Package ‘RCX’

January 20, 2026
Type Package
Title R package implementing the Cytoscape Exchange (CX) format
Version 1.14.0

Description Create, handle, validate, visualize and convert networks in the Cytoscape ex-
change (CX) format to standard data types and objects.
The package also provides conversion to and from objects of iGraph and graphNEL.
The CX format is also used by the NDEx platform, a online commons for biological net-
works, and the network visualization software Cytocape.

License MIT + file LICENSE

Depends R (>=4.2.0)

Imports jsonlite, plyr, igraph, methods

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

biocViews Pathways, Datalmport, Network

Suggests BiocStyle, testthat, knitr, rmarkdown, base64enc, graph
VignetteBuilder knitr

Encoding UTF-8

URL https://github.com/frankkramer-1lab/RCX

BugReports https://github.com/frankkramer-lab/RCX/issues
git_url https://git.bioconductor.org/packages/RCX

git_branch RELEASE_3_22

git_last_commit 6ce2c95

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Florian Auer [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5320-8900>)

Maintainer Florian Auer <florian.auer@informatik.uni-augsburg.de>

1

https://github.com/frankkramer-lab/RCX
https://github.com/frankkramer-lab/RCX/issues
https://orcid.org/0000-0002-5320-8900

2 Contents

Contents
.addAspectNameToJsono 3
addAttributeData Lo L L e 4
aspectClasso 5
convertRawList oL 6
create Attribute Aspect . .. L L oL L e 6
createCyVpPorD o oL 7
errorCodes 8
filterBy e e 10
format. e 11
INfer e e 12
gJson2RDataType 13
Jsonl .o 14
JSONV L e e e 15
Jog e 15
.mergeAttributeSASpPect e 16
amergeldASpect L e 17
amodClass 18
PasteC Lo e e 19
renameDFo 20
SOP « o e e 20
SUMMAryASPECt o oL e e e e e e e e e e 23
transformListLength<- L. 23
transformVLD . . . 0 o oL L 24
validate AttributeSASpect L L e e 25
.validateCyVisualPropertyPandD 25
aspectClasses e e e e e e 26
CartesianLayout e e e e e 27
checks e 28
convert-data-types-and-values L. 32
Convert-Names-and-Classes 32
CONVEIT2JSOM & o v v v v v v e 34
countElements 35
CUSIOM-PIING o v ot it s e e e e e e 36
CyGroups o v vt e e e 37
CyHiddenAttributes e e 39
CyNetworkRelations e 41
CySubNetworks e 42
CyTableColumn e 43
CyVisualProperties e 45
CyVisualProperty e e e e 47
CyVisualPropertyDependencies 49
CyVisualPropertyMappings oo i 51
CyVisualPropertyProperties 53
dOt_teSt . . . L e 55
EdgeAttributes L e 58
Edges 60
getCyVisualProperty 61
graphNEL e 63
haslds L 65

dProperty e 66

.addAspectNameToJson 3

Igraph 67
JsonToRCX L e 69
markAttributeColumn Lo 71
markRefColumn 72
maxId e 72
Meta-data e e e 73
NetworkAttributes L 75
NodeAttributes e 77
Nodes oo 79
RCX . e 80
RCX-object o e 81
rexTolson e 84
readCX . . . L L 86
referredBy 88
refersTo 89
setEXtensiono e 90
SUMMATY + « v v v v v e 91
tOCX . L e 93
updateCartesianLayout e 94
updateCyGroups e 96
updateCyHiddenAttributes 99
updateCyNetworkRelations L 101
updateCySubNetworks 104
updateCyTableColumn 107
updateCyVisualProperties e 109
updateCyVisualProperty e 113
updateEdgeAttributes oL 116
updateEdges 119
updateMetaDataProperties 120
updateNetworkAttributes e e 121
updateNodeAttributes 124
updateNodes e 127
validate e 128
visualize e 130
writeCX . . . e 132
writetHTML 133
Index 135

.addAspectNameToJson Add the aspect name to the JSON

Description

Add the aspect name to the JSON

Usage

.addAspectNameToJson(json, name)

Arguments
json character; preformated json
name character; name of the aspect
Value

character; character of json object

Note

Internal function only for convenience

Examples

json = '{bla:"BLA", blubb:"BLUBB"}'
RCX: ::.addAspectNameToJson(json, "foo")

.addAttributeData

.addAttributeData Add attribute data to an igraph object

Description
Not only simply add the name-value pairs, but also:

* unlist lists if indicated by isList column
* renames name="name" to "attribute$name"
* puts subnetwork id at the and of the attribute name

* adds a data type as attribute$dataType if not string, boolean or double

Usage

.addAttributeData(ig, attributeRef, attribute)

Arguments
ig igraph object

non

attributeRef reference name; "node", "edge" or "network"

attribute an attribute aspect

Value

igraph object

Note

Internal function only for convenience

Examples

NULL

.aspectClass

.aspectClass Get the class of aspects

Description

Get the class of aspects

Usage

.aspectClass(x)

Arguments

X a potential aspect

Value

The aspect class name or NA if it’s not an aspect

Note

Internal function only for convenience

Examples

x = list(a="foo", b="bar")
class(x)

[1] "list”

Not run:

.addClass(x) <- .CLS$nodes
class(x)

[1] "NodesAspect” "list”

.aspectClass(x)
[1] "NodesAspect”

.removeClass(x) <- "NodesAspect”
.aspectClass(x)

[17 "NA”

End(Not run)

6 .createAttribute Aspect

.convertRawList Convert a list of vectors to a character vector with pasted elements

Description

Convert a list of vectors to a character vector with pasted elements

Usage

.convertRawList(l, keepNa = TRUE)

Arguments

1 unnamed list

keepNa logical; whether to keep NA values or replace it with an empty list

Value

character

Note

Internal function only for convenience

Examples

1 = 1list(NA,c(2,3), 5)
RCX:::.convertRawList(1)

.createAttributeAspect
Create a default *AttributeAspect

Description

Some aspects like NodeAttributesAspect or EdgeAttributesAspect use a key-value scheme. This
function helps in constructing while avoiding repetition.

Usage

.createAttributeAspect(
propertyOf,
name,
value,
dataType,
isList,
subnetworkId = NULL,
.log = ""

.createCyVpPorD 7

Arguments
propertyOf integer; refers to the IDs of an other aspect
name character; key of the attribute
value character; value of the attribute
dataType character (optional);
isList logical (optional);

subnetworkId integer (optional); CySubNetworks

Value

*Attribute Aspect prototype object

Note

Internal function only for convenience

See Also

.mergeldAspect, .mergeAttributesAspect, CySubNetworks

Examples
NULL
.createCyVpPorD Helper to create structure for classes CyVisualPropertyProperties and
CyVisualPropertyDependencies
Description

Helper to create structure for classes CyVisualPropertyProperties and CyVisualPropertyDependen-

cies
Usage
.createCyVpPorD(name = NULL, value, .log = "")
Arguments
name character, optional; name of the properties
value character or named character; value of the properties
.log character (optional); name of the calling function used in logging
Value
data.frame
Note

Internal function only for convenience

8 .errorCodes

See Also

Used in CyVisualPropertyProperties, CyVisualPropertyDependencies and CyVisualPropertyMappings

Examples

Not run:
datal = c(NODE_BORDER_STROKE="SOLID", NODE_BORDER_WIDTH="1.5")
.createCyVpPorD(value=datal)

keyl = c("NODE_BORDER_STROKE", "NODE_BORDER_WIDTH")
valuel = c("SOLID", "1.5")
.createCyVpPorD(key1, valuel)

Result for either:

name value
1 NODE_BORDER_STROKE SOLID
2 NODE_BORDER_WIDTH 1.5

End(Not run)

.errorCodes Error codes used in this package

Description

This function returns the error message to a given (internal) error code. For some codes, additional
information for the message is needed.

Usage

.errorCodes(code, info = c("<info[1]>", "<info[2]>"))

Arguments

code character; Error code.

info character; Additional information used in some error codes.
Value

Full text for a given error code.

Details

List of error codes::

ErrorCodeNotFound:

HHHHE
| |ERROR CODE NOT FOUND!!
HHHH
requested error code:
<info[1]>

e404:

.errorCodes

THIS ERROR SHOULD NEVER HAPPEN!!!

graphNELEdgesRequired:

RCX object requires edges to be converted to an graphNEL object!
idNonNeg:

Provided IDs (<info[1]>) must be non-neagtive!

idNotNum:

Provided IDs (<info[1]>) must be numeric!

idRefNotFound:

Provided IDs of <info[1]> don't exist in <info[2]>
idRefNotPresent:

<info[1]> not present as <info[2]>

igraphEdgesRequired:

RCX object requires edges to be converted to an igraph object!
paramAlINull:

At least one argument of <info[1]> must be set!

paramDifferentLength:
Arguments must have the same length!
<info[11>
paramListAllWrongClass:
Not all elements of the list <info[1]> are of class "<info[2]>"!
paramMissing:
Missing arguments: <info[1]>
paramMissingRCX:
RCX object is missing!
paramNa:
Argument <info[1]> must not contain any NA values!

paramNonNeg:

All elements of <info[1]> must be non-neagtive!
paramNotChar:

All elements of <info[1]> must be characters!
paramNotList:

Argument <info[1]> must be a list!

paramNotLog:

All elements of <info[1]> must be logical!
paramNotNamed.:

Object <info[1]> must have names!

paramNotNum:

All elements of <info[1]> must be numeric!
paramNotUnique:

Elements of <info[1]> must not contain duplicates!
paramWrong Value:

Argument <info[1]> only can take following values: <info[2]>

10 ilterBy
validationFail:
Aspect (<info[1]>) failed validation!
Check if the aspect is valid: validate(<info[1]>)
wrongClass:
Class of object <info[1]> is not "<info[2]>"!
wrongClassOf:
Class of object <info[1]> is not one of <info[2]>!

Note

Internal function only for convenience
.filterBy Filter several parameters for elements, that match to a given name in

a given param

Description

Filter several parameters for elements, that match to a given name in a given param

Usage
.filterBy(name, param, ...)
Arguments
name character; matching value
param character; in which param in ...
several parameters
Value

list with only matching elements of all parameters

Note

Internal function only for convenience

Examples

non

po=c("match”,"not”, "some", "other”, "match")
prop=c(1,2,3,4,5)
dep=c("bla”,"blubb"”,"bla", "blubb"”,"bla")
map=list("BLA","BLUBB", "BLA","BLUBB","BLA")

RCX:::.filterBy("match”, "po", po, prop, dep, map)

.format

11

.format

Format objects for error logging

Description

Format objects for error logging

Usage

.formatQuote(v)

.formatComma(v)

.formatParams(v, con = "and")

.formatData(v)

.formatLog(v, fname = c())

.formatO(v, fname)

Arguments
v character vector; just some strings
fname character; function name
.log character; previous called functions
Value
character
Functions

Note

.formatQuote(): add quotes to the vector elements: "<v[i]>"

.formatComma(): add commas between the vector elements: <v[1]>, <v[2]>, <v[3]>
.formatParams(): format the vector: "<v[1]1>", "<v[2]>" and "<v[3]>"
.formatData(): format the vector: <v[1]>$<v[2]>$<v[3]>

.formatLog(): format the vector: "<v[1]1>", "<v[2]>" and "<v[3]>" (in <fname>)

.formatO(): format a object name with its calling function

Internal function only for convenience

12 .infer

Examples

Not run:

v <= c("one", "two", "three")
fname <- "foo”

.log <- c("foo1"”, "foo2", "foo3")

.formatQuote(v)
#0171 "\"one\”” "\"two\"” "\"three\"”

.formatComma(v)
#[1] "one, two, three”

.formatParams(v)
#[1] "\"one\”, \"two\"” and \"three\"”

.formatData(v)
#[1] "onetwothree”

.formatLog(v)
#[1]1 "\"one\”, \"two\"” and \"three\""

.formatLog(v, fname)
#L11 "\"one\"”, \"two\" and \"three\" (in foo)"

.formatO(.formatLog(v), fname)
#L11 "\"\"one\", \"two\" and \"three\"\" (foo)"

End(Not run)

.infer Infer the data type from values and check if the value elements are a
list

Description
Each element has an R data type (i.e. class). If more than one element are present in one list
element, it is marked as list

Usage

.inferDataType(values)

.inferIsList(values)
Arguments

values vector or list of R data values
Details

.inferDataType infers the data type of the elements in the vector or list. . inferIsList infers for
each element if it is a list. For a vector, the return therefore is FALSE for each element!

.json2RDataType

Value

character vector of data types or logical vector of list status

Functions

e .inferIsList(): Infer, if the values are lists

Note

Internal function only for convenience

Examples

NULL

13

. json2RDataType Get the data type and isList from JSON data

Description

Get the data type and isList from JSON data

Usage

.json2RDataType(dataType, default = "string")

Arguments

dataType data type column from jsonTORCX => .jsonV

default default value for NA values (by default the values remain NA)
Value

list(type=<character vector>, islList=<logical vector>)

Note

Internal function only for convenience

Examples

jsonD = c("boolean”, "double"”, "integer”, "long", "string”,
"list_of_boolean”, "list_of_double”, "list_of_integer”,
"list_of_long"”, "list_of_string")

RCX:::.json2RDataType(jsonD)

14

.JjsonL
.jsonL Return data as a list from a JSON list
Description
Return data as a list from a JSON list
Usage
.jsonL(
data,
acc,
default = as.character(NA),
unList = TRUE,
returnAllDefault = TRUE
)
Arguments
data json list
acc accession name
default default return value
unList logical; whether to unlist the list elements (e.g. for a list of lists return a list of
vectors)
returnAllDefault
whether to return the vector if all values are the default value (or NULL instead)
Value
list

Note

Internal function only for convenience

Examples

testData = list(list(n="CDKN1B"),
list(n="ROCK1", r="BLA"),
list(n="SHC1", r="BLUBB"),
list(n="IRS1"))

RCX:::.jsonL(testData, "r")

JsonV 15

.jsonV Return data as a vector from a JSON list

Description

Return data as a vector from a JSON list

Usage

.jsonV(data, acc, default = NA, returnAllDefault = TRUE)

Arguments

data json list

acc accession name

default default return value

returnAllDefault

whether to return the vector if all values are the default value (or NULL instead)

Value

vector
Note

Internal function only for convenience

Examples

testData = list(list(n="CDKN1B"),
list(n="ROCK1", r="BLA"),
list(n="SHC1", r="BLUBB"),
list(n="IRS1"))

RCX:::.jsonV(testData, "r")

.log Logging (printing) the results of test cases

Description

Logging (printing) the results of test cases

Usage

.log(info, pass, sep = "...", spaceLine = FALSE)

16 .mergeAttributesAspect

Arguments
info character; description of the test case.
pass boolean; was the test passed?
sep character (default="..."); separates description from result.
spacelLine boolean (default=FALSE); should a blank line be added after.
Value

NULL, only prints the log

Note

Internal function only for convenience

Examples

testPassed <- TRUE

testFailed <- FALSE

Not run:

.log('testing something', testPassed)

#testing something...0K

.log('testing other stuff', testFailed, spacelLine=TRUE)
#testing other stuff...FAIL

#

.log('testing more', testPassed, " ", TRUE)

#testing more OK

End(Not run)

.mergeAttributesAspect
Merge two *AttributeAspects

Description

Some aspects like NodeAttributesAspect or EdgeAttributesAspect use a key-value scheme. This
function helps in merging while avoiding repetition.

Usage

.mergeAttributesAspect(
firstAspect,
secondAspect,
replace = TRUE,
stopOnDuplicates = FALSE,

required = c("propertyOf"”, "name"),
optional = "subnetworkId”,
.log = c()

.mergeldAspect 17

Arguments

firstAspect *Attribute Aspect object; first aspect.

secondAspect *Attribute Aspect object; second aspect.

replace logical (default: TRUE); should duplicate keys be replaced with values of the
secondAspect

stopOnDuplicates
logical (default: FALSE); whether to stop, if duplicate keys are found

required character (optional); names of required column names

optional character (optional); names of optional column names

.log character (optional); origin of the data used for error logging

Value

*Attribute Aspect object

Note

Internal function only for convenience

See Also

.mergeldAspect, .createAttributeAspect

Examples

NULL

.mergeldAspect Merge two aspects (data.frames)

Description

Merges two aspects, that are both data.frames and of the same aspect class. If the idCol con-
tains duplicates new ids (for secondAspect) are created (ids of firstAspect are kept), unless it is
spezified otherwise by save0OldIds.

Usage

.mergeldAspect(
firstAspect,
secondAspect,
idCol,
uniqCols,
stopOnDuplicates = FALSE,
saveOldIds = TRUE,

.log = c()

)

18 .modClass

Arguments

firstAspect data.frame; first aspect.

secondAspect data.frame; second aspect.

idCol character; name of the column to merge on.

uniqCols character; name of the column to be checked for uniqueness.

stopOnDuplicates
boolean (default=FALSE); whether to stop, if duplicates in unigCols column
are found.

saveOldIds boolean (default=TRUE); whether to keep the IDs from secondAspect, if du-
plicates in uniqCols column are found.

.log character (optional); name of the calling function used in logging

Value

data.frame of the merged aspects.

Note

The two aspects must be the same type of aspect (same aspect class)!

Internal function only for convenience

See Also

.mergeAttributesAspect, .createAttributeAspect

Examples

NULL

.modClass Add or remove a class name from an object

Description

Add or remove a class name from an object

Usage

.addClass(x) <- value

.removeClass(x) <- value

Arguments

X an R object.

value character vector of lenght 1.
Value

an R object.

.pasteC

Note

Internal function only for convenience

Examples

x = list(a="foo", b="bar")
class(x)

[1] "list”

Not run:

.addClass(x) <- "blubb”
class(x)

[1] "blubb” "list"”

.addClass(x) <- "blubb”
class(x)
[1] "blubb” "list"

.removeClass(x) <- "blubb”
class(x)

[1] "list”

End(Not run)

19

.pasteC Concatenate as comma separated character vector

Description

Concatenate as comma separated character vector

Usage
.pasteC(x)

Arguments

X character vector.

Value

character vector of length 1.

Note

Internal function only for convenience

Examples

Not run:

a <- c("one", "two", "three")
.pasteC(a)

#[1] "one, two, three”

End(Not run)

20

.stop

. renameDF Rename data.frame columns by key-value pairs in rnames

Description

Rename data.frame columns by key-value pairs in rnames

Usage

.renameDF (df, rnames)

Arguments

df data.frame

rnames named character vector; names (rnames)=colnames(df)
Value

df with new colnames; or NULL on error

Note

Internal function only for convenience

Examples

nodes = data.frame(id=c(0,1,2),
name=c("CDK1" ,NA, "CDK3"),
represents=c(NA, "bla",NA))

non nn

rnames = c(id="@id", name="n", represents="r")

RCX: ::.renameDF (nodes, rnames)
.stop Customized stop() function
Description

Customized stop() function

Usage
.stop(code, info = NULL, msg = NULL)

Arguments
code character; Error code.
info character; Additional information used in some error codes.

msg character;

.stop

Value

Does not have any return value, simply throws an error!

Details

List of error codes::

ErrorCodeNotFound.:

HHHHE
| |ERROR CODE NOT FOUND!!
HHHH
requested error code:
<info[1]>

e404:
THIS ERROR SHOULD NEVER HAPPEN!!!

graphNELEdgesRequired:

RCX object requires edges to be converted to an graphNEL object!
idNonNeg:

Provided IDs (<info[1]>) must be non-neagtive!

idNotNum:

Provided IDs (<info[1]>) must be numeric!

idRefNotFound:

Provided IDs of <info[1]> don't exist in <info[2]>
idRefNotPresent:

<info[1]> not present as <info[2]>

igraphEdgesRequired:

RCX object requires edges to be converted to an igraph object!

paramAlINull:
At least one argument of <info[1]> must be set!

paramDifferentLength:
Arguments must have the same length!
<info[11>
paramListAllWrongClass:
Not all elements of the list <info[1]> are of class "<info[2]>"!
paramMissing:
Missing arguments: <info[1]>
paramMissingRCX:
RCX object is missing!
paramNa:
Argument <info[1]> must not contain any NA values!

paramNonNeg:
All elements of <info[1]> must be non-neagtive!

paramNotChar:
All elements of <info[1]> must be characters!

21

22 .stop

paramNotList:

Argument <info[1]> must be a list!

paramNotLog:

All elements of <info[1]> must be logical!

paramNotNamed.:

Object <info[1]> must have names!

paramNotNum:

All elements of <info[1]> must be numeric!

paramNotUnique:

Elements of <info[1]> must not contain duplicates!

paramWrongValue:

Argument <info[1]> only can take following values: <info[2]>

validationFail:

Aspect (<info[1]>) failed validation!

Check if the aspect is valid: validate(<info[1]>)
wrongClass:

Class of object <info[1]> is not "<info[2]>"!

wrongClassOf:

Class of object <info[1]> is not one of <info[2]>!

Note

Internal function only for convenience

Examples

Not run:

.stop("paramMissingRCX")

#Error: .stop

RCX object is missing!
.stop("paramNotUnique”,"idParamName")

#Error: .stop

Provided IDs (idParamName) contain duplicates!

.stop("wrongClass”,c("nodesAspect”, "NodesAspect”))
#Error: .stop

Class of object "nodesAspect” is not "NodesAspect”!

End(Not run)

.summaryAspect 23

. summaryAspect Helper function to mark columns that are ids or reference ids

Description

Helper function to mark columns that are ids or reference ids

Usage

.summaryAspect (aspect)

Arguments

aspect an aspect (data.frame)

Value

the aspect (data.frame)

Note

Internal function only for convenience

Examples

edges = createEdges(source=c(1,1), target=c(2,3))
edges = RCX:::.summaryAspect(edges)
class(edges$id)

.transformListlLength<-
Transform an aspect with a list as column

Description
Transforms an aspect with a column, that is a list to force a custom format in summary generation.
Only show the number of elements in the list elements.

Usage

.transformListLength(aspect) <- value

Arguments
aspect an aspect (data.frame)
value character; property
Value

the aspect (data.frame)

24 .transformVLD

Note

Internal function only for convenience

Examples

df = data.frame(bla=c("a","b","c"))
df$blubb=list(c("a","b","c"),

c(1,2),

c(TRUE, FALSE, FALSE, TRUE, TRUE))

RCX:::.transformListLength(df) = "blubb”

summary (df)

.transformVLD Transform an aspect with data type

Description

Transforms an aspect with value, dataType and isList columns to force a custom format in
summary generation.

Usage

.transformVLD(aspect)
Arguments

aspect an aspect (data.frame)
Value

the aspect (data.frame)

Note

Internal function only for convenience

Examples

df = data.frame(bla=c("a","b","c"),
value=list("a",2,TRUE),
dataType=c("string"”,"integer”, "boolean"),
isList=c(FALSE,FALSE,FALSE))

df = RCX:::.transformVLD(df)

summary (df)

.validateAttributesAspect 25
.validateAttributesAspect
Helper for validating node- and edge-attributes aspects

Description

Helper for validating node- and edge-attributes aspects
Usage

.validateAttributesAspect(aspect, verbose = TRUE)
Arguments

aspect an RCX aspect

verbose logical; whether to print the test results.
Value

logical; whether the test passed
Note

Internal function only for convenience

.validateCyVisualPropertyPandD
Cytoscape visual property: List of property and dependency

Description

For both properties the checks are the same.
Usage

.validateCyVisualPropertyPandD(aspect, property, verbose = TRUE)

.validatelListOfCyVisualPropertyPandD(aspect, property, verbose = TRUE)
Arguments

aspect either CyVisualPropertyProperties or CyVisualPropertyDependencies object

property character; name of the property

verbose logical; whether to print the test results.
Value

logical; whether the object passed all tests.

26 aspectClasses

Functions

e .validatelListOfCyVisualPropertyPandD(): List of property and dependency objects

Note

Internal function only for convenience

aspectClasses aspectClasses and subAspectClasses

Description

To get the aspect classes it is advised to always use the getAspectClasses() function to ensure
the correct functionality. aspectClasses and subAspectClasses contain the default RCX ac-
cession name and the classes of the corresponding (sub)aspect. The getAspectClasses() func-
tion standardizes access to the accession names and classes, and also allows to include installed
extensions of the RCX data model. Only installed and loaded extensions are included in the
result: New extensions should register on load using the setExtension function to be added to
options()$RCX.options$extensions, and therefore to getAspectClasses().
Usage

aspectClasses
getAspectClasses(extensions = TRUE)
subAspectClasses

updateAspectClasses(aspectClasses = aspectClasses)

Arguments

extensions logical; whether to include aspect classes from extensions

aspectClasses named character; accession names and aspect classes

Format

An object of class character of length 14.

