Package ‘RAIDS’

January 20, 2026
Type Package

Title Robust Ancestry Inference using Data Synthesis

Description This package implements specialized algorithms that enable
genetic ancestry inference from various cancer sequences sources (RNA,
Exome and Whole-Genome sequences). This package also implements a
simulation algorithm that generates synthetic cancer-derived data.

This code and analysis pipeline was designed and developed for the
following publication: Belleau, P et al. Genetic Ancestry Inference from
Cancer-Derived Molecular Data across Genomic and Transcriptomic
Platforms. Cancer Res 1 January 2023; 83 (1): 49-58.

Version 1.8.0

License Apache License (>=2)
Encoding UTF-8
NeedsCompilation no
VignetteBuilder knitr

Depends R (>=4.2.0), gdsfmt, SNPRelate, stats, utils, GENESIS, dplyr,
Rsamtools

Imports S4Vectors, GenomicRanges, ensembldb, BSgenome, AnnotationDbi,
methods, class, pROC, IRanges, AnnotationFilter, rlang,
VariantAnnotation, MatrixGenerics, ggplot2, stringr

Suggests testthat, knitr, rmarkdown, BiocStyle, withr, Seqinfo,
BSgenome.Hsapiens.UCSC.hg38, EnsDb.Hsapiens.v86
BugReports https://github.com/KrasnitzLab/RAIDS/issues

URL https://krasnitzlab.github.io/RAIDS/

biocViews Genetics, Software, Sequencing, WholeGenome,
PrincipalComponent, Genetic Variability, DimensionReduction,
BiocViews

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/RAIDS
git_branch RELEASE_3_22

git_last_commit 4c9a678

git_last_commit_date 2025-10-29

https://github.com/KrasnitzLab/RAIDS/issues
https://krasnitzlab.github.io/RAIDS/

2 Contents

Repository Bioconductor 3.22
Date/Publication 2026-01-19

Author Pascal Belleau [cre, aut] (ORCID:
<https://orcid.org/0000-0002-0802-1071>),
Astrid Deschénes [aut] (ORCID: <https://orcid.org/0000-0001-7846-6749>),
David A. Tuveson [aut] (ORCID: <https://orcid.org/0000-0002-8017-2712>),
Alexander Krasnitz [aut]

Maintainer Pascal Belleau <pascal_belleau@hotmail.com>

Contents
RAIDS-package e 4
add1KG2SampleGDS L 5
addBlockFromDetFile 7
addBlockInGDSAnnot 9
addGDS1KGLDBlock e 10
addGDSRef 11
addGDSStudyPruning 12
addGeneBlockGDSRefAnnot 14
addGeneBlockRefAnnot L 15
addRef2GDS1KG e 17
addStudylKg e 18
addStudyGDSSample 20
addUpdateLap e 21
addUpdateSegment e 23
appendGDSgenotype e 24
appendGDSgenotypeMat 26
appendGDSRefSample 27
appendGDSSampleOnly 29
calcAFMLRNA e 30
computeAlleleFraction L 31
computeAllelicFractionDNA 32
computeAllelicFractionRNA 34
computeAlleliclmbDNAChr 37
computeAncestryFromSynthetic L o o 39
computeAncestryFromSyntheticFile, 43
computeKNNRefSample 47
computeKNNRefSynthetic 49
computetLOHBlocksDNAChr 51
computetPCAMultiSynthetic 53
computetPCARefRMMulti e 55
computePCARefSample 57
computePoolSyntheticAncestryGr 58
computeSyntheticConfMat 61
computeSyntheticROC 62
createAccuracyGraph L. e 64
createAUROCGraph e 65
createProfile L 66
createStudy2GDSIKG e 68
demoKnownSuperPoplKG 71

demoPCALIKG e e 72

https://orcid.org/0000-0002-0802-1071
https://orcid.org/0000-0001-7846-6749
https://orcid.org/0000-0002-8017-2712

Contents

3
demoPCASyntheticProfiles 73
demoPedigreeEx1 L 75
estimateAllelicFraction 77
extractNucleotide 80
generateGDS1KG 81
generateGDS1KGgenotypeFromSNPPileup 82
generateGDSgenotype L. e e 85
generateGDSRefSample oL 0oL 86
generateGDSSNPinfo 88
generateGeneBlock L L 89
generateMapSnvSelo 90
generatePhaseIKG2GDS L 92
generatePhaseRef 93
generateProfileGDS 95
getBlockIDs 97
getReflIKGPop o 99
getRefSuperPop oL 100
getTableSNV e e 101
groupChrlKGSNV oo 103
identifyRelative 104
identifyRelativeRef L 105
inferAncestry 107
inferAncestrtyDNA L 111
inferAncestryGeneAware i i e e e e e e 115
matKNNSynthetic. 120
pedSynthetic L 121
prepPedlKG 123
prepPedSyntheticlKG 124
prepSynthetic L e e e e e 125
processBlockChr L 127
processPileupChrBin L 128
profileAncestry e e e e e 129
pruninglKGbyChr o 134
pruningSample L e 136
readSNVBAM 139
readSNVFileGeneric 140
readSNVPileupFile 141
readSNVVCE 142
runExomeAncestry e 143
runIBDKINGo 146
runLDPruning oL e 147
runProfileAncestry 149
TunRNAANCESITY o o o e e e e e e 153
runWrapperAnCestryo 156
selectlKGPop e 160
selectlKGPopForSynthetic 161
selParaPCAUpQuartile L 162
snpPositionDemo L 164
snvListVCF o o 166
splitSelectByPop 167
syntheticGeno L 168

tableBlockAF e e 170

4 RAIDS-package
testAlleleFractionChange 171
testEmptyBoxo 172
validateAccuracyGraphlnternal oL Lo 173
validateAdd1KG2SampleGDS 174
validateAddStudy1Kg e 175
validateCharacterString 176
validateComputeAncestryFromSyntheticFile 177
validateComputeKNNRefSample 179
validateComputeKNNRefSynthetic. 180
validateComputePCAMultiSynthetic 182
validateComputePCARefSample 183
validateComputePoolSyntheticAncestryGr 184
validateComputeSyntheticRoc 186
validateCreateAccuracyGraph e 187
validatecreate AUROCGraph 188
validatecreateProfile 189
validateCreateStudy2GDS1KG L oo 191
validateDataRefSynParameter 193
validateEstimateAllelicFraction. o o 0oL, 193
validateGDSClass 196
validateGenerateGDS1KG 196
validateLogical 198
validatePEDStudyParameter 199
validatePepSynthetic L 199
validatePositivelntegerVector oL 201
validatePrepPed 1 KG L 202
validateProfileGDSExist 203
validatePruningSample 203
validateRunExomeOrRNAAncestry 205
validateSingleRatio 208
validateStudyDataFrameParameter 00 208
validateSyntheticGeno e 209
WIAPPETANCESITY . . v v v v v e 210

Index 216

RAIDS-package RAIDS: Accurate Inference of Genetic Ancestry from Cancer Se-
quences

Description

The RAIDS package implements specialized algorithms that enable ancestry inference from various
cancer data sources (RNA, Exome and Whole-Genome sequencing).

Details

The RAIDS package also implements simulation algorithm that generates synthetic cancer-derived
data.
This code and analysis pipeline was designed and developed for the following publication:

add1KG2SampleGDS 5

Pascal Belleau, Astrid Deschénes, Nyasha Chambwe, David A. Tuveson, Alexander Krasnitz; Ge-
netic Ancestry Inference from Cancer-Derived Molecular Data across Genomic and Transcriptomic
Platforms. Cancer Res 1 January 2023; 83 (1): 49-58. https://doi.org/10.1158/0008-5472.CAN-
22-0682

Value

RAIDS

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Maintainer: Pascal Belleau pascal_belleau @hotmail.com

References

Pascal Belleau, Astrid Deschénes, Nyasha Chambwe, David A. Tuveson, Alexander Krasnitz; Ge-
netic Ancestry Inference from Cancer-Derived Molecular Data across Genomic and Transcriptomic
Platforms. Cancer Res 1 January 2023; 83 (1): 49-58. https://doi.org/10.1158/0008-5472.CAN-
22-0682

See Also

runExomeAncestry This function runs most steps leading to the ancestry inference call on a spe-
cific exome profile.

runExomeAncestry This function runs most steps leading to the ancestry inference call on a spe-
cific RNA profile.

createAccuracyGraph The function extracts the required information from an output generated
by RAIDS to create a graphic representation of the accuracy for different values of PCA
dimensions and K-neighbors through all tested ancestries.

add1KG2SampleGDS Add the genotype information for the list of pruned SNVs into the Pro-
file GDS file

Description

The function extracts the information about the pruned SNVs from the 1KG GDS file and adds

entries related to the pruned SNVs in the Profile GDS file. The nodes are added to the Profile GDS

file: sample.id’, ’snp.id’, ’snp.chromosome’, ’snp.position’, ’snp.index’, ’genotype’ and ’lap’.
Usage

add1KG2SampleGDS(gdsReference, fileProfileGDS, currentProfile, studyID)

mailto:pascal_belleau@hotmail.com

6 add1KG2SampleGDS

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

fileProfileGDS a character string representing the path and file name of the Profile GDS file.
The Profile GDS file must exist.

currentProfile acharacter string corresponding to the sample identifier associated to the cur-
rent list of pruned SN'Vs.

studyID a character string corresponding to the study identifier associated to the current
list of pruned SNVs.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

The data.frame containing the information about the study
The 3 mandatory columns: "studyID", "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

Temporary Profile file
fileProfile <- file.path(tempdir(), "ex2.gds")

Copy required file
file.copy(file.path(dataDir, "ex1_demo_with_pruning.gds"),
fileProfile)

Open 1KG file
gds1KG <- snpgdsOpen(fileGDS)

Compute the list of pruned SNVs for a specific profile 'ex1'
and save it in the Profile GDS file 'ex2.gds'
add1KG2SampleGDS (gdsReference=gds1KG,

fileProfileGDS=fileProfile,

currentProfile=c("ex1"),

studyID=studyDF$study.id)

Close the 1KG GDS file (important)
closefn.gds(gds1KG)

Check content of Profile GDS file

addBlockFromDetFile

The 'pruned.study' entry should be present
content <- openfn.gds(fileProfile)

content

Close the Profile GDS file (important)
closefn.gds(content)

Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

addBlockFromDetFile

Append information associated to ld blocks, as indexes, into the Pop-
ulation Reference SNV Annotation GDS file

Description

The function appends the information about the 1d blocks into the Population Reference SNV An-

notation GDS file.

The information is extracted from the Population Reference GDS file and files

\V.det\’.
Usage
addBlockFromDetFile(
fileReferenceGDS,
gdsRefAnnotFile,
pathBlock,
superPop,
blockName = "ldBlock"”,
blockDesc = "Not Define”,
verbose = FALSE
)
Arguments
fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.
gdsRefAnnotFile
acharacter string representing the file name corresponding the Reference SNV
Annotation GDS file. The function will open it in write mode and close it after.
The file must exist.
pathBlock a character string representing the directory where all the output file det from
the plink block command are located. The directory must not include other file
with the extension \’.det\’. The name of the \’.det\’ must include the super-
population between \’.\’ and the chromosome in the form \’chrNumber.\’ \(
\'chrl.\'\).
superPop a character string representing the super population.
blockName a character string representing the id of the block. The blockName should not

exist in \’gdsRefAnnotFile\’. Default: "1dBlock".

