
Package ‘RBGL’
January 20, 2026

Version 1.86.0

Title An interface to the BOOST graph library

Depends graph, methods

Imports methods

Suggests Rgraphviz, XML, RUnit, BiocGenerics, BiocStyle, knitr

Description A fairly extensive and comprehensive interface to the
graph algorithms contained in the BOOST library.

License Artistic-2.0

URL http://www.bioconductor.org

LazyLoad yes

biocViews GraphAndNetwork, Network

LinkingTo BH

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/RBGL

git_branch RELEASE_3_22

git_last_commit a15bdde

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Vince Carey [aut],
Li Long [aut],
R. Gentleman [aut],
Emmanuel Taiwo [ctb] (Converted RBGL vignette from Sweave to RMarkdown
/ HTML.),

Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Contents
astarSearch . 3
bandwidth . 4
bellman.ford.sp . 5
betweenness.centrality.clustering . 6

1

http://www.bioconductor.org

2 Contents

bfs . 7
biConnComp . 8
boyerMyrvoldPlanarityTest . 9
brandes.betweenness.centrality . 10
chrobakPayneStraightLineDrawing . 11
clusteringCoef . 12
clusteringCoefAppr . 13
connectedComp . 14
dag.sp . 15
dijkstra.sp . 16
dominatorTree . 18
edgeConnectivity . 19
edmondsMaxCardinalityMatching . 20
edmondsOptimumBranching . 21
extractPath . 22
FileDep . 23
floyd.warshall.all.pairs.sp . 23
gprofile . 24
graphGenerator . 25
highlyConnSG . 26
incremental.components . 27
is.triangulated . 29
isKuratowskiSubgraph . 30
isomorphism . 31
isStraightLineDrawing . 32
johnson.all.pairs.sp . 33
kCliques . 34
kCores . 35
lambdaSets . 36
layout . 37
makeBiconnectedPlanar . 39
makeConnected . 40
makeMaximalPlanar . 41
max.flow . 42
maxClique . 43
maximumCycleRatio . 44
minCut . 45
minimumCycleRatio . 46
mstree.kruskal . 47
mstree.prim . 48
Ordering . 49
planarCanonicalOrdering . 50
planarFaceTraversal . 51
RBGL-defunct . 53
RBGL.overview . 53
removeSelfLoops . 56
separates . 56
sequential.vertex.coloring . 57
sloanStartEndVertices . 58
sp.between . 59
strongComp . 60
transitive.closure . 61

astarSearch 3

transitivity . 62
tsort . 63
wavefront . 64

Index 66

astarSearch Compute astarSearch for a graph

Description

Compute astarSearch for a graph

Usage

astarSearch(g)

Arguments

g an instance of the graph class

Details

NOT IMPLEMENTED YET. TO BE FILLED IN

Value

a string indicating non-implementation

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)
astarSearch(coex)

4 bandwidth

bandwidth Compute bandwidth for an undirected graph

Description

Compute bandwidth for an undirected graph

Usage

bandwidth(g)

Arguments

g an instance of the graph class with edgemode “undirected”

Details

The bandwidth of an undirected graph G=(V, E) is the maximum distance between two adjacent
vertices. See documentation on bandwidth in Boost Graph Library for more details.

Value

bandwidth the bandwidth of the given graph

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)
coex <- ugraph(coex)
bandwidth(coex)

bellman.ford.sp 5

bellman.ford.sp Bellman-Ford shortest paths using boost C++

Description

Algorithm for the single-source shortest paths problem for a graph with both positive and negative
edge weights.

Usage

bellman.ford.sp(g,start=nodes(g)[1])

Arguments

g instance of class graph

start character: node name for start of path

Details

This function interfaces to the Boost graph library C++ routines for Bellman-Ford shortest paths.
Choose the appropriate algorithm to calculate the shortest path carefully based on the properties of
the given graph. See documentation on Bellman-Ford algorithm in Boost Graph Library for more
details.

Value

A list with elements:

all edges minimized

true if all edges are minimized, false otherwise.

distance The vector of distances from start to each node of g; includes Inf when there
is no path from start.

penult A vector of indices (in nodes(g)) of predecessors corresponding to each node
on the path from that node back to start

. For example, if the element one of this vector has value 10, that means that the predecessor of
node 1 is node 10. The next predecessor is found by examining penult[10].

start The start node that was supplied in the call to bellman.ford.sp.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

6 betweenness.centrality.clustering

See Also

dag.sp, dijkstra.sp, johnson.all.pairs.sp, sp.between

Examples

con <- file(system.file("XML/conn2.gxl",package="RBGL"), open="r")
dd <- fromGXL(con)
close(con)
bellman.ford.sp(dd)
bellman.ford.sp(dd,nodes(dd)[2])

betweenness.centrality.clustering

Graph clustering based on edge betweenness centrality

Description

Graph clustering based on edge betweenness centrality

Usage

betweenness.centrality.clustering(g, threshold = -1, normalize = TRUE)

Arguments

g an instance of the graph class with edgemode “undirected”

threshold threshold to terminate clustering process

normalize boolean, when TRUE, the edge betweenness centrality is scaled by 2/((n-1)(n-2))
where n is the number of vertices in g; when FALSE, the edge betweenness cen-
trality is the absolute value

Details

To implement graph clustering based on edge betweenness centrality.

The algorithm is iterative, at each step it computes the edge betweenness centrality and removes
the edge with maximum betweenness centrality when it is above the given threshold. When the
maximum betweenness centrality falls below the threshold, the algorithm terminates.

See documentation on Clustering algorithms in Boost Graph Library for details.

Value

A list of

no.of.edges number of remaining edges after removal

edges remaining edges
edge.betweenness.centrality

betweenness centrality of remaining edges

Author(s)

Li Long <li.long@isb-sib.ch>

bfs 7

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

brandes.betweenness.centrality

bfs Breadth and Depth-first search

Description

These functions return information on graph traversal by breadth and depth first search using rou-
tines from the BOOST library.

Usage

bfs(object, node, checkConn=TRUE)
dfs(object, node, checkConn=TRUE)

Arguments

object instance of class graph from Bioconductor graph class

node node name where search starts; defaults to the node in first position in the node
vector.

checkConn logical for backwards compatibility; this parameter has no effect as of RBGL
1.7.9 and will be removed in future versions.

Details

These two functions are interfaces to the BOOST graph library functions for breadth first and depth
first search. Both methods handle unconnected graphs by applying the algorithms over the con-
nected components.

Cormen et al note (p 542) that ‘results of depth-first search may depend upon the order in which the
vertices are examined ... These different visitation orders tend not to cause problems in practice, as
any DFS result can usually be used effectively, with essentially equivalent results’.

Value

For bfs a vector of node indices in order of BFS visit.

For dfs a list of two vectors of nodes, with elements discover (order of DFS discovery), and
finish (order of DFS completion).

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

8 biConnComp

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con1 <- file(system.file("XML/bfsex.gxl",package="RBGL"), open="r")
dd <- fromGXL(con1)
close(con1)

bfs(dd, "r")
bfs(dd, "s")

con2 <- file(system.file("XML/dfsex.gxl",package="RBGL"), open="r")
dd2 <- fromGXL(con2)
close(con2)

dfs(dd2, "u")

biConnComp Compute biconnected components for a graph

Description

Compute biconnected components for a graph

Usage

biConnComp(g)
articulationPoints(g)

Arguments

g an instance of the graph class

Details

A biconnected graph is a connected graph that remains connected when any one of its vertices, and
all the edges incident on this vertex, is removed and the graph remains connected. A biconnected
component of a graph is a subgraph which is biconnected. An integer label is assigned to each edge
to indicate which biconnected component it’s in.

A vertex in a graph is called an articulation point if removing it increases the number of connected
components.

See the documentation for the Boost Graph Library for more details.

Value

For biConnComp: a vector whose length is no. of biconnected components, each entry is a list of
nodes that are on the same biconnected components.

For articulationPoints: a vector of articulation points in the graph.

boyerMyrvoldPlanarityTest 9

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/conn.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

biConnComp(coex)
articulationPoints(coex)

boyerMyrvoldPlanarityTest

boyerMyrvoldPlanarityTest

Description

boyerMyrvoldPlanarityTest description

Usage

boyerMyrvoldPlanarityTest(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Value

logical, TRUE if test succeeds

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

10 brandes.betweenness.centrality

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
edgemode(coex) = "undirected"
boyerMyrvoldPlanarityTest(coex) # only shows runnability, need better case

brandes.betweenness.centrality

Compute betweenness centrality for an undirected graph

Description

Compute betweenness centrality for an undirected graph

Usage

brandes.betweenness.centrality(g)

Arguments

g an instance of the graph class with edgemode “undirected”

Details

Brandes.betweenness.centrality computes the betweenness centrality of each vertex or each
edge in the graph, using an algorithm by U. Brandes.

Betweenness centrality of a vertex v is calculated as follows: N_st(v) = no. of shortest paths from
s to t that pass through v, N_st = no. of shortest paths from s to t, betweenness centrality of v =
sum(N_st(v)/N_st) for all vertices s != v != t.