An object of class character of length 4.

Details

updateAspectClasses sets the default aspect classes in options()$RCX.options, either from
aspectClasses or manually provided options.

Value

named character; accession names and aspect classes

See Also

setExtension

CartesianLayout 27

Examples

default aspect classes
aspectClasses

get set aspect classes from options()
aspectClasses = getAspectClasses()

get aspect classes without extensions
aspectClasses = getAspectClasses(extensions=FALSE)

set default updateClasses

updateAspectClasses(
aspectClasses = aspectClasses
)
default sub aspect classes
subAspectClasses
CartesianLayout Cartesian layout
Description

This function creates a cartesian layout aspect, that stores coordinates of nodes.

Usage

createCartesianLayout(node, x, y, z = NULL, view = NULL)

Arguments

node integer; reference to node ids

X numeric; X coordinate

y numeric; y coordinate

z numeric (optional); z coordinate

view integer (optional); reference to subnetwork id of type view (CyNetworkRelations)
Details

The layout of networks can be influenced by setting the node position manually. While x an y
coordinates are mandatory, the z coordinates are optional and can, for example, be used to define
the vertical stacking order of overlapping nodes.

Similar to Cytoscape https://cytoscape.org/, itis possible to define different views of the same
network. The views itself are definded in CySubNetworks and CyNetworkRelations, and only
referenced by a unique subnetwork id.

Value

CartesianLayoutAspect object

https://cytoscape.org/

28 checks

See Also

updateCartesianLayout;

Examples

a minimal example

cartesianlLayout = createCartesianlLayout(
node=0,
x=5.5,
y=200.3

)

defining several coordinates at once
cartesianlLayout = createCartesianlLayout(
node=c(@, 1),
x=c(5.5, 110.1),
y=c(200.3, 210.2)
)

with all parameters
cartesianLayout = createCartesianLayout(
node=c(@, 1, 0),
x=c(5.5, 110.1, 7.2),
y=c(200.3, 210.2, 13.9),
z=c(-1, 3.1, NA),
view=c(NA, NA, 1476)

checks Checks

Description

Different functions to check parameters, ids, elements and lists

Usage

.paramClass(param, cls)

.checkClass(param, cls, name, cname = c())
.checkAllClass(L, cls, name, cname = c())
.checkClassOneOf (param, clss, name, cname = c())

.checkCharacter(param, name, cname = c())

.checkNumeric(param, name, cname

c

.checkLogical (param, name, cname

c()

.checkList(param, name, cname = c())

checks

.paramNamed (param)

.checkNamed(param, name, cname = c())

c()

.checkNamedCharacter(param, name, cname
.checkNamedNumeric(param, name, cname = c())
.checkNamedLogical (param, name, cname = c())
.checkNamedList (param, name, cname = c())
.paramNonNeg (param)

.checkNonNeg(param, name, cname = c())
.paramNoNa(param)

.checkNoNa(param, name, cname = c())
.checkIsUniqueId(param, name, cname = c())
.checkIsId(param, name, cname = c())

.paramIsOptionalld(param, name)

.checkSameLength(cname, ...)
.paramAnyNotNull(name, ...)
.checkAnyNotNull(name, cname = c(), ...)
.elementsUnique(A)

.checkUnique(A, name, cname = c())
.elementsUniqueDF (DF, cols)

.checkUniqueDF (DF, cols, cname = c())
.elementsInDict(A, key)
.elementsBContainsAllA(A, B)
.checkBContainsAl1A(A, B, name, cname = c())
.checkRefs(A, B, name, cname = c())
.checkRefPresent (A, key, cls, name, cname = c())

.listAlINumeric(L)

29

30
.checkAllNumeric(L, name, cname = c())
.listAlINumericOrInDict(L, key)
.checkAllNumericOrInDict(L, key, name, cname = c())
Arguments
param some parameter.
cls character; class name.
name character; for logging the used name for the parameter.
cname character; for logging the name of the calling function.
L list.
clss character vector; list of class names.
list of some vectors.
A, B vectors.
DF data.frame.
cols column names.
key name of the dictionary entry in .DICT.
Details

checks

The .check* functions perform a test and stop with a custom error on fail. All other functions
perform a test and return the result.

The used .DICT: looks as follows:

* VPpropertiesOf: network, nodes, edges, nodes:default, edges:default

* VPpropertyFields: properties, dependencies, mappings
* SN: all

» TCappliesTo: nodes, edges, networks

Value

logical

Functions

.paramClass(): checks if the object param is of class cls.
.checkClass(): checks if the object param is of class cls.
.checkAllClass(): checks if all elements of the list L are of class cls.
.checkClassOneOf (): checks if param is any class of clss.
.checkCharacter(): checks if paramis character.

.checkNumeric(): checks if param is numeric.

.checkLogical(): checks if param is logical.

.checkList(): checks if paramis a list.

.paramNamed(): checks if param has names.

checks 31

¢ .checkNamed(): checks if param has names.

¢ .checkNamedCharacter(): checks if param has names and is character.

¢ .checkNamedNumeric(): checks if param has names and is numeric.

* .checkNamedLogical(): checks if param has names and is logical.

e .checkNamedList(): checks if param has names and is a list.

* .paramNonNeg(): checks if param is greater than O if not NA.

* .checkNonNeg(): checks if param is greater than O if not NA.

e .paramNoNa(): checks if paramis not NA.

¢ .checkNoNa(): checks if paramis not NA.

* .checkIsUniqueId(): checks if param is an unique id.

e .checkIsId(): checks if paramis an id.

e .paramIsOptionalId(): checks if paramis an optional id.

e .checkSameLength(): checks if all elements in ... have the same number of elements.
* .paramAnyNotNull(): checks if any element in ... is not NULL.

* .checkAnyNotNull(): checks if any element in . .. is not NULL.

e .elementsUnique(): checks if the elements in A are unique.

* .checkUnique(): checks if the elements in A are unique.

* .elementsUniqueDF(): checks if the elements in the columns cols of DF are unique.

* .checkUniqueDF (): checks if the elements in the columns cols of DF are unique.

e .elementsInDict(): checks if the elements of A are in .DICT[[key]].

* .elementsBContainsAl1A(): checks if all elements of A are present in B.

» .checkBContainsAllA(): checks if all elements of A are present in B.

¢ .checkRefs(): checks if B contains all elements of A, aka. references.

» .checkRefPresent(): checks if a referred aspect of class cls is accessible by key in A.
e .listAllNumeric(): checks if all elements of a list L are numeric.

¢ .checkAllNumeric(): checks if all elements of a list L are numeric.

e .listAl1NumericOrInDict(): checks if all elements of alist L are numeric orin .DICT[[key]].

e .checkAllNumericOrInDict(): checks if all elements of a list L are numeric orin .DICT[[key]].

Note

Internal function only for convenience

Examples

NULL

32 Convert-Names-and-Classes

convert-data-types-and-values

Convert data types in data.frame(dataType,isList) to character
of NDEXx data types

Description

Convert data types in data. frame(dataType, isList) to character of NDEx data types

Usage

.convertDataTypes(df, cols = c(dataType = "dataType"”, isList = "isList"))

.convertValues(df, cols = c(value = "value"”, isList = "isList"))
Arguments
df data.frame with dataType and isList: data.frame(dataType,isList)
cols named character; column names of dataType and isList in df
Value

character; NDEx data types (e.g. "string" or "list_of_integer")

Note

Internal function only for convenience

Examples

df = data.frame(dataType=c("string”,"boolean”,"double"”,"integer"”,"long",
"string"”,"boolean”,"double”,"integer”,"long"),
isList=c(FALSE,FALSE,FALSE,FALSE,FALSE,
TRUE, TRUE, TRUE, TRUE, TRUE))
df$value = list("string”,TRUE,3.14,314,314,
c("str","ing"),c(TRUE,FALSE),c(3.14,1.0),c(314,666),c(314,666))
RCX: ::.convertDataTypes(df)
RCX: ::.convertValues(df)

Convert-Names-and-Classes
Convert aspect class name to RCX accession

Description

The aspects in an RCX object are accessed by a name and return the aspect as an object of cls. To
simplify the conversion between those, these functions return the corresponding name.

Convert-Names-and-Classes 33

Usage

aspectName2Class(name)

aspectClass2Name(cls)

Arguments
name character; name of the RCX accession of the Aspect
cls character; name of the aspect class

Details

The following accessions/classes are available within the standard RCX implementation:

accession name <=> class name

metaData <=> MetaDataAspect
nodes <=> NodesAspect

edges <=> EdgesAspect
nodeAttributes <=> NodeAttributesAspect
edgeAttributes <=> EdgeAttributesAspect
networkAttributes <=> NetworkAttributesAspect
cartesianLayout <=> CartesianLayoutAspect
cyGroups <=> CyGroupsAspect

cyVisualProperties <=> CyVisualPropertiesAspect
cyHiddenAttributes <=> CyHiddenAttributesAspect
cyNetworkRelations <=> CyNetworkRelationsAspect
cySubNetworks <=> CySubNetworksAspect
cyTableColumn <=> CyTableColumnAspect

Value

accession or class name

Examples

aspectName2Class("nodes")
##[1] "NodesAspect”

aspectClass2Name("NodesAspect™)
##[1] "nodes”

aspectClasses

subAspectClasses

34 convert2json

convert2json Convert data to json by R class

Description

Convert data to json by R class

Usage

.convert2json(x, ...)

S3 method for class 'character'
.convert2json(x)

S3 method for class 'numeric'
.convert2json(x)

S3 method for class 'integer'
.convert2json(x)

S3 method for class 'logical'
.convert2json(x)

S3 method for class 'list'
.convert2json(x, raw = c(), byElement = FALSE, skipNa = TRUE)

S3 method for class 'data.frame'
.convert2json(x, raw = c(), skipNa = TRUE)

Arguments

X data element

raw character; names of columns not to format (e.g. because it is already converted)
Value

character; json

Note

Internal function only for convenience

Examples

NULL

countElements 35

countElements Number of elements in aspect

Description

This function returns the number of elements in an aspect.

Usage

countElements(x)

Default S3 method:
countElements(x)

S3 method for class 'RCX'
countElements(x)

S3 method for class 'CyVisualPropertiesAspect'
countElements(x)

S3 method for class 'MetaDataAspect'’

countElements(x)
Arguments

X an object of one of the aspect classes (e.g. Nodes) or RCX class.
Details

Uses method dispatch, so the default methods already returns the correct number for the most aspect
classes. This way it is easier to extend the data model.

There are only two exceptions in the core and Cytoscape aspects: Meta-data and CyVisualProperties.
Meta-data is a meta-aspect and therefore not included in Meta-data, and so its return is NA.

CyVisualProperties is the only aspect with a complex data structure beneath. Therefore its num-
ber of elements is just the number of how many of the following properties are set: network, nodes,
edges, defaultNodes or defaul tEdges.

Value
integer; number of elements. For RCX objects all counts are returned in the vector named by the
aspect class.

See Also

hasIds(), idProperty(), refersTo(), referredBy(), maxId()

36

Examples

nodes = createNodes(name

edges

custom-print

= c("CDK1","CDK2", "CDK3"))

createEdges(source = c(0,0), target = c(1,2))

rcx = createRCX(nodes = nodes, edges = edges)

countElements(nodes)

countElements(rcx)

custom-print

Print functions for RCX and aspect classes

Description

These functions attempt to print RCX and aspect objects in a more readable form.

Usage

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

class

class

class

class

class

class

class

class

class

class

class

'MetaDataAspect'

'NodesAspect'

'EdgesAspect’

'NodeAttributesAspect'

'EdgeAttributesAspect'’

'NetworkAttributesAspect'

'CartesianLayoutAspect'’

'CyGroupsAspect'’

'CyVisualPropertyProperties'

'CyVisualPropertyDependencies'

'CyVisualPropertyMappings'

CyGroups 37

S3 method for class 'CyVisualProperty'
print(x, fields = c("all"), ...)

S3 method for class 'CyVisualPropertiesAspect'
print(x, propertyOf = "all", fields = "all"”, ...)

S3 method for class 'CyHiddenAttributesAspect'
print(x, ...)

S3 method for class 'CyNetworkRelationsAspect'
print(x, ...)

S3 method for class 'CySubNetworksAspect'
print(x, ...)

S3 method for class 'CyTableColumnAspect'
print(x, ...)

S3 method for class 'RCX'

print(x, inofficial = TRUE, ...)
Arguments
X aspect or RCX object
. further arguments passed to or from other methods. See base: :print()
fields character; Which fields should be shown, one of properties, dependencies, map-
pings or all
property0f character; Which properties should be shown, one of network, nodes, edges,
nodes:default, edges:default or all
inofficial logical; if FALSE only the official aspects are printed
Value

prints the object and returns it invisibly (invisible)

See Also

summary

Examples

rcx = createRCX(createNodes())
print(rcx)

CyGroups Cytoscape Groups

Description

This function is used to create Cytoscape "groups" aspects.

38

Usage

createCyGroups(
id = NULL,
name,
nodes = NULL,
externalEdges
internalEdges

CyGroups

NULL,
NULL,

collapsed = NULL

Arguments
id
name
nodes

externalEdges

internalEdges

collapsed

Details

integer (optional); Cytoscape group ids
character; names of the groups
list of integers (optional); reference to node ids

list of integers (optional); the external edges making up the group; reference to
edge ids

list of integers (optional); the internal edges making up the group; reference to
edge ids

logical (optional); whether the group is displayed as a single node

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEx platform.

Cytoscape groups allow to group a set of Nodes and corresponding internal and external Edges
together, and represent a group as a single node in the visualization. A group is defined by its
unique id, which must be an (positive) integer, which serves as reference to other aspects. If no ids
are provided, they are created automatically.

Value

CyGroupsAspect object

See Also

updateCyGroups;

Examples

a minimal example

cyGroups = createCyGroups(
name = "Group One",
nodes = list(c(1,2,3)),

internalEdges =

)

list(c(0,1))

defining several groups at once
cyGroups = createCyGroups(
name = c("Group One"”, "Group Two"),
nodes = list(c(1,2,3), 0),

CyHiddenAttributes 39

internalEdges = list(c(@,1),NA)
)

with all parameters

cyGroups = createCyGroups(
id = c(0,1),
name = c("Group One"”, "Group Two"),
nodes = list(c(1,2,3), @),
internalEdges = list(c(0,1),NA),
externalEdges = list(NA,c(1,3)),
collapsed = c(TRUE,NA)

CyHiddenAttributes Cytoscape hidden attributes

Description

This function is used to create Cytoscape hidden attributes aspects.

Usage

createCyHiddenAttributes(
name,
value,
dataType = NULL,
isList = NULL,
subnetworkId = NULL

)
Arguments
name character; key of the attribute
value character or list of character; value of the attribute
dataType character (optional); data type of the attribute
islList logical (optional); a value should be considered as list

subnetworkId integer (optional); refers to the IDs of a subnetwork aspect, but left blank (or NA)
if root-network

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEX platform.

Besides network attributes, networks may have additional describing attributes originated from and
used by Cytoscape. They are also defined in a key-value like manner, with the name of the attribute
as key. The same attribute can also be defined for different subnetworks with different values. The
values itself may differ in their data types, therefore it is necessary to provide the values as a list of
the single values instead of a vector.

40 CyHiddenAttributes

With isList it can be set, if a value should be considered as a list. This is of minor significance
while working solely with RCX objects, unless it will be transformed to JSON. For some attributes
it might be necessary that the values are encoded as lists, even if they contain only one element (or
even zero elements). To force an element to be encoded correctly, this parameter can be used, for
example: name="A", value=a, isList=T will be encoded in JSON as A=["a"].

Value

CyHiddenAttributesAspect object

See Also

updateCyHiddenAttributes;

Examples

a minimal example

hiddenAttributes = createCyHiddenAttributes(
name="A",
value="a"

)

defining several properties at once
hiddenAttributes = createCyHiddenAttributes(
name=c("A”, "B"Y,
value=c("a","b")

)

with characters and numbers mixed
hiddenAttributes = createCyHiddenAttributes(
name=c(”A”,"B"Y,
value=list("a",3.14)
)

force the number to be characters
hiddenAttributes = createCyHiddenAttributes(
name=c(”A”,"B"Y,
value=list("a",3.14),

dataType=c("character”, "character”)

)

with a list as input for one value
hiddenAttributes = createCyHiddenAttributes(
name=c("A","B"),
value=list(c("al1","a2"),
"oy
)

force "B" to be a list as well
hiddenAttributes = createCyHiddenAttributes(
name=c("A","B"),
value=list(c("al1","a2"),
"b"),
isList=c(TRUE, TRUE)
)

with a subnetwork

CyNetworkRelations 41

hiddenAttributes = createCyHiddenAttributes(
name=c("A","A"),
value=c("a","a with subnetwork”),
subnetworkId=c(NA, 1)

)

with all parameters
hiddenAttributes = createCyHiddenAttributes(
name=c("A","A","B","B"),
value=list(c("al","a2"),
"a with subnetwork”,
"on
"b with subnetwork™),
isList=c(TRUE,FALSE, TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)
)

CyNetworkRelations Cytoscape network relations

Description

This function is used to create Cytoscape network relations aspects.

Usage

createCyNetworkRelations(child, parent = NULL, name = NULL, isView = FALSE)

Arguments
child integer; reference to subnetwork id
parent integer (optional); reference to subnetwork id, but left blank (or NA) for root-
network
name character (optional); name of the subnetwork or view
isView logical (optional); TRUE for views, else the network defines a subnetwork
Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEXx platform.

Cytoscape network relations define the relationship between the main network, subnetworks and
views and also a name can be assigned to the relationship. Both, subnetworks and views are de-
fined as subnetworks aspect, but their type is defined here by the isView property. The parent of a
subnetwork or view can be an other subnetwork or the root network.

Value

CyNetworkRelationsAspect object

See Also

updateCyNetworkRelations;

42 CySubNetworks

Examples

a minimal example

cyNetworkRelations = createCyNetworkRelations(
child =1

)

with all parameters

cyNetworkRelations = createCyNetworkRelations(
child = c¢(1,2),
parent = c(NA,1),
name = c("Network A",

"View A"),
isView = c(FALSE, TRUE)
)
CySubNetworks Cytoscape subnetworks
Description

This function is used to create Cytoscape subnetwork aspects.

Usage

createCySubNetworks(id, nodes = NULL, edges = NULL)

Arguments
id integer; subnetwork IDs
nodes integer; reference to node id OR character "all" to refer to all nodes
edges integer; reference to edge id OR character "all" to refer to all edges
Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEXx platform.

A group is defined by its unique id, which must be an (positive) integer, which serves as reference
to other aspects. If no IDs are provided, they are created automatically.

Nodes and edges are referred by the IDs of the corresponding aspect. Unlike other aspects referring
those IDs, the Cytoscape subnetwork aspect allows to refer to all nodes and edges using the keyword
all.

The relationship between (sub-)networks and views, and also the type (subnetwork or view) is
defined in CyNetworkRelations.

Value

CySubNetworksAspect object

CyTableColumn 43

See Also

updateCySubNetworks;

Examples

a minimal example

cySubNetworks = createCySubNetworks(
nodes = "all”,
edges = "all”

)

defining several subnetworks at once
cySubNetworks = createCySubNetworks(
nodes = list("all",
c(1,2,3)),
edges = list("all”,
c(0,2))
)

with all parameters
cySubNetworks = createCySubNetworks(
id = c(0,1),
nodes = list("all",
c(1,2,3)),
edges = list("all",
c(0,2))

CyTableColumn Cytoscape table column properties

Description

This function is used to create Cytoscape table column aspects.

Usage

createCyTableColumn(
appliesTo,
name,
dataType = NULL,
isList = NULL,
subnetworkId = NULL

)
Arguments
appliesTo character; indicates whether this applies to "nodes", "edges" or "networks" table
columns
name character; key of the attribute

dataType character (optional); data type of the attribute

44 CyTableColumn

isList logical (optional); a value should be considered as list

subnetworkId integer (optional); reference to subnetwork id, but left blank (or NA) if root-
network

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEX platform.

These elements are used to represent Cytoscape table column labels and types. Its main use is to
disambiguate empty table columns. The same attribute can also be defined for different subnetworks
with different values. Cytoscape does not currently support table columns for the root network, but
this is option is included here for consistency.

With isList it can be set, if a value should be considered as a list. This is of minor significance while
working solely with RCX objects, unless it will be transformed to JSON.

Value

CyTableColumnAspect object

See Also

updateCyTableColumn; CyNetworkRelations

Examples

a minimal example

tableColumn = createCyTableColumn(
appliesTo="nodes",
name="weight"

)

defining several properties at once
tableColumn = createCyTableColumn(

non

appliesTo=c("nodes", "edges"),

n on

name=c("weight", "weight")

)

with all parameters
tableColumn = createCyTableColumn(

non non

appliesTo=c("nodes”, "edges", "networks"),

n on n on

name=c("weight"”,"weight"”, "collapsed”),
dataType=c("numeric”,"numeric”,"logical”),
isList=c(FALSE,FALSE,TRUE),

subnetworkId=c(NA,NA,1)

CyVisualProperties 45

CyVisualProperties Cytoscape visual properties (aspect)

Description

This function is used to create Cytoscape visual properties aspects, that consists of CyVisualProperty
objects for networks, nodes, edges, and default nodes and edges.

Usage

createCyVisualProperties(
network = NULL,
nodes = NULL,
edges = NULL,
defaultNodes = NULL,
defaultEdges = NULL

)

Arguments
network CyVisualProperty object (optional); the visual properties of networks
nodes CyVisualProperty object (optional); the visual properties of nodes
edges CyVisualProperty object (optional); the visual properties of edges

defaultNodes CyVisualProperty object (optional); the default visual properties of nodes
defaultEdges CyVisualProperty object (optional); the default visual properties of edges

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEX platform.

The visual properties aspect is the only aspect (CyVisualProperties) with a complex structure.
It is composed of several sub-property classes and consists of CyVisualProperty objects, that
belong to, or more precisely describe one of the following network elements: network, nodes,
edges, defaultNodes or defaultEdges.

A single visual property (i.e. CyVisualProperty object) organizes the information as properties,
dependencies and mappings, as well as the single values appliesTo and view, that define the subnet-
work or view to which the IDs apply.

Properties are CyVisualPropertyProperties objects, that hold information like "NODE_FILL_COLOR"
: "#26CCC9" or "NODE_LABEL_TRANSPARENCY" : "255" in a key-value like manner.

Dependencies are CyVisualPropertyDependencies objects, that hold information about depen-
dencies between visual properties. Currently there are only three dependencies supported:

* Lock Node with and height: nodeSizelLocked = "false”

* Fit Custom Graphics to node: nodeCustomGraphicsSizeSync = "true”

» Edge color to arrows: arrowColorMatchesEdge = "false”

46 CyVisualProperties

Mappings are CyVisualPropertyMappings objects, that hold information as a triplet consisting of

name, type and definition, like "NODE_FILL_COLOR" : "DISCRETE" : "COL=molecule_type,T=string,K=0=miRNA, V=(
"NODE_FILL_COLOR" : "CONTINUOUS" : "COL=gallRGexp,T=double... or "NODE_LABEL" :

"PASSTHROUGH" : "COL=COMMON, T=string".