8 addBlockFromDetFile

blockDesc a character string representing the description of the block. Default: "Not
Define”
verbose a logical indicating if message information should be printed. Default: FALSE.
Details

More information about GDS file format can be found at the Bioconductor gdsfmt website: https://bioconductor.org/pack:

Value

OL when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

fileAnnotGDS <- file.path(tempdir(), "ex1_good_small_1KG_Ann_GDS.gds")

Demo of of output file det from the plink block
command for chromosome 1
fileLdBlock <- file.path(dirname(fileAnnotGDS), "block.sp.EUR.Ex.chrl1.blocks.det")

file.copy(file.path(dataDir, "tests",
"ex1_NoBlockGene.1KG_Annot_GDS.gds"), fileAnnotGDS)

file.copy(file.path(dataDir, "block.sp.EUR.Ex.chrl.blocks.det"),
fileLdBlock)

GDS Reference file
fileReferenceGDS <- file.path(dataDir, "tests”,
"ex1_good_small_1KG.gds")

Append information associated to blocks
addBlockFromDetFile(fileReferenceGDS=fileReferenceGDS,
gdsRefAnnotFile=fileAnnotGDS,
pathBlock=dirname(fileAnnotGDS),
superPop="EUR")

gdsAnnot1KG <- openfn.gds(fileAnnotGDS)
print(gdsAnnot1KG)

closefn.gds(gdsAnnot1KG)

Remove temporary file
unlink(fileAnnotGDS, force=TRUE)

addBlockInGDSAnnot 9

unlink(fileLdBlock, force=TRUE)

addBlockInGDSAnnot Add block information in a Population Reference GDS Annotation file

Description

This function appends the information for one specific type of blocks into a Population Reference
GDS Annotation file. More specifically, the node block.annot’ is created if it does not exists. This
node contains a data.frame which will be append the description of the current block. The node
’block’ is also created if it does not exists. This node is a matrix that will contain all the entries
for the current block. All the values for a specific block type are contained in a single column that
corresponds to the row number in the "block.annot’ node.

Usage

addBlockInGDSAnnot(gds, listBlock, blockName, blockDesc)

Arguments
gds an object of class gds opened in writing mode.
listBlock a array of integer representing all the entries for the current block.
blockName a character string representing the unique block name.
blockDesc a character string representing the description of the current block.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Temporary GDS Annotation file in current directory
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_Annot_14.gds")

Create and open the GDS file
GDS_file_tmp <- createfn.gds(filename=gdsFilePath)

One block
blockType <- "EAS.0.05.500k"

The description of the block
blockDescription <- "EAS population blocks based on 500k windows”

10 addGDS1KGLDBlock

The values for each entry related to the block (integers)
blockEntries <- c(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3)

RAIDS: : :addBlockInGDSAnnot (gds=GDS_file_tmp, listBlock=blockEntries,
blockName=blockType, blockDesc=blockDescription)

Read 'block.annot' node
read.gdsn(index.gdsn(GDS_file_tmp, "block.annot"))

Read 'block' node
read.gdsn(index.gdsn(GDS_file_tmp, "block"))

Close GDS file
closefn.gds(gdsfile=GDS_file_tmp)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

addGDS1KGLDBlock Append information associated to ld blocks, as indexes, into the Pop-
ulation Reference SNV Annotation GDS file

Description

The function appends the information about the 1d blocks into the Population Reference SNV An-
notation GDS file. The information is extracted from the parameter listBlock.

Usage

addGDSTKGLDBlock(gds, listBlock, blockName, blockDesc)

Arguments
gds an object of class gds.class (GDS file), an opened Reference Annotation GDS
file.
listBlock a array of integer representing the linkage disequilibrium block for each SNV
in the in the same order than the variant in Population reference dataset.
blockName a character string representing the id of the block. The blockName should not
exist in \’gdsRefAnnotFile\’.
blockDesc a character string representing the description of the block.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

addGDSRef 11

Examples

Required library for GDS

library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

fileAnnotGDS <- file.path(tempdir(), "ex1_good_small_1KG_Ann_GDS.gds")

file.copy(file.path(dataDir, "tests",
"ex1_NoBlockGene.1KG_Annot_GDS.gds"), fileAnnotGDS)

fileReferenceGDS <- file.path(dataDir, "tests”,
"ex1_good_small_1KG.gds")

gdsRef <- openfn.gds(fileReferenceGDS)
listBlock <- read.gdsn(index.gdsn(gdsRef, "snp.position"))
listBlock <- rep(-1, length(listBlock))
closefn.gds(gdsRef)
gdsAnnot1KG <- openfn.gds(fileAnnotGDS, readonly=FALSE)
Append information associated to blocks
RAIDS: : :addGDS1KGLDBlock (gds=gdsAnnot1KG,
listBlock=1listBlock,
blockName="blockEmpty",
blockDesc="Example")

closefn.gds(gdsAnnot1KG)

gdsAnnot1KG <- openfn.gds(fileAnnotGDS)
print(gdsAnnot1KG)

closefn.gds(gdsAnnot1KG)

Remove temporary file
unlink(fileAnnotGDS, force=TRUE)

addGDSRef Create a "sample.ref” node i a GDS file with the information about the
related/unrelated state of the reference samples

Description

This function creates a "sample.ref" node in the GDS file. The node contains a vector of integers
with value of 1 when the samples are used as references and 0 otherwise. The information used to
fill the "sample.ref” node comes from the RDS file that contains the information about the unrelated
reference samples.

Usage
addGDSRef (gdsReference, filePart)

12 addGDSStudyPruning

Arguments

gdsReference an object of class gds.class (a GDS file), the opened GDS file.

filePart a character string representing the path and file name of a RDS file containing
the information about the related and unrelated samples in the reference dataset.
The RDS file must exist. The RDS file must contains a vector of character
strings called "unrels" with the name of the unrelated samples.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Locate RDS with unrelated/related status for Reference samples
dataDir <- system.file("extdata"”, package="RAIDS")
rdsFilePath <- file.path(dataDir, "unrelatedPatientsInfo_Demo.rds")

Temporary GDS file
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_11.gds")

Create and open the GDS file

tmpGDS <- createfn.gds(filename=gdsFilePath)

Create "sample.id” node (the node must be present)
sampleIDs <- c("HGO@104", "HGOO109", "HGOO110")

add. gdsn(node=tmpGDS, name="sample.id"”, val=samplelDs)

Create "sample.ref” node in GDS file using RDS information
RAIDS: : : addGDSRef (gdsReference=tmpGDS, filePart=rdsFilePath)

Read sample reference data.frame
read. gdsn(index.gdsn(node=tmpGDS, path="sample.ref"))

Close GDS file
closefn.gds(gdsfile=tmpGDS)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

addGDSStudyPruning Add the pruned.study entry related to the SNV dataset in the Profile
GDS file

addGDSStudyPruning 13

Description

This function adds the names of the SNVs into the node called "pruned.study” in GDS Sample file.
If a "pruned.study" entry is already present, the entry is deleted and a new entry is created.

Usage

addGDSStudyPruning(gdsProfile, pruned)

Arguments
gdsProfile an object of class gds.class (a GDS file), the opened Profile GDS file.
pruned a vector of character string representing the name of the SN'Vs.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Create a temporary GDS file in an test directory
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_1.gds")

Create and open the GDS file
tmpGDS <- createfn.gds(filename=gdsFilePath)

Vector of low allelic fraction
study <- c("s19222", 's19588', 's19988', 's20588', 's23598')

Add segments to the GDS file
RAIDS: : :addGDSStudyPruning(gdsProfile=tmpGDS, pruned=study)

Read lap information from GDS file
read. gdsn(index.gdsn(node=tmpGDS, path="pruned.study"))

Close GDS file
closefn.gds(gdsfile=tmpGDS)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

14 addGeneBlockGDSRefAnnot

addGeneBlockGDSRefAnnot

Append information associated to blocks, as indexes, into the Popula-
tion Reference SNV Annotation GDS file

Description

The function appends the information about the blocks into the Population Reference SNV Anno-
tation GDS file. The information is extracted from the Population Reference GDS file.

Usage

addGeneBlockGDSRefAnnot (
gdsReference,
gdsRefAnnotFile,
winSize = 10000,
ensDb,
suffixBlockName

Arguments

gdsReference an object of class gds.class (a GDS file), the opened Reference GDS file.
gdsRefAnnotFile
a character string representing the file name corresponding the Reference SNV
Annotation GDS file. The function will open it in write mode and close it after.
The file must exist.

winSize a single positive integer representing the size of the window to use to group
the SN'Vs when the SNVs are in a non-coding region. Default: 10000L.

ensDb An object with the ensembl genome annotation Default: EnsDb.Hsapiens.v86.

suffixBlockName

a character string that identify the source of the block and that will be added to
the block description into the Reference SNV Annotation GDS file, as example:
Ensembl.Hsapiens.v86.

Value

The integer OL when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(SNPRelate)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

addGeneBlockRefAnnot 15

fileAnnotGDS <- file.path(tempdir(), "ex1_good_small_1KG_Ann_GDS.gds")

Required library
if (requireNamespace("EnsDb.Hsapiens.v86", quietly=TRUE)) {

file.copy(file.path(dataDir, "tests”,
"ex1_NoBlockGene.1KG_Annot_GDS.gds"), fileAnnotGDS)

Making a "short cut” on the ensDb object
edb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86

GDS Reference file
fileReferenceGDS <- file.path(dataDir, "tests”,
"ex1_good_small_1KG.gds")

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileReferenceGDS)

Append information associated to blocks
addGeneBlockGDSRefAnnot (gdsReference=gds1KG,
gdsRefAnnotFile=fileAnnotGDS,
ensDb=edb,
suffixBlockName="EnsDb.Hsapiens.v86")

gdsAnnot1KG <- openfn.gds(fileAnnotGDS)
print(gdsAnnot1KG)
print(read.gdsn(index.gdsn(gdsAnnot1KG, "block.annot")))

Close GDS files
closefn.gds(gds1KG)
closefn.gds(gdsAnnot1KG)

Remove temporary file
unlink(fileAnnotGDS, force=TRUE)

addGeneBlockRefAnnot Append information associated to blocks, as indexes, into the Popula-
tion Reference SNV Annotation GDS file

Description

The function appends the information about the blocks into the Population Reference SNV Anno-
tation GDS file. The information is extracted from the Population Reference GDS file.

Usage

addGeneBlockRefAnnot (
fileReferenceGDS,
gdsRefAnnotFile,

16 addGeneBlockRefAnnot

winSize = 10000,
ensDb,
suffixBlockName

Arguments

fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.

gdsRefAnnotFile
a character string representing the file name corresponding the Reference SNV
Annotation GDS file. The function will open it in write mode and close it after.
The file must exist.

winSize a single positive integer representing the size of the window to use to group
the SNVs when the SNVs are in a non-coding region. Default: 10000L.

ensDb An object with the ensembl genome annotation Default: EnsDb.Hsapiens.v86.

suffixBlockName

a character string that identify the source of the block and that will be added to
the block description into the Reference SNV Annotation GDS file, as example:
Ensembl.Hsapiens.v86.

Value

The integer OL when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

fileAnnotGDS <- file.path(tempdir(), "ex1_good_small_T1KG_Ann_GDS.gds")

Required library
if (requireNamespace("EnsDb.Hsapiens.v86", quietly=TRUE)) {

file.copy(file.path(dataDir, "tests",
"ex1_NoBlockGene.1KG_Annot_GDS.gds"), fileAnnotGDS)

Making a "short cut” on the ensDb object
edb <- EnsDb.Hsapiens.v86: :EnsDb.Hsapiens.v86

GDS Reference file

fileReferenceGDS <- file.path(dataDir, "tests",
"ex1_good_small_1KG.gds")

Append information associated to blocks

addRef2GDS1KG 17

addGeneBlockRefAnnot (fileReferenceGDS=fileReferenceGDS,
gdsRefAnnotFile=fileAnnotGDS,
ensDb=edb,
suffixBlockName="EnsDb.Hsapiens.v86")

gdsAnnot1KG <- openfn.gds(fileAnnotGDS)
print(gdsAnnot1KG)
print(read.gdsn(index.gdsn(gdsAnnot1KG, "block.annot")))

closefn.gds(gdsAnnot1KG)

Remove temporary file
unlink(fileAnnotGDS, force=TRUE)

3
addRef2GDS1KG Add the information about the unrelated patients to the Reference GDS
file
Description

This function adds the information about the unrelated patients to the Reference GDS file. More
specifically, it creates the field sample.ref which as the value 1 when the sample is unrelated and
the value @ otherwise. The sample.ref is filled based on the information present in the input RDS
file.

