = NULL)

Arguments

object a RflomicsMAE object.

preparedObject An untrained MOFA object or a list of dataset. Usually a result of prepareForIn-
tegration.

method one of MOFA or mixOmics. Method for which the object is prepared.

scale_views boolean. If TRUE, scale each dataset to unit variance.

maxiter MOFA2 parameter. Number of max iteration (otherwise stop when converged.)

num_factors MOFA?2 parameter. The number of factor to compute.

selectedResponse
a character. Useful if MixOmics was run on several response variable. If NULL,
all variables are taken into account.

ncomp mixOmics parameter. Number of components to compute.

link_datasets mixOmics parameter. Link between datasets in the computation.
link_response mixOmics parameter. Link between dataset and response.

sparsity boolean. Used to determine which mixOmics function to apply (either block.plsda
if FALSE or block.splsda if TRUE).

cases_to_try integer. If sparsity is set to TRUE, then cases_to_try is used to determine the
number of sets of variables to test for tuning.

cmd boolean. Used in the interface. If TRUE, print cmd in the console.
not in use at the moment
response a character giving the response variable to access specifically.

onlyResults default return only the MixOmics or MOFA?2 results. If you want to access all
information of the integration, set onlyResults to FALSE. In MixOmics case,
works only when response is specified.

results The MOFA or mixOmics results to set in the object. If null, set to NULL.

Value

a RflomicsMAE object with the correct metadata slot filled with the results and the settings.

For getters: in getMixOmics, if response is NULL, then all the mixOmics results are returned.
Otherwise, it gives the particular mixOmics result. For MOFA, returns the untrained object and the
trained object as a list.

For setters: always returns a RflomicsMAE-class object.

sumMixOmics: A data frame or a list of dataframe (if selectedResponse is NULL) presenting the
summary of mixOmics analyses.

44

runOmicsIntegration,RflomicsMAE-method

Examples

load ecoseed data
library(RFLOMICS)
data(ecoseed.mae)

factorInfo <- data.frame(
"factorName” = c("Repeat”, "temperature”, "imbibition"),
"factorType” = c("batch”, "Bio"”, "Bio")

)

create rflomicsMAE object with ecoseed data
MAE <- RFLOMICS: :createRflomicsMAE(

projectName = "Tests”,

omicsData = ecoseed.mae,

omicsTypes = c("RNAseq"”,"proteomics”,"metabolomics”),
factorInfo = factorInfo)

formulae <- generateModelFormulae(MAE)
MAE <- setModelFormula(MAE, formulae[[1]1)
contrastList <- Reduce(rbind, generateExpressionContrast(MAE))

MAE <- MAE |>

setSelectedContrasts(contrastList[c(3,6,25)]) |>
runDataProcessing(SE.name = "metatest”,

transformMethod = "log2",

normMethod = "median") |>
runDataProcessing(SE.name = "protetest”,

transformMethod = "none”,

normMethod = "median") |>
runDiffAnalysis(SE.name = "metatest”, method = "limmalmFit") [>
runDiffAnalysis(SE.name = "protetest”, method = "limmalmFit")

Integration using MOFA

Prepare mofa object:

mofaObj <- prepareForIntegration(MAE,
omicsNames = c("protetest”, "metatest”),
variablelLists = rownames(MAE),
method = "MOFA")

Perform integration:

Not run: MAEtest <- runOmicsIntegration(MAE,

preparedObject = mofalbj,

method = "MOFA", num_factors = 5)

Integration using MixOmics
mixObj <- prepareForIntegration(MAE,
omicsNames = c("protetest”, "metatest”),
variablelLists = rownames(MAE),
method = "mixOmics")
MAEtest <- runOmicsIntegration(MAE, preparedObject = mixObj,
method = "mixOmics”)

Access mixOmics results:
#getMixOmics(MAEtest, response = "temperature”)
getMixOmicsSettings(MAEtest)

runRFLOMICS

mixOmics::plotIndiv(getMixOmics(MAEtest, response = "imbibition"))

Access MOFA2 results:

getMOFA(MAEtest)

getMOFASettings(MAEtest)

MOFA2::plot_variance_explained(getMOFA(MAEtest))

45

runRFLOMICS Run RFLOMICS interface

Description

running this function will open the shiny application. Run the shiny application

Usage

runRFLOMICS(. . .)