For further information about Cytoscape visual properties see the Styles topic of the official Cy-
toscape documentation: http://manual.cytoscape.org/en/stable/Styles.html

Structure of Cytoscape Visual Properties:

CyVisualProperties

| ---network = CyVisualProperty

| ---nodes = CyVisualProperty

| ---edges = CyVisualProperty

| ---defaultNodes = CyVisualProperty
| ---defaultEdges = CyVisualProperty

CyVisualProperty

| ---properties = CyVisualPropertyProperties
| | -—name

| | --value

| ---dependencies = CyVisualPropertyDependencies
| | --name

| | --value

| ---mappings = CyVisualPropertyMappings

| | -—name

| |--type

| | --definition

| ---appliesTo = <reference to subnetwork id>
|---view = <reference to subnetwork id>

Value

CyVisualPropertiesAspect object

See Also

updateCyVisualProperties, updateCyVisualProperty, getCyVisualProperty

Examples

Prepare used properties
Visual property: Properties
vpPropertyP1 = createCyVisualPropertyProperties(c(NODE_BORDER_STROKE="SOLID"))

Visual property: Dependencies
vpPropertyD1 = createCyVisualPropertyDependencies(c(nodeSizelLocked="false"))

Visual property: Mappings
vpPropertyMl = createCyVisualPropertyMappings(c(NODE_FILL_COLOR="CONTINUOUS"),
"COL=directed,T=boolean,K=0=true, V=0=ARROW")

Create visual property object

vpPropertyl = createCyVisualProperty(properties=vpPropertyP1,
dependencies=vpPropertyD1,
mappings=vpPropertyM1)

http://manual.cytoscape.org/en/stable/Styles.html

CyVisualProperty 47

Create a visual properties aspect

(using the same visual property object for simplicity)

createCyVisualProperties(network=vpPropertyl,
nodes=vpPropertyl,
edges=vpPropertyl,
defaultNodes=vpPropertyl,
defaultEdges=vpPropertyl)

CyVisualProperty Cytoscape visual property (object used in CyVisualProperties aspect)

Description

This function is used to create Cytoscape visual property objects, that define networks, nodes, edges,
and default nodes and edges in a CyVisualProperties aspect.

Usage

createCyVisualProperty(
properties = NULL,
dependencies = NULL,
mappings = NULL,
appliesTo = NULL,

view = NULL
)
Arguments
properties a single or a list of CyVisualPropertyProperties object (optional);

dependencies a single or a list ofCyVisualPropertyDependencies object (optional);
mappings a single or a list ofCyVisualPropertyMappings object (optional);

appliesTo integer (optional); might refer to the IDs of a subnetwork aspect, but CX documan-
tation is unclear

view integer (optional); might refer to the IDs of a subnetwork aspect that is a view,
but CX documantation is unclear

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEX platform.

The visual properties aspect is the only aspect (CyVisualProperties) with a complex structure.
It is composed of several sub-property classes and consists of CyVisualProperty objects, that
belong to, or more precisely describe one of the following network elements: network, nodes,
edges, defaultNodes or defaultEdges.

A single visual property (i.e. CyVisualProperty object) organizes the information as properties,
dependencies and mappings, as well as the single values appliesTo and view, that define the subnet-
work or view to which the IDs apply.

48 CyVisualProperty

Properties are CyVisualPropertyProperties objects, that hold information like "NODE_FILL_COLOR"
: "#26CCC9" or "NODE_LABEL_TRANSPARENCY" : "255" in a key-value like manner.

Dependencies are CyVisualPropertyDependencies objects, that hold information about depen-
dencies between visual properties. Currently there are only three dependencies supported:

* Lock Node with and height: nodeSizelLocked = "false”
* Fit Custom Graphics to node: nodeCustomGraphicsSizeSync = "true”

* Edge color to arrows: arrowColorMatchesEdge = "false”

Mappings are CyVisualPropertyMappings objects, that hold information as a triplet consisting of

name, type and definition, like "NODE_FILL_COLOR" : "DISCRETE" : "COL=molecule_type,T=string,K=0=miRNA, V=(
"NODE_FILL_COLOR" : "CONTINUOUS" : "COL=gallRGexp,T=double... or "NODE_LABEL" :

"PASSTHROUGH" : "COL=COMMON, T=string".

For further information about Cytoscape visual properties see the Styles topic of the official Cy-
toscape documentation: http://manual.cytoscape.org/en/stable/Styles.html

Structure of Cytoscape Visual Properties:

CyVisualProperties

| ---network = CyVisualProperty

| ---nodes = CyVisualProperty

| ---edges = CyVisualProperty

| ---defaultNodes = CyVisualProperty
| ---defaultEdges = CyVisualProperty

CyVisualProperty

| ---properties = CyVisualPropertyProperties

| | --name

| | --value

| ---dependencies = CyVisualPropertyDependencies

Value

| --name
| --value

| ---mappings = CyVisualPropertyMappings

| --name
| --type
|--definition

|---appliesTo = <reference to subnetwork id>
|---view = <reference to subnetwork id>

CyVisualProperty object

See Also

updateCyVisualProperty, updateCyVisualProperties

Examples

Prepare used properties
Visual property: Properties
vpPropertyNamedValue = c(NODE_BORDER_STROKE="SOLID",

vpPropertyP = createCyVisualPropertyProperties(vpPropertyNamedValue)

NODE_BORDER_WIDTH="1.5")

http://manual.cytoscape.org/en/stable/Styles.html

CyVisualPropertyDependencies 49

Visual property: Dependencies

vpDependencyNamedValue = c(nodeSizelLocked="false",
arrowColorMatchesEdge="true")

vpPropertyD = createCyVisualPropertyDependencies(vpDependencyNamedValue)

Visual property: Mappings
vpMappingNamedType = c(NODE_FILL_COLOR="CONTINUOUS",
EDGE_TARGET_ARROW_SHAPE="DISCRETE")
vpMappingDefinition = c(”COL=gal1RGexp, T=double,...",
"COL=directed, T=boolean,K=0=true, V=0=ARROW")
vpPropertyM = createCyVisualPropertyMappings(vpMappingNamedType,
vpMappingDefinition)

Create visual property object

createCyVisualProperty(properties=vpPropertyP,
dependencies=vpPropertyD,
mappings=vpPropertyM)

Create visual property object with different subnetworks
createCyVisualProperty(properties=1ist(vpPropertyP,
vpPropertyP),
dependencies=1list(vpPropertyD,
NA),
mappings=1ist(NA,
vpPropertyM),
appliesTo = c(NA,
D,
view = c(1,
NAY)

CyVisualPropertyDependencies
Create a object for dependency of Cytoscape Visual Properties (object
used in CyVisualProperty)

Description

This function is used to create aspects for mappings in Cytoscape visual properties. Networks,
nodes, edges, and default nodes and edges mappings are realized as CyVisualProperty objects,
that each consist of properties (CyVisualPropertyProperties objects), dependencies (this here)
and mappings (CyVisualPropertyMappings objects).

Usage

createCyVisualPropertyDependencies(value, name = NULL)

Arguments

value character or named character; value of the dependencies

name character (optional); name of the dependencies

50 CyVisualPropertyDependencies

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEXx platform.

The visual properties aspect is the only aspect (CyVisualProperties) with a complex structure.
It is composed of several sub-property classes and consists of CyVisualProperty objects, that
belong to, or more precisely describe one of the following network elements: network, nodes,
edges, defaultNodes or defaultEdges.

A single visual property (i.e. CyVisualProperty object) organizes the information as properties,
dependencies and mappings, as well as the single values appliesTo and view, that define the subnet-
work or view to which the IDs apply.

Properties are CyVisualPropertyProperties objects, that hold information like "NODE_FILL_COLOR"
: "#26CCC9" or "NODE_LABEL_TRANSPARENCY" : "255" in a key-value like manner.

Dependencies are CyVisualPropertyDependencies objects, that hold information about depen-
dencies between visual properties. Currently there are only three dependencies supported:
* Lock Node with and height: nodeSizelLocked = "false”
* Fit Custom Graphics to node: nodeCustomGraphicsSizeSync = "true”
» Edge color to arrows: arrowColorMatcheskEdge = "false”
Mappings are CyVisualPropertyMappings objects, that hold information as a triplet consisting of
name, type and definition, like "NODE_FILL_COLOR" : "DISCRETE" : "COL=molecule_type,T=string,K=0=miRNA,V=(

"NODE_FILL_COLOR" : "CONTINUOUS" : "COL=gallRGexp,T=double... or "NODE_LABEL" :
"PASSTHROUGH" : "COL=COMMON, T=string".

For further information about Cytoscape visual properties see the Styles topic of the official Cy-
toscape documentation: http://manual.cytoscape.org/en/stable/Styles.html

Value

CyVisualPropertyDependencies object

Note

If name is not provided, the names(value) is used instead to infer the names.

See Also

updateCyVisualProperty, updateCyVisualProperties

Examples

Using a named vector

vpDependencyNamedValue = c(nodeSizelLocked="false",
arrowColorMatchesEdge="true")

createCyVisualPropertyDependencies(vpDependencyNamedValue)

Using two separate vectors
vpDependencyName = c("nodeSizelocked”,
"arrowColorMatchesEdge")
vpDependencyValue = c("false”,
"true")
createCyVisualPropertyDependencies(vpDependencyValue,

http://manual.cytoscape.org/en/stable/Styles.html

CyVisualPropertyMappings 51

vpDependencyName)

Result for either:

name value
1 nodeSizelLocked false
2 arrowColorMatchesEdge true

CyVisualPropertyMappings
Create an object for mappings of Cytoscape Visual Properties (object
used in CyVisualProperty)

Description

This function is used to create objects for mappings in Cytoscape visual properties. Networks,

nodes, edges, and default nodes and edges mappings are realized as CyVisualProperty objects,

that each consist of properties (CyVisualPropertyProperties objects), dependencies (CyVisualPropertyDependenci
objects) and mappings (this here).

Usage

createCyVisualPropertyMappings(type, definition, name = NULL)

Arguments
type character or named character; value of the mappings
definition character; definitions of the mappings
name character (optional); names of the mappings

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEx platform.

The visual properties aspect is the only aspect (CyVisualProperties) with a complex structure.
It is composed of several sub-property classes and consists of CyVisualProperty objects, that
belong to, or more precisely describe one of the following network elements: network, nodes,
edges, defaultNodes or defaultEdges.

A single visual property (i.e. CyVisualProperty object) organizes the information as properties,
dependencies and mappings, as well as the single values appliesTo and view, that define the subnet-
work or view to which the IDs apply.

Properties are CyVisualPropertyProperties objects, that hold information like "NODE_FILL_COLOR"
: "#26CCC9" or "NODE_LABEL_TRANSPARENCY" : "255" in a key-value like manner.

Dependencies are CyVisualPropertyDependencies objects, that hold information about depen-
dencies between visual properties. Currently there are only three dependencies supported:

* Lock Node with and height: nodeSizelLocked = "false"

* Fit Custom Graphics to node: nodeCustomGraphicsSizeSync = "true”

» Edge color to arrows: arrowColorMatchesEdge = "false”

52 Cy VisualPropertyMappings

Mappings are CyVisualPropertyMappings objects, that hold information as a triplet consisting of

name, type and definition, like "NODE_FILL_COLOR" : "DISCRETE" : "COL=molecule_type,T=string,K=0=miRNA, V=(
"NODE_FILL_COLOR" : "CONTINUOUS" : "COL=gallRGexp,T=double... or "NODE_LABEL" :

"PASSTHROUGH" : "COL=COMMON, T=string".

For further information about Cytoscape visual properties see the Styles topic of the official Cy-
toscape documentation: http://manual.cytoscape.org/en/stable/Styles.html

Structure of Cytoscape Visual Properties:

CyVisualProperties

| ---network = CyVisualProperty

| ---nodes = CyVisualProperty

| ---edges = CyVisualProperty

| ---defaultNodes = CyVisualProperty
| ---defaultEdges = CyVisualProperty

CyVisualProperty

| ---properties = CyVisualPropertyProperties
| | --name

| | --value

| ---dependencies = CyVisualPropertyDependencies
| | -—name

| | --value

| ---mappings = CyVisualPropertyMappings

| | --name

| |--type

| | --definition

| ---appliesTo = <reference to subnetwork id>
|---view = <reference to subnetwork id>

Value

CyVisualPropertyMappings object

Note

If name is not provided, the names(type) is used instead to infer the names.

See Also

updateCyVisualProperty, updateCyVisualProperties

Examples

Using a named vector
vpMappingNamedType = c¢(NODE_FILL_COLOR="CONTINUOUS",
EDGE_TARGET_ARROW_SHAPE="DISCRETE")
vpMappingDefinition = c("”COL=gal1RGexp, T=double,...",
"COL=directed, T=boolean,K=0=true, V=0=ARROW")
createCyVisualPropertyMappings(vpMappingNamedType,
vpMappingDefinition)

Using three separate vectors
vpMappingName = c("”NODE_FILL_COLOR",
"EDGE_TARGET_ARROW_SHAPE")

http://manual.cytoscape.org/en/stable/Styles.html

CyVisualPropertyProperties 53

vpMappingType = c(”"CONTINUOUS",

"DISCRETE")
createCyVisualPropertyMappings(vpMappingType,
vpMappingDefinition,
vpMappingName)
Result for either:
name type definition
#1 NODE_FILL_COLOR CONTINUOUS COL=gal1RGexp,T=double, ...

2 EDGE_TARGET_ARROW_SHAPE DISCRETE COL=directed,T=boolean,K=0=true,V=0=ARROW

CyVisualPropertyProperties
Create a object for properties of Cytoscape Visual Properties (object
used in CyVisualProperty)

Description

This function is used to create aspects for mappings in Cytoscape visual properties. Networks,
nodes, edges, and default nodes and edges mappings are realized as CyVisualProperty objects,
that each consist of properties (this here), dependencies (CyVisualPropertyDependencies ob-
jects) and mappings (CyVisualPropertyMappings objects).

Usage

createCyVisualPropertyProperties(value, name = NULL)

Arguments
value character or named character; value of the property
name character (optional); name of the property

Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEX platform.

The visual properties aspect is the only aspect (CyVisualProperties) with a complex structure.
It is composed of several sub-property classes and consists of CyVisualProperty objects, that
belong to, or more precisely describe one of the following network elements: network, nodes,
edges, defaultNodes or defaultEdges.

A single visual property (i.e. CyVisualProperty object) organizes the information as properties,
dependencies and mappings, as well as the single values appliesTo and view, that define the subnet-
work or view to which the IDs apply.

Properties are CyVisualPropertyProperties objects, that hold information like "NODE_FILL_COLOR"
: "#26CCCY" or "NODE_LABEL_TRANSPARENCY" : "255" in a key-value like manner.

Dependencies are CyVisualPropertyDependencies objects, that hold information about depen-
dencies between visual properties. Currently there are only three dependencies supported:

* Lock Node with and height: nodeSizelLocked = "false”

54 CyVisualPropertyProperties

* Fit Custom Graphics to node: nodeCustomGraphicsSizeSync = "true”

* Edge color to arrows: arrowColorMatchesEdge = "false”

Mappings are CyVisualPropertyMappings objects, that hold information as a triplet consisting of

name, type and definition, like "NODE_FILL_COLOR" : "DISCRETE" : "COL=molecule_type,T=string,K=0=miRNA, V=¢
"NODE_FILL_COLOR" : "CONTINUOUS" : "COL=gall1RGexp,T=double... or "NODE_LABEL" :

"PASSTHROUGH" : "COL=COMMON, T=string".

For further information about Cytoscape visual properties see the Styles topic of the official Cy-
toscape documentation: http://manual.cytoscape.org/en/stable/Styles.html

Structure of Cytoscape Visual Properties:

CyVisualProperties

| ---network = CyVisualProperty

| ---nodes = CyVisualProperty

| ---edges = CyVisualProperty

| ---defaultNodes = CyVisualProperty
| ---defaultEdges = CyVisualProperty

CyVisualProperty

| ---properties = CyVisualPropertyProperties
| | -—name

| | --value

| ---dependencies = CyVisualPropertyDependencies
| | --name

| | --value

| ---mappings = CyVisualPropertyMappings

| | -—name

| |--type

| | --definition

| ---appliesTo = <reference to subnetwork id>
|---view = <reference to subnetwork id>

Value

CyVisualPropertyProperties object

Note

If name is not provided, the names(value) is used instead to infer the names.

See Also

updateCyVisualProperty, updateCyVisualProperties

Examples

Using a named vector

vpPropertyNamedValue = c(NODE_BORDER_STROKE="SOLID",
NODE_BORDER_WIDTH="1.5")

createCyVisualPropertyProperties(vpPropertyNamedValue)

Using two separate vectors
vpPropertyName = c("NODE_BORDER_STROKE",

http://manual.cytoscape.org/en/stable/Styles.html

dot_test

"NODE_BORDER_WIDTH")
vpPropertyValue = c("SOLID",

"5

createCyVisualPropertyProperties(vpPropertyValue,
vpPropertyName)

Result for either:
name value
1 NODE_BORDER_STROKE SOLID
2 NODE_BORDER_WIDTH 1.5

dot_test Helping tests

Description

Tests for validating RCX objects and its aspects.

Usage

.test_RequiredColumnsPresent(aspect, columns, verbose = FALSE)
.test_ListRequiredColumnsPresent(aspect, columns, verbose = FALSE)
.test_AllowedColumnsPresent(aspect, columns, verbose = FALSE)
.test_ListAllowedColumnsPresent(aspect, columns, verbose = FALSE)
.test_NoMergeColumn(aspect, column, verbose = FALSE)
.test_AtLeastOneColumnPresent(aspect, columns, verbose = FALSE)
.test_AtLeastOneElementPresent(aspect, element, verbose = FALSE)
.test_OneNodePresent(nodesAspect, column, verbose = FALSE)
.test_IsUnique(aspect, column, verbose = FALSE)
.test_ListAllUnique(aspect, column, verbose = FALSE)
.test_IsUniquelInLists(aspect, column, verbose = FALSE)

.test_ListAllUniqueInLists(aspect, column, verbose = FALSE)

.test_IslLogical(aspect, column, verbose = FALSE)
.test_IsNumeric(aspect, column, verbose = FALSE)

.test_ElementIsNumeric(aspect, element, verbose = FALSE)

.test_IsCharacter(aspect, column, verbose = FALSE)

56

.test_ListAllCharacter(aspect, element, verbose = FALSE)
.test_IsList(aspect, column, verbose = FALSE)
.test_ElementIsList(aspect, element, verbose = FALSE)

.test_IsPos(aspect, column, verbose = FALSE)
.test_IsClass(x, cls, verbose = FALSE)
.test_IsNamedList(aspect, names, verbose = FALSE)
.test_IsCVPclass(x, cls, verbose = FALSE)
.test_ListOfCVPclass(x, cls, verbose = FALSE)
.test_ContainsNA(aspect, column, verbose = FALSE)

.test_ListAllContainsNA(aspect, element, verbose = FALSE)

.test_ListAllNumeric(aspect, column, verbose = FALSE)

.test_ListAl1NumericOrInDict(aspect, column, dic, verbose
.test_ListAl10fClass(aspect, cls, verbose = FALSE)

.test_AspectExist(rcx, aspect, verbose = FALSE)

nn

.test_IdsInAspect(ids, aspect, column, info = , verbose =

.test_ValuesInSet(aspect, column, set, ignoreNA = TRUE, verbose =

.test_DataTypeColumn(aspect, column, verbose = FALSE)
Arguments

aspect one RCX aspect

columns character; list of columns

verbose logical (default=FALSE); also log the results

column character; column name

cls character; class name in .CLS or .CLSvp

names character; names of list

dic character; key in .DICT

rex RCX object

ids numeric; ids

info character (default=""); additional message for verbose

ignoreNA logical (default=TRUE); ignore NA values
Value

logical; pass or fail the test

FALSE)

FALSE)

FALSE)

dot_test

dot_test

57

Functions

.test_RequiredColumnsPresent(): checks if aspect has all required columns
.test_ListRequiredColumnsPresent(): checks if all list elements have all required columns
.test_AllowedColumnsPresent(): checks if only allowed columns are set
.test_ListAllowedColumnsPresent(): checks if all list elements have only allowed columns

.test_NoMergeColumn(): checks if column with old ids is not present (would be a merge
artefact)

.test_AtLeastOneColumnPresent(): checks if at least one specified column is present
.test_AtLeastOneElementPresent(): checks if at least one specified element is present

.test_OneNodePresent(): checks if at least one element (node) is present in the specified
column

.test_IsUnique(): checks if all elements in specified column are unique

.test_ListAllUnique(): checks for all list elements if all elements in specified column are
unique

.test_IsUniquelInLists(): checks if all elements in specified column are unique
.test_ListAllUniqueInLists(): checks if all elements in specified column are unique
.test_IslLogical(): checks if the specified column is of type logical
.test_IsNumeric(): checks if the specified column is of type numeric
.test_ElementIsNumeric(): checks if the specified column is of type numeric
.test_IsCharacter(): checks if the specified column is of type character
.test_ListAllCharacter(): checks if the specified list element are all of type character
.test_IsList(): checks if the specified column is of type list

.test_ElementIsList(): checks if the specified column is of type list

.test_IsPos(): checks if the specified column are positive integers

.test_IsClass(): checks if the specified column is of the specified class in .CLS
.test_IsNamedList(): checks if the aspect is a list with specified names
.test_IsCVPclass(): checks if the specified column is of the specified class in .CLSvp
.test_ListOfCVPclass(): checks if the all elements in the list are of class in .CLSvp
.test_ContainsNA(): checks if the specified column contains any NA values
.test_ListAllContainsNA(): checks if the specified list element contains any NA values

.test_ListAllNumeric(): checks if the specified column is a list with only numeric values
(NAs and NULLSs are not considered)

.test_ListAllNumericOrInDict(): checks if the specified column is a list with only nu-
meric values (NAs and NULLSs are not considered) or in .DICT

.test_ListAl10fClass(): checks if the specified column is a list with only numeric values
(NAs and NULLSs are not considered) or in .DICT

.test_AspectExist(): checks if the rcx object contains the specified apsect

.test_IdsInAspect(): checks if all provided ids are present in the specified column of an
aspect

.test_ValuesInSet(): checks if the specified column of an aspect only contains values of
the provided set

.test_DataTypeColumn(): checks if the dataType column of an aspect only contains JSON
data types.

58 EdgeAttributes

Note

Internal function only for convenience

EdgeAttributes Edge attributes

Description

This function creates an aspect for additional attributes of edges.

Usage

createEdgeAttributes(
propertyOf,
name,
value,
dataType = NULL,
isList = NULL,
subnetworkId = NULL

)
Arguments
property0f integer; reference to edge ids
name character; key of the attribute
value character; value of the attribute
dataType character (optional); data type of the attribute
isList logical (optional); a value should be considered as list

subnetworkId integer (optional); reference to subnetwork id

Details

Edges may have additional attributes besides a name and a representation. Those additional at-
tributes reference a edge by its id and are defined in a key-value like manner, with the name of the
attribute as key. The same attribute can also be defined for different subnetworks with different
values. The values itself may also differ in their data types, therefore it is necessary to provide the
values as a list of the single values instead of a vector.

With isList it can be set, if a value should be considered as a list. This is of minor significance
while working solely with RCX objects, unless it will be transformed to JSON. For some attributes
it might be necessary that the values are encoded as lists, even if they contain only one element (or
even zero elements). To force an element to be encoded correctly, this parameter can be used, for
example: name="A", value=a, isList=T will be encoded in JSON as A=["a"].

Value

EdgeAttributesAspect object

EdgeAttributes 59

Note

The propertyOf parameter references the edge ids to which the attributes belong to. When adding
an EdgeAttributesAspect object to an RCX object, those ids must be present in the Edges aspect,
otherwise an error is raised.

See Also

updateEdgeAttributes

Examples

a minimal example

edgeAttributes = createEdgeAttributes(
property0f=1,
name="A",
value="a"

)

defining several properties at once
edgeAttributes = createEdgeAttributes(
propertyOf=c(1,1),
name=c("A", "B"),
value=c("a","b")

)

with characters and numbers mixed

edgeAttributes = createEdgeAttributes(
property0Of=c(1,1),
name=c("A","B"),
value=list("a",3.14)

)

force the number to be characters
edgeAttributes = createEdgeAttributes(
property0f=c(1,1),
name=c("A","B"),
value=list("a",3.14),

dataType=c("character”, "character”)

)

with a list as input for one value
edgeAttributes = createEdgeAttributes(
propertyOf=c(1,1),
name=c("A","B"),
value=list(c("al","a2"),
"oy
)

force "B" to be a list as well
edgeAttributes = createEdgeAttributes(
propertyOf=c(1,1),
name=c("A","B"),
value=list(c("al1","a2"),
"b"),
isList=c(TRUE, TRUE)

60 Edges

with a subnetwork

edgeAttributes = createEdgeAttributes(
property0Of=c(1,1),
name=c("A","A"),
value=c("a","a with subnetwork”),
subnetworkId=c(NA, 1)

)

with all parameters
edgeAttributes = createEdgeAttributes(
propertyOf=c(1,1,1,1),
name=c("A","A","B","B"),
value=list(c("al1","a2"),
"a with subnetwork”,
"o
"b with subnetwork”),
isList=c(TRUE,FALSE,TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)
)

Edges Edges

Description

This function creates edges between nodes in networks.