Betweenness centrality of an edge is calculated similarly.

The relative betweenness centrality for a vertex is to scale the betweenness centrality of the given
vertex by 2/(n**2 - 3n + 2) where n is the no. of vertices in the graph.

Central point dominance measures the maximum betweenness of any vertex in the graph.

See documentation on brandes betweenness centrality in Boost Graph Library for more details.

Value

A list of

betweenness.centrality.vertices

betweenness centrality of each vertex
betweenness.centrality.edges

betweenness centrality of each edge
relative.betweenness.centrality.vertices

relative betweenness centrality of each vertex

dominance maximum betweenness of any point in the graph

Author(s)

Li Long <li.long@isb-sib.ch>

chrobakPayneStraightLineDrawing 11

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

betweenness.centrality.clustering

chrobakPayneStraightLineDrawing

chrobakPayneStraightLineDrawing

Description

chrobakPayneStraightLineDrawing description

Usage

chrobakPayneStraightLineDrawing(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

M. Chrobak, T. Payne, A Linear-time Algorithm for Drawing a Planar Graph on the Grid, Informa-
tion Processing Letters 54: 241-246, 1995.

Value

A matrix with rows ’x’ and ’y’, and columns corresponding to graph nodes.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

12 clusteringCoef

Examples

V <- LETTERS[1:7]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+1], V[2+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+3], V[0+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+4], V[5+1], g)
g <- addEdge(V[1+5], V[6+1], g)
g <- addEdge(V[1+6], V[3+1], g)
g <- addEdge(V[1+0], V[4+1], g)
g <- addEdge(V[1+1], V[3+1], g)
g <- addEdge(V[1+3], V[5+1], g)
g <- addEdge(V[1+2], V[6+1], g)
g <- addEdge(V[1+1], V[4+1], g)
g <- addEdge(V[1+1], V[5+1], g)
g <- addEdge(V[1+1], V[6+1], g)

x3 <- chrobakPayneStraightLineDrawing(g)
x3
plot(t(x3))
el = edgeL(g)
for (i in seq_len(length(nodes(g))))

segments(
rep(x3["x",i], length(el[[i]]$edges)),
rep(x3["y",i], length(el[[i]]$edges)),
x3["x", nodes(g)[el[[i]]$edges]],
x3["y", nodes(g)[el[[i]]$edges]]
)

clusteringCoef Calculate clustering coefficient for an undirected graph

Description

Calculate clustering coefficient for an undirected graph

Usage

clusteringCoef(g, Weighted=FALSE, vW=degree(g))

Arguments

g an instance of the graph class

Weighted calculate weighted clustering coefficient or not

vW vertex weights to use when calculating weighted clustering coefficient

clusteringCoefAppr 13

Details

For an undirected graph G, let delta(v) be the number of triangles with v as a node, let tau(v) be the
number of triples, i.e., paths of length 2 with v as the center node.

Let V’ be the set of nodes with degree at least 2.

Define clustering coefficient for v, c(v) = (delta(v) / tau(v)).

Define clustering coefficient for G, C(G) = sum(c(v)) / |V’|, for all v in V’.

Define weighted clustering coefficient for g, Cw(G) = sum(w(v) * c(v)) / sum(w(v)), for all v in V’.

Value

Clustering coefficient for graph G.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Approximating Clustering Coefficient and Transitivity, T. Schank, D. Wagner, Journal of Graph
Algorithms and Applications, Vol. 9, No. 2 (2005).

See Also

clusteringCoefAppr, transitivity, graphGenerator

Examples

con <- file(system.file("XML/conn.gxl",package="RBGL"))
g <- fromGXL(con)
close(con)
cc <- clusteringCoef(g)
ccw1 <- clusteringCoef(g, Weighted=TRUE)
vW <- c(1, 1, 1, 1, 1,1, 1, 1)
ccw2 <- clusteringCoef(g, Weighted=TRUE, vW)

clusteringCoefAppr Approximate clustering coefficient for an undirected graph

Description

Approximate clustering coefficient for an undirected graph

Usage

clusteringCoefAppr(g, k=length(nodes(g)), Weighted=FALSE, vW=degree(g))

Arguments

g an instance of the graph class
Weighted calculate weighted clustering coefficient or not
vW vertex weights to use when calculating weighted clustering coefficient
k parameter controls total expected runtime

14 connectedComp

Details

It is quite expensive to compute cluster coefficient and transitivity exactly for a large graph by
computing the number of triangles in the graph. Instead, clusteringCoefAppr samples triples
with appropriate probability, returns the ratio between the number of existing edges and the number
of samples.

MORE ABOUT CHOICE OF K.

See reference for more details.

Value

Approximated clustering coefficient for graph g.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Approximating Clustering Coefficient and Transitivity, T. Schank, D. Wagner, Journal of Graph
Algorithms and Applications, Vol. 9, No. 2 (2005).

See Also

clusteringCoef, transitivity, graphGenerator

Examples

con <- file(system.file("XML/conn.gxl",package="RBGL"))
g <- fromGXL(con)
close(con)

k = length(nodes(g))
cc <- clusteringCoefAppr(g, k)
ccw1 <- clusteringCoefAppr(g, k, Weighted=TRUE)
vW <- c(1, 1, 1, 1, 1,1, 1, 1)
ccw2 <- clusteringCoefAppr(g, k, Weighted=TRUE, vW)

connectedComp Identify Connected Components in an Undirected Graph

Description

The connected components in an undirected graph are identified. If the graph is directed then the
weakly connected components are identified.

Usage

connectedComp(g)

Arguments

g graph with edgemode “undirected”

dag.sp 15

Details

Uses a depth first search approach to identifying all the connected components of an undirected
graph. If the input, g, is a directed graph it is first transformed to an undirected graph (using
ugraph).

Value

A list of length equal to the number of connected components in g. Each element of the list contains
a vector of the node labels for the nodes that are connected.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

connComp,strongComp, ugraph, same.component

Examples

con <- file(system.file("GXL/kmstEx.gxl",package="graph"), open="r")
km <- fromGXL(con)
close(con)
km <- graph::addNode(c("F","G","H"), km)
km <- addEdge("G", "H", km, 1)
km <- addEdge("H", "G", km, 1)
ukm <- ugraph(km)
ukm
edges(ukm)
connectedComp(ukm)

dag.sp DAG shortest paths using boost C++

Description

Algorithm for the single-source shortest-paths problem on a weighted, directed acyclic graph (DAG)

Usage

dag.sp(g,start=nodes(g)[1])

Arguments

g instance of class graph

start source node for start of paths

16 dijkstra.sp

Details

These functions are interfaces to the Boost graph library C++ routines for single-source shortest-
paths on a weighted directed acyclic graph. Choose appropriate shortest-path algorithms carefully
based on the properties of the input graph. See documentation in Boost Graph Library for more
details.

Value

A list with elements:

distance The vector of distances from start to each node of g; includes Inf when there
is no path from start.

penult A vector of indices (in nodes(g)) of predecessors corresponding to each node
on the path from that node back to start. For example, if the element one of
this vector has value 10, that means that the predecessor of node 1 is node 10.
The next predecessor is found by examining penult[10].

start The start node that was supplied in the call to dag.sp.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

bellman.ford.sp, dijkstra.sp, johnson.all.pairs.sp, sp.between

Examples

con <- file(system.file("XML/conn2.gxl",package="RBGL"), open="r")
dd <- fromGXL(con)
close(con)
dag.sp(dd)
dag.sp(dd,nodes(dd)[2])

dijkstra.sp Dijkstra’s shortest paths using boost C++

Description

dijkstra’s shortest paths

Usage

dijkstra.sp(g,start=nodes(g)[1], eW=unlist(edgeWeights(g)))

dijkstra.sp 17

Arguments

g instance of class graph

start character: node name for start of path

eW numeric: edge weights.

Details

These functions are interfaces to the Boost graph library C++ routines for Dijkstra’s shortest paths.

For some graph subclasses, computing the edge weights can be expensive. If you are calling
dijkstra.sp in a loop, you can pass the edge weights explicitly to avoid the edge weight creation
cost.

Value

A list with elements:

distance The vector of distances from start to each node of g; includes Inf when there
is no path from start.

penult A vector of indices (in nodes(g)) of predecessors corresponding to each node
on the path from that node back to start

. For example, if the element one of this vector has value 10, that means that the predecessor of
node 1 is node 10. The next predecessor is found by examining penult[10].

start The start node that was supplied in the call to dijkstra.sp.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

bellman.ford.sp, dag.sp, johnson.all.pairs.sp, sp.between

Examples

con1 <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
dd <- fromGXL(con1)
close(con1)
dijkstra.sp(dd)
dijkstra.sp(dd,nodes(dd)[2])

con2 <- file(system.file("XML/ospf.gxl",package="RBGL"), open="r")
ospf <- fromGXL(con2)
close(con2)
dijkstra.sp(ospf,nodes(ospf)[6])

18 dominatorTree

dominatorTree Compute dominator tree from a vertex in a directed graph

Description

Compute dominator tree from a vertex in a directed graph

Usage

dominatorTree(g, start=nodes(g)[1])
lengauerTarjanDominatorTree(g, start=nodes(g)[1])

Arguments

g a directed graph, one instance of the graph class

start a vertex in graph g

Details

As stated in documentation on Lengauer Tarjan dominator tree in Boost Graph Library:

A vertex u dominates a vertex v, if every path of directed graph from the entry to v must go through
u.