Arguments

More arguments to pass to shiny App.

Value

shinyApp

Examples

library(RFLOMICS)
Not run: runRFLOMICS()

Index

x datasets
ecoseed.df, 4
ecoseed.mae, 4

checkExpDesignCompleteness
(runDataProcessing), 27

checkExpDesignCompleteness,RflomicsMAE-method

(runDataProcessing), 27

checkExpDesignCompleteness,RflomicsSE-method

(runDataProcessing), 27
coseq, 26
createRflomicsMAE, 2, 14, 26

ecoseed.df, 4
ecoseed.mae, 4

filterDiffAnalysis (runDiffAnalysis), 35

filterDiffAnalysis,RflomicsMAE-method
(runDiffAnalysis), 35

filterDiffAnalysis,RflomicsSE-method
(runDiffAnalysis), 35

generateExpressionContrast, 5, 6, 15, 26

generateExpressionContrast,RflomicsMAE-metho

(generateExpressionContrast), 5

generateExpressionContrast,RflomicsSE-method

(generateExpressionContrast), 5
generateModelFormulae, 7,7, 15, 26
generateModelFormulae,RflomicsMAE-method

(generateModelFormulae), 7
generateReport, 8
generateReport,RflomicsMAE-method

(generateReport), 8
getAnalysis, 10
getAnalysis,RflomicsMAE-method

(getAnalysis), 10
getAnalysis,RflomicsSE-method

(getAnalysis), 10
getAnalyzedDatasetNames (getAnalysis),

10
getAnalyzedDatasetNames,RflomicsMAE-method

(getAnalysis), 10
getAnnotAnalysesSummary

(runAnnotationEnrichment), 18

46

getAnnotAnalysesSummary,RflomicsMAE-method
(runAnnotationEnrichment), 18
getBatchFactors (RflomicsMAE-class), 12
getBatchFactors,RflomicsMAE-method
(RflomicsMAE-class), 12
getBatchFactors,RflomicsSE-method
(RflomicsSE-class), 16
getBioFactors (RflomicsMAE-class), 12
getBioFactors,RflomicsMAE-method
(RflomicsMAE-class), 12
getBioFactors,RflomicsSE-method
(RflomicsSE-class), 16
getCoeffNorm, 34
getCoeffNorm (runDataProcessing), 27
getCoeffNorm,RflomicsMAE-method
(runDataProcessing), 27
getCoeffNorm,RflomicsSE-method
(runDataProcessing), 27
getCoExpAnalysesSummary
(runCoExpression), 23
getCoExpAnalysesSummary,RflomicsMAE-method
(runCoExpression), 23

dgetCoexpClusters(runCoExpression),23

getCoexpClusters,RflomicsMAE-method
(runCoExpression), 23
getCoexpClusters,RflomicsSE-method
(runCoExpression), 23
getCoexpSettings (runCoExpression), 23
getCoexpSettings,RflomicsMAE-method
(runCoExpression), 23
getCoexpSettings,RflomicsSE-method
(runCoExpression), 23
getDatasetNames (RflomicsMAE-class), 12
getDatasetNames,RflomicsMAE-method
(RflomicsMAE-class), 12
getDatasetNames,RflomicsSE-method
(RflomicsSE-class), 16
getDEList, 40
getDEList (runDiffAnalysis), 35
getDEList,RflomicsMAE-method
(runDiffAnalysis), 35
getDEList,RflomicsSE-method
(runDiffAnalysis), 35

INDEX

getDEMatrix, 40
getDEMatrix (runDiffAnalysis), 35
getDEMatrix,RflomicsMAE-method
(runDiffAnalysis), 35
getDEMatrix,RflomicsSE-method
(runDiffAnalysis), 35
getDesignMat (RflomicsMAE-class), 12
getDesignMat,RflomicsMAE-method
(RflomicsMAE-class), 12
getDesignMat,RflomicsSE-method
(RflomicsSE-class), 16
getDiffAnalysesSummary
(runDiffAnalysis), 35