Usage

createEdges(id = NULL, source, target, interaction = NULL)

Arguments

id integer (optional); edge IDs

source integer; reference to node id

target integer; reference to node id

interaction character (optional); type of interaction, eg. "binds" or "activates"
Details

Edges are represented by EdgesAspect objects. Edges connect two nodes, which means that source
and trarget must reference the IDs of nodes in a Nodes object. On creation, the IDs don’t matter yet,
but at least while adding the EdgesAspect object to an RCX-object, the IDs must be present in the
nodes aspect of the RCX-object.

Similar to nodes, an edge also has a unique id, which must be an (positive) integer, which serves
as reference to other aspects. If no IDs are provided, those are assigned automatically. Optionally,
edges can have an interaction attribute to define the type of interaction between the nodes.

Value

EdgesAspect object

getCy VisualProperty 61

See Also
updateEdges for adding a EdgesAspect object to an EdgesAspect or RCX object

Examples

create some simple edges
edges1 = createEdges(source=1, target=2)

create edges with more information

edges2 = createEdges(id=c(3,2,4),
source=c(0,0,1),
target=c(1,2,2),
interaction=c("activates”,"inhibits"”, NA))

getCyVisualProperty Get a Cytoscape visual property (object used in CyVisualProperties
aspect) by appliesTo and view

Description
This function helps filtering CyVisualProperty objects by appliesTo and view attributes (i.e. a
unique combination of both). If nothing matches the searched pattern NULL is returned.

Usage
getCyVisualProperty(cyVisualProperty, appliesTo = NA, view = NA)

Arguments
cyVisualProperty
CyVisualProperty object
appliesTo integer (optional); value of appliesTo to filter for
view integer (optional); value of view to filter for
Details

Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual attributes for
use by its own layout and analysis tools. Furthermore are the aspects used in web-based visualiza-
tions like within the NDEx platform.

The visual properties aspect is the only aspect (CyVisualProperties) with a complex structure.
It is composed of several sub-property classes and consists of CyVisualProperty objects, that
belong to, or more precisely describe one of the following network elements: network, nodes,
edges, defaultNodes or defaultEdges.

A single visual property (i.e. CyVisualProperty object) organizes the information as properties,
dependencies and mappings, as well as the single values appliesTo and view, that define the subnet-
work or view to which the IDs apply.

Properties are CyVisualPropertyProperties objects, that hold information like "NODE_FILL_COLOR"
: "#26CCC9" or "NODE_LABEL_TRANSPARENCY" : "255" in a key-value like manner.

Dependencies are CyVisualPropertyDependencies objects, that hold information about depen-
dencies between visual properties. Currently there are only three dependencies supported:

62 getCy VisualProperty

* Lock Node with and height: nodeSizelLocked = "false”
¢ Fit Custom Graphics to node: nodeCustomGraphicsSizeSync = "true”

* Edge color to arrows: arrowColorMatchesEdge = "false”

Mappings are CyVisualPropertyMappings objects, that hold information as a triplet consisting of

name, type and definition, like "NODE_FILL_COLOR" : "DISCRETE" : "COL=molecule_type,T=string,K=0=miRNA, V=¢
"NODE_FILL_COLOR" : "CONTINUOUS" : "COL=gall1RGexp,T=double... or "NODE_LABEL" :

"PASSTHROUGH" : "COL=COMMON, T=string".

For further information about Cytoscape visual properties see the Styles topic of the official Cy-
toscape documentation: http://manual.cytoscape.org/en/stable/Styles.html

Structure of Cytoscape Visual Properties:

CyVisualProperties

| ---network = CyVisualProperty

| ---nodes = CyVisualProperty

| ---edges = CyVisualProperty

| ---defaultNodes = CyVisualProperty
| ---defaultEdges = CyVisualProperty

CyVisualProperty

| ---properties = CyVisualPropertyProperties
| | --name

| | --value

| ---dependencies = CyVisualPropertyDependencies
| | --name

| | --value

| ---mappings = CyVisualPropertyMappings

| | --name

| |--type

| | --definition

| ---appliesTo = <reference to subnetwork id>
|---view = <reference to subnetwork id>

Value

CyVisualProperty object containing only one element, or NULL

See Also

updateCyVisualProperty, updateCyVisualProperties

Examples

Visual property: Properties
vpPropertyP1 = createCyVisualPropertyProperties(c(NODE_BORDER_STROKE="SOLID"))

Visual property: Dependencies
vpPropertyD1 = createCyVisualPropertyDependencies(c(nodeSizelLocked="false"))

Visual property: Mappings
vpPropertyM1 = createCyVisualPropertyMappings(c(NODE_FILL_COLOR="CONTINUOUS"),
"COL=directed, T=boolean,K=0=true, V=0=ARROW")

http://manual.cytoscape.org/en/stable/Styles.html

graphNEL

Create visual property object
vpProperty = createCyVisualProperty(properties=list(vpPropertyP1,

63

vpPropertyP1,
vpPropertyP1),
dependencies=1list(vpPropertyD1,
vpPropertyD1,
NA),
mappings=1ist(vpPropertyM1,
NA,
vpPropertyM1),
appliesTo = c(NA,
NA,
D,
view = c(NA,
1 ’
D))
Get VP for no subnetwork an no view
getCyVisualProperty(vpProperty)
getCyVisualProperty(vpProperty,
appliesTo = 1,
view = 1)
graphNEL Convert an RCX object from and to an graphNEL object
Description
Convert an RCX object to an graphNEL object
Usage
toGraphNEL(rcx, directed = FALSE)
fromGraphNEL (
graphNEL,
nodeId = "id",
nodeName = "nodeName"”,
nodeIgnore = c("name"),
edgeld = "id",
edgelnteraction = "edgelnteraction”,
edgelgnore = c(),
suppressWarning = FALSE
)
Arguments
rex RCX object
directed logical; whether the graph is directed
graphNEL graphNEL object

nodeId character; igraph attribute name used for node ids

64 graphNEL

nodeName character; igraph attribute name used for node names
nodeIgnore character; igraph attribute names that should be ignored
edgeld character; igraph attribute name used for edge ids
edgelnteraction

character; igraph attribute name used for edge interaction

edgelgnore character; igraph attribute names that should be ignored

suppressWarning
logical; whether to suppress a warning message, if the validation of the RCX
object fails

Details

In the graphNEL object the attributes are not separated from the graph like in RCX. Therefore, for
converting an RCX object to an graphNEL object, and back, some adjustments in the naming of the
attributes have to be made.

For nodes the name can be present in the nodes aspect, as name in the nodeAttributes aspect. Also
name is used in graphNEL for naming the vertices. To avoid collisions in the conversion, the nodes
name is saved in graphNEL as nodeName, while the nodeAttributes property name is saved as
"attribute...name”. These names are also used for the conversion back to RCX, but here the
name used in the nodes aspect can be changed by the nodeName parameter.

Similar to the node name, if "represents” is present as property in nodeAttributes its name is
changed to "attribute...represents”.

The conversion of edges works analogously: If "interaction” is present as property in edgeAt-
tributes its name is changed to "attribute...interaction”.

Nodes and edges must have IDs in the RCX, but not in the graphNEL object. To define an vertex or
edge attribute to be used as ID, the parameters nodeId and edgeId can be used to define ether an
attribute name (default:"id") or set it to NULL to generate ID automatically.

The attributes also may have a special data type assigned. The data type then is saved by adding
"...dataType" to the attribute name.

The cartesian layout is also stored in the graphNEL object. To make those graph vertex attributes

non

distinguishable from nodeAttributes they are named "cartesianLayout...x", "cartesianLayout...y
and "cartesianLayout...z".

In the RCX attributes it is also possible to define a subnetwork, to which an attribute applies. Those
attributes are added with ”...123" added to its name, where "123" is the subnetwork id. The sub-
network id itself are added as graph graph attributes, and are named subnetwork...123...nodes"
and "subnetwork...123...edges"”, where "123" is the subnetwork id.

Altogether, the conventions look as follows: "[attribute...]<name>[...<subnetwork>][...dataType]"

Value

graphNEL or RCX object

See Also

Igraph, igraph: :as_graphnel()

haslds 65

Examples

Read from a CX file

reading the provided example network of the package

cxFile <- system.file(
"extdata",
"Imatinib-Inhibition-of-BCR-ABL-66a902f5-2022-11e9-bb6a-0ac135e8bacf.cx",
package = "RCX"

)

rcx = readCX(cxFile)

graphNEL can handle multi-edges, but only if the graph is directed and the
source and target start and end not between the same nodes.

Unfortunaltelly this is the case in our sample network.

A quick fix is simply switching the direction of source and target

for the multi-edges:

dubEdges = duplicated(rcx$edges[c("source”,"target”)])

s = rcx$edges$source
rcx$edges$sourceldubEdges] rcx$edges$target[dubEdges]
rcx$edges$target[dubEdges] = s[dubEdges]

convert the network to graphNEL
gNel = toGraphNEL(rcx, directed = TRUE)

convert it back
rcxFromGraphNel = fromGraphNEL (gNel)

hasIds IDs of an aspect

Description

This function checks, if an aspect has IDs that may be referenced by other aspects.

By default aspects don’t have IDs, so only the implemented classes have IDs. Aspects with IDs will
be considered in the meta-data aspect to determine properties like: idCounter and elementCount.

Usage
hasIds(aspect)

Default S3 method:
hasIds(aspect)

S3 method for class 'NodesAspect'
hasIds(aspect)

S3 method for class 'EdgesAspect'
hasIds(aspect)

S3 method for class 'CyGroupsAspect'’
hasIds(aspect)

66 idProperty

S3 method for class 'CySubNetworksAspect'
hasIds(aspect)

Arguments

aspect an object of one of the aspect classes (e.g. NodesAspect, EdgesAspect, etc.)

Details

Uses method dispatch, so the default return is FALSE and only aspect classes with IDs are imple-
mented. This way it is easier to extend the data model.

Value

logical

See Also

idProperty(), refersTo(), referredBy(), maxId()

Examples
edges = createEdges(source = c(0,0), target = c(1,2))
hasIds(edges)
idProperty Name of the property of an aspect that is an ID
Description

This function returns the name of the property, if an aspect uses IDs for its elements. As example,
the aspect NodesAspect has the property id that represents the IDs of the aspect.

Usage
idProperty(aspect)

Default S3 method:
idProperty(aspect)

S3 method for class 'NodesAspect'
idProperty(aspect)

S3 method for class 'EdgesAspect'
idProperty(aspect)

S3 method for class 'CyGroupsAspect'
idProperty(aspect)

S3 method for class 'CySubNetworksAspect'
idProperty(aspect)

Igraph 67

Arguments

aspect an object of one of the aspect classes (e.g. NodesAspect, EdgesAspect, etc.)

Details

By default aspects don’t have IDs, so only the implemented classes have IDs. Aspects with IDs will
be considered in the meta-data aspect to determine properties like: idCounter and elementCount.

Uses method dispatch, so the default return is NULL and only aspect classes with IDs are imple-
mented. This way it is easier to extend the data model.

Value

character; Name of the ID property or NULL

See Also

hasIds(), refersTo(), referredBy(), maxId()

Examples

edges = createEdges(source = c(0,0), target = c(1,2))
idProperty(edges)

Igraph Convert an RCX object from and to an igraph object

Description

Convert an RCX object to an igraph object

Usage

toIgraph(rcx, directed = FALSE)

fromIgraph(
ig,
nodeld = "id",
nodeName = "nodeName”,
nodeIgnore = c("name"),
edgeld = "id",
edgelnteraction = "edgelnteraction”,
edgelgnore = c(),
suppressWarning = FALSE

68 Igraph

Arguments
rex RCX object
directed logical; whether the graph is directed
ig igraph object
nodeIld character; igraph attribute name used for node ids
nodeName character; igraph attribute name used for node names
nodeIgnore character; igraph attribute names that should be ignored
edgeld character; igraph attribute name used for edge ids
edgelnteraction
character; igraph attribute name used for edge interaction
edgelgnore character; igraph attribute names that should be ignored
suppressWarning
logical; whether to suppress a warning message, if the validation of the RCX
object fails
Details

In the igraph object the attributes are not separated from the graph like in RCX. Therefore, for
converting an RCX object to an igraph object, and back, some adjustments in the naming of the
attributes have to be made.

For nodes the name can be present in the nodes aspect, as name in the nodeAttributes aspect.
Also name is used in igraph for naming the vertices. To avoid collisions in the conversion, the
nodes name is saved in igraph as nodeName, while the nodeAttributes property name is saved as
"attribute...name”. These names are also used for the conversion back to RCX, but here the
name used in the nodes aspect can be changed by the nodeName parameter.

Similar to the node name, if "represents” is present as property in nodeAttributes its name is
changed to "attribute...represents”.

The conversion of edges works analogously: If "interaction” is present as property in edgeAt-
tributes its name is changed to "attribute...interaction”.

Nodes and edges must have IDs in the RCX, but not in the igraph object. To define an vertex or
edge attribute to be used as ID, the parameters nodeId and edgeld can be used to define ether an
attribute name (default:"id") or set it to NULL to generate ID automatically.

The attributes also may have a special data type assigned. The data type then is saved by adding
"...dataType" to the attribute name.
The cartesian layout is also stored in the igraph object. To make those igraph vertex attributes distin-

guishable from nodeAttributes they are named "cartesianLayout...x", "cartesianLayout...y"
and "cartesianLayout...z".

In the RCX attributes it is also possible to define a subnetwork, to which an attribute applies. Those
attributes are added with " .. .123" added to its name, where "123" is the subnetwork id. The sub-
network id itself are added as igraph graph attributes, and are named subnetwork. ..123...nodes"
and "subnetwork...123...edges", where "123" is the subnetwork id.

Altogether, the conventions look as follows: "[attribute...]<name>[...<subnetwork>][...dataType]"

Value

igraph or RCX object

jsonToRCX

See Also
graphNEL

Examples

Read from a CX file

reading the provided example network of the package

cxFile <- system.file(
"extdata"”,
"Imatinib-Inhibition-of-BCR-ABL-66a902f5-2022-11e9-bb6a-0ac135e8bacf.cx",
package = "RCX"

)

rcx = readCX(cxFile)

convert the network to igraph
ig = tolgraph(rcx)

convert it back
rcxFromIg = fromIgraph(ig)

69

jsonToRCX Convert parsed JSON aspects to RCX

Description

Functions to handle parsed JSON for the different aspects.
Usage
jsonToRCX(jsonData, verbose)

Default S3 method:
jsonToRCX(jsonData, verbose)

S3 method for class 'status'
jsonToRCX(jsonData, verbose)

S3 method for class 'numberVerification'
jsonToRCX(jsonData, verbose)

S3 method for class 'metaData’
jsonToRCX(jsonData, verbose)

S3 method for class 'nodes'
jsonToRCX(jsonData, verbose)

S3 method for class 'edges'
jsonToRCX(jsonData, verbose)

S3 method for class 'nodeAttributes'
jsonToRCX(jsonData, verbose)

70 jsonToRCX

S3 method for class 'edgeAttributes'
jsonToRCX(jsonData, verbose)

S3 method for class 'networkAttributes'
jsonToRCX(jsonData, verbose)

S3 method for class 'cartesianLayout'
jsonToRCX(jsonData, verbose)

S3 method for class 'cyGroups'
jsonToRCX(jsonData, verbose)

S3 method for class 'cyHiddenAttributes'
jsonToRCX(jsonData, verbose)

S3 method for class 'cyNetworkRelations'
jsonToRCX(jsonData, verbose)

S3 method for class 'cySubNetworks'
jsonToRCX(jsonData, verbose)

S3 method for class 'cyTableColumn'
jsonToRCX(jsonData, verbose)

S3 method for class 'cyVisualProperties'
jsonToRCX(jsonData, verbose)

Arguments

jsonData nested list from parsed JSON

verbose logical; whether to print what is happening
Details

These functions will be used in processCX to process the JSON data for every aspect. Each aspect
is accessible in the CX-JSON by a particular accession name (i.e. its aspect name; see NDEx
documentation: https://home.ndexbio.org/data-model/). This name is used as class to handle
different aspects by method dispatch. This simplifies the extension of RCX for non-standard or self-
defined aspects.

The CX-JSON is parsed to R data types using the jsonlite package as follows:
jsonlite::fromJSON(cx, simplifyVector = FALSE)

This results in a list of lists (of lists...) to avoid automatic data type conversions, which affect the
correctness and usability of the data. Simplified JSON data for example NodeAttributes would be
coerced into a data.frame, therefore the value column looses the format for data types other than
string.

The jsonData will be a list with only one element named by the aspect: jsonData$<accessionName>

To access the parsed data for example nodes, this can be done by jsonData$nodes. The single
aspects are then created using the corresponding create functions and combined to an RCX object
using the corresponding update functions.

https://home.ndexbio.org/data-model/

markAttributeColumn 71

Value

created aspect or NULL

See Also
rcxToJson, toCX, readCX, writeCX

Examples

nodesJD = list(nodes=list(list("@id"=6, name="EGFR"),
list("@id"=7, name="CDK3")))
class(nodesJD) = c("nodes”, class(nodesJD))

jsonToRCX(nodesJD, verbose=TRUE)

markAttributeColumn Mark attribute name columns within a data.frame

Description

Assigns a class to a data.frame column to force a custom format in summary generation.

Usage

.markAttributeColumn(aspect) <- value

Arguments
aspect an aspect (data.frame)
value character; property
Value

the aspect (data.frame)

Note

Internal function only for convenience

Examples

df = data.frame(name=c("a","b","c"),
value=c("a”,"b","c"))
RCX: ::.markRefColumn(df) = "name"

summary (df)

72 maxlId

markRefColumn Mark required and optional references within a data.frame

Description

Assigns a class to a data.frame column to force a custom format in summary generation.

Usage

.markRefColumn(aspect) <- value

.markRegRefColumn(aspect) <- value

Arguments
aspect an aspect (data.frame)
value character; property
Value

the aspect (data.frame)

Note

Internal function only for convenience

Examples

df = data.frame(bla=c("a","b","c"),
blubb=c(”a”,"b","c"))
RCX: ::.markRefColumn(df) = "bla"

summary (df)

maxId Highest ID of an aspect

Description
This function returns the highest id used in an aspect, that has ids. As example, the aspect Node-
sAspect has the property id that must be a unique positive integer.

Usage
maxId(x)

Default S3 method:
maxId(x)

S3 method for class 'RCX'
maxId(x)

Meta-data 73

Arguments
X an object of one of the aspect classes (e.g. NodesAspect, EdgesAspect, etc.) or
RCX class.
Details

Uses method dispatch, so the default return is NULL and only aspect classes that have ids are
implemented. This way it is easier to extend the data model.

Value
integer; Highest id. For RCX objects all highest ids are returned in the vector named by the aspect
class.

See Also
hasIds(), idProperty(), refersTo(), referredBy(), maxId()

Examples

nodes = createNodes(name = c("CDK1"”,"CDK2","CDK3"))
maxId(nodes)

Meta-data Update RCX meta-data

Description

The meta-data aspect contains meta-data about the aspects in the RCX object. It can be generated
automatically based on the aspects present in a RCX object:

* for version and consistencyGroup default values are used
* idCounter is inferred with hasIds and maxId of an aspect
* elementCount is inferred from countElements

* properties is left out by default

Usage

updateMetaData(
X,
version = NULL,
consistencyGroup = NULL,
properties = NULL,
aspectClasses = getAspectClasses()

)

S3 method for class 'RCX'
updateMetaData(
X,
version = NULL,
consistencyGroup = NULL,

74 Meta-data

properties = NULL,
aspectClasses = getAspectClasses()

)

Default S3 method:
updateMetaData(
X,
version = NULL,
consistencyGroup = NULL,
properties = NULL,
aspectClasses = getAspectClasses()

)
Arguments
X RCX object or an aspect of a RCX;; its class must be one of the standard RCX
aspect classes
version named character (optional); version of the aspect (default:"1.0")
consistencyGroup
named numerical (optional); consistency group of the aspect (default: 1)
properties named list (optional); properties that need to be fetched or updated indepen-

dently of aspect data

aspectClasses named character; accession names and aspect classes aspectClasses

Details

If version, consistencyGroup or properties should have a different value, they can be set using a
named vector (or named list for properties), where the name must be an accession name of that
aspect in the RCX-object (e.g. nodes or cyVisualProperties).

Besides being a named list by aspect accession name, properties must also contain the single key-
value pairs as a further named list. To remove all key-value pairs for one aspect, an empty list can be
provided instead of a list with key-value pairs. To simplify adding of properties to a single aspect,
there is the updateMetaDataProperties function available.

Value

MetaDataAspect object or RCX object

Note

The meta-data will always be updated automatically, when an aspect is added to or changed in the
RCX object.

See Also

updateMetaDataProperties

Examples

prepare RCX object:

nodes = createNodes(name = c("a",”"b","c”,"d","e","f"))

edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))

NetworkAttributes

rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all”, c(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

update meta-data manually
rcx = updateMetaData(rcx)

update meta-data with some values

rcx = updateMetaData(rcx,
version=c(edges="2.0"),
consistencyGroup=c(nodes=3),
properties=list(cySubNetworks=1ist(some="value",

another="VALUE"),
edges=list(some="edge",
another="EDGE")))

remove all properties for edges
rcx = updateMetaData(rcx, properties=list(edges=1list()))

NetworkAttributes Network attributes

Description

This function creates an aspect for attributes of a network.

Usage

createNetworkAttributes(
name,
value,
dataType = NULL,
isList = NULL,
subnetworkId = NULL

)
Arguments
name character; key of the attribute
value character; value of the attribute
dataType character (optional); data type of the attribute
isList logical (optional); a value should be considered as list

subnetworkId integer (optional); reference to subnetwork id

76 NetworkAttributes

Details

Networks may have describing attributes, that are defined in a key-value like manner, with the
name of the attribute as key. The same attribute can also be defined for different subnetworks with
different values. The values itself may differ in their data types, therefore it is necessary to provide
the values as a list of the single values instead of a vector.

With isList it can be set, if a value should be considered as a list. This is of minor significance
while working solely with RCX objects, unless it will be transformed to JSON. For some attributes
it might be necessary that the values are encoded as lists, even if they contain only one element (or
even zero elements). To force an element to be encoded correctly, this parameter can be used, for
example: name="A", value=a, isList=T will be encoded in JSON as A=["a"].

Value

NetworkAttributesAspect object

See Also

updateNetworkAttributes; NodeAttributes, EdgeAttributes

Examples

a minimal example

networkAttributes = createNetworkAttributes(
name="A",
value="a"

)

defining several properties at once
networkAttributes = createNetworkAttributes(
name=c("A", "B"),
value=c("a","b")

)

with characters and numbers mixed
networkAttributes = createNetworkAttributes(
name=c(”A”,"B"Y,
value=list("a",3.14)
)

force the number to be characters
networkAttributes = createNetworkAttributes(
name=c(”A”,"B"Y,
value=list("a",3.14),

dataType=c("character”, "character”)

)

with a list as input for one value
networkAttributes = createNetworkAttributes(
name:c(NA" , IIBII) R
value=list(c("al","a2"),
"oy
)

force "B" to be a list as well
networkAttributes = createNetworkAttributes(

NodeAttributes

name=c("A","B"),
value=list(c("al1","a2"),
"b"),
isList=c(TRUE, TRUE)
)

with a subnetwork

networkAttributes = createNetworkAttributes(
name=c("A","A"),
value=c("a","a with subnetwork"),
subnetworkId=c(NA,1)

)

with all parameters
networkAttributes = createNetworkAttributes(
name=c("A","A","B","B"),
value=list(c("al1","a2"),
"a with subnetwork”,
"o
"b with subnetwork”),
isList=c(TRUE,FALSE,TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)
)

NodeAttributes Node attributes

Description

This function creates an aspect for additional attributes of nodes.