This function builds the dominator tree for a directed graph.

Value

Output is a vector, giving each node its immediate dominator.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

Examples

con1 <- file(system.file("XML/dominator.gxl",package="RBGL"), open="r")
g1 <- fromGXL(con1)
close(con1)

dominatorTree(g1)
lengauerTarjanDominatorTree(g1)

edgeConnectivity 19

edgeConnectivity computed edge connectivity and min disconnecting set for an undi-
rected graph

Description

computed edge connectivity and min disconnecting set for an undirected graph

Usage

edgeConnectivity(g)

Arguments

g an instance of the graph class with edgemode “undirected”

Details

Consider a graph G consisting of a single connected component. The edge connectivity of G is
the minimum number of edges in G that can be cut to produce a graph with two (disconnected)
components. The set of edges in this cut is called the minimum disconnecting set.

Value

A list:

connectivity the integer describing the number of edges that must be severed to obtain two
components

minDisconSet a list (of length connectivity) of pairs of node names describing the edges that
need to be cut to obtain two components

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

minCut, edmonds.karp.max.flow, push.relabel.max.flow

Examples

con <- file(system.file("XML/conn.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

edgeConnectivity(coex)

20 edmondsMaxCardinalityMatching

edmondsMaxCardinalityMatching

edmondsMaxCardinalityMatching

Description

edmondsMaxCardinalityMatching description

Usage

edmondsMaxCardinalityMatching(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Value

a list with two components: a logical named ’Is max matching’ and a character matrix named
’Matching’ with two rows ’vertex’ and ’matched vertex’, entries are node labels.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

V <- LETTERS[1:18]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[4+1], g);
g <- addEdge(V[1+1], V[5+1], g);
g <- addEdge(V[1+2], V[6+1], g);
g <- addEdge(V[1+3], V[7+1], g);
g <- addEdge(V[1+4], V[5+1], g);
g <- addEdge(V[1+6], V[7+1], g);
g <- addEdge(V[1+4], V[8+1], g);
g <- addEdge(V[1+5], V[9+1], g);
g <- addEdge(V[1+6], V[10+1], g);
g <- addEdge(V[1+7], V[11+1], g);
g <- addEdge(V[1+8], V[9+1], g);
g <- addEdge(V[1+10], V[11+1], g);
g <- addEdge(V[1+8], V[13+1], g);
g <- addEdge(V[1+9], V[14+1], g);
g <- addEdge(V[1+10], V[15+1], g);
g <- addEdge(V[1+11], V[16+1], g);
g <- addEdge(V[1+14], V[15+1], g);

edmondsOptimumBranching 21

x9 <- edmondsMaxCardinalityMatching(g)
x9

g <- addEdge(V[1+12], V[13+1], g);
g <- addEdge(V[1+16], V[17+1], g);

x10 <- edmondsMaxCardinalityMatching(g)
x10

edmondsOptimumBranching

edmondsOptimumBranching

Description

edmondsOptimumBranching description

Usage

edmondsOptimumBranching(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

This is an implementation of Edmonds’ algorithm to find optimum branching in a directed graph.
See references for details.

Value

A list with three elements: edgeList, weights, and nodes for the optimum branching traversal

Author(s)

Li Long <li.long@isb-sib.ch>

References

See Edmonds’ Algorithm on https://github.com/atofigh/edmonds-alg

Examples

V <- LETTERS[1:4]
g <- new("graphNEL", nodes=V, edgemode="directed")
g <- addEdge(V[1+0],V[1+1],g, 3)
g <- addEdge(V[1+0],V[2+1],g, 1.5)
g <- addEdge(V[1+0],V[3+1],g, 1.8)
g <- addEdge(V[1+1],V[2+1],g, 4.3)
g <- addEdge(V[1+2],V[3+1],g, 2.2)

22 extractPath

x11 <- edmondsOptimumBranching(g)
x11

extractPath convert a dijkstra.sp predecessor structure into the path joining two
nodes

Description

determine a path between two nodes in a graph, using output of dijkstra.sp.

Usage

extractPath(s, f, pens)

Arguments

s index of starting node in nodes vector of the graph from which pens was derived

f index of ending node in nodes vector

pens predecessor index vector as returned in the preds component of dijkstra.sp
output

Value

numeric vector of indices of nodes along shortest path

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

allShortestPaths

Examples

data(FileDep)
dd <- dijkstra.sp(FileDep)
extractPath(1,9,dd$pen)

FileDep 23

FileDep FileDep: a graphNEL object representing a file dependency dataset
example in boost graph library

Description

FileDep: a graphNEL object representing a file dependency dataset example in boost graph library

Usage

data(FileDep)

Value

an instance of graphNEL

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

this is how the graph of data(FileDep) was obtained
library(graph)
fd <- file(system.file("XML/FileDep.gxl",package="RBGL"), open="r")
show(fromGXL(fd))
if (require(Rgraphviz))
{
data(FileDep)
plot(FileDep)
}

close(fd)

floyd.warshall.all.pairs.sp

compute shortest paths for all pairs of nodes

Description

compute shortest paths for all pairs of nodes

Usage

floyd.warshall.all.pairs.sp(g)

Arguments

g graph object with edge weights given

24 gprofile

Details

Compute shortest paths between every pair of vertices for a dense graph. It works on both undi-
rected and directed graph. The result is given as a distance matrix. The matrix is symmetric for
an undirected graph, and asymmetric (very likely) for a directed graph. For a sparse graph, the
johnson.all.pairs.sp functions should be used instead.

See documentation on these algorithms in Boost Graph Library for more details.

Value

A matrix of shortest path lengths between all pairs of nodes in the graph.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

johnson.all.pairs.sp

Examples

con <- file(system.file("XML/conn.gxl", package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)
floyd.warshall.all.pairs.sp(coex)

gprofile Compute profile for a graph

Description

Compute profile for a graph

Usage

gprofile(g)

Arguments

g an instance of the graph class

Details

The profile of a given graph is the sum of bandwidths for all the vertices in the graph.

See documentation on this function in Boost Graph Library for more details.

graphGenerator 25

Value

profile the profile of the graph

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

gprofile(coex)

graphGenerator Generate an undirected graph with adjustable clustering coefficient

Description

Generate an undirected graph with adjustable clustering coefficient

Usage

graphGenerator(n, d, o)

Arguments

n no. of nodes in the generated graph

d parameter for preferential attachment

o parameter for triple generation

Details

The graph generator works according to the prefential attachment rule. It also generates graphs with
adjustable clustering coefficient. Parameter d specifies how many preferred edges a new node has.
Parameter o limits how many triples to add to a new node.

See reference for details.

Value

no. of nodes No. of nodes in the generated graph

no. of edges No. of edges in the generated graph

edges Edges in the generated graph

26 highlyConnSG

Author(s)

Li Long <li.long@isb-sib.ch>

References

Approximating Clustering Coefficient and Transitivity, T. Schank, D. Wagner, Journal of Graph
Algorithms and Applications, Vol. 9, No. 2 (2005).

See Also

clusteringCoef, transitivity, clusteringCoefAppr

Examples

n <- 20
d <- 6
o <- 3
gg <- graphGenerator(n, d, o)

highlyConnSG Compute highly connected subgraphs for an undirected graph

Description

Compute highly connected subgraphs for an undirected graph

Usage

highlyConnSG(g, sat=3, ldv=c(3,2,1))

Arguments

g an instance of the graph class with edgemode “undirected”

sat singleton adoption threshold, positive integer

ldv heuristics to remove lower degree vertice, a decreasing sequence of positive
integer

Details

A graph G with n vertices is highly connected if its connectivity k(G) > n/2. The HCS algorithm
partitions a given graph into a set of highly connected subgraphs, by using minimum-cut algorithm
recursively. To improve performance, the approach is refined by adopting singletons, removing low
degree vertices and merging clusters.

On singleton adoption: after each round of partition, some highly connected subgraphs could be
singletons (i.e., a subgraph contains only one node). To reduce the number of singletons, therefore
reduce number of clusters, we try to get "normal" subgraphs to "adopt" them. If a singleton, s, has
n neighbours in a highly connected subgraph c, and n > sat, we add s to c. To adapt to the modified
subgraphs, this adoption process is repeated until no further such adoption.