Usage

addRef2GDST1KG(fileNameGDS, filePart)

Arguments

fileNameGDS a character string representing the path and file name of the GDS file that
contains the Reference information. The Reference GDS file must contain the
SNP information, the genotyping information and the pedigree information from
Reference dataset. The extension of the file must be .gds’.

filePart a character string representing the path and file name of the RDS file that
contains the information about the Reference patients that are unrelated. The
extension of the file must be ’.rds’. The file must exists.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

18 addStudy1Kg

Examples

Locate RDS with unrelated/related status for 1KG samples
dataDir <- system.file("extdata”, package="RAIDS")
rdsFilePath <- file.path(dataDir, "unrelatedPatientsInfo_Demo.rds")

Create a temporary GDS file in an test directory
dataDir <- system.file("extdata/tests”, package="RAIDS")
gdsFilePath <- file.path(dataDir, "GDS_TEMP_201.gds")

Create and open the GDS file

tmpGDS <- createfn.gds(filename=gdsFilePath)

Create "sample.id"” node (the node must be present)
sampleIDs <- c(”HG@@104"”, "HGOQA109", "HG0O110")

add. gdsn(node=tmpGDS, name="sample.id", val=sampleIDs)

Create "snp.id"” node (the node must be present)
SanDS <_ c(!ls‘l II, "52", IIS3IIy IIS4II’ "55"’ IIS6IV)
add. gdsn(node=tmpGDS, name="snp.id"”, val=snpIDs)

Create "snp.position” node (the node must be present)
snpPositions <- c(16102, 51478, 51897, 51927, 54489, 54707)
add. gdsn(node=tmpGDS, name="snp.position"”, val=snpPositions)

Create "snp.chromosome” node (the node must be present)
snpPositions <- c(1, 1, 1, 1, 1, 1)
add. gdsn(node=tmpGDS, name="snp.chromosome"”, val=snpPositions)

Create "genotype” node (the node must be present)
genotype <- matrix(rep(1, 18), ncol = 3)
add. gdsn(node=tmpGDS, name="genotype"”, val=genotype)

Close GDS file
closefn.gds(tmpGDS)

Create "sample.ref” node in GDS file using RDS information
addRef2GDS1KG(fileNameGDS=gdsFilePath, filePart=rdsFilePath)

Read sample reference data.frame

fileGDS <- openfn.gds(gdsFilePath, readonly=TRUE)
read.gdsn(index.gdsn(node=fileGDS, path="sample.ref"))
closefn.gds(gdsfile=fileGDS)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

addStudy1Kg Append information about the 1KG samples into the Profile GDS file

Description

The information about the samples present in the 1KG GDS file is added into the GDS Sample file.
Only the information about the unrelated samples from the 1000 Genome Study are copied into
the GDS Sample file. The information is only added to the GDS Sample file when the 1KG Study

addStudy1Kg 19

is not already present in the GDS Sample file. The sample information for all selected samples is
appended to the GDS Sample file "study.annot" node. The study information is appended to the
GDS Sample file "study.list" node.

Usage

addStudy1Kg(gdsReference, fileProfileGDS, verbose = FALSE)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

fileProfileGDS a character string representing the path and file name of the GDS Sample file.
The GDS Sample file must exist.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library for GDS
library(gdsfmt)

Get the temp folder
tempDir <- tempdir()

Create a temporary 1KG GDS file and add needed information
fileNamelKG <- file.path(tempDir, "GDS_TEMP_addStudyl1Kg_1KG.gds")
gds1KG <- createfn.gds(filename=fileNamel1KG)

add.gdsn(gds1KG, "sample.id”, c("HTT101", "HTT102", "HTT103"))

samples <- data.frame(sex=c(1, 1, 2), pop.group=c("GBR", "GIH", "GBR"),
superPop=c("EUR", "SAS", "EUR"), batch=rep(@, 3),
stringsAsFactors = FALSE)

add.gdsn(gds1KG, "sample.annot”, samples)
add.gdsn(gds1KG, "sample.ref”, c(1,0, 1))
sync.gds(gds1KG)

Create a temporary Profile GDS file
fileNameProfile <- file.path(tempDir, "GDS_TEMP_addStudylKg_Sample.gds")
gdsProfile <- createfn.gds(fileNameProfile)

study.list <- data.frame(study.id=c("HTT Study"),
study.desc=c("Important Study"),
study.platform=c("Panel”), stringsAsFactors=FALSE)

add.gdsn(gdsProfile, "study.list", study.list)

20

addStudyGDSSample

study.annot <- data.frame(data.id=c("TOTO1"), case.id=c("TOTO1"),
sample.type=c("Study"), diagnosis=c("Study"),
source=rep("IGSR"), study.id=c("Study"),
stringsAsFactors=FALSE)

add.gdsn(gdsProfile, "study.annot”, study.annot)
sync.gds(gdsProfile)
closefn.gds(gdsProfile)

Append information about the 1KG samples into the Profile GDS file

The Profile GDS file will contain 'study.list' and 'study.annot' entries

addStudy1Kg(gdsReference=gds1KG, fileProfileGDS=fileNameProfile,
verbose=TRUE)

closefn.gds(gds1KG)
unlink(fileNameProfile, recursive=TRUE, force=TRUE)
unlink(fileName1KG, recursive=TRUE, force=TRUE)

unlink(tempDir)
addStudyGDSSample Add information related to a specific study and specific samples into a
GDS Sample file
Description

This function add entries related to 1) a specific study and 2) specific samples into a GDS Sample
file. The study information is appended to the GDS Sample file "study.list" node when the node is
already present in the file. Otherwise, the node is created and then, the information is added. The
sample information for all selected samples is appended to the GDS Sample file "study.annot" node
when the node is already present in the file. Otherwise, the node is created and then, the information
is added.

Usage

addStudyGDSSample(gdsProfile, pedProfile, batch, listSamples, studyDF, verbose)

Arguments

gdsProfile an object of class gds.class (a GDS file), the opened GDS file.

pedProfile a data.frame with the sample information. The data.frame must have the
columns: "Name.ID", "Case.ID", "Sample.Type", "Diagnosis" and "Source".
The unique sample identifier of the data. frame is the "Name.ID" column and
the row names of the data. frame must be the "Name.ID" values.

batch a integer corresponding the batch associated to the study.

listSamples a vector of character string representing the samples (samples identifiers)
that are saved into the GDS. All the samples must be present in the 'pdeDF’
data.frame. If NULL, all samples present in the dfPedProfile are used.

studyDF adata. frame with at least the 3 columns: "study.id", "study.desc" and "study.platform".
The three columns are in character string format (no factor).

verbose a logical indicating if messages should be printed to show how the different

steps in the function.

addUpdateLap 21

Value

a vector of character strings representing the sample identifiers that have been saved in the GDS
Sample file.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Create a temporary GDS file in an current directory
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_11.gds")

Create and open the GDS file
tmpGDS <- createfn.gds(filename=gdsFilePath)

Create a PED data frame with sample information

ped1KG <- data.frame(Name.ID=c("1KG_sample_01", "1KG_sample_02"),
Case.ID=c("1KG_sample_01", "1KG_sample_02"),
Sample.Type=rep("Reference”, 2), Diagnosis=rep("Reference”, 2),
Source=rep("IGSR", 2), stringsAsFactors=FALSE)

Create a Study data frame with information about the study

All samples are associated to the same study

studyInfo <- data.frame(study.id="Ref.1KG",
study.desc="Unrelated samples from 1000 Genomes",
study.platform="GRCh38 1000 genotypes”,
stringsAsFactors=FALSE)

Add the sample information to the GDS Sample file

The information for all samples is added (listSamples=NULL)

RAIDS: : :addStudyGDSSample (gdsProfile=tmpGDS, pedProfile=ped1KG, batch=1,
listSamples=NULL, studyDF=studyInfo, verbose=FALSE)

Read study information from GDS Sample file
read. gdsn(index.gdsn(node=tmpGDS, path="study.list"))

Read sample information from GDS Sample file
read. gdsn(index.gdsn(node=tmpGDS, path="study.annot"))

Close GDS file
closefn.gds(gdsfile=tmpGDS)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

addUpdatelLap Add information related to low allelic fraction associated to the SNV
dataset for a specific sample into a GDS file

22 addUpdateLap

Description

The function adds the information related to low allelic fraction associated to the SNV dataset for
a specific sample into a GDS file, more specifically, in the "lap" node. The "lap" node must already
be present in the GDS file.

Usage
addUpdateLap(gdsProfile, snpLap)

Arguments
gdsProfile an object of class gds.class (a GDS file), a GDS file.
snplLap a vector of numeric value representing the low allelic fraction for each SNV
present in the SNV dataset. The values should be between @ and 0.50. The
length of the vector should correspond to the number of SNVs present in the
"snp.id" entry of the GDS sample file.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Create a temporary GDS file
gdsFilePath <- file.path(tempdir(), "GDS_TEMP.gds")

Create and open the GDS file
gdsFile <- createfn.gds(filename=gdsFilePath)

Create a "lap" node
add.gdsn(node=gdsFile, name="lap"”, val=rep(10L, 12))
sync.gds(gdsFile)

Vector of low allelic fraction
lap <- c(0.1, 0.23, 0.34, 0.00, 0.12, 0.11, .33, 0.55)

Add segments to the GDS file
RAIDS: : :addUpdatelLap(gdsProfile=gdsFile, snplLap=lap)

Read lap information from GDS file
read.gdsn(index.gdsn(node=gdsFile, path="lap"))

Close GDS file
closefn.gds(gdsfile=gdsFile)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

addUpdateSegment 23

addUpdateSegment Add information related to segments associated to the SNV dataset for
a specific sample into a GDS file

Description

The function adds the information related to segments associated to the SNV dataset for a specific
sample into a GDS file, more specifically, in the "segment" node. If the "segment" node already
exists, the previous information is erased.

Usage
addUpdateSegment (gdsProfile, snpSeg)

Arguments
gdsProfile an object of class gds. class (a GDS file), a GDS Sample file.
snpSeg a vector of integer representing the segment identifiers associated to each
SNV selected for the specific sample. The length of the vector should corre-
spond to the number of SNVs present in the "snp.id" entry of the GDS sample
file.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Temporary GDS file
gdsFilePath <- file.path(tempdir(), "GDS_TEMP.gds")

Create and open the GDS file
GDS_file_tmp <- createfn.gds(filename=gdsFilePath)

Vector of segment identifiers
segments <- c(1L, 1L, 1L, 2L, 2L, 3L, 3L)

Add segments to the GDS file
RAIDS: : :addUpdateSegment (gdsProfile=GDS_file_tmp, snpSeg=segments)

Read segments information from GDS file
read.gdsn(index.gdsn(node=GDS_file_tmp, path="segment"))

Close GDS file

24 appendGDSgenotype

closefn.gds(gdsfile=GDS_file_tmp)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

appendGDSgenotype Append information related to profile genotypes into a Population Ref-
erence GDS file (associated node already present in the GDS)

Description

This function appends the genotype fields with the associated information into the Population Ref-
erence GDS file for the selected profiles. The associated node must already present in the GDS
file.

Usage

appendGDSgenotype(gds, listSample, pathGeno, fileSNPsRDS, verbose)

Arguments
gds an object of class gds.class (a GDS file), the opened Population Reference GDS
file.
listSample a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.
pathGeno a character string representing the path where the reference genotyping files

for each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file.

fileSNPsRDS a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

verbose a logical indicating if the function must print messages when running.