Usage

createNodeAttributes(
propertyOf,
name,
value,
dataType = NULL,
isList = NULL,
subnetworkId = NULL

)
Arguments
property0f integer; reference to node ids
name character; key of the attribute
value character; value of the attribute
dataType character (optional); data type of the attribute
isList logical (optional); a value should be considered as list

subnetworkId integer (optional); reference to subnetwork id

78 NodeAttributes

Details

Nodes may have additional attributes besides a name and a representation. Those additional at-
tributes reference a node by its id and are defined in a key-value like manner, with the name of
the attribute as key. The same attribute can also be defined for different subnetworks with different
values. The values itself may also differ in their data types, therefore it is necessary to provide the
values as a list of the single values instead of a vector.

With isList it can be set, if a value should be considered as a list. This is of minor significance
while working solely with RCX objects, unless it will be transformed to JSON. For some attributes
it might be necessary that the values are encoded as lists, even if they contain only one element (or
even zero elements). To force an element to be encoded correctly, this parameter can be used, for
example: name="A", value=a, isList=T will be encoded in JSON as A=["a"].

Value

NodeAttributesAspect object

Note

The propertyOf parameter references the node ids to which the attributes belong to. When adding
an NodeAttributesAspect object to an RCX object, those ids must be present in the Nodes aspect,
otherwise an error is raised.

See Also

updateNodeAttributes, EdgeAttributes, NetworkAttributes

Examples

a minimal example

nodeAttributes = createNodeAttributes(
property0f=1,
name="A",
value="a"

)

defining several properties at once
nodeAttributes = createNodeAttributes(
propertyOf=c(1,1),
name=c("A", "B"),
value=c("a","b")

)

with characters and numbers mixed

nodeAttributes = createNodeAttributes(
property0Of=c(1,1),
name=c("A","B"),
value=list("a",3.14)

)

force the number to be characters
nodeAttributes = createNodeAttributes(
property0f=c(1,1),
name=c("A","B"),
value=list("a",3.14),

non

dataType=c("string","string")

Nodes

)

with a list as input for one value
nodeAttributes = createNodeAttributes(
property0f=c(1,1),
name=c("A","B"),
value=list(c("al","a2"),
"oy
)

force "B" to be a list as well
nodeAttributes = createNodeAttributes(
propertyOf=c(1,1),
name=c("A","B"),
value=list(c("al","a2"),
"b"),
isList=c(TRUE, TRUE)
)

with a subnetwork

nodeAttributes = createNodeAttributes(
property0f=c(1,1),
name=c("A","A"),
value=c("a","a with subnetwork"),
subnetworkId=c(NA,1)

)

with all parameters

nodeAttributes = createNodeAttributes(
propertyOf=c(1,1,1,1,1,1),
name=c("A","A","b","d","i","1"),
value=list(c("al","a2"),

"a with subnetwork”,

TRUE,

3.14,

314,

314),
dataType=c("string”,"string"”, "boolean”,"double”,"integer”,"long"),
isList=c(TRUE,FALSE,FALSE,FALSE,FALSE,FALSE),
subnetworkId=c(NA,1,NA,NA NA NA)

Nodes Nodes

Description

This function creates nodes for networks.

Usage

createNodes(id = NULL, name = NULL, represents = NULL)

80 RCX

Arguments

id integer (optional); node IDs

name character (optional); names of the nodes

represents character (optional); representation, e.g. a link to another database
Details

Nodes are represented by NodesAspect objects. A single node is defined by its unique id, which
must be an (positive) integer, which serves as reference to other aspects. Optionally, nodes can have
a name and a represents attribute. If no IDs are provided, but either names or representations (or
both) IDs are assigned automatically. To be valid, a nodes aspect must contain at least one node.
However, if no parameters are set (i.e. id, name and represents = NULL) there is still one node created
with neither name nor representation, just an ID. The NodesAspect is the only mandatory aspect for
an RCX-object.

Value

NodesAspect object

See Also

updateNodes, RCX-object

Examples

a minimal example
nodes = createNodes()

ids will be generated
nodes = createNodes(name = c("a","b","c"))

with all parameters
nodes = createNodes(id=c(1, 2, 3),
name=c("CDK1", "CDK2", "CDK3"),
represents=c("HGNC:CDK1",
"Uniprot:P24941",
"Ensemb] :ENSG00000250506"))

RCX R package implementing the Cytoscape Exchange (CX) format

Description

Create, handle, validate, visualize and convert networks in the Cytoscape exchange (CX) format to
standard data types and objects.

Details

The CX format is also used by the NDEx platform, a online commons for biological networks, and
the network visualization software Cytocape.

browseVignettes("RCy3")

RCX-object 81

Author(s)

Florian Auer <florian.auer@informatik.uni-augsburg.de>

See Also
Useful links:

* https://github.com/frankkramer-1lab/RCX
* Report bugs at https://github.com/frankkramer-1lab/RCX/issues

RCX-object Create an RCX object from aspects

Description

An RCX object consists of several aspects, but at least one node in the nodes aspect. The network
can either created by creating every single aspect first and the create the network with all aspects
present, or by creating the aspect only with the nodes and adding the remaining aspects one by one.

Usage

createRCX(
nodes,
edges,
nodeAttributes,
edgeAttributes,
networkAttributes,
cartesianlLayout,
cyGroups,
cyVisualProperties,
cyHiddenAttributes,
cyNetworkRelations,
cySubNetworks,
cyTableColumn,
checkReferences = TRUE

Arguments

nodes Nodes aspect;
edges Edges aspect (optional);
nodeAttributes NodeAttributes aspect (optional);

edgeAttributes EdgeAttributes aspect (optional);
networkAttributes

NetworkAttributes aspect (optional);
cartesianLayout

CartesianLayout aspect (optional);

cyGroups CyGroups aspect (optional);

https://github.com/frankkramer-lab/RCX
https://github.com/frankkramer-lab/RCX/issues

82 RCX-object

cyVisualProperties
CyVisualProperties aspect (optional);

cyHiddenAttributes
CyHiddenAttributes aspect (optional);

cyNetworkRelations
CyNetworkRelations aspect (optional);

cySubNetworks CySubNetworks aspect (optional);

cyTableColumn CyTableColumn aspect (optional);
checkReferences

logical; whether to check if references to other aspects are present in the RCX
object

Details

vignette("”@1. RCX - an R package implementing the Cytoscape Exchange (CX) format”, package
= "RCX") vignette("02. Creating RCX from scratch”, package = "RCX") vignette("Appendix:
The RCX and CX Data Model”, package = "RCX")

Value

RCX object

Examples

minimal example
rcx = createRCX(createNodes())

create by aspect
nodes = createNodes(name = c("a","b","c"))
edges = createEdges(source=c(0,0), target=c(1,2))

nodeAttributes = createNodeAttributes(
propertyOf=c(1,1),
name:c(lIAH s IIBII) ,
value=c("a","b")

)

edgeAttributes = createEdgeAttributes(
property0f=c(0,0),
name:c(?lAH’ IIBII)’
value=c("a","b")

)

networkAttributes = createNetworkAttributes(
name=c(”A”,"B"Y,
value=list("a",3.14)

)

cartesianlLayout = createCartesianlLayout(
node=c(@, 1),
x=c(5.5, 110.1),
y=c(200.3, 210.2)

)

cyGroups = createCyGroups(

RCX-object

)

name = c("Group One"”, "Group Two"),
nodes = list(c(@,1), 0)

83

vpPropertyP = createCyVisualPropertyProperties(c(NODE_BORDER_STROKE="SOLID"))
vpPropertyD = createCyVisualPropertyDependencies(c(nodeSizelLocked="false"))
vpPropertyM = createCyVisualPropertyMappings(c(NODE_FILL_COLOR="CONTINUOUS"),

"COL=directed, T=boolean,K=0=true, V=0=ARROW")

vpProperty = createCyVisualProperty(properties=vpPropertyP,
dependencies=vpPropertyD,
mappings=vpPropertyM)

cyVisualProperties = createCyVisualProperties(nodes=vpProperty)

cyHiddenAttributes = createCyHiddenAttributes(

)

name=c(”A”,"B"Y,
value=list(c("al1”,"a2"), "b")

cyNetworkRelations = createCyNetworkRelations(

)

child = c(0,1),
name = c("Network A", NA)

cySubNetworks = createCySubNetworks(

)

nodes = list("all", c(0,1,2)),
edges = list("all”, c(0,1))

cyTableColumn = createCyTableColumn(

)

non non

appliesTo=c("nodes"”, "edges", "networks"),

name=c("weight"”,"weight”,"collapsed”),
dataType=c("double”, "double"”, "boolean™)

rcx = createRCX(nodes, edges,
nodeAttributes, edgeAttributes,

networkAttributes,
cartesianlLayout,
cyGroups,
cyVisualProperties,
cyHiddenAttributes,
cyNetworkRelations,
cySubNetworks,
cyTableColumn)

create all at once
rcx = createRCX(

createNodes(name = c("a","b","c")),
createEdges(source=c(0,0), target=c(1,2)),
createNodeAttributes(

propertyOf=c(1,1),

name=c("A","B"),

value=c("a","b")
))
createEdgeAttributes(

property0f=c(0,0),

84 rcxToJson

name=c("A", "B"),
value=c("a","b")
),
networkAttributes = createNetworkAttributes(
name=c("A","B"),
value=list("a",3.14)
),
cartesianLayout = createCartesianLayout(
node=c(@, 1),
x=c(5.5, 110.1),
y=c(200.3, 210.2)
),
createCyGroups(
name = c("Group One"”, "Group Two"),
nodes = list(c(0,1), 0)
),
createCyVisualProperties(
nodes=createCyVisualProperty(
properties=createCyVisualPropertyProperties(
c(NODE_BORDER_STROKE="SOLID")
),
dependencies=createCyVisualPropertyDependencies(
c(nodeSizelocked="false")
),
mappings=createCyVisualPropertyMappings(
Cc(NODE_FILL_COLOR="CONTINUOUS"),
"COL=directed, T=boolean,K=0=true, V=0=ARROW")
)
),
createCyHiddenAttributes(
name=c("A","B"),
value=list(c("al1"”,"a2"), "b")
),
createCyNetworkRelations(
child = c(o,1),
name = c("Network A", NA)

),

createCySubNetworks(
nodes = list("all"”, c(0,1,2)),
edges = list("all”, c(0,1))

) ’

createCyTableColumn(
appliesTo=c("nodes”,"edges"”, "networks"),
name=c("weight"”,"weight"”,"collapsed”),
dataType=c("double”, "double”, "boolean")

)

)
rcxToJson Convert RCX aspects to JSON
Description

Functions for converting the different aspects to JSON following the CX data structure definition
(see NDEx documentation: https://home.ndexbio.org/data-model/).

https://home.ndexbio.org/data-model/

rcxToJson

Usage

rcxToJson(aspect, verbose = FALSE, ...)

Default S3 method:
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'MetaDataAspect’
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'NodesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'EdgesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'NodeAttributesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'EdgeAttributesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'NetworkAttributesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CartesianLayoutAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyGroupsAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyHiddenAttributesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyNetworkRelationsAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CySubNetworksAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyTableColumnAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyVisualPropertiesAspect'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyVisualProperty'
rcxToJson(aspect, verbose = FALSE, propertyOf = "",

S3 method for class 'CyVisualPropertyProperties'
rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyVisualPropertyDependencies'

86 readCX

rcxToJson(aspect, verbose = FALSE, ...)

S3 method for class 'CyVisualPropertyMappings'

rcxToJson(aspect, verbose = FALSE, ...)
Arguments

aspect aspects of an RCX object

verbose logical; whether to print what is happening

e additional parameters, that might needed for extending

property0f character; provide propertyOf (only necessary for CyVisualProperty)
Details

For converting RCX objects to JSON, each aspect is processed by a generic function for its aspect
class. Those functions return a character only containing the JSON of this aspect, which is then
combined by toCX to be a valid CX data structure.

To support the conversion for non-standard or own-defined aspects, generic functions for those
aspect classes have to be implemented.
Value

character; JSON of an aspect

See Also
toCX, writeCX, jsonToRCX, readCX

Examples

nodes = createNodes(name = c("a","b","c","d","e","f"))
rcxToJson(nodes)

readCXx Read CX from file, parse the JSON and convert it to an RCX object

Description
The readCX function combines three sub-task:

* read the JSON from file
* parse the JSON
* process the contained aspects to create an RCX object

Usage

readCX(file, verbose = FALSE, aspectClasses = getAspectClasses())
readJSON(file, verbose = FALSE)
parseJSON(json, verbose = FALSE)

processCX(aspectList, verbose = FALSE, aspectClasses = getAspectClasses())

readCX 87

Arguments
file character; the name of the file which the data are to be read from
verbose logical; whether to print what is happening

aspectClasses named character; accession names and aspect classes aspectClasses

json character; raw JSON data
aspectlList list; list containing the aspect data (parsed JSON)
Details

If any errors occur during this process, the single steps can be performed individually. This also
allows to skip certain steps, for example if the JSON data is already availabe as text, there is no
need to save it as file and read it again.

Read the JSON from file:

The readJSON function only read the content of a text file and returns it as a simple character
vector.

Parse the JSON:
The parseJSON function uses the jsonlite package, to parse JSON text:
jsonlite::fromJSON(cx, simplifyVector = FALSE)

The result is a list containing the aspect data as elements. If, for some reason, the JSON is not
valid, the jsonlite package raises an error.

Process the contained aspects to create an RCX object:

With the processCX function, the single elements from the previous list will be processed with
the jsonToRCX functions, which creating objects for the single aspects. The standard CX as-
pects are processed by generic functions named by the aspect names of the CX data struc-
ture, e.g. jsonToRCX.nodeAttributes for the samely named CX aspect the corresponding
NodeAttributesAspect in RCX (see also vignette("”@2. The RCX and CX Data Model") or NDEx
documentation: https://home.ndexbio.org/data-model/).

The CX network may contain additional aspects besides the officially defined ones. This includes
self defined or deprecated aspects, that sill can be found in the networks at the NDEXx platform.
By default, those aspects are simply omitted. In those cases, the setting verbose to TRUE is a good
idea to see, which aspects cannot be processed this package.

Those not processable aspects can be handled individually, but it is advisable to extend the
jsonToRCX functions by implementing own versions for those aspects. Additionally, the up-
date functions have to be implemented to add the newly generated aspect objects to RCX ob-
ject (see e.g. updateNodes or updateEdges). Therefore, the function also have to be named
"update<aspect-name>, where aspect-name is the capitalized version of the name used in the
CX. (see also vignette("03. Extending the RCX Data Model")

Value

RCX object

Functions
¢ readJSON(): Reads the CX/JSON from file and returns the content as text

* parseJSON(): Parses the JSON text and returns a list with the aspect data

* processCX(): Processes the list of aspect data and creates an RCX

https://home.ndexbio.org/data-model/

88 referredBy

See Also

jsonToRCX, writeCX

Examples

cxFile = system.file(
"extdata",
"Imatinib-Inhibition-of-BCR-ABL-66a902f5-2022-11e9-bb6a-0ac135e8bacf.cx”,
package = "RCX"

)

rcx = readCX(cxFile)
OR:
json = readJSON(cxFile)

aspectList = parseJSON(json)
rcx = processCX(aspectlList)

referredBy List the aspects that are refered by an other aspect

Description

This function returns a list of all aspects with all present aspects, that refer to it. As example, the
aspect NodesAspect is refered by the property source and target of the EdgesAspect aspect.
Usage

referredBy(rcx, aspectClasses = getAspectClasses())

Arguments

rcx an object of one of the aspect classes (e.g. NodesAspect, EdgesAspect, etc.)

aspectClasses named character; accession names and aspect classes aspectClasses

Value

named list; Aspect class names with names of aspect classes, that refer to them.

Note

Uses hasIds() and refersTo() to determine the referring aspects.

See Also

hasIds(), idProperty(), refersTo(), maxId()

refersTo 89

Examples

nodes = createNodes(name = c(”"CDK1","CDK2","CDK3"))
edges = createEdges(source = ¢(0,0), target = c(1,2))
rcx = createRCX(nodes = nodes, edges = edges)

referredBy(rcx)

refersTo Name of the property of an aspect that is an ID

Description

This function returns the name of the property and the aspect class it refers to. As example, the
aspect EdgesAspect has the property source that refers to the ids of the NodesAspect aspect.

Usage
refersTo(aspect)

Default S3 method:
refersTo(aspect)

S3 method for class 'EdgesAspect'
refersTo(aspect)

S3 method for class 'NodeAttributesAspect'
refersTo(aspect)

S3 method for class 'EdgeAttributesAspect'
refersTo(aspect)

S3 method for class 'CartesianlLayoutAspect'
refersTo(aspect)

S3 method for class 'CyGroupsAspect'
refersTo(aspect)

S3 method for class 'CyVisualPropertiesAspect'
refersTo(aspect)

S3 method for class 'CySubNetworksAspect'

refersTo(aspect)
Arguments

aspect an object of one of the aspect classes (e.g. NodesAspect, EdgesAspect, etc.)
Details

Uses method dispatch, so the default return is NULL and only aspect classes that refer to other
aspects are implemented. This way it is easier to extend the data model.

90 setExtension

Value

named list; Name of the refering property and aspect class name.

Methods (by class)

e refersTo(default): of default returns NULL
* refersTo(EdgesAspect): of EdgesAspect refers to id by source and target

* refersTo(NodeAttributesAspect): of NodeAttributesAspect refers to id by propertyOf
and to id by subnetworkld

* refersTo(EdgeAttributesAspect): of EdgeAttributesAspect refers to id by propertyOf
and to id by subnetworkld

* refersTo(CartesianLayoutAspect): of CartesianLayoutAspect refers to id by node and to
id by view

* refersTo(CyGroupsAspect): of CyGroupsAspect refers to id by nodes and to id by exter-
nalEdges and internalEdges

* refersTo(CyVisualPropertiesAspect): of CyVisualPropertiesAspect refers to id by ap-
pliesTo of the sub-aspects

* refersTo(CySubNetworksAspect): of refers to id by nodes and to id by edges

See Also
hasIds(), idProperty(), referredBy(), maxId()

Examples

edges = createEdges(source = c(0,0), target = c(1,2))
refersTo(edges)

setExtension Set or register an RCX extension

Description

To simplify the usage of extension of the RCX data model new extensions can easily registered on
load with this function. Registered extension then automatically are used for the conversion of CX
data containing aspects of these extensions. The accession names and classes then are also added
to getAspectClasses.

Usage

setExtension(package, accession, className)

Arguments
package character; name of the extension package
accession character; accession name used in RCX (e.g. rcx$accessionName)

className character; class name of the aspect (e.g. is(rcx$accessionName, "AccessionNameAspect”))

summary 91

Value

options()$RCX.options$extensions

See Also

aspectClasses

Examples

setExtension("RCXMyRcxExtension”, "myRcxExtension”, "MyRcxExtensionAspect”)

summary RCX and aspect summary

Description
summary is a generic function used to produce result summaries of the RCX object. The function
invokes particular methods which depend on the class of the first argument.

Usage

S3 method for class 'RCX'
summary (object, ...)

S3 method for class 'MetaDataAspect'’
summary (object, ...)

S3 method for class 'NodesAspect'
summary(object, ...)

S3 method for class 'EdgesAspect'
summary (object, ...)

S3 method for class 'NodeAttributesAspect'
summary (object, ...)

S3 method for class 'EdgeAttributesAspect'
summary (object, ...)

S3 method for class 'NetworkAttributesAspect'
summary (object, ...)

S3 method for class 'CartesianLayoutAspect'
summary(object, ...)

S3 method for class 'CyGroupsAspect'
summary (object, ...)

S3 method for class 'CyHiddenAttributesAspect'
summary (object, ...)

92 summary

S3 method for class 'CyNetworkRelationsAspect'
summary (object, ...)

S3 method for class 'CySubNetworksAspect'
summary (object, ...)

S3 method for class 'CyTableColumnAspect'
summary(object, ...)

S3 method for class 'CyVisualPropertiesAspect'
summary (object, ...)

S3 method for class 'CyVisualProperty'
summary (object, ...)

S3 method for class 'AspectIdColumn'
summary (object, ...)

S3 method for class 'AspectRefColumn'
summary (object, ...)

S3 method for class 'AspectReqRefColumn'
summary(object, ...)

S3 method for class 'AspectValueColumn'
summary (object, ...)

S3 method for class 'AspectAttributeColumn'
summary (object, ...)

S3 method for class 'AspectListLengthColumn'

summary (object, ...)
Arguments
object an object; RCX object or aspect (or column of data.frame)

additional arguments affecting the summary produced.

Details

The form of the returned summary depends on the class of its argument, therefore it is possible to
summarize RCX objects and their single aspects.

To enhance readability of the summary, some additional classes have summary functions, that are
used to show for example ids of an aspect, required and optional references to ids of aspects, or the
number of elements in lists.

Value

object summary as list

toCX

93

Methods (by class)

summary (AspectIdColumn): Summarize an id property

summary (AspectRefColumn): Summarize an optional property, that references the ids of an
other aspect

summary (AspectReqRefColumn): Summarize a required property, that references the ids of
an other aspect

summary (AspectValueColumn): Summarize the occurrences of the different elements in the
property

summary (AspectAttributeColumn): Summarize the different attributes in the property

summary (AspectListLengthColumn): The property is a list of vectors, so summarize the
length of the vectors

Examples

rcx = createRCX(
nodes = createNodes(name = c("a","b","c")),
edges = createEdges(source=1, target=2)

)

summary (rex)

toCX

Convert an RCX object to CX (JSON)

Description

This function converts an RCX object to JSON in a valid CX data structure (see NDEx documenta-

tion:

Usage

https://home.ndexbio.org/data-model/).

toCX(rcx, verbose = FALSE, pretty = FALSE)

Arguments
rex RCX object
verbose logical; whether to print what is happening
pretty logical; adds indentation whitespace to JSON output. Can be TRUE/FALSE or a
number specifying the number of spaces to indent. See jsonlite: :prettify()
Details

The single aspects of the RCX object are processed by generic functions of rcxToJson for each
aspect class. Therefore, not only the single aspects are converted to JSON, but also necessary
additional aspects are added, so the resulting CX is accepted by the NDEx platform (https://
ndexbio.org/):

numberVerication shows the supported maximal number
status is needed at the end to show, that no errors have occurred while creation

If the RCX object contains additional aspects besides the officially defined ones, the corresponding
rcxToJson functions for those aspect classes have to be implemented in order to include them in the
resulting CX.

https://home.ndexbio.org/data-model/
https://ndexbio.org/
https://ndexbio.org/

94 updateCartesianLayout

Value

CX (JSON) text

See Also
toCX, rcxToJson, readCX, writeCX

Examples

rcx = createRCX(
nodes = createNodes(
name = LETTERS[seq_len(10)]
),
edges = createEdges(
source=c(1,2),
target = c(2,3)
)
)

json = toCX(rcx, pretty=TRUE)

updateCartesianLayout Update Cartesian Layouts

Description

This functions add a cartesian layout in the form of a CartesianLayout object to an other CartesianLayout
or an RCX object.

Usage

updateCartesianLayout(
X,
cartesianlLayout,
replace = TRUE,
stopOnDuplicates = FALSE,

)

S3 method for class 'CartesianLayoutAspect'
updateCartesianlLayout(

X,

cartesianLayout,

replace = TRUE,

stopOnDuplicates = FALSE,

S3 method for class 'RCX'
updateCartesianLayout(

X,

cartesianlLayout,

updateCartesianLayout 95

replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

)
Arguments
X RCX or CartesianLayout object; (to which the new layout will be added)
cartesianLayout
CartesianLayout object; (the layout, that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates
logical; whether to stop, if duplicates in nodes (and view if present) column are
found
e additional parameters
checkReferences
logical; whether to check if references to other aspects are present in the RCX
object
Details

Networks, or more precisely its nodes may have a cartesian layout, that is represented as CartesianLayout
object. CartesianLayout objects can be added to an RCX or an other CartesianLayout object.

In the case, that a CartesianLayout object is added to an other, or the RCX object already contains
a CartesianLayout object, some attributes might be present in both. By default, the properties are
updated with the values of the latest one. This can prevented by setting the replace parameter to
FALSE, in that case only new properties are added and the existing properties remain untouched.

Furthermore, if duplicated properties are considered as a preventable mistake, an error can be raised
by setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated
properties are present.