On lower degree vertices: when the graph has low degree vertices, minimum-cut algorithm will
just repeatedly separate these vertices from the rest. To reduce such expensive and non-informative
computation, we "remove" these low degree vertices first before applying minimum-cut algorithm.

incremental.components 27

Given ldv = (d1, d2, ..., dp), (d[i] > d[i+1] > 0), we repeat the following (i from 1 to p): remove
all the highly-connected-subgraph found so far; remove vertices with degrees < di; find highly-
connected-subgraphs; perform singleton adoptions.

The Boost implementation does not support self-loops, therefore we signal an error and suggest that
users remove self-loops using the function removeSelfLoops function. This change does affect
degree, but the original article makes no specific reference to self-loops.

Value

A list of clusters, each is given as vertices in the graph.

Author(s)

Li Long <li.long@isb-sib.ch>

References

A Clustering Algorithm based on Graph Connectivity by E. Hartuv, R. Shamir, 1999.

See Also

edgeConnectivity, minCut, removeSelfLoops

Examples

con <- file(system.file("XML/hcs.gxl",package="RBGL"))
coex <- fromGXL(con)
close(con)

highlyConnSG(coex)

incremental.components

Compute connected components for an undirected graph

Description

Compute connected components for an undirected graph

Usage

init.incremental.components(g)
incremental.components(g)
same.component(g, node1, node2)

Arguments

g an instance of the graph class

node1 one vertex of the given graph

node2 another vertex of the given graph

28 incremental.components

Details

This family of functions work together to calculate the connected components of an undirected
graph. The algorithm is based on the disjoint-sets. It works where the graph is growing by adding
new edges. Call "init.incremental.components" to initialize the calculation on a new graph. Call
"incremental.components" to re-calculate connected components after growing the graph. Call
"same.component" to learn if two given vertices are in the same connected components. Cur-
rently, the codes can only handle ONE incremental graph at a time. When you start working on
another graph by calling "init.incremental.components", the disjoint-sets info on the previous graph
is lost. See documentation on Incremental Connected Components in Boost Graph Library for more
details.

Value

Output from init.incremental.components is a list of component numbers for each vertex in
the graph.

Output from incremental.components is a list of component numbers for each vertex in the graph.

Output from same.component is true if both nodes are in the same connected component, otherwise
it’s false.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

connComp, connectedComp, strongComp

Examples

con <- file(system.file("XML/conn2.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

init.incremental.components(coex)
incremental.components(coex)
v1 <- 1
v2 <- 5
same.component(coex, v1, v2)

is.triangulated 29

is.triangulated Decide if a graph is triangulated

Description

Decide if a graph is triangulated

Usage

is.triangulated(g)

Arguments

g an instance of the graph class

Details

An undirected graph G = (V, E) is triangulated (i.e. chordal) if all cycles [v1, v2, ..., vk] of length 4
or more have a chord, i.e., an edge [vi, vj] with j != i +/- 1 (mod k)

An equivalent definition of chordal graphs is:

G is chordal iff either G is an empty graph, or there is an v in V such that

1. the neighborhood of v (i.e., v and its adjacent nodes) forms a clique, and

2. recursively, G-v is chordal

Value

The return value is TRUE if g is triangulated and FALSE otherwise. An error is thrown if the graph is
not undirected; you might use ugraph to compute the underlying graph.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Combinatorial Optimization: algorithms and complexity (p. 403) by C. H. Papadimitriou, K. Stei-
glitz

Examples

con1 <- file(system.file("XML/conn.gxl",package="RBGL"), open="r")
coex <- fromGXL(con1)
close(con1)

is.triangulated(coex)

con2 <- file(system.file("XML/hcs.gxl",package="RBGL"), open="r")
coex <- fromGXL(con2)
close(con2)

is.triangulated(coex)

30 isKuratowskiSubgraph

isKuratowskiSubgraph isKuratowskiSubgraph

Description

isKuratowskiSubgraph description

Usage

isKuratowskiSubgraph(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Value

a list with three elements: ’Is planar’ (logical), ’Is there a Kuratowski subgraph’ (logical), and a
two-row character matrix ’Edges of Kuratowski subgraph’ with rows ’from’ and ’two’ and node
names as entries.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

V <- LETTERS[1:6]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+0], V[2+1], g)
g <- addEdge(V[1+0], V[3+1], g)
g <- addEdge(V[1+0], V[4+1], g)
g <- addEdge(V[1+0], V[5+1], g)
g <- addEdge(V[1+1], V[2+1], g)
g <- addEdge(V[1+1], V[3+1], g)
g <- addEdge(V[1+1], V[4+1], g)
g <- addEdge(V[1+1], V[5+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+2], V[4+1], g)
g <- addEdge(V[1+2], V[5+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+3], V[5+1], g)
g <- addEdge(V[1+4], V[5+1], g)

x4 <- isKuratowskiSubgraph(g)

isomorphism 31

x4

isomorphism Compute isomorphism from vertices in one graph to those in another
graph

Description

Compute isomorphism from vertices in one graph to those in another graph

Usage

isomorphism(g1, g2)

Arguments

g1 one instance of the graph class

g2 one instance of the graph class

Details

As stated in documentation on isomorphism in Boost Graph Library: An isomorphism is a 1-to-
1 mapping of the vertices in one graph to the vertices of another graph such that adjacency is
preserved. Another words, given graphs G1 = (V1,E1) and G2 = (V2,E2) an isomorphism is a
function f such that for all pairs of vertices a,b in V1, edge (a,b) is in E1 if and only if edge
(f(a),f(b)) is in E2.

Value

Output is true if there exists an isomorphism between g1 and g2, otherwise it’s false.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

32 isStraightLineDrawing

Examples

con1 <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
g1 <- fromGXL(con1)
close(con1)

con2 <- file(system.file("XML/conn2.gxl",package="RBGL"), open="r")
g2 <- fromGXL(con2)
close(con2)

isomorphism(g1, g2)

isStraightLineDrawing isStraightLineDrawing

Description

isStraightLineDrawing description

Usage

isStraightLineDrawing(g, drawing)

Arguments

g instance of class graphNEL from Bioconductor graph class

drawing coordinates of node positions

Value

logical, TRUE if drawing is a straight line layout for g

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

V <- LETTERS[1:7]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+1], V[2+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+3], V[0+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+4], V[5+1], g)

johnson.all.pairs.sp 33

g <- addEdge(V[1+5], V[6+1], g)
g <- addEdge(V[1+6], V[3+1], g)
g <- addEdge(V[1+0], V[4+1], g)
g <- addEdge(V[1+1], V[3+1], g)
g <- addEdge(V[1+3], V[5+1], g)
g <- addEdge(V[1+2], V[6+1], g)
g <- addEdge(V[1+1], V[4+1], g)
g <- addEdge(V[1+1], V[5+1], g)
g <- addEdge(V[1+1], V[6+1], g)

x3 <- chrobakPayneStraightLineDrawing(g)

x8 <- isStraightLineDrawing(g, x3)
x8

johnson.all.pairs.sp compute shortest path distance matrix for all pairs of nodes

Description

compute shortest path distance matrix for all pairs of nodes

Usage

johnson.all.pairs.sp(g)

Arguments

g graph object for which edgeMatrix and edgeWeights are defined

Details

Uses BGL algorithm.

Value

matrix of shortest path lengths, read from row node to col node

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

34 kCliques

See Also

bellman.ford.sp, dag.sp, dijkstra.sp, sp.between

Examples

con <- file(system.file("dot/joh.gxl", package="RBGL"), open="r")
z <- fromGXL(con)
close(con)

johnson.all.pairs.sp(z)

kCliques Find all the k-cliques in an undirected graph

Description

Find all the k-cliques in an undirected graph

Usage

kCliques(g)

Arguments

g an instance of the graph class

Details

Notice that there are different definitions of k-clique in different context.

In computer science, a k-clique of a graph is a clique, i.e., a complete subgraph, of k nodes.

In Social Network Analysis, a k-clique in a graph is a subgraph where the distance between any two
nodes is no greater than k.

Here we take the definition in Social Network Analysis.

Let D be a matrix, D[i][j] is the shortest path from node i to node j. Algorithm is outlined as
following: (1) use Johnson’s algorithm to fill D; let N = max(D[i][j]) for all i, j; (2) each edge is a
1-clique by itself; (3) for k = 2, ..., N, try to expand each (k-1)-clique to k-clique: (3.1) consider a
(k-1)-clique the current k-clique KC; (3.2) repeat the following: if for all nodes j in KC, D[v][j] <=
k, add node v to KC; (3.3) eliminate duplicates; (4) the whole graph is N-clique.

Value

A list of length N; k-th entry (k = 1, ..., N) is a list of all the k-cliques in graph g.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Social Network Analysis: Methods and Applications. By S. Wasserman and K. Faust, pp. 258.

kCores 35

Examples

con <- file(system.file("XML/snacliqueex.gxl",package="RBGL"))
coex <- fromGXL(con)
close(con)

kCliques(coex)

kCores Find all the k-cores in a graph

Description

Find all the k-cores in a graph

Usage

kCores(g, EdgeType=c("in", "out"))

Arguments

g an instance of the graph class

EdgeType what types of edges to be considered when g is directed

Details

A k-core in a graph is a subgraph where each node is adjacent to at least a minimum number, k, of
the other nodes in the subgraph.