getDiffAnalysesSummary,RflomicsMAE-method

(runDiffAnalysis), 35
getDiffSettings, 40
getDiffSettings (runDiffAnalysis), 35
getDiffSettings,RflomicsMAE-method
(runDiffAnalysis), 35
getDiffSettings,RflomicsSE-method
(runDiffAnalysis), 35
getDiffStat (runDiffAnalysis), 35
getDiffStat,RflomicsMAE-method
(runDiffAnalysis), 35
getDiffStat,RflomicsSE-method
(runDiffAnalysis), 35
getEnrichRes (runAnnotationEnrichment),
18
getEnrichRes,RflomicsMAE-method
(runAnnotationEnrichment), 18
getEnrichRes,RflomicsSE-method
(runAnnotationEnrichment), 18
getEnrichSettings
(runAnnotationEnrichment), 18
getEnrichSettings,RflomicsSE-method
(runAnnotationEnrichment), 18
getFactorModalities
(RflomicsMAE-class), 12
getFactorModalities,RflomicsMAE-method
(RflomicsMAE-class), 12
getFactorModalities,RflomicsSE-method
(RflomicsSE-class), 16
getFactorNames (RflomicsMAE-class), 12
getFactorNames,RflomicsMAE-method
(RflomicsMAE-class), 12
getFactorNames,RflomicsSE-method
(RflomicsSE-class), 16
getFactorTypes (RflomicsMAE-class), 12
getFactorTypes,RflomicsMAE-method
(RflomicsMAE-class), 12
getFactorTypes,RflomicsSE-method
(RflomicsSE-class), 16

47

getFilteredFeatures, 34
getFilteredFeatures
(runDataProcessing), 27
getFilteredFeatures,RflomicsMAE-method
(runDataProcessing), 27
getFilteredFeatures,RflomicsSE-method
(runDataProcessing), 27
getFilterSettings, 34
getFilterSettings (runDataProcessing),
27
getFilterSettings,RflomicsMAE-method
(runDataProcessing), 27
getFilterSettings,RflomicsSE-method
(runDataProcessing), 27
getMetaFactors (RflomicsMAE-class), 12
getMetaFactors,RflomicsMAE-method
(RflomicsMAE-class), 12
getMetaFactors,RflomicsSE-method
(RflomicsSE-class), 16
getMixOmics

(runOmicsIntegration,RflomicsMAE-method),

42
getMixOmics,RflomicsMAE-method

(runOmicsIntegration,RflomicsMAE-method),

42
getMixOmicsSettings

(runOmicsIntegration,RflomicsMAE-method),

42
getMixOmicsSettings,RflomicsMAE-method

(runOmicsIntegration,RflomicsMAE-method),

42
getModelFormula
(generateModelFormulae), 7
getModelFormula,RflomicsMAE-method
(generateModelFormulae), 7
getModelFormula,RflomicsSE-method
(generateModelFormulae), 7
getMOFA

(runOmicsIntegration,RflomicsMAE-method),

42
getMOFA,RflomicsMAE-method

(runOmicsIntegration,RflomicsMAE-method),

42
getMOFASettings

(runOmicsIntegration,RflomicsMAE-method),

42
getMOFASettings,RflomicsMAE-method

(runOmicsIntegration,RflomicsMAE-method),

42
getNormSettings, 34
getNormSettings (runDataProcessing), 27
getNormSettings,RflomicsMAE-method

48

(runDataProcessing), 27
getNormSettings,RflomicsSE-method
(runDataProcessing), 27
getOmicsTypes (RflomicsMAE-class), 12
getOmicsTypes,RflomicsMAE-method
(RflomicsMAE-class), 12
getOmicsTypes,RflomicsSE-method
(RflomicsSE-class), 16
getProcessedData, 34
getProcessedData (runDataProcessing), 27
getProcessedData,RflomicsMAE-method
(runDataProcessing), 27
getProcessedData,RflomicsSE-method
(runDataProcessing), 27
getProjectName (RflomicsMAE-class), 12
getProjectName,RflomicsMAE-method
(RflomicsMAE-class), 12
getRflomicsSE (RflomicsMAE-class), 12
getRflomicsSE,RflomicsMAE-method
(RflomicsMAE-class), 12
getSelectedContrasts
(generateExpressionContrast), 5
getSelectedContrasts,RflomicsMAE-method
(generateExpressionContrast), 5
getSelectedContrasts,RflomicsSE-method
(generateExpressionContrast), 5
getSelectedSamples (runDataProcessing),
27
getSelectedSamples,RflomicsMAE-method
(runDataProcessing), 27
getSelectedSamples,RflomicsSE-method
(runDataProcessing), 27
getTransSettings, 34
getTransSettings (runDataProcessing), 27
getTransSettings,RflomicsMAE-method
(runDataProcessing), 27
getTransSettings,RflomicsSE-method
(runDataProcessing), 27
getValidContrasts (runDiffAnalysis), 35
getValidContrasts,RflomicsMAE-method
(runDiffAnalysis), 35
getValidContrasts,RflomicsSE-method
(runDiffAnalysis), 35