Value

CartesianLayoutAspect or RCX object with added layout

Examples

For CartesianLayoutAspects:
prepare some aspects:
cartesianlLayout = createCartesianlLayout(
node=c(@, 1),
x=c(5.5, 110.1),
y=c(200.3, 210.2),
z=c(-1, 3.1),
)

node @ is updated, new view is added
cartesianlLayout2 = createCartesianLayout(

node=c(@, 0),
x=c(5.7, 7.2),
y=c(98, 13.9),

view=c(NA, 1476)

96 updateCyGroups

)

Simply update with new values
cartesianlLayout3 = updateCartesianLayout(cartesianLayout, cartesianLayout2)

Ignore already present keys
cartesianlLayout3 = updateCartesianLayout(cartesianLayout, cartesianLayout2,
replace=FALSE)

Raise an error if duplicate keys are present

try(updateCartesianLayout(cartesianlLayout, cartesianLayout2,
stopOnDuplicates=TRUE))

=>ERROR:

Provided IDs (node, view) countain duplicates!

For RCX:

prepare RCX object:

nodes = createNodes(name = c("a","b"))
edges = createEdges(source = 0, target = 1)
cySubNetworks = createCySubNetworks(

id = 1476,

nodes = "all”,

edges = "all”
)

rcx = createRCX(nodes,
edges = edges,
cySubNetworks=cySubNetworks)

add the network attributes
rcx = updateCartesianLayout(rcx, cartesianLayout)

add additional network attributes and update existing
rcx = updateCartesianLayout(rcx, cartesianLayout2)

updateCyGroups Update Cytoscape Groups

Description

This functions add Cytoscape groups in the form of a CyGroups object to an RCX or an other
CyGroups object.

Usage
updateCyGroups(x, cyGroups, stopOnDuplicates = FALSE, keepOldIds = TRUE, ...)
S3 method for class 'CyGroupsAspect'’
updateCyGroups(x, cyGroups, stopOnDuplicates = FALSE, keepOldIds = TRUE, ...)

S3 method for class 'RCX'
updateCyGroups(

X,

cyGroups,

stopOnDuplicates = FALSE,

updateCyGroups 97

keepOldIds = TRUE,
checkReferences = TRUE,

Arguments
X RCX or CyGroups object; (to which the new Cytoscape groups will be added)
cyGroups CyGroups object; (the new aspect, that will be added)
stopOnDuplicates
logical; whether to stop, if duplicates in id column are found, or re-assign ids
instead.
keepOldIds logical; if ids are re-assigned, the original ids are kept in the column oldld
e additional parameters
checkReferences
logical; whether to check if references to other aspects are present in the RCX
object
Details

Cytoscape groups allow to group a set of nodes and corresponding internal and external edges
together, and represent a group as a single node in the visualization. CyGroups objects can be added
to an RCX or an other CyGroups object. The nodes, internalEdges and externalEdges parameters
reference the node or edge IDs that belong to a group. When adding an CyGroups object to an RCX
object, those IDs must be present in the Nodes or Edges aspect respectively, otherwise an error is
raised.

When two groups should be added to each other some conflicts may rise, since the aspects might
use the same IDs. If the aspects do not share any IDs, the two aspects are simply combined.
Otherwise, the IDs of the new groups are re-assinged continuing with the next available ID (i.e.
maxId(cyGroupsAspect) + 1 and maxId(rcx$cyGroups) + 1, respectively).

To keep track of the changes, it is possible to keep the old IDs of the newly added nodes in the
automatically added column oldId. This can be omitted by setting keepOldIds to FALSE. Otherwise,
if a re-assignment of the IDs is not desired, this can be prevented by setting stopOnDuplicates to
TRUE. This forces the function to stop and raise an error, if duplicated IDs are present.

Value

CyGroups or RCX object with added Cytoscape groups

See Also

CyGroups;

Examples

For CyGroupsAspects:

prepare some aspects:

cyGroups1 = createCyGroups(
name = c("Group One"”, "Group Two"),
nodes = list(c(1,2,3), @),
internalEdges = list(c(@,1),NA),
externalEdges = list(NA,c(2,3)),

98

collapsed = c(TRUE,NA)
)

cyGroups2 = createCyGroups(
name = "Group Three",
nodes = list(c(4,5)),
externalEdges = list(c(4,5))
)

group ids will be kept

cyGroups3 = updateCyGroups(cyGroups1, cyGroups2)

old group ids will be omitted

cyGroups3 = updateCyGroups(cyGroups1, cyGroups2,

keepO0ldIds=FALSE)

Raise an error if duplicate keys are present

try(updateCyGroups(cyGroups1, cyGroups2,
stopOnDuplicates=TRUE))
=>ERROR:

Elements of "id"” (in updateCyGroups) must not contain duplicates!

For RCX
prepare RCX object:

nodes = createNodes(name = c("a","b","c","d","e","f"))

edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)

add the group
rcx = updateCyGroups(rcx, cyGroupsl)

add an additional group
rcx = updateCyGroups(rcx, cyGroups2)

create a group with a not existing node...

cyGroups3 = createCyGroups(
name = "Group Three",
nodes = list(9)

)

...and try to add them
try(updateCyGroups(rcx, cyGroups3))
=>ERROR:

Provided IDs of "additionalGroups$nodes” (in updateCyGroups)

don't exist in "rcx$nodes$id”

create a group with a not existing edge...

cyGroups4 = createCyGroups(
name = "Group Four”,
nodes = list(c(1,2)),
internalEdges = list(c(9))
)

...and try to add them
try(updateCyGroups(rcx, cyGroups4))
=>ERROR:

updateCyGroups

updateCyHiddenAttributes 99

Provided IDs of "additionalGroups$internalEdges” (in updateCyGroups)
don't exist in "rcx$edges$id”

updateCyHiddenAttributes
Update Cytoscape hidden attributes

Description

This functions add hidden attributes in the form of a CyHiddenAttributes object to an other
CyHiddenAttributes or an RCX object.

Usage

updateCyHiddenAttributes(
X,
hiddenAttributes,
replace = TRUE,
stopOnDuplicates = FALSE,

)

S3 method for class 'CyHiddenAttributesAspect'
updateCyHiddenAttributes(

X,

hiddenAttributes,

replace = TRUE,

stopOnDuplicates = FALSE,

)

S3 method for class 'RCX'
updateCyHiddenAttributes(
X,
hiddenAttributes,
replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

)
Arguments

X RCX or CyHiddenAttributes object; (to which the new hidden attributes will
be added)

hiddenAttributes
CyHiddenAttributes object; (the new aspect, that will be added)

replace logical; if existing values are updated (or ignored)

stopOnDuplicates

logical; whether to stop, if duplicates in name (and subnetworkId if present)
column are found

100 updateCyHiddenAttributes

e additional parameters
checkReferences

logical; whether to check if references to other aspects are present in the RCX
object

Details

Cytoscape subnetworks allow to group a set of nodes and corresponding edges together, and net-
work relations define the relations between those networks. CyHiddenAttributes objects can be
added to an RCX or an other CyHiddenAttributes object.

In the case, that a CyHiddenAttributes object is added to an other, or the RCX object already
contains a CyHiddenAttributes object, some attributes might be present in both. By default, the
attributes are updated with the values of the latest one. This can prevented by setting the replace
parameter to FALSE, in that case only new attributes are added and the existing attributes remain
untouched.

Furthermore, if duplicated attributes are considered as a preventable mistake, an error can be raised
by setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated
attributes are present.

Value

CyHiddenAttributes or RCX object with added hidden attributes

Examples

For CyHiddenAttributesAspects:
prepare some aspects:
hiddenAttributes1 = createCyHiddenAttributes(
name=c("A","A","B","B"),
value=list(c("al","a2"),
"a with subnetwork”,
"o
"b with subnetwork”),
isList=c(TRUE,FALSE,TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)
)

A is updated, C is new
hiddenAttributes2 = createCyHiddenAttributes(
name=c("A","A","C"),
value=list("new a",
"new a with subnetwork”,
c(1,2)),
subnetworkId=c(NA,1,NA)
)

Simply update with new values
hiddenAttributes3 = updateCyHiddenAttributes(hiddenAttributes1,
hiddenAttributes?2)

Ignore already present keys

hiddenAttributes3 = updateCyHiddenAttributes(hiddenAttributest,
hiddenAttributes2,
replace=FALSE)

updateCyNetworkRelations 101

Raise an error if duplicate keys are present

try(updateCyHiddenAttributes(hiddenAttributes1, hiddenAttributes2,
stopOnDuplicates=TRUE))

=>ERROR:

Elements of "name" and "subnetworkId” (in updateCyHiddenAttributes)

must not contain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all”, c¢(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add a network relation
rcx = updateCyHiddenAttributes(rcx, hiddenAttributes?)

add an additional relation (update with new values)
rcx = updateCyHiddenAttributes(rcx, hiddenAttributes?2)

create a relation with a not existing subnetwork. ..
hiddenAttributes3 = createCyHiddenAttributes(
name="X",
value="new x",
subnetworkId=9
)

...and try to add them

try(updateCyHiddenAttributes(rcx, hiddenAttributes3))

=>ERROR:

Provided IDs of "additionalAttributes$subnetworkId” (in updateCyHiddenAttributes)
don't exist in "rcx$cySubNetworks$id”

updateCyNetworkRelations
Update Cytoscape network relations

Description

This functions add network relations in the form of a CyNetworkRelations object to an other
CyNetworkRelations or an RCX object.

Usage

updateCyNetworkRelations(
X,
cyNetworkRelations,
replace = TRUE,

102 updateCyNetworkRelations

stopOnDuplicates = FALSE,

)

S3 method for class 'CyNetworkRelationsAspect'
updateCyNetworkRelations(

X,

cyNetworkRelations,

replace = TRUE,

stopOnDuplicates = FALSE,

)

S3 method for class 'RCX'
updateCyNetworkRelations(
X,
cyNetworkRelations,
replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

)
Arguments
X RCX or CySubNetworks object; (to which the new network relations will be
added)
cyNetworkRelations
CySubNetworks object; (the network relations, that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates
logical; whether to stop, if duplicates in the child column are found
e additional parameters
checkReferences
logical; whether to check if references to other aspects are present in the RCX
object
Details

Cytoscape subnetworks allow to group a set of nodes and corresponding edges together, and net-
work relations define the relations between those networks. CyNetworkRelations objects can be
added to an RCX or an other CyNetworkRelations object.

When network relations are added to a CyNetworkRelations or a RCX object some conflicts may
rise, since the aspects might use the same child IDs. If the aspects do not share any child IDs, the two
aspects are simply combined, otherwise, the properties of the child are updated. If that is not wanted,
the updating can be prevented by setting replace to FALSE. Furthermore, if duplicated properties are
considered as a preventable mistake, an error can be raised by setting stopOnDuplicates to TRUE.
This forces the function to stop and raise an error, if duplicated child IDs are present.

Value

CyNetworkRelations or RCX object with added network relations

updateCyNetworkRelations

Examples

For CyNetworkRelationsAspects:

prepare some aspects:

cyNetworkRelations1 = createCyNetworkRelations(
child = c¢(1,2),
parent = c(NA,1),
name = c("Network A",

"View A"),
isView = c(FALSE, TRUE)
)
cyNetworkRelations2 = createCyNetworkRelations(
child = 2,
name = "View B",
isView = TRUE

)

update the duplicated child
cyNetworkRelations3 = updateCyNetworkRelations(cyNetworkRelationsT,
cyNetworkRelations2)

keep old child values

cyNetworkRelations3 = updateCyNetworkRelations(cyNetworkRelations1,
cyNetworkRelations2,
replace=FALSE)

Raise an error if duplicate keys are present

try(updateCyNetworkRelations(cyNetworkRelationsT,
cyNetworkRelations2,
stopOnDuplicates=TRUE))

=>ERROR:

Elements of "child” (in updateCyNetworkRelations)

must not contain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all”, c(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add a network relation
rcx = updateCyNetworkRelations(rcx, cyNetworkRelations1)

add an additional relation (View A is replaced by B)
rcx = updateCyNetworkRelations(rcx, cyNetworkRelations?2)

create a relation with a not existing subnetwork. ..
cyNetworkRelations3 = createCyNetworkRelations(
child = 9

103

104 updateCySubNetworks

)

...and try to add them

try(updateCyNetworkRelations(rcx, cyNetworkRelations3))

=>ERROR:

Provided IDs of "additionalNetworkRelations$child” (in addCyNetworkRelations)
don't exist in "rcx$cySubNetworks$id”

create a relation with a not existing parent subnetwork...
cyNetworkRelations4 = createCyNetworkRelations(

child = 1,

parent = 9

)

...and try to add them

try(updateCyNetworkRelations(rcx, cyNetworkRelations4))

=>ERROR:

Provided IDs of "additionalNetworkRelations$parent” (in addCyNetworkRelations)
don't exist in "rcx$cySubNetworks$id”

updateCySubNetworks Update Cytoscape subnetworks

Description

This functions add subnetworks in the form of a CySubNetworks object to an other CySubNetworks
or an RCX object.

Usage

updateCySubNetworks(
X,
cySubNetworks,
stopOnDuplicates = FALSE,
keepOldIds = TRUE,

S3 method for class 'CySubNetworksAspect'
updateCySubNetworks (

X,

cySubNetworks,

stopOnDuplicates = FALSE,

keepOldIds = TRUE,

S3 method for class 'RCX'
updateCySubNetworks (
X,
cySubNetworks,
stopOnDuplicates = FALSE,

updateCySubNetworks 105

keepOldIds = TRUE,
checkReferences = TRUE,

Arguments
X RCX or CySubNetworks object; (to which the new subnetworks will be added)
cySubNetworks CySubNetworks object; (the subnetwork, that will be added)
stopOnDuplicates
logical; whether to stop, if duplicates in id column are found, or re-assign ids
instead.
keepOldIds logical; if ids are re-assigned, the original ids are kept in the column oldld

e additional parameters
checkReferences

logical; whether to check if references to other aspects are present in the RCX
object

Details

Cytoscape subnetworks allow to group a set of nodes and corresponding edges together. CySubNetworks
objects can be added to an RCX or an other CySubNetworks object. The nodes and edges parame-
ters reference the node or edge IDs that belong to a subnetwork. When adding an CySubNetworks
object to an RCX object, those IDs must be present in the Nodes or Edges aspect respectively, oth-
erwise an error is raised. Unlike other aspects referring those IDs, the Cytoscape subnetwork aspect
allows to refer to all nodes and edges using the keyword all.

When subnetworks should be added to a CySubNetworks or a RCX object some conflicts may rise,
since the aspects might use the same IDs. If the aspects do not share any IDs, the two aspects are
simply combined. Otherwise, the IDs of the new subnetworks are re-assinged continuing with the
next available ID (i.e. maxId(cySubNetworks) + 1 and maxId(rcx$cySubNetworks) + 1, respec-
tively).

To keep track of the changes, it is possible to keep the old IDs of the newly added nodes in the
automatically added column oldld. This can be omitted by setting keepOldlds to FALSE. Otherwise,
if a re-assignment of the IDs is not desired, this can be prevented by setting stopOnDuplicates to
TRUE. This forces the function to stop and raise an error, if duplicated IDs are present.

Value

CySubNetworks or RCX object with added subnetworks

See Also

CyNetworkRelations;

Examples

For CySubNetworksAspects:
prepare some aspects:
cySubNetworks1 = createCySubNetworks(
id = c(0,1),
nodes = list("all”,
c(1,2,3)),

106 updateCySubNetworks

edges = list("all”,
c(0,2))
)

cySubNetworks2 = createCySubNetworks(
nodes = c¢(9,3),
edges = c(1)

)

subnetwork ids will be kept
cySubNetworks3 = updateCySubNetworks(cySubNetworks1, cySubNetworks2)

old subnetwork ids will be omitted
cySubNetworks3 = updateCySubNetworks(cySubNetworks1, cySubNetworks2,
keepO0ldIds=FALSE)

Raise an error if duplicate keys are present

try(updateCySubNetworks(cySubNetworks1, cySubNetworks2,
stopOnDuplicates=TRUE))

=>ERROR:

Elements of "id"” (in updateCySubNetworks) must not contain duplicates!

For RCX

prepare RCX object:

nodes = createNodes(name = c("a","b","c","d","e","f"))

edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))

rcx = createRCX(nodes, edges)

add the subnetwork
rcx = updateCySubNetworks(rcx, cySubNetworks1)

add additional subnetwork
rcx = updateCySubNetworks(rcx, cySubNetworks2)

create a subnetwork with a not existing node...
cySubNetworks3 = createCySubNetworks(

nodes = list(9)
)

...and try to add them

try(updateCySubNetworks(rcx, cySubNetworks3))

=>ERROR:

Provided IDs of "additionalSubNetworks$nodes” (in addCySubNetworks)
don't exist in "rcx$nodes$id”

create a group with a not existing edge...
cySubNetworks4 = createCySubNetworks(

nodes = c(0,1),

edges = 9
)

...and try to add them

try(updateCySubNetworks(rcx, cySubNetworks4))

=>ERROR:

Provided IDs of "additionalSubNetworks$edges” (in addCySubNetworks)
don't exist in "rcx$edges$id”

updateCyTableColumn 107

updateCyTableColumn Update Cytoscape table column properties

Description

This functions add hidden attributes in the form of a CyTableColumn object to an other CyTableColumn
or an RCX object.

Usage

updateCyTableColumn(
X,
cyTableColumns,
replace = TRUE,
stopOnDuplicates = FALSE,

)...

S3 method for class 'CyTableColumnAspect'
updateCyTableColumn(

X,

cyTableColumns,

replace = TRUE,

stopOnDuplicates = FALSE,

)

S3 method for class 'RCX'
updateCyTableColumn(
X,
cyTableColumns,
replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

Arguments
X RCX or CyTableColumn object; (to which the new table column properties will
be added)
cyTableColumns CyTableColumn object; (the new aspect, that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates

logical; whether to stop, if duplicates in appliesTo and name* (and subnetworkld

if present) column are found

e additional parameters

checkReferences
logical; whether to check if references to other aspects are present in the RCX
object

108 updateCyTableColumn

Details

In the case, that a CyTableColumn object is added to an other, or the RCX object already contains
a CyTableColumn object, some properties might be present in both. By default, the properties are
updated with the values of the latest one. This can prevented by setting the replace parameter to
FALSE, in that case only new attributes are added and the existing attributes remain untouched.

Furthermore, if duplicated properties are considered as a preventable mistake, an error can be raised
by setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated
properties are present.

Cytoscape does not currently support table columns for the root network, but this is option is in-
cluded here for consistency.

Value

CyTableColumn or RCX object with added hidden attributes

See Also

CySubNetworks

Examples

For CyTableColumnssAspects:
prepare some aspects:
tableColumn1 = createCyTableColumn(

non non

appliesTo=c("nodes"”, "edges", "networks"),
name=c("weight"”,"weight"”, "collapsed”),
dataType=c("numeric"”,"double”,"logical”),
isList=c(FALSE,FALSE,TRUE),
subnetworkId=c(NA,NA,1)

)

nodes is updated, networks is new
tableColumn2 = createCyTableColumn(

non

appliesTo=c("nodes”, "networks"),
name=c("weight"”,"collapsed”),
dataType=c("double”, "character™)

)

Simply update with new values
tableColumn3 = updateCyTableColumn(tableColumnl, tableColumn2)

Ignore already present keys
tableColumn3 = updateCyTableColumn(tableColumn1, tableColumn2,
replace=FALSE)

Raise an error if duplicate keys are present
try(updateCyTableColumn(tableColumnl, tableColumn2,

stopOnDuplicates=TRUE))
=>ERROR:
Elements of "appliesTo”, "name"” and "subnetworkId"” (in updateCyTableColumn)
must not contain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))

updateCy VisualProperties

edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all”, c(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add a table column property
rcx = updateCyTableColumn(rcx, tableColumnl)

add an additional property (update with new values)
rcx = updateCyTableColumn(rcx, tableColumn2)

create a prpperty with a not existing subnetwork. ..
tableColumn3 = createCyTableColumn(

appliesTo="nodes",

name="weight",

subnetworkId=9
)

...and try to add them
try(updateCyTableColumn(rcx, tableColumn3))
=>ERROR:

Provided IDs of "additionalColumns$subnetworkId” (in addCyTableColumn)

don't exist in "rcx$cySubNetworks$id”

109

updateCyVisualProperties

Update Cytoscape Visual Properties (aspect)

Description

This function is used to add Cytoscape visual properties aspects to each other or to an RCX object.
In a CyVisualProperties aspect, CyVisualProperty objects define networks, nodes, edges, and

default nodes and edges.

Usage

updateCyVisualProperties(
X,
cyVisualProperties,
replace = TRUE,
stopOnDuplicates = FALSE,

S3 method for class 'CyVisualPropertiesAspect
updateCyVisualProperties(

X,

cyVisualProperties,

110 updateCy VisualProperties

replace = TRUE,
stopOnDuplicates = FALSE,

)

S3 method for class 'RCX'
updateCyVisualProperties(
X,
cyVisualProperties,
replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

)
Arguments
X RCX or CyVisualProperties object; (to which it will be added)
cyVisualProperties
CyVisualProperties object; (that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates
logical; whether to stop, if duplicates in name (and subnetworkId if present)
column are found
e additional parameters
checkReferences
logical; whether to check if references to other aspects are present in the RCX
object
Details

Structure of Cytoscape Visual Property:

CyVisualProperty

| ---properties = CyVisualPropertyProperties
| | -—name

| | --value

| ---dependencies = CyVisualPropertyDependencies
| | --name

| | --value

| ---mappings = CyVisualPropertyMappings

| | --name

| |--type

| | --definition

| ---appliesTo = <reference to subnetwork id>
|---view = <reference to subnetwork id>

CyVisualProperties aspects consist of CyVisualProperty objects for each entry: networks,
nodes, edges, and default nodes and edges. Two CyVisualProperties aspects are merged by
adding its entries individually.

CyVisualProperty objects differ in the sub-networks and views (CySubNetworks) they apply to,

subsequently properties, dependencies and mappings are merged based on the uniqueness in those
two.

updateCy VisualProperties 111

Properties, dependencies and mappings (i.e. CyVisualPropertyProperties, CyVisualPropertyDependencies
and CyVisualPropertyMappings objects) are unique in name. By default, the duplicate attributes

are updated with the values of the latest one. This can prevented by setting the replace parameter to

FALSE, in that case only new attributes are added and the existing attributes remain untouched. Fur-

thermore, if duplicated attributes are considered as a preventable mistake, an error can be raised by

setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated

attributes are present.