A k-core in a graph may not be connected.

The core number for each node is the highest k-core this node is in. A node in a k-core will be, by
definition, in a (k-1)-core.

The implementation is based on the algorithm by V. Batagelj and M. Zaversnik, 2002.

The example snacoreex.gxl is in the paper by V. Batagelj and M. Zaversnik, 2002.

Value

A vector of the core numbers for all the nodes in g.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Social Network Analysis: Methods and Applications. By S. Wasserman and K. Faust, pp. 266. An
O(m) Algorithm for Cores decomposition of networks, by V. Batagelj and M. Zaversnik, 2002.

36 lambdaSets

Examples

con1 <- file(system.file("XML/snacoreex.gxl",package="RBGL"))
kcoex <- fromGXL(con1)
close(con1)

kCores(kcoex)

con2 <- file(system.file("XML/conn2.gxl",package="RBGL"))
kcoex2 <- fromGXL(con2)
close(con2)

kCores(kcoex2)
kCores(kcoex2, "in")
kCores(kcoex2, "out")

lambdaSets Find all the lambda-sets in an undirected graph

Description

Find all the lambda-sets in an undirected graph

Usage

lambdaSets(g)

Arguments

g an instance of the graph class

Details

From reference (1), p. 270: A set of nodes is a lambda-set if any pair of nodes in the lambda set
has larger edge connectivity than any pair of nodes consisting of one node from within the lamda
set and a second node from outside the lamda set.

As stated in reference (2), a lambda set is a maximal subset of nodes who have more edge-independent
paths connecting them to each other than to outsiders.

A lambda set could be characterized by the minimum edge connectivity k among its members, and
could be called lambda-k sets.

Let N be maximum edge connectivity of graph g, we output all the lambda-k set for all k = 1, ..., N.

Value

Maximum edge connectivity, N, of the graph g, and A list of length N; k-th entry (k = 1, ..., N) is a
list of all the lambda-k sets in graph g.

Author(s)

Li Long <li.long@isb-sib.ch>

layout 37

References

(1) Social Network Analysis: Methods and Applications. By S. Wasserman and K. Faust, pp. 269.
(2) LS sets, lambda sets and other cohesive subsets. By S. P. Borgatti, M. G. Everett, P. R. Shirey,
Social Networks 12 (1990) p. 337-357

Examples

con <- file(system.file("XML/snalambdaex.gxl",package="RBGL"))
coex <- fromGXL(con)
close(con)

lambdaSets(coex)

layout Layout an undirected graph in 2D – suspended june 16 2012

Description

Layout an undirected graph in 2D – suspended june 16 2012

Usage

circleLayout(g, radius=1) # does not compile with boost 1.49
kamadaKawaiSpringLayout(g, edge_or_side=1, es_length=1)
fruchtermanReingoldForceDirectedLayout(g, width=1, height=1)
randomGraphLayout(g, minX=0, maxX=1, minY=0, maxY=1)

Arguments

g an instance of the graph class with edgemode “undirected”

radius radius of a regular n-polygon

edge_or_side boolean indicating the length is for an edge or for a side, default is for an edge

es_length the length of an edge or a side for layout

width the width of the dislay area, all x coordinates fall in [-width/2, width/2]

height the height of the display area, all y coordinates fall in [-height/2, height/2]

minX minimum x coordinate

maxX maximum x coordinate

minY minimum y coordinate

maxY maximum y coordinate

Details

If you want to simply draw a graph, you should consider using package Rgraphviz. The layout
options in package Rgraphviz: neato, circo and fdp, correspond to kamadaKawaiSpringLayout,
circleLayout and fruchtermanReingoldForceDirectedLayout, respectively.

Function circleLayout layouts the graph with the vertices at the points of a regular n-polygon.
The distance from the center of the polygon to each point is determined by the radius parameter.

38 layout

Function kamadaKawaiSpringLayout provides Kamada-Kawai spring layout for connected, undi-
rected graphs. User provides either the unit length e of an edge in the layout or the length of a side
s of the display area.

Function randomGraphLayout places the points of the graph at random locations.

Function fruchtermanReingoldForceDirectedLayout performs layout of unweighted, undirected
graphs. It’s a force-directed algorithm. The BGL implementation doesn’t handle disconnected
graphs very well, since it doesn’t explicitly give each connected component a region proportional
to its size.

See documentation on this function in Boost Graph Library for more details.

Value

A (2 x n) matrix, where n is the number of nodes in the graph, each column gives the (x, y)-
coordinates for the corresponding node.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

layoutGraph

Examples

Not run:
con <- file(system.file("XML/conn.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

coex <- ugraph(coex)

circleLayout(coex)

kamadaKawaiSpringLayout(coex)

randomGraphLayout(coex)

fruchtermanReingoldForceDirectedLayout(coex, 10, 10)

End(Not run)

makeBiconnectedPlanar 39

makeBiconnectedPlanar makeBiconnectedPlanar

Description

makeBiconnectedPlanar description

Usage

makeBiconnectedPlanar(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

From

http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

An undirected graph is connected if, for any two vertices u and v, there’s a path from u to v. An
undirected graph is biconnected if it is connected and it remains connected even if any single vertex
is removed. Finally, a planar graph is maximal planar (also called triangulated) if no additional
edge (with the exception of self-loops and parallel edges) can be added to it without creating a non-
planar graph. Any maximal planar simple graph on n > 2 vertices has exactly 3n - 6 edges and 2n -
4 faces, a consequence of Euler’s formula. If a planar graph isn’t connected, isn’t biconnected, or
isn’t maximal planar, there is some set of edges that can be added to the graph to make it satisfy any
of those three properties while preserving planarity. Many planar graph drawing algorithms make
at least one of these three assumptions about the input graph, so there are functions in the Boost
Graph Library that can help:

make_connected adds a minimal set of edges to an undirected graph to make it connected.

make_biconnected_planar adds a set of edges to a connected, undirected planar graph to make it
biconnected while preserving planarity.

make_maximal_planar adds a set of edges to a biconnected, undirected planar graph to make it
maximal planar.

The function documented here implements the second approach.

Value

A list with two elements: ‘Is planar‘ is a logical indicating achievement of planarity, and ‘new
graph‘, a graphNEL instance that is biconnected and planar.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

40 makeConnected

Examples

V <- LETTERS[1:11]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+3], V[0+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+4], V[5+1], g)
g <- addEdge(V[1+5], V[3+1], g)
g <- addEdge(V[1+5], V[6+1], g)
g <- addEdge(V[1+6], V[7+1], g)
g <- addEdge(V[1+7], V[8+1], g)
g <- addEdge(V[1+8], V[5+1], g)
g <- addEdge(V[1+8], V[9+1], g)
g <- addEdge(V[1+0], V[10+1], g)

x6 <- makeBiconnectedPlanar(g)
x6

makeConnected makeConnected

Description

makeConnected description

Usage

makeConnected(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

a graphNEL instance with a minimal set of edges added to achieve connectedness.

Value

an instance of graphNEL

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

makeMaximalPlanar 41

Examples

V <- LETTERS[1:11]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+5], V[6+1], g)
g <- addEdge(V[1+6], V[7+1], g)
g <- addEdge(V[1+8], V[9+1], g)
g <- addEdge(V[1+9], V[10+1], g)
g <- addEdge(V[1+10], V[8+1], g)

x5 <- makeConnected(g)
x5

makeMaximalPlanar makeMaximalPlanar

Description

makeMaximalPlanar description

Usage

makeMaximalPlanar(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

see http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

Value

a list with two elements, ‘Is planar:‘, a logical indicating state of graph, and ‘new graph‘, a graph-
NEL instance

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

42 max.flow

Examples

V <- LETTERS[1:10]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+1], V[2+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+4], V[5+1], g)
g <- addEdge(V[1+5], V[6+1], g)
g <- addEdge(V[1+6], V[7+1], g)
g <- addEdge(V[1+7], V[8+1], g)
g <- addEdge(V[1+8], V[9+1], g)

x7 <- makeMaximalPlanar(g)
x7

max.flow Compute max flow for a directed graph

Description

Compute max flow for a directed graph

Usage

edmonds.karp.max.flow(g, source, sink)
push.relabel.max.flow(g, source, sink)
kolmogorov.max.flow(g, source, sink)

Arguments

g an instance of the graph class with edgemode “directed”
source node name (character) or node number (int) for the source of the flow
sink node name (character) or node number (int) for the sink of the flow

Details

Given a directed graph G=(V, E) of a single connected component with a vertex source and a vertex
sink. Each arc has a positive real valued capacity, currently it’s equivalent to the weight of the arc.
The flow of the network is the net flow entering the vertex sink. The maximum flow problem is to
determine the maximum possible value for the flow to the sink and the corresponding flow values
for each arc.

See documentation on these algorithms in Boost Graph Library for more details.