isProcessedData (runDataProcessing), 27

isProcessedData,RflomicsMAE-method
(runDataProcessing), 27

isProcessedData,RflomicsSE-method
(runDataProcessing), 27

ImFit, 35

MultiAssayExperiment, 3, 5, 13-15

INDEX

plotBoxplotDE, 40
plotBoxplotDE (runDiffAnalysis), 35
plotBoxplotDE,RflomicsMAE-method
(runDiffAnalysis), 35
plotBoxplotDE,RflomicsSE-method
(runDiffAnalysis), 35
plotClusterProfiler
(runAnnotationEnrichment), 18
plotClusterProfiler,RflomicsSE-method
(runAnnotationEnrichment), 18
plotCoExpression (runCoExpression), 23
plotCoExpression,RflomicsMAE-method
(runCoExpression), 23
plotCoExpression,RflomicsSE-method
(runCoExpression), 23
plotCoExpressionProfile
(runCoExpression), 23

plotCoExpressionProfile,RflomicsMAE-method

(runCoExpression), 23

plotCoExpressionProfile,RflomicsSE-method

(runCoExpression), 23
plotConditionsOverview
(RflomicsMAE-class), 12

plotConditionsOverview,RflomicsMAE-method

(RflomicsMAE-class), 12
plotCosegContrasts (runCoExpression), 23
plotCoseqContrasts,RflomicsMAE-method

(runCoExpression), 23
plotCoseqContrasts,RflomicsSE-method

(runCoExpression), 23
plotDataDistribution, 34
plotDataDistribution

(runDataProcessing), 27
plotDataDistribution,RflomicsMAE-method

(runDataProcessing), 27
plotDataDistribution,RflomicsSE-method

(runDataProcessing), 27
plotDataOverview (RflomicsMAE-class), 12
plotDataOverview,RflomicsMAE-method

(RflomicsMAE-class), 12
plotDiffAnalysis, 40
plotDiffAnalysis (runDiffAnalysis), 35
plotDiffAnalysis,RflomicsMAE-method

(runDiffAnalysis), 35
plotDiffAnalysis,RflomicsSE-method

(runDiffAnalysis), 35
plotEnrichComp

(runAnnotationEnrichment), 18
plotEnrichComp,RflomicsSE-method

(runAnnotationEnrichment), 18
plotExpDesignCompleteness

(runDataProcessing), 27

INDEX

49

plotExpDesignCompleteness,RflomicsMAE-method runDiffAnalysis,RflomicsMAE-method

(runDataProcessing), 27
plotExpDesignCompleteness,RflomicsSE-method
(runDataProcessing), 27
plotHeatmapDesign, 40
plotHeatmapDesign (runDiffAnalysis), 35
plotHeatmapDesign,RflomicsMAE-method
(runDiffAnalysis), 35
plotHeatmapDesign,RflomicsSE-method
(runDiffAnalysis), 35
plotLibrarySize, 34
plotLibrarySize (runDataProcessing), 27
plotLibrarySize,RflomicsMAE-method
(runDataProcessing), 27
plotLibrarySize,RflomicsSE-method
(runDataProcessing), 27
plotOmicsPCA, 34
plotOmicsPCA (runDataProcessing), 27
plotOmicsPCA,RflomicsMAE-method
(runDataProcessing), 27
plotOmicsPCA,RflomicsSE-method
(runDataProcessing), 27
prepareForIntegration

(runDiffAnalysis), 35
runDiffAnalysis,RflomicsSE-method
(runDiffAnalysis), 35
runFeatureFiltering
(runDataProcessing), 27
runFeatureFiltering,RflomicsMAE-method
(runDataProcessing), 27
runFeatureFiltering,RflomicsSE-method
(runDataProcessing), 27
runNormalization (runDataProcessing), 27
runNormalization,RflomicsMAE-method
(runDataProcessing), 27
runNormalization,RflomicsSE-method
(runDataProcessing), 27
runOmicsIntegration