Value

CyVisualProperties or RCX object with added Cytoscape visual properties

See Also

updateCyVisualProperty, getCyVisualProperty

Examples

Prepare used properties

Visual property: Properties

vpPropertyP1 = createCyVisualPropertyProperties(c(NODE_BORDER_STROKE="SOLID"))
vpPropertyP2 = createCyVisualPropertyProperties(c(NODE_BORDER_WIDTH="1.5"))
vpPropertyP3 = createCyVisualPropertyProperties(c(NODE_BORDER_WIDTH="999"))

Visual property: Dependencies

vpPropertyD1 = createCyVisualPropertyDependencies(c(nodeSizelLocked="false"))
vpPropertyD2 = createCyVisualPropertyDependencies(c(arrowColorMatchesEdge="true"))
vpPropertyD3 = createCyVisualPropertyDependencies(c(arrowColorMatchesEdge="false"))

Visual property: Mappings
vpPropertyM1 = createCyVisualPropertyMappings(c(NODE_FILL_COLOR="CONTINUOUS"),
"COL=directed, T=boolean,K=0=true, V=0=ARROW")
vpPropertyM2 = createCyVisualPropertyMappings(c(EDGE_TARGET_ARROW_SHAPE="DISCRETE"),
"TRIANGLE")
vpPropertyM3 = createCyVisualPropertyMappings(c(EDGE_TARGET_ARROW_SHAPE="DISCRETE"),
"NONE")

Create visual property object
vpPropertyl = createCyVisualProperty(properties=1list(vpPropertyP1,
vpPropertyP1),
dependencies=list(vpPropertyD1,
NA),
mappings=1list(vpPropertyM1,
NA),
appliesTo = c(NA,
n,
view = c(NA,
D))
vpProperty2 = createCyVisualProperty(properties=vpPropertyP2,
dependencies=vpPropertyD2,
mappings=vpPropertyM2)
vpProperty3 = createCyVisualProperty(properties=vpPropertyP3,
dependencies=vpPropertyD3,
mappings=vpPropertyM3)

Create a visual properties aspect

112 updateCy VisualProperties

(using the same visual property object for simplicity)

visProp1 = createCyVisualProperties(network=vpPropertyl,
nodes=vpPropertyl,
edges=vpProperty1l,
defaultNodes=vpPropertyT,
defaultEdges=vpProperty1)

visProp2 = createCyVisualProperties(network=vpProperty2,
nodes=vpProperty2,
edges=vpProperty2,
defaultNodes=vpProperty2,
defaultEdges=vpProperty2)

visProp3 = createCyVisualProperties(network=vpProperty3,
nodes=vpProperty3,
edges=vpProperty3,
defaultNodes=vpProperty3,
defaultEdges=vpProperty3)

Adding a different visual property (Properties, Dependencies, Mappings)
(e.g. "NODE_BORDER_WIDTH"”, which is not present before)
visProp4 = updateCyVisualProperties(visPropl, visProp2)

Update a existing visual property
visProp5 = updateCyVisualProperties(visProp4, visProp3)

Raise an error if duplicate keys are present
try(updateCyVisualProperties(visProp4, visProp3,

stopOnDuplicates=TRUE))
=>ERROR:
Elements of name (in VisualProperties$network$properties<appliesTo=NA,view=NA>)
must not contain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all”, c(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

Adding visual properties to an RCX object
rcx = updateCyVisualProperties(rcx, visPropl)

Adding a different visual property (Properties, Dependencies, Mappings)
(e.g. "NODE_BORDER_WIDTH"”, which is not present before)

rcx = updateCyVisualProperties(rcx, visProp2)

Update a existing visual property
rcx = updateCyVisualProperties(rcx, visProp3)

Raise an error if duplicate keys are present

updateCy VisualProperty 113

try(updateCyVisualProperties(rcx, visProp3,
stopOnDuplicates=TRUE))
=>ERROR:
Elements of "name” (in VisualProperties$network$properties<appliesTo=NA,view=NA>)
must not contain duplicates!

updateCyVisualProperty
Update Cytoscape Visual Property objects and sub-objects (used in
CyVisualProperties aspect)

Description

This function is used to add Cytoscape visual property objects (CyVisualProperty) and its sub-

objects (CyVisualPropertyProperties, CyVisualPropertyDependencies and CyVisualPropertyMappings)
to each other. Cytoscape visual property objects define networks, nodes, edges, and default nodes

and edges in a CyVisualProperties aspect.

Usage

updateCyVisualProperty(
cyVisualProperty,
additionalProperty,
replace = TRUE,
stopOnDuplicates = FALSE,
.log = cQ)

)

S3 method for class 'CyVisualPropertyProperties'
updateCyVisualProperty(

cyVisualProperty,

additionalProperty,

replace = TRUE,

stopOnDuplicates = FALSE,

.log = cQ)
)

S3 method for class 'CyVisualPropertyDependencies
updateCyVisualProperty(

cyVisualProperty,

additionalProperty,

replace = TRUE,

stopOnDuplicates = FALSE,

.log = c(Q)
)

S3 method for class 'CyVisualPropertyMappings
updateCyVisualProperty(

cyVisualProperty,

additionalProperty,

replace = TRUE,

114

stopOnDuplicates = FALSE,
.log = c()
)

S3 method for class 'CyVisualProperty'
updateCyVisualProperty(

cyVisualProperty,

additionalProperty,

replace = TRUE,

stopOnDuplicates = FALSE,

updateCy VisualProperty

.log = cQ)
)
Arguments
cyVisualProperty
object; (to which it will be added)
additionalProperty
object; (that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates
logical; whether to stop, if duplicates in name (and subnetworkId if present)
column are found
.log character (optional); name of the calling function used in error logging
Details

Structure of Cytoscape Visual Property:

CyVisualProperty

| ---properties = CyVisualPropertyProperties
| | --name

| | --value

| ---dependencies = CyVisualPropertyDependencies

| | -—name

| | --value

| ---mappings = CyVisualPropertyMappings
| | --name

| |--type

| | --definition

| ---appliesTo = <reference to subnetwork id>

|---view = <reference to subnetwork id>

CyVisualProperty objects differ in the sub-networks and views (CySubNetworks) they apply to,
subsequently properties, dependencies and mappings are merged based on the uniqueness in those

two.

Properties, dependencies and mappings (i.e. CyVisualPropertyProperties, CyVisualPropertyDependencies

and CyVisualPropertyMappings objects) are unique in name. By default, the duplicate attributes
are updated with the values of the latest one. This can prevented by setting the replace parameter to
FALSE, in that case only new attributes are added and the existing attributes remain untouched. Fur-
thermore, if duplicated attributes are considered as a preventable mistake, an error can be raised by
setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated

attributes are present.

updateCy VisualProperty 115

Value

CyVisualProperty, CyVisualPropertyProperties, CyVisualPropertyDependencies or CyVisualPropertyMappir
objects

See Also

getCyVisualProperty, updateCyVisualProperties

Examples

Prepare used properties

Visual property: Properties

vpPropertyP1 = createCyVisualPropertyProperties(c(NODE_BORDER_STROKE="SOLID"))
vpPropertyP2 = createCyVisualPropertyProperties(c(NODE_BORDER_WIDTH="1.5"))
vpPropertyP3 = createCyVisualPropertyProperties(c(NODE_BORDER_WIDTH="999"))

Add two properties:
vpPropertyP4 = updateCyVisualProperty(vpPropertyP1,vpPropertyP2)
vpPropertyP4 = updateCyVisualProperty(vpPropertyP4,vpPropertyP3)

Visual property: Dependencies

vpPropertyD1 = createCyVisualPropertyDependencies(c(nodeSizeLocked="false"))
vpPropertyD2 = createCyVisualPropertyDependencies(c(arrowColorMatchesEdge="true"))
vpPropertyD3 = createCyVisualPropertyDependencies(c(arrowColorMatchesEdge="false"))

Add two dependencies:
vpPropertyD4 = updateCyVisualProperty(vpPropertyD1,vpPropertyD2)
vpPropertyD4 = updateCyVisualProperty(vpPropertyD4,vpPropertyD3)

Visual property: Mappings
vpPropertyM1 = createCyVisualPropertyMappings(c(NODE_FILL_COLOR="CONTINUOUS"),
"COL=directed, T=boolean,K=0=true, V=0=ARROW")
vpPropertyM2 = createCyVisualPropertyMappings(c(EDGE_TARGET_ARROW_SHAPE="DISCRETE"),
"TRIANGLE")
vpPropertyM3 = createCyVisualPropertyMappings(c(EDGE_TARGET_ARROW_SHAPE="DISCRETE"),
"NONE")

Add two mappings:
vpPropertyM4 = updateCyVisualProperty(vpPropertyM1,vpPropertyM2)
vpPropertyM4 = updateCyVisualProperty(vpPropertyM4,vpPropertyM3)

Create visual property object
vpPropertyl = createCyVisualProperty(properties=list(vpPropertyP1,
vpPropertyP1,
vpPropertyP1),
dependencies=list(vpPropertyD1,
vpPropertyD1,
NA),
mappings=1list(vpPropertyM1,
NA,
vpPropertyM1),
appliesTo = c(NA,
NA,
n,
view = c(NA,
1,

116 updateEdgeAttributes

NAY)
vpProperty2 = createCyVisualProperty(properties=vpPropertyP2,
dependencies=vpPropertyD2,
mappings=vpPropertyM2)
vpProperty3 = createCyVisualProperty(properties=vpPropertyP3,
dependencies=vpPropertyD3,
mappings=vpPropertyM3)

add two visual property objects
vpProperty4 = updateCyVisualProperty(vpPropertyl, vpProperty2)

update values
updateCyVisualProperty(vpProperty4, vpProperty3)

keep old values
updateCyVisualProperty(vpProperty4, vpProperty3,
replace = FALSE)

keep old values
try(updateCyVisualProperty(vpProperty4, vpProperty3,
stopOnDuplicates = TRUE))
=>ERROR:
Elements of name (in properties<appliesTo=NA,view=NA>) must not contain duplicates!

updateEdgeAttributes Update edge attributes

Description

This functions add edge attributes in the form of a EdgeAttributes object to an RCX or an other
EdgeAttributes object.

Usage

updateEdgeAttributes(
X,
edgeAttributes,
replace = TRUE,
stopOnDuplicates = FALSE,

S3 method for class 'EdgeAttributesAspect'
updateEdgeAttributes(

X,

edgeAttributes,

replace = TRUE,

stopOnDuplicates = FALSE,

S3 method for class 'RCX'
updateEdgeAttributes(

updateEdgeAttributes 117

X,

edgeAttributes,

replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

)
Arguments
X RCX or EdgeAttributes object; (to which the new edge attributes will be
added)
edgeAttributes EdgeAttributes object; (the new aspect, that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates

logical; whether to stop, if duplicates in propertyOf and name (and subnet-
workld if present) column are found

e additional parameters
checkReferences

logical; whether to check if references to other aspects are present in the RCX
object

Details

Edges may have additional attributes besides a name and a representation, and are represented as
EdgeAttributes objects. EdgeAttributes objects can be added to an RCX or an other EdgeAttributes
object. The propertyOf parameter references the Edges ids to which the attributes belong to. When
adding an EdgeAttributes object to an RCX object, those ids must be present in the Edges aspect,
otherwise an error is raised.

In the case, that a EdgeAttributes object is added to an other, or the RCX object already contains
a EdgeAttributes object, some attributes might be present in both. By default, the attributes are
updated with the values of the latest one. This can prevented by setting the replace parameter to
FALSE, in that case only new attributes are added and the existing attributes remain untouched.

Furthermore, if duplicated attributes are considered as a preventable mistake, an error can be raised
by setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated
attributes are present.

Value

EdgeAttributes or RCX object with added node attributes

See Also

NodeAttributes, NetworkAttributes

Examples

For EdgeAttributesAspects:

prepare some aspects:

edgeAttributes = createEdgeAttributes(
property0f=c(0,0,0,0),
name=c("A","A","B","B"),

118 updateEdgeAttributes

value=list(c("al","a2"),
"a with subnetwork”,
"o
"b with subnetwork"),
isList=c(TRUE,FALSE,TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)
)

A is updated, C is new
edgeAttributes2 = createEdgeAttributes(
property0f=c(0,0,0),
name=c("A","A","C"),
value=list("new a",
"new a with subnetwork”,
c(1,2)),
subnetworkId=c(NA,1,NA)
)

Simply update with new values
edgeAttributes3 = updateEdgeAttributes(edgeAttributes, edgeAttributes2)

Ignore already present keys
edgeAttributes3 = updateEdgeAttributes(edgeAttributes, edgeAttributes2,
replace=FALSE)

Raise an error if duplicate keys are present

try(updateEdgeAttributes(edgeAttributes, edgeAttributes2,
stopOnDuplicates=TRUE))

=>ERROR:

Elements of "propertyOf”, "name” and "subnetworkId” (in updateEdgeAttributes)

must not contain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = c(1,2),
nodes = list("all”, c(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add the edge attributes
rcx = updateEdgeAttributes(rcx, edgeAttributes)

add additional edge attributes and update existing
rcx = updateEdgeAttributes(rcx, edgeAttributes2)

create edge attributes for a not existing edge...
edgeAttributes3 = createEdgeAttributes(property0f=9,
name="A",
value="a")
...and try to add them
try(updateEdgeAttributes(rcx, edgeAttributes3))

updateEdges 119

=>ERROR:
Provided IDs of "additionalAttributes$propertyOf” (in updateEdgeAttributes)
don't exist in "rcx$edges$id”

updateEdges Update edges

Description

This functions add edges in the form of a Edges object to an other Edges or an RCX object.

Usage
updateEdges(x, edges, stopOnDuplicates = FALSE, keepOldIds = TRUE, ...)
S3 method for class 'EdgesAspect'
updateEdges(x, edges, stopOnDuplicates = FALSE, keepOldIds = TRUE, ...)
S3 method for class 'RCX'
updateEdges(
X)
edges,
stopOnDuplicates = FALSE,
keepOldIds = TRUE,
checkReferences = TRUE,
)
Arguments
X RCX-object or Edges object; (to which the new Edges will be added)
edges Edges object; (the Edges, that will be added)
stopOnDuplicates
logical (optional); whether to stop, if duplicates in id column are found, or re-
assign ids instead.
keepOldIds logical (optional); if ids are re-assigned, the original ids are kept in the column
oldld
e additional parameters
checkReferences
logical; whether to check if references to other aspects are present in the RCX
object
Details

When edges should be added to a Edges or a RCX-object object some conflicts may rise, since the
aspects might use the same IDs. If the aspects do not share any IDs, the two aspects are simply
combined. Otherwise, the IDs of the new edges are re-assinged continuing with the next available
ID (i.e. maxId(edgesAspect) + 1 and maxId(rcx$edges) + 1, respectively).

To keep track of the changes, it is possible to keep the old IDs of the newly added edges in the
automatically added column oldld. This can be omitted by setting keepOldIds to FALSE. Otherwise,
if a re-assignment of the IDs is not desired, this can be prevented by setting stopOnDuplicates to
TRUE. This forces the function to stop and raise an error, if duplicated IDs are present.

120 updateMetaDataProperties

Value

Edges or RCX with added edges

Examples

create some edges

edges1 = createEdges(source=c(1,1,0), target=c(2,0,1))

edges2 = createEdges(id=c(3,2,4),
source=c(0,0,1),
target=c(1,2,2),
interaction=c("activates”,”inhibits"”, NA))

simply add the edges and keep old ids
edges3 = updateEdges(edges1, edges2)

add the edges
edges4 = updateEdges(edges1, edges2, keepOldIds=FALSE)

force an error because of duplicated ids
try(updateEdges(edges1, edges2, stopOnDuplicates=TRUE))

=>Error:

Elements of "id” (in updateEdges) must not contain duplicates!

Prepare an RCX object
rcx = createRCX(createNodes(name = c("EGFR","AKT1","WNT")))

add edges to the RCX object
rcx = updateEdges(rcx, edgesl)

add new edges and don't keep old ids
rcx = updateEdges(rcx, edges2, keepOldIds=FALSE)

force an error because of duplicated ids

try(updateEdges(rcx, edges2, stopOnDuplicates=TRUE))

=>Error:

Elements of "id"” (in updateEdges) must not contain duplicates!

updateMetaDataProperties
Update meta-data properties

Description

The Meta-data aspect contains meta-data about the aspects in the RCX-object. Properties that
need to be fetched or updated independently of aspect data are added with this function.

Usage

updateMetaDataProperties(rcx, aspectName, property)

updateNetworkAttributes 121

Arguments
rex RCX object;
aspectName character; name of the aspect as displayed in Meta-data (e.g. "nodes")
property named list; property as key-value pairs (empty list to remove all)
Value

RCX object with updated Meta-data aspect

Examples

prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = c(1,2),
nodes = list("all", c(1,2,3)),
edges = list("all"”, c(9,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add properties for edges
updateMetaDataProperties(rex,
"edges",
list(some="value",
another="VALUE"))

remove properties for edges

updateMetaDataProperties(rex,
"edges",
list())

updateNetworkAttributes
Update network attributes

Description

This functions add network attributes in the form of a NetworkAttributes object to an RCX or an
other NetworkAttributes object.

Usage

updateNetworkAttributes(
X,
networkAttributes,
replace = TRUE,
stopOnDuplicates = FALSE,

122 updateNetworkAttributes

S3 method for class 'NetworkAttributesAspect'
updateNetworkAttributes(

X,

networkAttributes,

replace = TRUE,

stopOnDuplicates = FALSE,

)

S3 method for class 'RCX'
updateNetworkAttributes(
X,
networkAttributes,
replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

)
Arguments
X RCX object; (to which the new network attributes will be added)
networkAttributes
NetworkAttributes object; (the new aspect, that will be added)
replace logical; if existing values are updated (or ignored)
stopOnDuplicates
logical; whether to stop, if duplicates in name (and subnetworkld if present)
column are found
additional parameters
checkReferences
logical; whether to check if references to other aspects are present in the RCX
object
Details

Networks may have attributes, that are represented as NetworkAttributes objects. NetworkAttributes
objects can be added to an RCX or an other NetworkAttributes object.

In the case, that a NetworkAttributes object is added to an other, or the RCX object already
contains a NetworkAttributes object, some attributes might be present in both. By default, the
attributes are updated with the values of the latest one. This can prevented by setting the replace
parameter to FALSE, in that case only new attributes are added and the existing attributes remain
untouched.

Furthermore, if duplicated attributes are considered as a preventable mistake, an error can be raised
by setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated
attributes are present.

Value

NetworkAttributes or RCX object with added network attributes

updateNetworkAttributes 123

See Also

NetworkAttributes; NodeAttributes, EdgeAttributes

Examples

For NetworkAttributesAspects:
prepare some aspects:
networkAttributes1 = createNetworkAttributes(
name=c("A","A" "B","B"),
value=list(c("al","a2"),
"a with subnetwork”,
"o
"b with subnetwork”),
isList=c(TRUE,FALSE,TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)
)

A is updated, C is new
networkAttributes2 = createNetworkAttributes(
name=c("A","A","C"),
value=list("new a",
"new a with subnetwork”,
c(1,2)),
subnetworkId=c(NA,1,NA)
)

Simply update with new values
networkAttributes3 = updateNetworkAttributes(networkAttributesl, networkAttributes2)

Ignore already present keys
networkAttributes3 = updateNetworkAttributes(networkAttributesl, networkAttributes2,
replace=FALSE)

Raise an error if duplicate keys are present

try(updateNetworkAttributes(networkAttributes1, networkAttributes2,
stopOnDuplicates=TRUE))

=>ERROR:

Provided IDs (name, subnetworkId) countain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c"”,"d"”,"e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all"”, c(1,2,3)),
edges = list("all”, c(9,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add the network attributes
rcx = updateNetworkAttributes(rcx, networkAttributesi)

add additional network attributes and update existing

124

rcx = updateNetworkAttributes(rcx, networkAttributes2)

create a relation with a not existing subnetwork. ..

networkAttributes3 = createNetworkAttributes(
name="X",
value="new x",
subnetworkId=9

)

...and try to add them

try(updateNetworkAttributes(rcx, networkAttributes3))

=>ERROR:
NetworkAttributesAspect$subnetworkId IDs don't exist in CySubNetworksAspect

updateNodeAttributes

updateNodeAttributes

Update node attributes

Description

This functions add node attributes in the form of a NodeAttributes object to an RCX or an other
NodeAttributes object.

Usage

updateNodeAttributes(

)

S3 method for class 'NodeAttributesAspect'

X,
nodeAttributes,
replace = TRUE,
stopOnDuplicates = FALSE,

updateNodeAttributes(

X)

nodeAttributes,

replace = TRUE,
stopOnDuplicates = FALSE,

S3 method for class 'RCX'
updateNodeAttributes(

X,

nodeAttributes,

replace = TRUE,
stopOnDuplicates = FALSE,
checkReferences = TRUE,

updateNodeAttributes 125

Arguments

X RCX or NodeAttributes object; (to which the new node attributes will be
added)

nodeAttributes NodeAttributes object; (the new aspect, that will be added)

replace logical; if existing values are updated (or ignored)

stopOnDuplicates

logical; whether to stop, if duplicates in propertyOf and name (and subnet-
workld if present) columns are found

. additional parameters

checkReferences

logical; whether to check if references to other aspects are present in the RCX
object

Details

Nodes may have additional attributes besides a name and a representation, and are represented as
NodeAttributes objects. NodeAttributes objects can be added to an RCX object or an other
NodeAttributes object. The propertyOf parameter references the node IDs to which the attributes
belong to. When adding an NodeAttributes object to an RCX object, those IDs must be present
in the Nodes aspect, otherwise an error is raised.

In the case, that a NodeAttributes object is added to an other, or the RCX object already contains
a NodeAttributes object, some attributes might be present in both. By default, the attributes are
updated with the values of the latest one. This can prevented setting the replace parameter to FALSE,
in that case only new attributes are added and the existing attributes remain untouched.

Furthermore, if duplicated attributes are considered as a preventable mistake, an error can be raised
by setting stopOnDuplicates to TRUE. This forces the function to stop and raise an error, if duplicated
attributes are present.

Value

NodeAttributes or RCX object with added node attributes

See Also

EdgeAttributes, NetworkAttributes

Examples

For NodeAttributesAspects:

prepare some aspects:

nodeAttributesl = createNodeAttributes(
propertyOf=c(1,1,1,1),
name=c("A","A","B","B"),
value=list(c("al1","a2"),

"a with subnetwork”,

"o,

"b with subnetwork"),
isList=c(TRUE,FALSE,TRUE,FALSE),
subnetworkId=c(NA,1,NA,1)

)

A is updated, C is new

126 updateNodeAttributes

nodeAttributes2 = createNodeAttributes(
property0f=c(1,1,1),
name=c("A","A","C"),
value=list("new a",
"new a with subnetwork”,
c(1,2)),
subnetworkId=c(NA,1,NA)
)

Simply update with new values
nodeAttributes3 = updateNodeAttributes(nodeAttributesl, nodeAttributes2)

Ignore already present keys
nodeAttributes4 = updateNodeAttributes(nodeAttributesl, nodeAttributes2,
replace=FALSE)

Raise an error if duplicate keys are present

try(updateNodeAttributes(nodeAttributes1, nodeAttributes2,
stopOnDuplicates=TRUE))

=>ERROR:

Elements of "propertyOf”, "name"” and "subnetworkId” (in addNodeAttributes)

must not contain duplicates!

For RCX
prepare RCX object:
nodes = createNodes(name = c("a","b","c","d","e","f"))
edges = createEdges(source=c(1,2,0,0,0,2),
target=c(2,3,1,2,5,4))
rcx = createRCX(nodes, edges)
cySubNetworks = createCySubNetworks(
id = ¢(1,2),
nodes = list("all", c(1,2,3)),
edges = list("all”, c(90,2))
)
rcx = updateCySubNetworks(rcx, cySubNetworks)

add the node attributes, even if no subnetworks are present
rcx = updateNodeAttributes(rcx, nodeAttributesl, checkReferences=FALSE)

add the node attributes
rcx = updateNodeAttributes(rcx, nodeAttributesl)

add additional node attributes and update existing
rcx = updateNodeAttributes(rcx, nodeAttributes2)

create node attributes for a not existing node...
nodeAttributes3 = createNodeAttributes(property0f=9,
name="A",
value="a")
...and try to add them
try(updateNodeAttributes(rcx, nodeAttributes3))
=>ERROR:
Provided IDs of "additionalAttributes$propertyOf” (in addNodeAttributes)
don't exist in "rcx$nodes$id”

updateNodes 127

updateNodes Update nodes

Description

This functions add nodes in the form of a Nodes object to an other Nodes or an RCX-object.

Usage
updateNodes(x, nodes, stopOnDuplicates = FALSE, keepOldIds = TRUE)
S3 method for class 'NodesAspect'
updateNodes(x, nodes, stopOnDuplicates = FALSE, keepOldIds = TRUE)
S3 method for class 'RCX'
updateNodes(x, nodes, stopOnDuplicates = FALSE, keepOldIds = TRUE)
Arguments
X RCX-object or Nodes object; (to which the new Nodes will be added)
nodes Nodes object; (the Nodes, that will be added)
stopOnDuplicates
logical (optional); whether to stop, if duplicates in id column are found, or re-
assign ids instead.
keepOldIds logical (optional); if ids are re-assigned, the original ids are kept in the column
0ldId
Details

When nodes should be added to a Nodes or a RCX-object object some conflicts may rise, since the
aspects might use the same IDs. If the aspects do not share any IDs, the two aspects are simply
combined. Otherwise, the IDs of the new nodes are re-assinged continuing with the next available
ID (i.e. maxId(nodesAspect) + 1 and maxId(rcx$nodes) + 1, respectively).

To keep track of the changes, it is possible to keep the old IDs of the newly added nodes in the
automatically added column oldId. This can be omitted by setting keepOldIds to FALSE. Otherwise,
if a re-assignment of the IDs is not desired, this can be prevented by setting stopOnDuplicates to
TRUE. This forces the function to stop and raise an error, if duplicated IDs are present.