Value

The integer @ when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

appendGDSgenotype

Examples

Required library
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

Path where the demo genotype CSV files are located
pathGeno <- file.path(dataDir, "demoProfileGenotypes")

The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary Reference GDS file
tempRefGDS <- file.path(tempdir(), "Ref_TEMP@2.gds")

Create temporary Reference GDS file
newGDS <- createfn.gds(tempRefGDS)
put.attr.gdsn(newGDS$root, "FileFormat”, "SNP_ARRAY")

Read the pedigree file
ped1KG <- readRDS(pedigreeFile)

Add information about samples to the Reference GDS file
listSampleGDS <- RAIDS:::generateGDSRefSample(gdsReference=newGDS,
dfPedReference=ped1KG, listSamples=NULL)

Add SNV information to the Reference GDS
RAIDS: : :generateGDSSNPinfo(gdsReference=newGDS, fileFreq=filterSNVFile,
verbose=FALSE)

Add genotype information to the Reference GDS for the 3 first samples

RAIDS: : :generateGDSgenotype (gds=newGDS, pathGeno=pathGeno,
fileSNPsRDS=snpIndexFile, listSamples=listSampleGDS[1:3],
verbose=FALSE)

Append genotype information to the Reference GDS for the other samples
RAIDS: : :appendGDSgenotype (gds=newGDS, pathGeno=pathGeno,
fileSNPsRDS=snpIndexFile,
listSample=listSampleGDS[4:1length(listSampleGDS)],
verbose=FALSE)

Close file
closefn.gds(newGDS)

Remove temporary files
unlink(tempRefGDS, force=TRUE)

26 appendGDSgenotypeMat

appendGDSgenotypeMat Appends the genotype information for specific samples (1 column ==
1 profile) into a GDS file

Description

This function appends the genotype information into a GDS file. More specifically, the genotype
information is added to the "genotype" node. The "genotype" node must already be present in the
GDS file. The genotype information is a matrix with the rows corresponding to SNVs and columns
corresponding to samples. The number of rows of the new genotype information must correspond
to the number of rows of the matrix present in the "genotype" node.

Usage

appendGDSgenotypeMat (gds, matG)

Arguments
gds an object of class gds.class (a GDS file), the opened Profile GDS file.
matG amatrixof integer representing the genotypes of the SN'Vs for one or multiple
samples. The rows correspond to SN'Vs and the columns correspond to samples.
The number of rows must correspond to the number of rows of the matrix present
in the "genotype" node.
Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Create a temporary GDS file
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_06.gds")

Create and open the GDS file
tmpGDS <- createfn.gds(filename=gdsFilePath)

Create a "genotype” node with initial matrix
genolnitial <- matrix(rep(@OL, 10), nrow=2)

add. gdsn(node=tmpGDS, name="genotype”, val=genoInitial)
sync.gds (tmpGDS)

New genotype information to be added
newGenotype <- matrix(rep(1L, 6), nrow=2)

Add segments to the GDS file

appendGDSRefSample 27

RAIDS: : : appendGDSgenotypeMat (gds=tmpGDS, matG=newGenotype)

Read genotype information from GDS file

The return matrix should be a combination of both initial matrix
and new matrix (column binded)

read. gdsn(index.gdsn(node=tmpGDS, path="genotype"))

Close GDS file
closefn.gds(gdsfile=tmpGDS)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

appendGDSRefSample Append fields related to samples into a GDS file

Description

This function appends the fields related to samples into a GDS file. The information is extracted
from the data.frame passed to the function and is added to the "sample.annot" and "sample.id"
nodes. The "sample.id" and "sample.annot" nodes must already exist. If the samples are part of a
study, the function addStudyGDSSample() must be used.

Usage

appendGDSRefSample(
gdsReference,
dfPedReference,
batch = 1,
listSamples = NULL,
verbose = TRUE

Arguments

gdsReference an object of class gds.class (a GDS file), the opened GDS file.

dfPedReference adata.frame with the information about the sample(s). The data. frame must
have the columns: "sample.id", "Name.ID", "sex", "pop.group" and "superPop".
The unique identifier for the sample(s) is the "Name.ID" column and the row

names of the data. frame must correspond to the "Name.ID" column.

batch a integer representing the batch identifier.

listSamples a vector of character string with the selected sample(s). If NULL, all samples
are used.

verbose a logical indicating if messages should be printed to show how the different

steps in the function. Default: TRUE.

Value

The integer 0L when successful.

28 appendGDSRefSample

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Create a temporary GDS file in an test directory
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_03.gds")

Create and open the GDS file
tmpGDS <- createfn.gds(filename=gdsFilePath)

Create "sample.id"” node (the node must be present)
add.gdsn(node=tmpGDS, name="sample.id"”, val=c("”sample_01",
"sample_02"))

Create "sample.annot” node (the node must be present)
add. gdsn(node=tmpGDS, name="sample.annot"”, val=data.frame(
Name.ID=c("sample_01", "sample_02"),
sex=c(1,1), # 1:Male 2: Female
pop.group=c("ACB", "ACB"),
superPop=c("AFR", "AFR"),
batch=c(1, 1),
stringsAsFactors=FALSE))

sync.gds(gdsfile=tmpGDS)

Create a data.frame with information about samples
sample_info <- data.frame(Name.ID=c("sample_04", "sample_05",
"sample_06"),
sex=c(1,2,1), # 1:Male 2: Female
pop.group=c("ACB”, "ACB", "ACB"),
superPop=c("AFR", "AFR", "AFR"),
stringsAsFactors=FALSE)

The row names must be the sample identifiers
rownames(sample_info) <- sample_info$Name.ID

Add information about 2 samples to the GDS file

RAIDS: : : appendGDSRefSample (gdsReference=tmpGDS,
dfPedReference=sample_info,
batch=2, listSamples=c("sample_04", "sample_06"), verbose=FALSE)

Read sample identifier list
Only "sample_04" and "sample_06" should have been added
read. gdsn(index.gdsn(node=tmpGDS, path="sample.id"))

Read sample information from GDS file
Only "sample_04" and "sample_06" should have been added
read. gdsn(index.gdsn(node=tmpGDS, path="sample.annot"))

Close GDS file
closefn.gds(gdsfile=tmpGDS)

appendGDSSampleOnly 29

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

appendGDSSampleOnly Append sample names into a GDS file

Description

This function append the sample identifiers into the "samples.id" node of a GDS file.

Usage
appendGDSSampleOnly(gds, listSamples)

Arguments
gds an object of class gds.class (a GDS file), the opened GDS file.
listSamples a vector of character string representing the sample identifiers to be added to
GDS file.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Temporary GDS file in current directory
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_04.gds")

Create and open the GDS file
GDS_file_tmp <- createfn.gds(filename=gdsFilePath)

Create "sample.id” node (the node must be present)
add.gdsn(node=GDS_file_tmp, name="sample.id”, val=c("sample_01",
"sample_02"))

sync.gds(gdsfile=GDS_file_tmp)

Add information about 2 samples to the GDS file
RAIDS: : : appendGDSSampleOnly (gds=GDS_file_tmp,
listSamples=c("sample_03", "sample_04"))

Read sample identifier list
Only "sample_03" and "sample_04" should have been added
read.gdsn(index.gdsn(node=GDS_file_tmp, path="sample.id"))

30 calcAFMLRNA

Close GDS file
closefn.gds(gdsfile=GDS_file_tmp)

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

calcAFMLRNA Compute the log likelihood ratio based on the coverage of each allele
in a specific block (gene in the case of RNA-seq)

Description

This function sums the log of read depth of the lowest depth divide by the total depth of the position
minus of likelihood of the allelic fraction of 0.5 for a block. If the phase is known, the SNVs in the
same haplotype are grouped together.

Usage

calcAFMLRNA(snpPosHetero)

Arguments

snpPosHetero a data.frame containing the SNV information for a specific block (gene if
RNA-seq). The data. frame must contain those columns:

cnt.ref asingle integer representing the coverage for the reference allele.
cnt.alt asingle integer representing the coverage for the alternative allele.

phase a single integer indicating the phase of the variant if known, 3 if not
known

Value

a list for the block with the information relative to the heterozygotes. The 1ist contains:

IR asingle numeric representing the sum of the log of read depth of the lowest depth divide by the
total depth of the position minus of likelihood of the allelic fraction of 0.5.

aFraction a single numeric representing the allele fraction estimation.

sumAlleleLow a integer representing the sum of the allele read depth of the lowest read allele
depth

sumAlleleHigh a integer representing the sum of the allele read depth of the highest read allele
depth

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

computeAlleleFraction 31

Examples

Loading demo dataset containing SNV information
data(snpPositionDemo)

Only use a subset of heterozygote SNVs related to one block
subset <- snpPositionDemo[which(snpPositionDemo$block.id == 2750 &
snpPositionDemo$hetero), c("cnt.ref”, "cnt.alt”, "phase”)]

result <- RAIDS:::calcAFMLRNA(subset)

head(result)

computeAlleleFraction Compute the allelic fraction for each imbalanced segment

Description

This function computes the allelic fraction for each segment different than 0.5. The allelic fraction
of the segment can be decomposed in sub-segments.

Usage

computeAlleleFraction(snpPos, w = 10, cutOff = -3)

Arguments
snpPos a data.frame containing the genotype information for a SNV dataset.
w a single positive numeric representing the size of the window to compute the
allelic fraction. Default: 10.
cutoff a numeric representing the cut-off for considering a region imbalanced when
comparing likelihood to gave allelic fraction change and likelihood not to have
allelic fraction change. Default: -3.
Value

amatrix of numeric with 3 columns where each row represent a segment of imbalanced SNVs.
The first column represents the position, in snpPos, of the first SNV in the segment. The second
column represents the position, in the snpPos, of the last SNV in the segment. The third column
represents the lower allelic frequency of the segment and is NA when the value cannot be calculated.
The value NULL is returned when none of the SNVs tested positive for the imbalance.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

32

Examples

Data
snpInfo

cnt.
cnt.
.pos=c(3722256, 3722328, 3767522, 3868160, 3869467, 4712655,

shp

snp

computeAllelicFractionDNA

frame with SNV information for the specified chromosome (chr 1)
<- data.frame(cnt.tot=c(41, 17, 27, 15, 11, 37, 16, 32),
ref=c(40, 17, 27, 15, 4, 14, 16, 32),

alt=c(o, 0, 0, o, 7, 23, 0, @),

6085318, 6213145),

.chr=c(rep(1, 8)),

normal.geno=c(rep(1, 8)),
pruned=c(TRUE, TRUE, FALSE, TRUE, FALSE, rep(TRUE, 3)),

snp.

index=c(160, 162, 204, 256, 259, 288, 366, 465),

keep=rep(TRUE, 8), hetero=c(rep(FALSE, 4), TRUE, TRUE, rep(FALSE, 2)),
homo=c(rep(TRUE, 4), FALSE, FALSE, TRUE, TRUE),

lap=rep(-1, 8), LOH=rep(0, 8), imbAR=rep(-1, 8),

stringAsFactor=FALSE)

The function returns NULL when there is not imbalanced SNVs

RAIDS: ::

computeAlleleFraction(snpPos=snpInfo, w=10, cutOff=-3)

computeAllelicFractionDNA

Estimate the allelic fraction of the pruned SNVs for a specific DNA-
seq profile

Description

The function creates a data. frame containing the allelic fraction for the pruned SNV dataset spe-
cific to a DNA-seq profile

Usage

computeAllelicFractionDNA(
gdsReference,
gdsSample,
currentProfile,
studyID,
chrinfo,
minCov = 10L,
minProb = 0.999,
eProb = 0.001,
cutOffLOH = -5,
cutOffHomoScore = -3,

WwAR =

oL,

verbose

Arguments

gdsReference an object of class gds.class (a GDS file), the opened Reference GDS file.
gdsSample an object of class gds.class (a GDS file), the opened Profile GDS file.

computeAllelicFractionDNA 33

currentProfile acharacter string corresponding to the sample identifier as used in pruningSample

function.

studyID a character string corresponding to the name of the study as used in pruningSample
function.

chrinfo a vector of integer values representing the length of the chromosomes.

minCov a single positive integer representing the minimum required coverage. Default:
10L.

minProb asingle numeric between @ and 1 representing the probability that the calculated

genotype call is correct. Default: @.999.

eProb a single numeric between O and 1 representing the probability of sequencing
error. Default: 0.001.

cutOffLOH a single numeric representing the cutoff, in log, for the homozygote score to
assign a region as LOH. Default: -5.
cutOffHomoScore

a single numeric representing the cutoff, in log, that the SNVs in a block are
called homozygote by error. Default: -3.