(runOmicsIntegration,RflomicsMAE-method),

42
runOmicsIntegration,RflomicsMAE-method,
42
runOmicsPCA (runDataProcessing), 27
runOmicsPCA,RflomicsMAE-method
(runDataProcessing), 27

(prepareForIntegration,RflomicsMAE-methio@icsPCA,RflomicsSE-method

11
prepareForIntegration,RflomicsMAE-method,
11

RflomicsMAE-class, 2, 3,6-9, 11,12, 14, 15,
20, 21, 25, 26, 34, 35, 38, 39,42, 43
rflomicsMAE2MAE, 16
rflomicsMAE2MAE,RflomicsMAE-method
(rflomicsMAE2MAE), 16
RflomicsSE, 6, 7, 9, 14, 15, 17, 20, 25, 26, 33,
35, 38, 39
RflomicsSE (RflomicsSE-class), 16
RflomicsSE-class, 16, 28, 32—34
runAnnotationEnrichment, /5, 18
runAnnotationEnrichment,RflomicsMAE-method
(runAnnotationEnrichment), 18
runAnnotationEnrichment,RflomicsSE-method
(runAnnotationEnrichment), 18
runCoExpression, 15,23
runCoExpression,RflomicsMAE-method
(runCoExpression), 23
runCoExpression,RflomicsSE-method
(runCoExpression), 23
runDataProcessing, 15, 26, 27
runDataProcessing,RflomicsMAE-method
(runDataProcessing), 27
runDataProcessing,RflomicsSE-method
(runDataProcessing), 27
runDiffAnalysis, 15, 26, 35

(runDataProcessing), 27
runRFLOMICS, 45
runSampleFiltering (runDataProcessing),
27
runSampleFiltering,RflomicsMAE-method
(runDataProcessing), 27
runSampleFiltering,RflomicsSE-method
(runDataProcessing), 27
runTransformData (runDataProcessing), 27
runTransformData,RflomicsMAE-method
(runDataProcessing), 27
runTransformData,RflomicsSE-method
(runDataProcessing), 27

setMixOmics

(runOmicsIntegration,RflomicsMAE-method),

42
setMixOmics,RflomicsMAE-method

(runOmicsIntegration,RflomicsMAE-method),

42
setModelFormula
(generateModelFormulae), 7
setModelFormula,RflomicsMAE-method
(generateModelFormulae), 7
setModelFormula,RflomicsSE-method
(generateModelFormulae), 7
setMOFA

(runOmicsIntegration,RflomicsMAE-method),

42

50 INDEX

setMOFA,RflomicsMAE-method
(runOmicsIntegration,RflomicsMAE-method),
42

setSelectedContrasts
(generateExpressionContrast), 5

setSelectedContrasts,RflomicsMAE-method
(generateExpressionContrast), 5

setSelectedContrasts,RflomicsSE-method
(generateExpressionContrast), 5

setValidContrasts (runDiffAnalysis), 35

setValidContrasts,RflomicsMAE-method
(runDiffAnalysis), 35

setValidContrasts,RflomicsSE-method
(runDiffAnalysis), 35

subRflomicsMAE (RflomicsMAE-class), 12

subRflomicsMAE,RflomicsMAE-method
(RflomicsMAE-class), 12

SummarizedExperiment, 3, 5, 16—18

sumMixOmics
(runOmicsIntegration,RflomicsMAE-method),
42

sumMixOmics,RflomicsMAE-method
(runOmicsIntegration,RflomicsMAE-method),
42

sumORA (runAnnotationEnrichment), 18

sumORA,RflomicsSE-method
(runAnnotationEnrichment), 18

voom, /1

	createRflomicsMAE
	ecoseed.df
	ecoseed.mae
	generateExpressionContrast
	generateModelFormulae
	generateReport
	getAnalysis
	prepareForIntegration,RflomicsMAE-method
	RflomicsMAE-class
	rflomicsMAE2MAE
	RflomicsSE-class
	runAnnotationEnrichment
	runCoExpression
	runDataProcessing
	runDiffAnalysis
	runOmicsIntegration,RflomicsMAE-method
	runRFLOMICS
	Index