Value

A list of

maxflow the max flow from source to sink

edges the nodes of the arcs with non-zero capacities
flows the flow values of the arcs with non-zero capacities

maxClique 43

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

minCut, edgeConnectivity

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
g <- fromGXL(con)
close(con)

ans1 <- edmonds.karp.max.flow(g, "B", "D")
ans2 <- edmonds.karp.max.flow(g, 3, 2) # 3 and 2 equivalent to "C" and "B"

ans3 <- push.relabel.max.flow(g, 2, 4) # 2 and 4 equivalent to "B" and "D"
ans4 <- push.relabel.max.flow(g, "C", "B")

error in the following now, 14 june 2014
#ans5 <- kolmogorov.max.flow(g, "B", "D")
#ans6 <- kolmogorov.max.flow(g, 3, 2)

maxClique Find all the cliques in a graph

Description

Find all the cliques in a graph

Usage

maxClique(g, nodes=NULL, edgeMat=NULL)

Arguments

g an instance of the graph class

nodes vector of node names, to be supplied if g is not

edgeMat 2 x p matrix with indices of edges in nodes, one-based, only to be supplied if
codeg is not

44 maximumCycleRatio

Details

Notice the maximum clique problem is NP-complete, which means it cannot be solved by any
known polynomial algorithm.

We implemented the algorithm by C. Bron and J. Kerbosch,

It is an error to supply both g and either of the other arguments.

If g is not supplied, no checking of the consistency of nodes and edgeMat is performed.

Value

maxClique list of all cliques in g

Author(s)

Li Long <li.long@isb-sib.ch>

References

Finding all cliques of an undirected graph, by C. Bron and J. Kerbosch, Communication of ACM,
Sept 1973, Vol 16, No. 9.

Examples

con1 <- file(system.file("XML/conn.gxl",package="RBGL"), open="r")
coex <- fromGXL(con1)
close(con1)

maxClique(coex)

con2 <- file(system.file("XML/hcs.gxl",package="RBGL"), open="r")
coex <- fromGXL(con2)
close(con2)

maxClique(coex)

maximumCycleRatio maximumCycleRatio

Description

maximumCycleRatio description

Usage

maximumCycleRatio(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

NOT IMPLEMENTED

minCut 45

Value

A list with message indicating not implemented

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

minCut Compute min-cut for an undirected graph

Description

Compute min-cut for an undirected graph

Usage

minCut(g)

Arguments

g an instance of the graph class with edgemode “undirected”

Details

Given an undirected graph G=(V, E) of a single connected component, a cut is a partition of the set
of vertices into two non-empty subsets S and V-S, a cost is the number of edges that are incident on
one vertex in S and one vertex in V-S. The min-cut problem is to find a cut (S, V-S) of minimum
cost.

For simplicity, the returned subset S is the smaller of the two subsets.

Value

A list of

mincut the number of edges to be severed to obtain the minimum cut

S the smaller subset of vertices in the minimum cut

V-S the other subset of vertices in the minimum cut

Author(s)

Li Long <li.long@isb-sib.ch>

46 minimumCycleRatio

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

edgeConnectivity

Examples

con <- file(system.file("XML/conn.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

minCut(coex)

minimumCycleRatio minimumCycleRatio

Description

minimumCycleRatio description

Usage

minimumCycleRatio(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

Not yet implemented.

Value

a list with message

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

mstree.kruskal 47

mstree.kruskal Kruskal’s minimum spanning tree in boost

Description

compute the minimum spanning tree (MST) for a graph and return a representation in matrices

Usage

mstree.kruskal(x)

Arguments

x instance of class graph

Details

calls to kruskal minimum spanning tree algorithm of Boost graph library

Value

a list

edgeList a matrix m of dimension 2 by number of edges in the MST, with m[i,j] the jth
node in edge i

weights a vector of edge weights corresponding to the columns of edgeList

nodes the vector of nodes of the input graph x

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con1 <- file(system.file("XML/kmstEx.gxl",package="RBGL"), open="r")
km <- fromGXL(con1)
close(con1)

mstree.kruskal(km)
edgeData(km, "B", "D", "weight") <- 1.1
edgeData(km, "B", "E", "weight") <- .95
mstree.kruskal(km)

con2 <- file(system.file("XML/telenet.gxl",package="RBGL"), open="r")
km2 <- fromGXL(con2)

48 mstree.prim

close(con2)

m <- mstree.kruskal(km2)
print(sum(m[[2]]))

mstree.prim Compute minimum spanning tree for an undirected graph

Description

Compute minimum spanning tree for an undirected graph

Usage

mstree.prim(g)

Arguments

g an instance of the graph class with edgemode “undirected”

Details

This is Prim’s algorithm for solving the minimum spanning tree problem for an undirected graph
with weighted edges.

See documentations on this function in Boost Graph Library for more details.

Value

A list of

edges the edges that form the minimum spanning tree

weights the total weight of the minimum spanning tree

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

mstree.kruskal

Ordering 49

Examples

con <- file(system.file("XML/conn2.gxl",package="RBGL"))
coex <- fromGXL(con)
close(con)

mstree.prim(coex)

Ordering Compute vertex ordering for an undirected graph

Description

Compute vertex ordering for an undirected graph

Usage

cuthill.mckee.ordering(g)
minDegreeOrdering(g, delta=0)
sloan.ordering(g, w1=1, w2=2)

Arguments

g an instance of the graph class with edgemode “undirected”

delta Multiple elimination control variable. If it is larger than or equal to zero then
multiple elimination is enabled. The value of delta specifies the difference be-
tween the minimum degree and the degree of vertices that are to be eliminated.

w1 First heuristic weight for the Sloan algorithm.

w2 Second heuristic weight for the Sloan algorithm.

Details

The following details were obtained from the documentation of these algorithms in Boost Graph
Library and readers are referred their for even more detail. The goal of the Cuthill-Mckee (and
reverse Cuthill-Mckee) ordering algorithm is to reduce the bandwidth of a graph by reordering the
indices assigned to each vertex.

The minimum degree ordering algorithm is a fill-in reduction matrix reordering algorithm.

The goal of the Sloan ordering algorithm is to reduce the profile and the wavefront of a graph by
reordering the indices assigned to each vertex.

The goal of the King ordering algorithm is to reduce the bandwidth of a graph by reordering the
indices assigned to each vertex.

Value
cuthill.mckee.ordering

returns a list with elements:
reverse cuthill.mckee.ordering

the vertices in the new ordering
original bandwidth

bandwidth before reordering vertices

50 planarCanonicalOrdering

new bandwidth bandwidth after reordering of vertices
minDegreeOrdering

return a list with elements:
inverse_permutation

the new vertex ordering, given as the mapping from the new indices to the old
indices

permutation the new vertex ordering, given as the mapping from the old indices to the new
indices

sloan.ordering returns a list with elements:

sloan.ordering the vertices in the new ordering

bandwidth bandwidth of the graph after reordering

profile profile of the graph after reordering

maxWavefront maxWavefront of the graph after reordering

aver.wavefront aver.wavefront of the graph after reordering

rms.wavefront rms.wavefront of the graph after reordering

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

coex <- ugraph(coex)
cuthill.mckee.ordering(coex)
minDegreeOrdering(coex)
sloan.ordering(coex)

planarCanonicalOrdering

planarCanonicalOrdering

Description

planarCanonicalOrdering description

Usage

planarCanonicalOrdering(g)

planarFaceTraversal 51

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

see http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

Value

A vector of ordered node names

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

V <- LETTERS[1:6]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0], V[1+1], g)
g <- addEdge(V[1+1], V[2+1], g)
g <- addEdge(V[1+2], V[3+1], g)
g <- addEdge(V[1+3], V[4+1], g)
g <- addEdge(V[1+4], V[5+1], g)
g <- addEdge(V[1+5], V[0+1], g)
g <- addEdge(V[1+0], V[2+1], g)
g <- addEdge(V[1+0], V[3+1], g)
g <- addEdge(V[1+0], V[4+1], g)
g <- addEdge(V[1+1], V[3+1], g)
g <- addEdge(V[1+1], V[4+1], g)
g <- addEdge(V[1+1], V[5+1], g)

x2 <- planarCanonicalOrdering(g)
x2

planarFaceTraversal planarFaceTraversal

Description

planarFaceTraversal description

http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

52 planarFaceTraversal

Usage

planarFaceTraversal(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

Details

see http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

Value

A list of character vectors with ordered sequences of node names

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

V <- LETTERS[1:9]
g <- new("graphNEL", nodes=V, edgemode="undirected")
g <- addEdge(V[1+0],V[1+1],g)
g <- addEdge(V[1+1],V[1+2],g)
g <- addEdge(V[1+3],V[1+4],g)
g <- addEdge(V[1+4],V[1+5],g)
g <- addEdge(V[1+6],V[1+7],g)
g <- addEdge(V[1+7],V[1+8],g)
g <- addEdge(V[1+0],V[1+3],g)
g <- addEdge(V[1+3],V[1+6],g)
g <- addEdge(V[1+1],V[1+4],g)
g <- addEdge(V[1+4],V[1+7],g)
g <- addEdge(V[1+2],V[1+5],g)
g <- addEdge(V[1+5],V[1+8],g)

x1 <- planarFaceTraversal(g)
x1

http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_graphs.html

RBGL-defunct 53

RBGL-defunct Defunct Functions in Package RBGL

Description

The functions or variables listed here are no longer part of the RBGL package.