WAR a single positive integer representing the size-1 of the window used to compute
an empty box. Default: 9L.
verbose a logicial indicating if the function should print message when running.
Value

a data.frame containing the allelic information for the pruned SNV dataset with coverage >
minCov. The data. frame contains those columns:

cnt.tot a integer representing the total allele count

cnt.ref a integer representing the reference allele count

cnt.alt a integer representing the alternative allele count

snp.pos a integer representing the position on the chromosome

snp.chr a integer representing the chromosome

normal.geno a integer representing the genotype (O=wild-type reference; 1=heterozygote; 2=ho-
mozygote alternative; 3=unkown)

pruned a logical indicating if the SNV is retained after pruning

snp.index a integer representing the index position of the SNV in the Reference GDS file that
contains all SNVs

keep a logical indicating if the genotype exists for the SNV

hetero a logical indicating if the SNV is heterozygote

homo a logical indicating if the SNV is homozygote

lap a numeric representing the lower allelic fraction

LOH a integer indicating if the SNV is in an LOH region (0=not LOH, 1=in LOH)

imbAR a integer indicating if the SNV is in an imbalanced region (-1=not classified as imbal-
anced or LOH, O=in LOH; 1=tested positive for imbalance in at least 1 window)

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

34 computeAllelicFractionRNA

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

Temporary Profile GDS file for one profile in temporary directory
fileProfile <- file.path(tempdir(), "ex1.gds")

Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileProfile)

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

Open Profile GDS file for one profile
profileGDS <- openfn.gds(fileProfile)

Required library for this example to run correctly
if (requireNamespace("Seqginfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

The function returns a data frame containing the allelic fraction info
result <- RAIDS:::computeAllelicFractionDNA(gdsReference=gdsi1KG,
gdsSample=profileGDS, currentProfile="ex1", studyID="MYDATA",
chrinfo=chrInfo, minCov=10L,
minProb=0.999, eProb=0.001, cutOffLOH=-5,
cutOffHomoScore=-3, wAR=9L, verbose=FALSE)
head(result)

Close both GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)

Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

computeAllelicFractionRNA
Estimate the allelic fraction of the pruned SNVs for a specific RNA-seq
sample

computeAllelicFractionRNA 35

Description

The function creates a data. frame containing the allelic fraction for the pruned SNV dataset spe-
cific to a RNA-seq sample.

Usage

computeAllelicFractionRNA(
gdsReference,
gdsSample,
gdsRefAnnot,
currentProfile,
studylID,
blockID,
chrinfo,
minCov = 10L,
minProb = 0.999,

eProb = 0.001,
CutOffLOH = -5,
CUtOffAR = 3,
verbose
)
Arguments

gdsReference an object of class gds.class (a GDS file), the opened Reference GDS file.
gdsSample an object of class gds. class (a GDS file), the opened Profile GDS file.

gdsRefAnnot an object of class gds.class (a GDS file), the opened Reference SNV Annota-
tion GDS file.

currentProfile acharacter string corresponding to the sample identifier as used in pruningSample

function.
studyID acharacter string corresponding to the name of the study as used in pruningSample
function.
blockID a character string corresponding to the field gene block in the GDS gdsRefAnnot
to use split by gene.
chrinfo a vector of integer values representing the length of the chromosomes.
minCov a single positive integer representing the minimum required coverage. Default:
10L.
minProb a single numeric between @ and 1 representing the probability that the calculated

genotype call is correct. Default: @.999.

eProb a single numeric between 0 and 1 representing the probability of sequencing
error. Default: 0.001.

cutOffLOH a single numeric log of the score to be LOH. Default: -5.

cutOffAR a single numeric representing the cutoff, in log score, to tag SNVs located in a
gene has having an allelic fraction different 0.5 Default: 3.

verbose a logicial indicating if the function should print message when running.

36

computeAllelicFractionRNA

Value

a data.frame containing the allelic information for the pruned SNV dataset with coverage >
minCov. The data. frame contains those columns:

cnt.tot a integer representing the total allele count

cnt.ref a integer representing the reference allele count

cnt.alt a integer representing the alternative allele count

snp.pos a integer representing the position on the chromosome

snp.chr a integer representing the chromosome

normal.geno a integer representing the genotype (O=wild-type reference; 1=heterozygote; 2=ho-
mozygote alternative; 3=unkown)

pruned a logical indicating if the SNV is retained after pruning

snp.index a integer representing the index position of the SNV in the Reference GDS file that
contains all SNVs

keep a logical indicating if the genotype exists for the SNV
hetero a logical indicating if the SNV is heterozygote
homo a logical indicating if the SNV is homozygote

block.id a integer indicating the unique identifier of the block in the Population Reference An-
notation GDS file that contains the current SNV

phase a integer indicating the phase of the variant if known, 3 if not known
lap a numeric indicating lower allelic fraction
LOH a integer indicating if the SNV is in an LOH region (0=not LOH, 1=in LOH)

imbAR a integer indicating if the SNV is in an imbalanced region (-1=not classified as imbal-
anced or LOH, 0=in LOH; 1=tested positive for imbalance in at least 1 window)

freq a numeric indicating the frequency of the variant in the the reference

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library for GDS
library(SNPRelate)

#' ## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")

fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(dataDir, "ex1_good_small_1KG_Annot.gds")

Temporary Profile GDS file for one profile in temporary directory
fileProfile <- file.path(tempdir(), "ex1.gds")

Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileProfile)

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

computeAllelicImbDNAChr 37

gdsRefAnnot <- openfn.gds(fileAnnotGDS)

Open Profile GDS file for one profile
profileGDS <- openfn.gds(fileProfile)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

The function returns a data frame containing the allelic fraction info
result <- RAIDS:::computeAllelicFractionRNA(gdsReference=gds1KG,
gdsSample=profileGDS, gdsRefAnnot=gdsRefAnnot,
currentProfile="ex1", studyID="MYDATA",
blockID="GeneS.Ensembl.Hsapiens.v86",
chrInfo=chrinfo, minCov=10L, minProb=0.999, eProb=0.001,
cutOffLOH=-5, cutOffAR=3, verbose=FALSE)
head(result)

Close both GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)
closefn.gds(gdsRefAnnot)

Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

computeAllelicImbDNAChr
Verify if SNVs are in an imbalance region

Description

The function verifies, for each SNV present in the data frame, if the SNV is in an imbalance region.

Usage

computeAllelicImbDNAChr(snpPos, chr, wAR = 10, cutOffEmptyBox = -3)

Arguments

snpPos a data.frame containing the SNV information for the chromosome specified
by the chr argument. The data. frame must contain:
cnt.tot a single integer representing the total coverage for the SN'V.
cnt.ref asingle integer representing the coverage for the reference allele.
cnt.alt asingle integer representing the coverage for the alternative allele.
snp.pos a single integer representing the SNV position.

38

chr
wAR

cutOffEmptyBox

Value

computeAllelicImbDNAChr

snp.chr a single integer representing the SNV chromosome.

normal.geno a single numeric indicating the genotype of the SN'V. The pos-
sibles are: @ (wild-type homozygote), 1 (heterozygote), 2 (altenative ho-
mozygote), 3 indicating that the normal genotype is unknown.

pruned a logical indicating if the SNV is retained after pruning

snp.index a integer representing the index position of the SNV in the Refer-
ence GDS file that contains all SN'Vs

keep a logical indicating if the genotype exists for the SNV

hetero a logical indicating if the SNV is heterozygote

homo a logical indicating if the SNV is homozygote

lap a numeric indicating lower allelic fraction

LOH a integer indicating if the SNV is in an LOH region (O=not LOH, 1=in
LOH)

a single positive integer for the current chromosome.

a single positive integer representing the size-1 of the window used to compute
an empty box. Default: 10.

a numeric representing the cut-off for considering a region imbalanced when
comparing likelihood to be imbalanced and likelihood not to be imbalanced.
Default: -3.

a vector of integer indicating if the SNV is in an imbalanced region (-1=not classified as imbal-
anced or LOH, O=in LOH; 1=tested positive for imbalance in at least 1 window). The vector as an
entry for each SNV present in the input snpPos.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library for GDS

library(gdsfmt)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

Required library for this example to run correctly
if (requireNamespace("Seqginfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Data frame with SNV information for the specified chromosome (chr 1)
snpInfo <- data.frame(cnt.tot=c(41, 17, 27, 15, 11, 37, 16, 32),
cnt.ref=c(40, 17, 27, 15, 4, 14, 16, 32),

computeAncestryFromSynthetic 39

cnt.alt=c(o, 0, 0, o, 7, 23, 0, 0),

snp.pos=c(3722256, 3722328, 3767522, 3868160, 3869467, 4712655,
6085318, 6213145),

snp.chr=c(rep(1, 8)),

normal.geno=c(rep(1, 8)), pruned=c(TRUE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE),

pruned=c(TRUE, TRUE, FALSE, TRUE, FALSE, rep(TRUE, 3)),

snp.index=c(160, 162, 204, 256, 259, 288, 366, 465),

keep=rep(TRUE, 8),

hetero=c(rep(FALSE, 4), TRUE, TRUE, rep(FALSE, 2)),

homo=c(rep(TRUE, 4), FALSE, FALSE, TRUE, TRUE),

lap=rep(-1, 8), LOH=rep(@, 8), imbAR=rep(-1, 8),

stringAsFactor=FALSE)

The function returns a data frame containing the information about

the LOH regions in the specified chromosome

result <- RAIDS:::computeAllelicImbDNAChr(snpPos=snpInfo, chr=1, wAR=10,
cutOffEmptyBox=-3)

head(result)

Close GDS file (important)
closefn.gds(gds1KG)

computeAncestryFromSynthetic
Select the optimal K and D parameters using the synthetic data and
infer the ancestry of a specific profile

Description

The function select the optimal K and D parameters for a specific profile. The results on the syn-
thetic data are used for the parameter selection. Once the optimal parameters are selected, the
ancestry is inferred for the specific profile.

Usage

computeAncestryFromSynthetic(
gdsReference,
gdsProfile,
syntheticKNN,
pedSyn,
currentProfile,
spRef,
studyIDSyn,
np = 1L,
listCatPop = c(”EAS", "EUR", "AFR”, "AMR", "SAS"),
fieldPopIn1KG = "superPop"”,
fieldPopInfAnc = "SuperPop”,
kList = seq(2, 15, 1),
pcaList = seq(2, 15, 1),

40

algorithm =

computeAncestryFromSynthetic

c("exact"”, "randomized"),

eigenCount = 32L,

missingRate

NaN,

verbose = FALSE

Arguments

gdsReference
gdsProfile
syntheticKkNN

pedSyn

currentProfile

spRef

studyIDSyn

np
listCatPop

fieldPopIniKG

fieldPopInfAnc

kList

pcalList

algorithm

eigenCount

missingRate

verbose

an object of class gds.class (a GDS file), the opened 1KG GDS file.
an object of class gds.class (a GDS file), the opened Profile GDS file.

a vector of character strings representing the name of files that contain the
results of ancestry inference done on the synthetic profiles for multiple values
of D and K. The files must exist.

adata. frame containing the columns extracted from the GDS Sample ’study.annot’
node with a extra column named as the ’popName’ parameter that has been ex-
tracted from the 1KG GDS ’sample.annot’ node.

a character string representing the profile identifier of the current profile on
which ancestry will be inferred.

a vector of character strings representing the known super population ances-
try for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

a character string corresponding to the study identifier. The study identifier
must be present in the GDS Sample file.

a single positive integer representing the number of threads. Default: 1L.

a vector of character string representing the list of possible ancestry assigna-
tions. Default: ("EAS", "EUR"”, "AFR”, "AMR", "SAS").

a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file.

a character string representing the name of the column that will contain the
inferred ancestry for the specified profiles. Default: "SuperPop”.

a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

a character string representing the algorithm used to calculate the PCA. The 2
choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact".

a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigenCount’ <= 0, then all eigenvectors are
returned. Default: 32L.

a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SN'Vs are retained in the snpgdsPCA with "<= missingRate" only;
if NaN, no missing threshold. Default: NaN.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

computeAncestryFromSynthetic 41

Value
a list containing 4 entries:

pcaSample a list containing the information related to the eigenvectors. The 1ist contains those
3 entries:
sample.id acharacter string representing the unique identifier of the current profile.

eigenvector.ref amatrix of numeric containing the eigenvectors for the reference pro-
files.