Value

Nodes or RCX object with added nodes

Examples

create some nodes
nodes1 = createNodes(name = c("EGFR","AKT1","WNT"))
nodes2 = createNodes(name=c("CDK1", "CDK2", "CDK3"),
represents=c("HGNC:CDK1",
"Uniprot:P24941",
"Ensembl:ENSG00000250506"))

128 validate

simply add the nodes and keep old ids
nodes3 = updateNodes(nodes1, nodes2)

add the nodes
nodes4 = updateNodes(nodes1, nodes2, keepOldIds=FALSE)

force an error because of duplicated ids
try(updateNodes(nodes1, nodes2, stopOnDuplicates=TRUE))

=>Error:

Elements of "id" (in updateNodes) must not contain duplicates!

create an RCX object with nodes
rcx = createRCX(nodes1)

add additional nodes
rcx = updateNodes(rcx, nodes2, keepOldIds=FALSE)

force an error becauses of duplicated ids

try(updateNodes(rcx, nodes2, stopOnDuplicates=TRUE))

=>Error:

Elements of "id” (in updateNodes) must not contain duplicates!

validate Validate RCX and its aspects

Description

Validate RCX objects and its aspects.

Usage

validate(x, verbose = TRUE)

Default S3 method:
validate(x, verbose = TRUE)

S3 method for class 'NodesAspect'
validate(x, verbose = TRUE)

S3 method for class 'EdgesAspect'
validate(x, verbose = TRUE)

S3 method for class 'NodeAttributesAspect'
validate(x, verbose = TRUE)

S3 method for class 'EdgeAttributesAspect'
validate(x, verbose = TRUE)

S3 method for class 'NetworkAttributesAspect'
validate(x, verbose = TRUE)

S3 method for class 'CartesianlLayoutAspect'
validate(x, verbose = TRUE)

validate 129

S3 method for class 'CyGroupsAspect'
validate(x, verbose = TRUE)

S3 method for class 'CyVisualPropertiesAspect'
validate(x, verbose = TRUE)

S3 method for class 'CyVisualProperty'
validate(x, verbose = TRUE)

S3 method for class 'CyVisualPropertyProperties'
validate(x, verbose = TRUE)

S3 method for class 'CyVisualPropertyDependencies'
validate(x, verbose = TRUE)

S3 method for class 'CyVisualPropertyMappings'
validate(x, verbose = TRUE)

S3 method for class 'CyHiddenAttributesAspect'
validate(x, verbose = TRUE)

S3 method for class 'CyNetworkRelationsAspect'
validate(x, verbose = TRUE)

S3 method for class 'CySubNetworksAspect'
validate(x, verbose = TRUE)

S3 method for class 'CyTableColumnAspect'
validate(x, verbose = TRUE)

S3 method for class 'RCX'
validate(x, verbose = TRUE)

Arguments
X object to validate; RCX object or an aspect
verbose logical; whether to print the test results.
Details

Different tests are performed on aspects and the RCX network. This includes checks of the correct
aspect structure, data types, uniqueness of IDs and attribute names, presence of NA values, and
references between the aspects.

Value

logical; whether the object passed all tests.

Methods (by class)

e validate(default): Default
e validate(NodesAspect): Nodes

130

visualize

validate(EdgesAspect): Edges

validate(NodeAttributesAspect): Node attributes
validate(EdgeAttributesAspect): Edge attributes
validate(NetworkAttributesAspect): Network attributes
validate(CartesianLayoutAspect): Cartesian layout
validate(CyGroupsAspect): Cytoscape Groups
validate(CyVisualPropertiesAspect): Cytoscape Visual Properties
validate(CyVisualProperty): Cytoscape Visual Properties
validate(CyVisualPropertyProperties): Cytoscape visual property: Properties
validate(CyVisualPropertyDependencies): Cytoscape visual property: Dependencies
validate(CyVisualPropertyMappings): Cytoscape visual property: Mappings
validate(CyHiddenAttributesAspect): Cytoscape hidden attributes
validate(CyNetworkRelationsAspect): Cytoscape network relations
validate(CySubNetworksAspect): Cytoscape sub-networks
validate(CyTableColumnAspect): Cytoscape table column aspect
validate(RCX): The whole RCX object with all its aspects

Examples

Read from a CX file

reading the provided example network of the package

cxFile <- system.file(
"extdata",
"Imatinib-Inhibition-of-BCR-ABL-66a902f5-2022-11e9-bb6a-0ac135e8bacf.cx",
package = "RCX"

)

rcx = readCX(cxFile)

validate the network
validate(rcx)

validate a single aspect
validate(rcx$nodes)

visualize Visualize a Network

Description

Visualize RCX and CX networks in RStudio or in an external browser.

Usage

visualize(x, layout = NULL, openExternal = FALSE)
S3 method for class 'RCX'
visualize(x, layout = NULL, openExternal = FALSE)
S3 method for class 'CX'
visualize(x, layout = NULL, openExternal = FALSE)

visualize 131

Arguments
X network; RCX or CX object
layout named character or list; e.g. c(name="random")

openExternal logical; whether to open in an external browser instead of the RStudio viewer

Details

This function uses the Java Script library used by the NDEx platform (https://ndexbio.org/) to
visualize the RCX or CX network from toCX. In the first case, the RCX is converted to CX (JSON)
using toCX.

By default the visualization is opened in RStudio in the Viewer panel. If this function is not executed
in RStudio, the visualization is opened in the standard web-browser. This also can be forced from
within RStudio using openExternal.

If the network contains the necessary Cytoscape styles (see http://manual.cytoscape.org/en/
stable/Styles.html) the network is visualized as seen on the NDEx platform.

To define the layout of the network the coordinate from CartesianLayout are used to determine the
location of the nodes. If this aspect is missing, or the the coordinates should be ignored, the layout
parameter can be used to set a different layout.

layout follows therefore the definition of Cytoscape.js (see https://js.cytoscape.org/#layouts).
A simple definition can be setting only the name of the desired layout, e.g. random. Additional op-
tions can be passed as named list, where the values are passed without quoting. This allows for even
passing Java Script functions to Cytoscape.js.

The visualization can also be saved as HTML file using the writtHTML function instead of this
one.

Value

NULL

See Also

rcxToJson, readCX, writeCX

Examples

prepare RCX
rcx = createRCX(
createNodes(name = c("a","b","c")),
createEdges(
source=c(0,0,1),
target=c(1,2,2)
)
)

visualize the network
visualize(rcx)

force a different layout
visualize(rcx, c(name="cose"))

force a different layout with Java Script parameters

https://ndexbio.org/
http://manual.cytoscape.org/en/stable/Styles.html
http://manual.cytoscape.org/en/stable/Styles.html
https://js.cytoscape.org/#layouts

132 writeCX

visualize(rcx, layout = c(name="random",animate="true"))

even pass a Java Script function
visualize(
rcx,
layout = c(
name="random",
animate="true",
animateFilter="function (node, i){ return true; }"
)
)

open the visualization in an external browser
visualize(
rex,
layout = c(name="cose"),
openExternal = TRUE
)

writeCX Write RCX to file

Description

These function write an RCX object or a CX object to a file.

Usage

writeCX(x, file, verbose = FALSE, pretty = FALSE)

S3 method for class 'RCX'

writeCX(x, file, verbose = FALSE, pretty = FALSE)

S3 method for class 'CX'

writeCX(x, file, verbose = FALSE, pretty = FALSE)
Arguments

X RCX or CX object

file character; the name of the file to which the data are written

verbose logical; whether to print what is happening

pretty logical; adds indentation whitespace to JSON output. Can be TRUE/FALSE or a

number specifying the number of spaces to indent. See jsonlite: :prettify()

Value

file character; the name of the file to which the data were written

See Also
toCX, rcxToJson, readCX

writeHTML 133

Examples

NULL

writeHTML Save network visualization as HTML file

Description
Save an interactive single page visualization of RCX and CX networks as an HTML file containing
all necessary Java Script.

Usage
writeHTML(x, file, layout = NULL, verbose = FALSE)

S3 method for class 'RCX'
writeHTML(x, file, layout = NULL, verbose

FALSE)

S3 method for class 'CX'
writeHTML(x, file, layout = NULL, verbose = FALSE)

Arguments
X network; RCX or CX object
file character; path, where the html file should be saved
layout named character or list; e.g. c(name="random")
verbose logical; whether to print what is happening

Details

This function uses the Java Script library used by the NDEx platform (https://ndexbio.org/) to
visualize the RCX or CX network. The RCX is therefore converted to CX (JSON) using toCX.

If the network contains the necessary Cytoscape styles (see http://manual.cytoscape.org/en/
stable/Styles.html) the network is visualized as seen on the NDEx platform.

To define the layout of the network the coordinate from CartesianLayout are used to determine the
location of the nodes. If this aspect is missing, or the the coordinates should be ignored, the layout
parameter can be used to set a different layout.

layout follows therefore the definition of Cytoscape.js (see https://js.cytoscape.org/#layouts).
A simple definition can be setting only the name of the desired layout, e.g. random. Additional op-
tions can be passed as named list, where the values are passed without quoting. This allows for even
passing Java Script functions to Cytoscape.js.

To visualize the network in RStudio the visualize function can be used instead.

Value

file character; path, where the html file has been saved

See Also

rcxToJson, readCX, writeCX

https://ndexbio.org/
http://manual.cytoscape.org/en/stable/Styles.html
http://manual.cytoscape.org/en/stable/Styles.html
https://js.cytoscape.org/#layouts

134 writetHTML

Examples

prepare RCX
rcx = createRCX(
createNodes(name = c("a","b","c")),
createEdges(
source=c(0,0,1),
target=c(1,2,2)
)
)

cx = toCX(rcx)
htmlFile = tempfile(fileext = ".html")

save the html
writeHTML(rcx, htmlFile)

or
writeHTML(cx, htmlFile)

force a different layout
writeHTML(rcx, htmlFile, c(name="cose"))

force a different layout with Java Script parameters
writeHTML(rcx, htmlFile, layout = c(name="random”,animate="true"))

even pass a Java Script function
writeHTML (
rcx,
htmlFile,
layout = c(
name="random",
animate="true",
animateFilter="function (node, i){ return true; }

)

"

Index

* Only
.aspectClass, 5

x ‘aspectClasses®
.aspectClass, 5

* are
.aspectClass, 5

* aspects
.aspectClass, 5

x class
.aspectClass, 5

+ datasets
aspectClasses, 26

x defined
.aspectClass, 5

* get
.aspectClass, 5

* internal
.addAspectNameToJson, 3
.addAttributeData, 4
.aspectClass, 5
.convertRawList, 6
.createAttributeAspect, 6
.createCyVpPorD, 7
.errorCodes, 8
.filterBy, 10
.format, 11
.infer, 12
.json2RDataType, 13
.jsonL, 14
.jsonV, 15
.log, 15
.mergeAttributesAspect, 16
.mergeldAspect, 17
.modClass, 18
.pasteC, 19
.renameDF, 20
.stop, 20
.summaryAspect, 23
.transformListLength<-, 23
.transformVLD, 24
.validateAttributesAspect, 25
.validateCyVisualPropertyPandD, 25
checks, 28

135

convert-data-types-and-values, 32

convert2json, 34

dot_test, 55

markAttributeColumn, 71

markRefColumn, 72

RCX, 80
* in

.aspectClass, 5
* of

.aspectClass, 5
* that

.aspectClass, 5
* the

.aspectClass, 5
.addAspectNameToJson, 3
.addAttributeData, 4
.addClass (.modClass), 18
.addClass<- (.modClass), 18
.aspectClass, 5
.checkAllClass (checks), 28
.checkAllNumeric (checks), 28
.checkAllNumericOrInDict (checks), 28
.checkAnyNotNull (checks), 28
.checkBContainsAllA (checks), 28
.checkCharacter (checks), 28
.checkClass (checks), 28
.checkClassOneOf (checks), 28
.checkIsId (checks), 28
.checkIsUniqueld (checks), 28
.checkList (checks), 28
.checkLogical (checks), 28
.checkNamed (checks), 28
.checkNamedCharacter (checks), 28
.checkNamedList (checks), 28
.checkNamedLogical (checks), 28
.checkNamedNumeric (checks), 28
.checkNoNa (checks), 28
.checkNonNeg (checks), 28
.checkNumeric (checks), 28
.checkRefPresent (checks), 28
.checkRef's (checks), 28
.checkSameLength (checks), 28
.checkUnique (checks), 28

136

.checkUniqueDF (checks), 28

.convert2json (convert2json), 34

.convertDataTypes
(convert-data-types-and-values),
32

.convertRawList, 6

.convertValues
(convert-data-types-and-values),
32

.createAttributeAspect, 6, 17, 18

.createCyVpPorD, 7

.elementsBContainsAllA (checks), 28

.elementsInDict (checks), 28

.elementsUnique (checks), 28

.elementsUniqueDF (checks), 28

.errorCodes, 8

.filterBy, 10

.format, 11

.formatComma (.format), 11

.formatData (.format), 11

.formatLog (.format), 11

.formatO (.format), 11

.formatParams (.format), 11

.formatQuote (.format), 11

.infer, 12

.inferDataType (.infer), 12

.inferIsList (.infer), 12

.json2RDataType, 13

.jsonL, 14

.jsonV, 15

.listAllNumeric (checks), 28

.listAlINumericOrInDict (checks), 28

.log, 15

.markAttributeColumn<-
(markAttributeColumn), 71

.markRefColumn<- (markRefColumn), 72

.markRegRefColumn<- (markRefColumn), 72

.mergeAttributesAspect, 7, 16, I8

.mergeldAspect, 7, 17,17

.modClass, 18

.paramAnyNotNull (checks), 28

.paramClass (checks), 28

.paramIsOptionalld (checks), 28

.paramNamed (checks), 28

.paramNoNa (checks), 28

.paramNonNeg (checks), 28

.pasteC, 19

.removeClass (.modClass), 18

.removeClass<- (.modClass), 18

.renameDF, 20

.stop, 20

.summaryAspect, 23

INDEX

.test_AllowedColumnsPresent (dot_test),

55

.test_AspectExist (dot_test), 55
.test_AtLeastOneColumnPresent

(dot_test), 55

.test_AtLeastOneElementPresent

(dot_test), 55

.test_ContainsNA (dot_test), 55
.test_DataTypeColumn (dot_test), 55
.test_ElementIslList (dot_test), 55
.test_ElementIsNumeric (dot_test), 55
.test_IdsInAspect (dot_test), 55
.test_IsCVPclass (dot_test), 55
.test_IsCharacter (dot_test), 55
.test_IsClass (dot_test), 55
.test_IslList (dot_test), 55
.test_IslLogical (dot_test), 55
.test_IsNamedList (dot_test), 55
.test_IsNumeric (dot_test), 55
.test_IsPos (dot_test), 55
.test_IsUnique (dot_test), 55
.test_IsUniquelnLists (dot_test), 55
.test_ListAllCharacter (dot_test), 55
.test_ListAllContainsNA (dot_test), 55
.test_ListAllNumeric (dot_test), 55
.test_ListAllNumericOrInDict

(dot_test), 55

.test_ListAll0fClass (dot_test), 55
.test_ListAllUnique (dot_test), 55
.test_ListAllUniquelInLists (dot_test),

55

.test_ListAllowedColumnsPresent

(dot_test), 55

.test_ListOfCVPclass (dot_test), 55
.test_ListRequiredColumnsPresent

(dot_test), 55

.test_NoMergeColumn (dot_test), 55
.test_OneNodePresent (dot_test), 55
.test_RequiredColumnsPresent

(dot_test), 55

.test_ValuesInSet (dot_test), 55
.transformListLength<-, 23
.transformVLD, 24
.validateAttributesAspect, 25
.validateCyVisualPropertyPandD, 25
.validatelListOfCyVisualPropertyPandD

(.validateCyVisualPropertyPandD),
25

aspectClass2Name

(Convert-Names-and-Classes), 32

aspectClasses, 26, 74, 87, 88, 91

INDEX

aspectName2Class
(Convert-Names-and-Classes), 32

base::print(), 37

cartesian layout, 64, 68
CartesianLayout, 27, 81, 94, 95, 131, 133
checks, 28
convert-data-types-and-values, 32
Convert-Names-and-Classes, 32
convert2json, 34
countElements, 35, 73
createCartesianLayout
(CartesianLayout), 27
createCyGroups (CyGroups), 37
createCyHiddenAttributes
(CyHiddenAttributes), 39
createCyNetworkRelations
(CyNetworkRelations), 41
createCySubNetworks (CySubNetworks), 42
createCyTableColumn (CyTableColumn), 43
createCyVisualProperties
(CyVisualProperties), 45
createCyVisualProperty
(CyVisualProperty), 47
createCyVisualPropertyDependencies
(CyVisualPropertyDependencies),
49
createCyVisualPropertyMappings
(CyVisualPropertyMappings), 51
createCyVisualPropertyProperties
(CyVisualPropertyProperties),
53
createEdgeAttributes (EdgeAttributes),
58
createEdges (Edges), 60
createNetworkAttributes
(NetworkAttributes), 75
createNodeAttributes (NodeAttributes),
77
createNodes (Nodes), 79
createRCX (RCX-object), 81
custom-print, 36
CX, 132, 133
CyGroups, 37, 81, 96, 97
CyHiddenAttributes, 39, 82, 99, 100
CyNetworkRelations, 27,41, 42,44, 82, 101,
102, 105
CySubNetworks, 7, 27,42, 82, 102, 104, 105,
108,110, 114
CyTableColumn, 43, 82, 107, 108
Cytoscape visual properties, 49, 51, 53,
109

137

CyVisualProperties, 35, 45, 45, 47, 50, 51,
53,61,82,109-111, 113
CyVisualProperty, 45, 47,47, 48-51, 53, 61,
62,86,109, 110,113-115
CyVisualPropertyDependencies, 8, 25, 45,

47,48, 49, 50, 51, 53,61, 111,
113-115
CyVisualPropertyMappings, 8, 46-50, 51,
52-54,62,111,113-115
CyVisualPropertyProperties, 8, 25, 45,
47-51,53,53,61,111,113-115

dot_test, 55

edge, 64, 68

edge id, 42

edge ids, 38, 58

EdgeAttributes, 58, 76, 78, 81, 116, 117
123,125

edgeAttributes, 64, 68

Edges, 38, 59, 60, 81, 97,105, 117, 119, 120

edges, 64, 68

fromGraphNEL (graphNEL), 63
fromIgraph (Igraph), 67

getAspectClasses, 90
getAspectClasses (aspectClasses), 26
getCyVisualProperty, 46,61, 111,115
graph vertex attributes, 64
graphNEL, 63, 63, 64, 69

hasIds, 65, 73
hasIds(), 35,67, 73,88, 90

idProperty, 66
idProperty(), 35, 66, 73, 88, 90
Igraph, 64, 67

igraph, 67, 68

igraph graph attributes, 68
igraph vertex attributes, 68
igraph::as_graphnel(), 64

jsonlite, 70, 87
jsonlite::prettify(), 93, 132
jsonToRCX, 69, 86-88

markAttributeColumn, 71
markRefColumn, 72

maxId, 72,73, 97,105,119, 127
maxId(), 35, 66, 67, 73, 88, 90
Meta-data, 73

NetworkAttributes, 75,78, 81, 117.
121123, 125

138

node, 27, 63, 64, 68

node id, 42, 60

node ids, 27, 38, 77

NodeAttributes, 70, 76,77,81, 117, 123—-125

nodeAttributes, 64, 68

Nodes, 35, 38, 60, 64, 68, 78,79, 81, 97, 105,
125,127

nodes, 64, 68, 81

parseJSON (readCX), 86
print.CartesianLayoutAspect
(custom-print), 36
print.CyGroupsAspect (custom-print), 36
print.CyHiddenAttributesAspect
(custom-print), 36
print.CyNetworkRelationsAspect
(custom-print), 36
print.CySubNetworksAspect
(custom-print), 36
print.CyTableColumnAspect
(custom-print), 36
print.CyVisualPropertiesAspect
(custom-print), 36
print.CyVisualProperty (custom-print),
36
print.CyVisualPropertyDependencies
(custom-print), 36
print.CyVisualPropertyMappings
(custom-print), 36
print.CyVisualPropertyProperties
(custom-print), 36
print.EdgeAttributesAspect
(custom-print), 36
print.EdgesAspect (custom-print), 36
print.MetaDataAspect (custom-print), 36
print.NetworkAttributesAspect
(custom-print), 36
print.NodeAttributesAspect
(custom-print), 36
print.NodesAspect (custom-print), 36
print.RCX (custom-print), 36
processCX, 70
processCX (readCX), 86

RCX, 26, 35-37, 40, 44, 58, 59, 63, 64, 67, 68
70,73, 74, 76, 78, 80, 82, 86, 87,
90-97, 99-102, 104, 105, 107-111
116, 117, 119-122, 124, 125, 127,
129-133

RCX-object, 81

RCX-package (RCX), 80

rcxToJson, 71, 84, 93, 94, 131-133

readCX, 71, 86, 86, 94, 131133

INDEX

readJSON (readCX), 86
referredBy, 88
referredBy(), 35, 66, 67, 73, 90
refersTo, 89
refersTo(), 35, 66, 67,73, 88

setExtension, 26, 90

subAspectClasses (aspectClasses), 26
subnetwork, 47, 64, 68

subnetwork id, 27, 41,44, 58, 64, 68, 75,77
subnetworks, 39, 41, 44, 58, 76, 78
summary, 37, 91

toCX, 71, 86,93, 94, 131-133
toGraphNEL (graphNEL), 63
toIgraph (Igraph), 67

updateAspectClasses (aspectClasses), 26
updateCartesianlLayout, 28, 94
updateCyGroups, 38, 96
updateCyHiddenAttributes, 40, 99
updateCyNetworkRelations, 4/, 101
updateCySubNetworks, 43, 104
updateCyTableColumn, 44, 107
updateCyVisualProperties, 46, 48, 50, 52,
54,62,109, 115
updateCyVisualProperty, 46, 48, 50, 52, 54,
62,111,113
updateEdgeAttributes, 59, 116
updateEdges, 61, 87, 119
updateMetaData (Meta-data), 73
updateMetaDataProperties, 74, 120
updateNetworkAttributes, 76, 121
updateNodeAttributes, 78, 124
updateNodes, 80, 87, 127

validate, 128
vertex, 64, 68
visualize, 130, /133

writeCX, 71, 86, 88, 94, 131, 132, 133
writeHTML, 131, 133

	.addAspectNameToJson
	.addAttributeData
	.aspectClass
	.convertRawList
	.createAttributeAspect
	.createCyVpPorD
	.errorCodes
	.filterBy
	.format
	.infer
	.json2RDataType
	.jsonL
	.jsonV
	.log
	.mergeAttributesAspect
	.mergeIdAspect
	.modClass
	.pasteC
	.renameDF
	.stop
	.summaryAspect
	.transformListLength<-
	.transformVLD
	.validateAttributesAspect
	.validateCyVisualPropertyPandD
	aspectClasses
	CartesianLayout
	checks
	convert-data-types-and-values
	Convert-Names-and-Classes
	convert2json
	countElements
	custom-print
	CyGroups
	CyHiddenAttributes
	CyNetworkRelations
	CySubNetworks
	CyTableColumn
	CyVisualProperties
	CyVisualProperty
	CyVisualPropertyDependencies
	CyVisualPropertyMappings
	CyVisualPropertyProperties
	dot_test
	EdgeAttributes
	Edges
	getCyVisualProperty
	graphNEL
	hasIds
	idProperty
	Igraph
	jsonToRCX
	markAttributeColumn
	markRefColumn
	maxId
	Meta-data
	NetworkAttributes
	NodeAttributes
	Nodes
	RCX
	RCX-object
	rcxToJson
	readCX
	referredBy
	refersTo
	setExtension
	summary
	toCX
	updateCartesianLayout
	updateCyGroups
	updateCyHiddenAttributes
	updateCyNetworkRelations
	updateCySubNetworks
	updateCyTableColumn
	updateCyVisualProperties
	updateCyVisualProperty
	updateEdgeAttributes
	updateEdges
	updateMetaDataProperties
	updateNetworkAttributes
	updateNodeAttributes
	updateNodes
	validate
	visualize
	writeCX
	writeHTML
	Index