Usage

prim.minST()

Value

none

See Also

Defunct

RBGL.overview RBGL.overview

Description

The RBGL package consists of a number of interfaces to the Boost C++ library for graph algo-
rithms. This page follows, approximately, the chapter structure of the monograph on the Boost
Graph Library by Siek et al., and gives hyperlinks to documentation on R functions currently avail-
able, along with the names of formal parameters to these functions.

basicAlgs

Functions parameters
bandwidth g
bfs object,node,checkConn
dfs object,node,checkConn
edgeConnectivity g
gprofile g
isomorphism g1,g2
minCut g
transitive.closure g
tsort x

54 RBGL.overview

ShortestPaths

Functions parameters
bellman.ford.sp g,start
dag.sp g,start
dijkstra.sp g,start
extractPath s,f,pens
johnson.all.pairs.sp g
sp.between g,start,finish
sp.between.old g,start,finish
sp.between.scalar g,start,finish

MinimumSpanningTree

Functions parameters
mstree.kruskal x

ConnectedComponents

Functions parameters
connectedComp g
highlyConnSG g,sat,ldv
incremental.components g
init.incremental.components g
same.component g,node1,node2
strongComp g

MaximumFlow

Functions parameters
edmonds.karp.max.flow g,source,sink
push.relabel.max.flow g,source,sink

RBGL.overview 55

SparseMatrixOrdering

Functions parameters
cuthill.mckee.ordering g
minDegreeOrdering g,delta
sloan.ordering g,w1,w2

LayoutAlgorithms

Functions parameters
circle.layout g,radius
kamada.kawai.spring.layout g,edge_or_side,es_length

GraphClustering

Functions parameters
betweenness.centrality.clustering g,threshold,normalize

Betweenness

Functions parameters
brandes.betweenness.centrality g

Wavefront

Functions parameters
aver.wavefront g
ith.wavefront g,start
maxWavefront g
rms.wavefront g

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

56 separates

removeSelfLoops remove self loops in a graph

Description

remove self loops in a graph

Usage

removeSelfLoops(g)

Arguments

g one instance of the graph class

Details

If a given graph contains self-loop(s), removeSelfLoops removes them. This is for those functions
that cannot handle graphs with self-loops.

Value

A new graph without self loops.

Author(s)

Li Long <li.long@isb-sib.ch>

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"))
g1 <- fromGXL(con)
close(con)

g2 <- ugraph(g1)
removeSelfLoops(g2)

separates A function to test whether a subset of nodes separates two other sub-
sets of nodes.

Description

The function tests to see whether a set of nodes, S1, separates all nodes in a from all nodes in b.

Usage

separates(a, b, S1, g)

sequential.vertex.coloring 57

Arguments

a The names of the nodes in the from set.

b The names of the nodes in the to set.

S1 The names of the nodes in the separation set.

g An instance of the graph class. All nodes named in the other arguments must
be nodes of this graph.

Details

The algorithm is quite simple. A subgraph is created by removing the nodes named in S1 from g.
Then all paths between elements of a to elements of b are tested for. If any path exists the function
returns FALSE, otherwise it returns TRUE.

Value

Either TRUE or FALSE depending on whether S1 separates a from b in g1.

Author(s)

R. Gentleman

References

S. Lauritzen, Graphical Models, OUP.

See Also

johnson.all.pairs.sp

Examples

con <- file(system.file("XML/kmstEx.gxl",package="RBGL"))
km <- fromGXL(con)
close(con)

separates("B", "A", "E", km)
separates("B", "A", "C", km)

sequential.vertex.coloring

Compute a vertex coloring for a graph

Description

Compute vertex coloring for a graph

Usage

sequential.vertex.coloring(g)

58 sloanStartEndVertices

Arguments

g an instance of the graph class

Details

A vertex coloring for a graph is to assign a color for each vertex so that no two adjacent vertices are
of the same color. We designate the colors as sequential integers: 1, 2,

For ordered vertices, v1, v2, ..., vn, for k = 1, 2, ..., n, this algorithm assigns vk to the smallest
possible color. It does NOT guarantee to use minimum number of colors.

See documentations on these algorithms in Boost Graph Library for more details.

Value
no. of colors needed

how many colors to use to color the graph

colors of nodes color label for each vertex

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)
sequential.vertex.coloring(coex)

sloanStartEndVertices sloanStartEndVertices

Description

sloanStartEndVertices description

Usage

sloanStartEndVertices(g)

Arguments

g instance of class graphNEL from Bioconductor graph class

sp.between 59

Details

not used

Value

message

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

sp.between Dijkstra’s shortest paths using boost C++

Description

dijkstra’s shortest paths

Usage

sp.between(g,start,finish, detail=TRUE)

Arguments

g instance of class graph

start node name(s) for start of path(s)

finish node name(s) for end of path(s)

detail if TRUE, output additional info on the shortest path

Details

These functions are interfaces to the Boost graph library C++ routines for Dijkstra’s shortest paths.

Function sp.between.scalar is obsolete.

Value

When start and/or finish are vectors, we use the normal cycling rule in R to match both vectors
and try to find the shortest path for each pair.

Function sp.between returns a list of info on the shortest paths. Each such shortest path is desig-
nated by its starting node and its ending node. Each element in the returned list contains:

length total length (using edge weights) of this shortest path

,

60 strongComp

path_detail if requested, a vector of names of the nodes on the shortest path

,

length_detail if requested, a list of edge weights of this shortest path

.

See pathWeights for caveats about undirected graph representation.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>, Li Long <li.long@isb-sib.ch>

See Also

bellman.ford.sp, dag.sp, dijkstra.sp, johnson.all.pairs.sp

Examples

con <- file(system.file("XML/ospf.gxl",package="RBGL"), open="r")
ospf <- fromGXL(con)
close(con)

dijkstra.sp(ospf,nodes(ospf)[6])

sp.between(ospf, "RT6", "RT1")

sp.between(ospf, c("RT6", "RT2"), "RT1", detail=FALSE)

sp.between(ospf, c("RT6", "RT2"), c("RT1","RT5"))

see NAs for query on nonexistent path
sp.between(ospf,"N10", "N13")

strongComp Identify Strongly Connected Components

Description

The strongly connected components in a directed graph are identified and returned as a list.

Usage

strongComp(g)

Arguments

g graph with edgemode “directed”.

Details

Tarjan’s algorithm is used to determine all strongly connected components of a directed graph.

transitive.closure 61

Value

A list whose length is the number of strongly connected components in g. Each element of the list
is a vector of the node labels for the nodes in that component.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

See Also

connComp,connectedComp, same.component

Examples

con <- file(system.file("XML/kmstEx.gxl",package="RBGL"), open="r")
km <- fromGXL(con)
close(con)

km<- graph::addNode(c("F","G","H"), km)
km<- addEdge("G", "H", km, 1)
km<- addEdge("H", "G", km, 1)
strongComp(km)
connectedComp(ugraph(km))

transitive.closure Compute transitive closure of a directed graph

Description

Compute transitive closure of a directed graph

Usage

transitive.closure(g)

Arguments

g an instance of the graph class

Details

This function calculates the transitive closure of a directed graph. See documentation on this func-
tion in Boost Graph Library for more details.

62 transitivity

Value

An object of class graphNEL.

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"))
coex <- fromGXL(con)
close(con)

transitive.closure(coex)

transitivity Calculate transitivity for an undirected graph

Description

Calculate transitivity for an undirected graph

Usage

transitivity(g)

Arguments

g an instance of the graph class

Details

For an undirected graph G, let delta(v) be the number of triangles with v as a node, let tau(v) be the
number of triples, i.e., paths of length 2 with v as the center node.

Define transitivity T(G) = sum(delta(v)) / sum(tau(v)), for all v in V.

Value

Transitivity for graph g.

Author(s)

Li Long <li.long@isb-sib.ch>

tsort 63

References

Approximating Clustering Coefficient and Transitivity, T. Schank, D. Wagner, Journal of Graph
Algorithms and Applications, Vol. 9, No. 2 (2005).

See Also

clusteringCoef, clusteringCoefAppr, graphGenerator

Examples

con <- file(system.file("XML/conn.gxl",package="RBGL"))
g <- fromGXL(con)
close(con)

tc <- transitivity(g)

tsort topological sort of vertices of a digraph

Description

returns vector of zero-based indices of vertices of a DAG in topological sort order

Usage

tsort(x) # now x assumed to be Bioconductor graph graphNEL

Arguments

x instance of class graphNEL from Bioconductor graph class

Details

calls to the topological_sort algorithm of BGL. will check in BGL whether the input is a DAG and
return a vector of zeroes (of length length(nodes(x))) if it is not. Thus this function can be used to
check for cycles in a digraph.