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-
jected on the PCA from the reference profiles.

paraSample alist containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

dfPCA adata.frame containing statistical results on all combined synthetic results done with
a fixed value of D (the number of dimensions). The data. frame contains those columns:
D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

dfPop adata.frame containing statistical results on all combined synthetic results done with
different values of D (the number of dimensions) and K (the number of neighbors). The
data.frame contains those columns:

D anumeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame
contains those columns:

D a numeric representing the value of D (the number of dimensions).

K a numeric representing the value of K (the number of neighbors).

Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

AUROC a numeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

42 computeAncestryFromSynthetic

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.

listD a numeric representing the optimal D values (the number of dimensions) for the spe-
cific profile. More than one D is possible.

KNNSample a list containing the inferred ancestry using different D and K values. The list con-
tains those entries:
sample.id acharacter string representing the unique identifier of the current profile.

matkKNN a data.frame containing the inferred ancestry for different values of K and D. The
data.frame contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.

D a numeric representing the value of D (the number of dimensions) used to infer the
ancestry.

K a numeric representing the value of K (the number of neighbors) used to infer the
ancestry.

SuperPop a character string representing the inferred ancestry for the specified D and
K values.

Ancestry adata.frame containing the inferred ancestry for the current profile. The data. frame
contains those columns:
sample.id a character string representing the unique identifier of the current profile.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library
library(gdsfmt)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

The Reference GDS file
path1KG <- system.file("extdata/tests"”, package="RAIDS")

Open the Reference GDS file
gdsRef <- snpgdsOpen(file.path(path1KG, "ex1_good_small_1KG.gds"))

Path to the demo synthetic results files

List of the KNN result files from PCA run on synthetic data

dataDirRes <- system.file("extdata/demoAncestryCall/ex1", package="RAIDS")
listFilesName <- dir(file.path(dataDirRes), ".rds")

computeAncestryFromSyntheticFile 43

listFiles <- file.path(file.path(dataDirRes) , listFilesName)
synthetickKNN <- lapply(listFiles, FUN=function(x){return(readRDS(x))3})
syntheticKNN <- do.call(rbind, syntheticKNN)

The name of the synthetic study
studyID <- "MYDATA.Synthetic”

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoAncestryCall”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))
Not run:
pedSyn <- RAIDS:::prepPedSynthetic1KG(gdsReference=gdsRef,
gdsSample=gdsProfile, studyID=studyID, popName="superPop")

Run the ancestry inference on one profile called 'ex1'
The values of K and D used for the inference are selected using the
synthetic results listFiles=listFiles,
resCall <- RAIDS:::computeAncestryFromSynthetic(gdsReference=gdsRef,
gdsProfile=gdsProfile,
syntheticKNN = synthetickNN,
pedSyn = pedSyn,
currentProfile=c("ex1"),
spRef=demoKnownSuperPopi1KG,
studyIDSyn=studyID, np=1L)

The ancestry called with the optimal D and K values
resCall$Ancestry

End(Not run)

Close the GDS files (important)
closefn.gds(gdsProfile)
closefn.gds(gdsRef)

computeAncestryFromSyntheticFile
Select the optimal K and D parameters using the synthetic data and
infer the ancestry of a specific profile

Description

The function select the optimal K and D parameters for a specific profile. The results on the syn-
thetic data are used for the parameter selection. Once the optimal parameters are selected, the
ancestry is inferred for the specific profile.

Usage

computeAncestryFromSyntheticFile(
gdsReference,
gdsProfile,
listFiles,

44 computeAncestryFromSyntheticFile

currentProfile,

spRef,

studyIDSyn,

np = 1L,

listCatPop = c(”EAS", "EUR", "AFR", "AMR", "SAS"),
fieldPopIn1KG = "superPop"”,
fieldPopInfAnc = "SuperPop”,

kList = seq(2, 15, 1),

pcaList = seq(2, 15, 1),

algorithm = c("exact”, "randomized"),
eigenCount = 32L,

missingRate = NaN,

verbose = FALSE

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.
gdsProfile an object of class gds.class (a GDS file), the opened Profile GDS file.

listFiles a vector of character strings representing the name of files that contain the
results of ancestry inference done on the synthetic profiles for multiple values
of D and K. The files must exist.

currentProfile a character string representing the profile identifier of the current profile on
which ancestry will be inferred.

spRef a vector of character strings representing the known super population ances-
try for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

studyIDSyn a character string corresponding to the study identifier. The study identifier
must be present in the GDS Sample file.

np a single positive integer representing the number of threads. Default: 1L.

listCatPop a vector of character string representing the list of possible ancestry assigna-

tions. Default: ("EAS”, "EUR", "AFR", "AMR”, "SAS").

fieldPopIn1KG acharacter string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file.

fieldPopInfAnc a character string representing the name of the column that will contain the
inferred ancestry for the specified profiles. Default: "SuperPop”.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2,15,1) is assigned. Default: seq(2,15,1).

algorithm a character string representing the algorithm used to calculate the PCA. The 2
choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact”.

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigenCount’ <= 0, then all eigenvectors are
returned. Default: 32L.

computeAncestryFromSyntheticFile 45

missingRate a numeric value representing the threshold missing rate at with the SNVs are

verbose

Value

discarded; the SN'Vs are retained in the snpgdsPCA with "<= missingRate" only;
if NaN, no missing threshold. Default: NaN.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a list containing 4 entries:

pcaSample a list containing the information related to the eigenvectors. The 1ist contains those
3 entries:

sample.id a character string representing the unique identifier of the current profile.

eigenvector.ref amatrix of numeric containing the eigenvectors for the reference pro-

files.

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-

jected on the PCA from the reference profiles.

paraSample alist containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

dfPCA adata.frame containing statistical results on all combined synthetic results done with

a fixed value of D (the number of dimensions). The data. frame contains those columns:
D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

dfPop adata.frame containing statistical results on all combined synthetic results done with

different values of D (the number of dimensions) and K (the number of neighbors). The
data. frame contains those columns:

D a numeric representing the value of D (the number of dimensions).

K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame

contains those columns:

pcaD a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).
Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

46 computeAncestryFromSyntheticFile

AUR anumeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.

listD a numeric representing the optimal D values (the number of dimensions) for the spe-
cific profile. More than one D is possible.

KNNSample a list containing the inferred ancestry using different D and K values. The 1ist con-
tains those entries:
sample.id a character string representing the unique identifier of the current profile.

matkKNN a data.frame containing the inferred ancestry for different values of K and D. The
data.frame contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.

D a numeric representing the value of D (the number of dimensions) used to infer the
ancestry.

K a numeric representing the value of K (the number of neighbors) used to infer the
ancestry.

SuperPop a character string representing the inferred ancestry for the specified D and
K values.

Ancestry adata.frame containing the inferred ancestry for the current profile. The data. frame
contains those columns:

sample.id a character string representing the unique identifier of the current profile.

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library
library(gdsfmt)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

The Reference GDS file
path1KG <- system.file("extdata/tests"”, package="RAIDS")

computeKNNRefSample 47

Open the Reference GDS file
gdsRef <- snpgdsOpen(file.path(path1KG, "ex1_good_small_1KG.gds"))

Path to the demo synthetic results files

List of the KNN result files from PCA run on synthetic data

dataDirRes <- system.file("extdata/demoAncestryCall/ex1", package="RAIDS")
listFilesName <- dir(file.path(dataDirRes), ".rds")

listFiles <- file.path(file.path(dataDirRes) , listFilesName)

The name of the synthetic study
studyID <- "MYDATA.Synthetic"

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoAncestryCall”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

Run the ancestry inference on one profile called 'ex1'

The values of K and D used for the inference are selected using the

synthetic results

resCall <- computeAncestryFromSyntheticFile(gdsReference=gdsRef,
gdsProfile=gdsProfile,
listFiles=listFiles,
currentProfile=c("ex1"),
spRef=demoKnownSuperPop1KG,
studyIDSyn=studyID, np=1L)

The ancestry called with the optimal D and K values
resCall$Ancestry

Close the GDS files (important)
closefn.gds(gdsProfile)
closefn.gds(gdsRef)

computeKNNRefSample Run a k-nearest neighbors analysis on one specific profile

Description

The function runs k-nearest neighbors analysis on a one specific profile. The function uses the ’knn’
package.

Usage

computeKNNRefSample(
listEigenvector,
listCatPop = c("EAS", "EUR", "AFR", "AMR", "SAS"),
spRef,
fieldPopInfAnc = "SuperPop”,
kList = seq(2, 15, 1),
pcaList = seq(2, 15, 1)

48 computeKNNRefSample

Arguments

listEigenvector
a list with 3 entries: ’sample.id’, "eigenvector.ref” and "eigenvector’. The list
represents the PCA done on the 1KG reference profiles and one specific profile
projected onto it. The ’sample.id’ entry must contain only one identifier (one
profile).

listCatPop a vector of character string representing the list of possible ancestry assigna-
tions. Default: c("EAS", "EUR", "AFR", "AMR", "SAS").

spRef vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

fieldPopInfAnc a character string representing the name of the column that will contain the
inferred ancestry for the specified profile. Default: "SuperPop”.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2, 15, 1) is assigned. Default: seq(2, 15, 1).

Value

a list containing 4 entries:

sample.id avector of character strings representing the identifier of the profile analysed.

matkKNN a data. frame containing the super population inference for the profile for different values
of PCA dimensions D and k-neighbors values K. The fourth column title corresponds to the
fieldPopInfAnc parameter. The data.frame contains 4 columns:
sample.id acharacter string representing the identifier of the profile analysed.
D anumeric strings representing the value of the PCA dimension used to infer the ancestry.
K a numeric strings representing the value of the k-neighbors used to infer the ancestry..
fieldPopInfAnc a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Load the demo PCA on the synthetic profiles projected on the
demo 1KG reference PCA
data(demoPCASyntheticProfiles)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

The PCA with 1 profile projected on the 1KG reference PCA
Only one profile is retained

pca <- demoPCASyntheticProfiles

pca$sample.id <- pca$sample.id[1]

pca$eigenvector <- pca$eigenvector[1, , drop=FALSE]

computeKNNRefSynthetic 49

Projects profile on 1KG PCA

results <- computeKNNRefSample(listEigenvector=pca,
listCatPop=c("EAS", "EUR", "AFR", "AMR", "SAS"),
spRef=demoKnownSuperPop1KG, fieldPopInfAnc="SuperPop”,
kList=seq(10, 15, 1), pcaList=seq(10@, 15, 1))

The assigned ancestry to the profile for different values of K and D
head(results$matkNN)

computeKNNRefSynthetic

Run a k-nearest neighbors analysis on a subset of the synthetic dataset

Description

The function runs k-nearest neighbors analysis on a subset of the synthetic data set. The function
uses the "knn’ package.

Usage
computeKNNRefSynthetic(
gdsProfile,
listEigenvector,
listCatPop = c("EAS", "EUR", "AFR", "AMR", "SAS"),
studyIDSyn,
spRef,

fieldPopInfAnc = "SuperPop”,
kList = seq(2, 15, 1),
pcaList = seq(2, 15, 1)

Arguments

gdsProfile

listEigenvector

listCatPop

studyIDSyn

spRef

fieldPopInfAnc

an object of class SNPRelate: : SNPGDSFileClass, the opened Profile GDS file.

a list with 3 entries: ’sample.id’, ’eigenvector.ref” and ’eigenvector’. The list
represents the PCA done on the 1KG reference profiles and the synthetic profiles
projected onto it.

a vector of character string representing the list of possible ancestry assigna-
tions. Default: c("EAS", "EUR", "AFR", "AMR", "SAS").

a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.

vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

a character string representing the name of the column that will contain the
inferred ancestry for the specified data set. Default: "SuperPop”.

50 computeKNNRefSynthetic

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbors analysis. If NULL, the value seq(2, 15, 1) is assigned. Default:
seq(2, 15, 1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2, 15, 1) is assigned. Default: seq(2, 15, 1).

Value
a list containing 4 entries:

sample.id a vector of character strings representing the identifiers of the synthetic profiles
analysed.

samplelKg a vector of character strings representing the identifiers of the 1KG reference pro-
files used to generate the synthetic profiles.

sp a vector of character strings representing the known super population ancestry of the 1KG
reference profiles used to generate the synthetic profiles.

matkKNN a data.frame containing the super population inference for each synthetic profiles for
different values of PCA dimensions D and k-neighbors values K. The fourth column title cor-
responds to the fieldPopInfAnc parameter. The data. frame contains 4 columns:
sample.id a character string representing the identifier of the synthetic profile analysed.

D a numeric strings representing the value of the PCA dimension used to infer the super
population.

K a numeric strings representing the value of the k-neighbors used to infer the super popula-
tion.

fieldPopInfAnc value a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Load the demo PCA on the synthetic profiles projected on the
demo 1KG reference PCA
data(demoPCASyntheticProfiles)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

The name of the synthetic study
studyID <- "MYDATA.Synthetic”

computeLOHBlocksDNAChr 51

Projects synthetic profiles on 1KG PCA

results <- computeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS", "EUR", "AFR", "AMR", "SAS"), studyIDSyn=studyID,
spRef=demoKnownSuperPop1KG)

The inferred ancestry for the synthetic profiles for different values
of D and K
head(results$matkNN)

Close Profile GDS file (important)
closefn.gds(gdsProfile)

computelLOHBlocksDNAChr
Identify regions of LOH on one chromosome using homozygote SNVs

Description

The function identifies regions of LOH on a specific chromosome using the homozygote SNVs
present on the chromosome.

Usage

computelLOHBlocksDNAChr (gdsReference, chrinfo, snpPos, chr, genoN = 1e-04)

Arguments

gdsReference an object of class SNPRelate: : SNPGDSFileClass, an opened Reference GDS
file.

chrinfo a vector of integer representing the length of the chromosomes. As an exam-
ple, the information ca be obtained from package *'BSgenome.Hsapiens.UCSC.hg38’.

snpPos a data.frame containing the SNV information for the chromosome specified
by the chr argument. The data. frame must contain:
cnt.tot a single integer representing the total coverage for the SN'V.
cnt.ref asingle integer representing the coverage for the reference allele.
cnt.alt asingle integer representing the coverage for the alternative allele.
snp.pos a single integer representing the SNV position.
snp.chr a single integer representing the SNV chromosome.

normal.geno a single numeric indicating the genotype of the SNV. The pos-
sibles are: @ (wild-type homozygote), 1 (heterozygote), 2 (altenative ho-
mozygote), 3 indicating that the normal genotype is unknown.

pruned a logical indicating if the SNV is retained after pruning

snp.index a integer representing the index position of the SNV in the Refer-
ence GDS file that contains all SNVs

keep a logical indicating if the genotype exists for the SNV
hetero a logical indicating if the SNV is heterozygote
homo a logical indicating if the SNV is homozygote

52 computeLOHBlocksDNAChr
chr a single positive integer for the current chromosome. The chrInfo parameter
must contain the value for the specified chromosome.
genoN a single numeric between O and 1 representing the probability of sequencing
error. Default: 0.0001.
Value

a data.frame with the informations about LOH on a specific chromosome. The data. frame con-
tains those columns:
chr a integer representing the current chromosome

start a integer representing the starting position on the box containing only homozygote SNVs
(or not SNV). The first box starts at position 1.

end a integer representing the end position on the box containing only homozygote SNVs (or not
SNV). The last box ends at the length of the chromosome.

logLHR a numeric representing the LOH score basde on population frequencies. It is the sum of
the log10 of the frequencies of the observed gegenotype minus the the sum of the log10 of the
higher frequent genotype. (-100 when normal genotype are present)

LH1 anumeric representing the probability to be heterozygote based on the coverage of each allele
when normal genotype is present

LM1 anumeric representing the max probability for the read coverage at the position
homoScore a numeric representing LH1 - LM1

nbSNV a integer representing th number of SNVs in the box

nbPruned a integer representing the number of pruned SN'Vs in the box

nbNorm a integer representing of the number of heterozygote genotypes for the normal SNVs in
the block

LOH a integer representing a flag, if 1 it means the block is satisfying the criteria to be LOH.
The value is not assigned in this function; the value @ is assigned

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library for GDS
library(SNPRelate)

Path to the demo Reference GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

Open the Reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25

computePCAMultiSynthetic 53

chrinfo <-
Seginfo: :seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Data frame with SNV information for the specified chromosome (chr 1)
snpInfo <- data.frame(cnt.tot=c(41, 17, 27, 15, 11, 37, 16, 32),
cnt.ref=c(40, 17, 27, 15, 4, 14, 16, 32),
cnt.alt=c(o, 0, 0, o, 7, 23, 0, @),
snp.pos=c(3722256, 3722328, 3767522, 3868160, 3869467, 4712655,
6085318, 6213145),
snp.chr=c(rep(1, 8)),
normal.geno=c(rep(3, 8)), pruned=c(TRUE, TRUE, FALSE, TRUE, FALSE,
TRUE, TRUE, TRUE),
pruned=c(TRUE, TRUE, FALSE, TRUE, FALSE, rep(TRUE, 3)),
snp.index=c(160, 162, 204, 256, 259, 288, 366, 465),
keep=rep(TRUE, 8), hetero=c(rep(FALSE, 4), TRUE,
TRUE, rep(FALSE, 2)),
homo=c(rep(TRUE, 4), FALSE, FALSE, TRUE, TRUE),
stringAsFactor=FALSE)

The function returns a data frame containing the information about

the LOH regions in the specified chromosome

result <- RAIDS:::computeLOHBlocksDNAChr (gdsReference=gdsiKG,
chrInfo=chrinfo, snpPos=snpInfo, chr=1L, genoN=0.0001)

head(result)

Close Reference GDS file (important)
closefn.gds(gds1KG)

computePCAMultiSynthetic
Project synthetic profiles onto existing principal component axes gen-
erated using the reference 1KG profiles

Description

The function projects the synthetic profiles onto existing principal component axes generated using
the reference 1KG profiles. The reference profiles used to generate the synthetic profiles have
previously been removed from the set of reference profiles.

Usage

computePCAMultiSynthetic(
gdsProfile,
listPCA,
sampleRef,
studyIDSyn,
verbose = FALSE

54

Arguments

gdsProfile
listPCA

sampleRef

studyIDSyn

verbose

Value

computePCAMultiSynthetic

an object of class gds.class (a GDS file), an opened Profile GDS file.

a list containing the PCA object generated with the 1KG reference profiles
(excluding the ones used to generate the synthetic data set) in an entry called
"pca.unrel”.

a vector of character strings representing the identifiers of the 1KG reference
profiles that have been used to generate the synthetic profiles that are going to be
analysed here. The sub-continental identifiers are used as names for the vector.

a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a list containing 3 entries:

sample.id a vector of character strings representing the identifiers of the synthetic profiles that
have been projected onto the 1KG PCA.

eigenvector.ref a matrix of numeric with the eigenvectors of the 1KG reference profiles used to
generate the PCA.

eigenvector amatrix of numeric with the eigenvectors of the synthetic profiles projected onto the

1KG PCA.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library

library(gdsfmt)

Loading demo PCA on subset of 1KG reference dataset
data(demoPCATKG)

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

The name of the synthetic study
studyID <- "MYDATA.Synthetic"

samplesRM <- c("HG@0246", "HGO@325", "HGOO611", "HGO1173", "HGO2165",

"HGO1112",
"HG02465",
"NA12751",
"NA19731",

"HG@1615", "HGO1968", "HGO2658", "HGO1850", "HGO2013",
"HG02974", "HG03814", "HGO3445", "HG@O3689", "HG03789",
"NA19107", "NA18548", "NA19075", "NA19475", "NA19712",
"NA20528", "NA20908")

names (samplesRM) <- c(”GBR", "FIN”, "CHS","PUR", "CDX”, "CLM", "IBS",
YPEL" "PIL", "KHV", "ACB", "GWD". "ESN". "BEB", "MSL", "STU". "ITU",
IVCEU" , "YRIH, IICHBII, IIJ'PTIV’ IVLWK" s "ASWH’ IIMXLII, IITSI IV’ IIGIH")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

computePCARefRMMulti 55

Projects synthetic profiles on 1KG PCA

results <- computePCAMultiSynthetic(gdsProfile=gdsProfile,
1istPCA=demoPCATKG,
sampleRef=samplesRM, studyIDSyn=studyID, verbose=FALSE)

The eigenvectors for the synthetic profiles
head(results$eigenvector)

Close Profile GDS file (important)
closefn.gds(gdsProfile)

computePCARefRMMulti Calculate Principal Component Analysis (PCA) on SNV genotype data
set

Description

The functions calculates the principal component analysis (PCA) for a list of pruned SN'Vs present
in a Profile GDS file. The snpgdsPCA function is used to do the calculation.

Usage

computePCARefRMMulti (
gdsProfile,
refProfilelDs,
listRM,
np = 1L,
algorithm = "exact”,
eigenCount = 32L,
missingRate = 0.025,
verbose

Arguments

gdsProfile an object of class SNPGDSFileClass, the opened Profile GDS file.

refProfileIDs a vector of reference 1KG profile identifiers that are present in the Profile GDS
file. Those profiles minus the one present in the 1istRM vector will be used to

run the PCA analysis.

1istRM a vector of character strings containing the identifiers for the reference sam-
ples that need to be removed for the PCA analysis.

np a single positive integer representing the number of CPU that will be used.
Default: 1L.

algorithm a character string representing the algorithm used to calculate the PCA. The 2

choices are "exact" (traditional exact calculation) and "randomized" (fast PCA

n

with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact”.

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigenCount’ <= 0, then all eigenvectors are
returned. Default: 32L.

56 computePCARefRMMulti

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SNVs are retained in the snpgdsPCA function with "<= missin-
gRate" only; if NaN, no missing threshold. Default: 0.025.

verbose a logical indicating if message information should be printed.

Value
a list containing 2 entries:

pruned a vector of SNV identifiers specifying selected SN'Vs for the PCA analysis.

pca.unrel a snpgdsPCAClass object containing the eigenvalues as generated by snpgdsPCA func-
tion.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library
library(SNPRelate)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

The name of the synthetic study
studyID <- "MYDATA.Synthetic”

Profiles that should be removed from the PCA analysis

Those profiles has been used to generate the synthetic data set

samplesRM <- c("HG@Q246", "HGO®325", "HGOV611", "HGO1173", "HGO2165",
"HGO1112", "HGO1615", "HGO1968", "HGO2658", "HGO1850", "HGO2013",
"HG02465", "HG02974", "HG03814", "HGO3445", "HGO3689", "HGO3789",
"NA12751", "NA19107", "NA18548", "NA19@75", "NA19475", "NA19712",
"NA19731", "NA20528", "NA20908")

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

Compute PCA for the 1KG reference profiles excluding

the profiles used to generate the synthetic profiles

results <- RAIDS:::computePCARefRMMulti(gdsProfile=gdsProfile,
refProfileIDs=names(demoKnownSuperPop1KG), listRM=samplesRM, np=1L,
algorithm="exact”, eigenCount=32L, missingRate=0.025, verbose=FALSE)

The PCA on the pruned SNVs data set for selected profiles
head(results$pca.unrel$eigenvect)

computePCARefSample

Close Profile GDS file (important)

closefn.gds(gdsProfile)

57

computePCARefSample

Project specified profile onto PCA axes generated using known refer-
ence profiles

Description

This function generates a PCA using the know reference profiles. Them, it projects the specified

profile onto the PCA axes.