Value

A character vector of vertices in the topological sort sequence.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

64 wavefront

Examples

data(FileDep)
tsind <- tsort(FileDep)
tsind
FD2 <- FileDep
now introduce a cycle
FD2 <- addEdge("bar_o", "dax_h", FD2, 1)
tsort(FD2)

wavefront Compute the i-th/max/average/rms wavefront for a graph

Description

Compute the i-th/max/average/rms wavefront for a graph

Usage

ith.wavefront(g, start)
maxWavefront(g)
aver.wavefront(g)
rms.wavefront(g)

Arguments

start a vertex of the graph class

g an instance of the graph class

Details

Assorted functions on wavefront of a graph.

Value

ith.wavefront wavefront of the given vertex

maxWavefront maximum wavefront of a graph

aver.wavefront average wavefront of a graph

rms.wavefront root mean square of all wavefronts

Author(s)

Li Long <li.long@isb-sib.ch>

References

Boost Graph Library (www.boost.org/libs/graph/doc/index.html)

The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee,
and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-
201-72914-8

wavefront 65

See Also

edgeConnectivity

Examples

con <- file(system.file("XML/dijkex.gxl",package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)

ss <- 1
ith.wavefront(coex, ss)
maxWavefront(coex)
aver.wavefront(coex)
rms.wavefront(coex)

Index

∗ graphs
bellman.ford.sp, 5
bfs, 7
boyerMyrvoldPlanarityTest, 9
chrobakPayneStraightLineDrawing,

11
dag.sp, 15
dijkstra.sp, 16
edmondsMaxCardinalityMatching, 20
edmondsOptimumBranching, 21
FileDep, 23
isKuratowskiSubgraph, 30
isStraightLineDrawing, 32
makeBiconnectedPlanar, 39
makeConnected, 40
makeMaximalPlanar, 41
maximumCycleRatio, 44
minimumCycleRatio, 46
mstree.kruskal, 47
planarCanonicalOrdering, 50
planarFaceTraversal, 51
sloanStartEndVertices, 58
sp.between, 59
tsort, 63

∗ manip
separates, 56

∗ models
astarSearch, 3
bandwidth, 4
betweenness.centrality.clustering,

6
biConnComp, 8
brandes.betweenness.centrality, 10
clusteringCoef, 12
clusteringCoefAppr, 13
connectedComp, 14
dominatorTree, 18
edgeConnectivity, 19
extractPath, 22
floyd.warshall.all.pairs.sp, 23
gprofile, 24
graphGenerator, 25
highlyConnSG, 26

incremental.components, 27
is.triangulated, 29
isomorphism, 31
johnson.all.pairs.sp, 33
kCliques, 34
kCores, 35
lambdaSets, 36
layout, 37
max.flow, 42
maxClique, 43
minCut, 45
mstree.prim, 48
Ordering, 49
RBGL.overview, 53
removeSelfLoops, 56
sequential.vertex.coloring, 57
strongComp, 60
transitive.closure, 61
transitivity, 62
wavefront, 64

allShortestPaths, 22
articulationPoints (biConnComp), 8
astarSearch, 3
aver.wavefront, 55
aver.wavefront (wavefront), 64

bandwidth, 4, 53
bellman.ford.sp, 5, 16, 17, 34, 54, 60
betweenness.centrality.clustering, 6,

11, 55
bfs, 7, 53
bfs,graph,ANY,ANY-method (bfs), 7
bfs,graph,character,logical-method

(bfs), 7
bfs,graph,character,missing-method

(bfs), 7
bfs,graph,character-method (bfs), 7
bfs,graph,missing,logical-method (bfs),

7
bfs,graph,missing,missing-method (bfs),

7
bfs,graph-method (bfs), 7
biConnComp, 8

66

INDEX 67

boyerMyrvoldPlanarityTest, 9
brandes.betweenness.centrality, 7, 10,

55

chrobakPayneStraightLineDrawing, 11
circle.layout, 55
circle.layout (layout), 37
circleLayout (layout), 37
clusteringCoef, 12
clusteringCoefAppr, 13
connComp, 15, 28, 61
connectedComp, 14, 28, 54, 61
cuthill.mckee.ordering, 55
cuthill.mckee.ordering (Ordering), 49

dag.sp, 6, 15, 17, 34, 54, 60
Defunct, 53
dfs, 53
dfs (bfs), 7
dfs,graph,character,ANY-method (bfs), 7
dfs,graph,character,logical-method

(bfs), 7
dfs,graph,character,missing-method

(bfs), 7
dfs,graph,character-method (bfs), 7
dfs,graph,missing,missing-method (bfs),

7
dijkstra.sp, 6, 16, 16, 22, 34, 54, 60
dominatorTree, 18

edgeConnectivity, 19, 27, 43, 46, 53, 65
edmonds.karp.max.flow, 19, 54
edmonds.karp.max.flow (max.flow), 42
edmondsMaxCardinalityMatching, 20
edmondsOptimumBranching, 21
extractPath, 22, 54

FileDep, 23
floyd.warshall.all.pairs.sp, 23
fruchtermanReingoldForceDirectedLayout

(layout), 37

gprofile, 24, 53
graphGenerator, 25
gursoyAtunLayout (layout), 37

highlyConnSG, 26, 54

incremental.components, 27, 54
init.incremental.components, 54
init.incremental.components

(incremental.components), 27
is.triangulated, 29
isKuratowskiSubgraph, 30

isomorphism, 31, 53
isStraightLineDrawing, 32
ith.wavefront, 55
ith.wavefront (wavefront), 64

johnson.all.pairs.sp, 6, 16, 17, 24, 33, 54,
57, 60

kamada.kawai.spring.layout, 55
kamada.kawai.spring.layout (layout), 37
kamadaKawaiSpringLayout (layout), 37
kCliques, 34
kCores, 35
kingOrdering (Ordering), 49
kolmogorov.max.flow (max.flow), 42

lambdaSets, 36
layout, 37
layoutGraph, 38
lengauerTarjanDominatorTree

(dominatorTree), 18

makeBiconnectedPlanar, 39
makeConnected, 40
makeMaximalPlanar, 41
max.flow, 42
maxClique, 43
maximumCycleRatio, 44
maxWavefront, 55
maxWavefront (wavefront), 64
minCut, 19, 27, 43, 45, 53
minDegreeOrdering, 55
minDegreeOrdering (Ordering), 49
minimumCycleRatio, 46
mstree.kruskal, 47, 48, 54
mstree.prim, 48

Ordering, 49

pathWeights, 60
planarCanonicalOrdering, 50
planarFaceTraversal, 51
prim.minST (RBGL-defunct), 53
push.relabel.max.flow, 19, 54
push.relabel.max.flow (max.flow), 42

randomGraphLayout (layout), 37
RBGL-defunct, 53
RBGL.overview, 53
removeSelfLoops, 27, 56
rms.wavefront, 55
rms.wavefront (wavefront), 64

same.component, 15, 54, 61

68 INDEX

same.component
(incremental.components), 27

separates, 56
sequential.vertex.coloring, 57
sloan.ordering, 55
sloan.ordering (Ordering), 49
sloanStartEndVertices, 58
sp.between, 6, 16, 17, 34, 54, 59
sp.between.old, 54
sp.between.scalar, 54
strongComp, 15, 28, 54, 60

transitive.closure, 53, 61
transitivity, 62
tsort, 53, 63

ugraph, 15, 29

wavefront, 64

	astarSearch
	bandwidth
	bellman.ford.sp
	betweenness.centrality.clustering
	bfs
	biConnComp
	boyerMyrvoldPlanarityTest
	brandes.betweenness.centrality
	chrobakPayneStraightLineDrawing
	clusteringCoef
	clusteringCoefAppr
	connectedComp
	dag.sp
	dijkstra.sp
	dominatorTree
	edgeConnectivity
	edmondsMaxCardinalityMatching
	edmondsOptimumBranching
	extractPath
	FileDep
	floyd.warshall.all.pairs.sp
	gprofile
	graphGenerator
	highlyConnSG
	incremental.components
	is.triangulated
	isKuratowskiSubgraph
	isomorphism
	isStraightLineDrawing
	johnson.all.pairs.sp
	kCliques
	kCores
	lambdaSets
	layout
	makeBiconnectedPlanar
	makeConnected
	makeMaximalPlanar
	max.flow
	maxClique
	maximumCycleRatio
	minCut
	minimumCycleRatio
	mstree.kruskal
	mstree.prim
	Ordering
	planarCanonicalOrdering
	planarFaceTraversal
	RBGL-defunct
	RBGL.overview
	removeSelfLoops
	separates
	sequential.vertex.coloring
	sloanStartEndVertices
	sp.between
	strongComp
	transitive.closure
	transitivity
	tsort
	wavefront
	Index