Usage
computePCARefSample(
gdsProfile,
currentProfile,
studyIDRef = "Ref.1KG",
np = 1L,
algorithm = c("exact"”, "randomized"),

eigenCount = 32L,

missingRate = NaN,

verbose = FALSE

Arguments

gdsProfile an object of class gds.class, an opened Profile GDS file.

currentProfile asingle character string representing the profile identifier.

studyIDRef a single character string representing the study identifier.

np a single positive integer representing the number of CPU that will be used.
Default: 1L.

algorithm a character string representing the algorithm used to calculate the PCA. The 2

choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact".

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigen.cnt’ <= 0, then all eigenvectors are
returned. Default: 32L.

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SN'Vs are retained in the snpgdsPCA with "<= missingRate" only;
if NaN, no missing threshold. Default: NaN.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

58 computePoolSyntheticAncestryGr

Value
a list containing 3 entries:

sample.id acharacter string representing the unique identifier of the analyzed profile.
eigenvector.ref amatrix of numeric representing the eigenvectors of the reference profiles.

eigenvector amatrix of numeric representing the eigenvectors of the analyzed profile.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library
library(gdsfmt)

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoAncestryCall”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

Project a profile onto a PCA generated using reference profiles

The reference profiles come from 1KG

resPCA <- computePCARefSample(gdsProfile=gdsProfile,
currentProfile=c("ex1"), studyIDRef="Ref.1KG", np=1L, verbose=FALSE)

resPCA$sample.id

resPCA$eigenvector

Close the GDS files (important)
closefn.gds(gdsProfile)

computePoolSyntheticAncestryGr
Run a PCA analysis and a K-nearest neighbors analysis on a small
set of synthetic data using all 1KG profiles except the ones used to
generate the synthetic profiles

Description

The function runs a PCA analysis using 1 synthetic profile from each sub-continental population.
The reference profiles used to create those synthetic profiles are first removed from the list of 1KG
reference profiles that generates the reference PCA. Then, the retained synthetic profiles are pro-
jected on the 1KG PCA space. Finally, a K-nearest neighbors analysis using a range of K and D
values is done.

computePoolSyntheticAncestryGr 59

Usage

computePoolSyntheticAncestryGr(
gdsProfile,
sampleRM,
spRef,
studyIDSyn,
np = 1L,
listCatPop = c("EAS", "EUR", "AFR", "AMR", "SAS"),
fieldPopInfAnc = "SuperPop”,
kList = seq(2, 15, 1),
pcaList = seq(2, 15, 1),
algorithm = c("exact"”, "randomized"),
eigenCount = 32L,
missingRate = 0.025,
verbose = FALSE

)
Arguments

gdsProfile an object of class SNPRelate: : SNPGDSFileClass, the opened Profile GDS file.

sampleRM a vector of character strings representing the identifiers of the 1KG reference
profiles that should not be used to create the reference PCA. There should be
one per sub-continental population. Those profiles are removed because those
have been used to generate the synthetic profiles that are going to be analysed
here. The sub-continental identifiers are used as names for the vector.

spRef vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

studyIDSyn a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.

np a single positive integer representing the number of threads. Default: 1L.

listCatPop a vector of character string representing the list of possible ancestry assigna-

tions. Default: ("EAS”, "EUR", "AFR", "AMR”, "SAS").

fieldPopInfAnc a character string representing the name of the column that will contain the
inferred ancestry for the specified dataset. Default: "SuperPop”.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

algorithm a character string representing the algorithm used to calculate the PCA. The 2
choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact".

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigenCount’ <= 0, then all eigenvectors are
returned. Default: 32L.

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SNVs are retained in the snpgdsPCA function with "<= missin-
gRate" only; if NaN, no missing threshold. Default: 0.025.

60 computePoolSyntheticAncestryGr

verbose a logical indicating if message information should be printed. Default: FALSE.

Value
a list containing the following entries:

sample.id a vector of character strings representing the identifiers of the synthetic profiles.

samplelKg a vector of character strings representing the identifiers of the reference 1KG pro-
files used to generate the synthetic profiles.

sp a vector of character strings representing the known ancestry for the reference 1KG profiles
used to generate the synthetic profiles.

matKNN a data. frame containing 4 columns. The first column ’sample.id’ contains the name
of the synthetic profile. The second column D’ represents the dimension D used to infer
the ancestry. The third column K’ represents the number of neighbors K used to infer the
ancestry. The fourth column ’SuperPop’ contains the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library
library(gdsfmt)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

The name of the synthetic study
studyID <- "MYDATA.Synthetic"

samplesRM <- c(”HG0@246", "HGOO325", "HGOO611", "HGO1173", "HGO2165",
"HGO1112", "HGO1615", "HGO1968”, "HGO2658", "HGO1850", "HGO2013",
"HGO2465", "HGO2974", "HGO3814", "HGO3445", "HGO3689", "HGO3789",
"NA12751", "NA19107", "NA18548", "NA19075", "NA19475", "NA19712",
"NA19731", "NA20528", "NA20908")

names (samplesRM) <- c(”GBR", "FIN”, "CHS","”PUR", "CDX", "CLM", "IBS",
"PEL", "PJL", "KHV”, "ACB"”, "GWD", "ESN”, "BEB", "MSL", "STU", "ITU",
"CEU”, "YRI", "CHB", "JPT", "LWK", "ASW", "MXL", "TSI", "GIH")

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

Run a PCA analysis and a K-nearest neighbors analysis on a small set
of synthetic data

computeSyntheticConfMat 61

results <- computePoolSyntheticAncestryGr(gdsProfile=gdsProfile,
sampleRM=samplesRM, studyIDSyn=studyID, np=1L,
spRef=demoKnownSuperPop1KG,
kList=seq(10,15,1), pcalList=seq(10,15,1), eigenCount=15L)

The ancestry inference for the synthetic data using
different K and D values
head(results$matkNN)

Close Profile GDS file (important)
closefn.gds(gdsProfile)

computeSyntheticConfMat

Calculate the confusion matrix of the inferences for specific values of
D and K using the inferred ancestry results from the synthetic profiles.

Description

The function calculates the confusion matrix of the inferences for fixed values of D and K using the
inferred ancestry results done on the synthetic profiles.

Usage
computeSyntheticConfMat(
matkNN,
matkKNNAncestryColumn,
pedCall,
pedCallAncestryColumn,
listCall
)
Arguments
matkKNN a data. frame containing the inferred ancestry results for fixed values of D and
K. The data. frame must contained those columns: "sample.id", "D", "K" and
the fourth column name must correspond to the matkKNNAncestryColumn argu-
ment.
matKNNAncestryColumn
a character string representing the name of the column that contains the in-
ferred ancestry for the specified synthetic profiles. The column must be present
in the matKNN argument.
pedCall a data.frame containing the information about the super-population informa-

tion from the 1KG GDS file for profiles used to generate the synthetic profiles.
The data. frame must contained a column named as the pedCallAncestryColumn
argument.

pedCallAncestryColumn
a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file. The column must
be present in the pedCall argument.

listCall a vector of character strings representing the list of possible ancestry assig-
nations.

62 computeSyntheticROC

Value
list containing 2 entries:

confMat a matrix representing the confusion matrix

matAccuracy a data.frame containing the statistics associated to the confusion matrix

Author(s)

Pascal Belleau, Astrid Deschénes and Alex Krasnitz

Examples

Loading demo dataset containing pedigree information for synthetic
profiles and known ancestry of the profiles used to generate the
synthetic profiles

data(pedSynthetic)

Loading demo dataset containing the inferred ancestry results
for the synthetic data
data(matKNNSynthetic)

The inferred ancestry results for the synthetic data using
values of D=6 and K=5
matkKNN <- matKNNSynthetic[matKNNSynthetic$K == 6 & matKNNSynthetic$D == 5,]

Compile the confusion matrix using the

synthetic profiles for fixed values of D and K values

results <- RAIDS:::computeSyntheticConfMat(matKNN=matKNN,
matKNNAncestryColumn="SuperPop"”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop”,
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"))

results$confMat
results$matAccuracy

computeSyntheticROC Calculate the AUROC of the inferences for specific values of D and K
using the inferred ancestry results from the synthetic profiles.

Description

The function calculates the AUROC of the inferences for specific values of D and K using the
inferred ancestry results from the synthetic profiles. The calculations are done on each super-
population separately as well as on all the results together.

Usage

computeSyntheticROC(
matkNN,
matkKNNAncestryColumn,
pedCall,

computeSyntheticROC 63

pedCallAncestryColumn,
listCall = c("EAS", "EUR", "AFR", "AMR", "SAS")

)
Arguments

matkKNN a data.frame containing the inferred ancestry results for fixed values of D
and K. On of the column names of the data.frame must correspond to the
matKNNAncestryColumn argument.

matkKNNAncestryColumn
a character string representing the name of the column that contains the in-
ferred ancestry for the specified synthetic profiles. The column must be present
in the matKNN argument.

pedCall a data.frame containing the information about the super-population informa-

tion from the 1KG GDS file for profiles used to generate the synthetic profiles.
The data. frame must contained a column named as the pedCallAncestryColumn
argument. The row names must correspond to the sample identifiers (manda-
tory).

pedCallAncestryColumn
a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file. The column must
be present in the pedCall argument.

listCall a vector of character strings representing the list of all possible ancestry
assignations. Default: c("EAS", "EUR", "AFR", "AMR", "SAS").

Value
list containing 3 entries:
matAUROC.All a data.frame containing the AUROC for all the ancestry results.

matAUROC.Call a data.frame containing the AUROC information for each super-population.

1istROC.Call a list containing the output from the roc function for each super-population.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Loading demo dataset containing pedigree information for synthetic
profiles and known ancestry of the profiles used to generate the
synthetic profiles

data(pedSynthetic)

Loading demo dataset containing the inferred ancestry results
for the synthetic data
data(matkKNNSynthetic)

The inferred ancestry results for the synthetic data using
values of D=6 and K=5
matkKNN <- matKNNSynthetic[matKNNSynthetic$K == 6 & matKNNSynthetic$D == 5,]

Compile statistics from the

64 createAccuracyGraph

synthetic profiles for fixed values of D and K

results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matkKNNAncestryColumn="SuperPop"”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop"”,
listCall=c("EAS", "EUR", "AFR"”, "AMR", "SAS"))

results$matAUROC.ALl
results$matAUROC.Call
results$listR0OC.Call

createAccuracyGraph Generate accuracy graph

Description

This function extracts the required information from an output generated by RAIDS to create a
graphic representation of the accuracy for different values of PCA dimensions and K-neighbors
through all tested ancestries.

Usage

createAccuracyGraph(
fileRDS,
title = "",
selectD = c(3, 7, 11),
selectColor = c("#5e688a", "#cd5700", "#CC79A7")

)
Arguments
fileRDS a character string representing the path and file name of the RDS file contain-
ing the ancestry information as generated by RAIDS.
title a character string representing the title of the graph. Default: "".
selectD a array of integer representing the selected PCA dimensions to plot. The
length of the array cannot be more than 5 entries. The dimensions must tested
by RAIDS (i.e. be present in the RDS file). Default: c(3,7,11).
selectColor a array of character strings representing the selected colors for the associated
PCA dimensions to plot. The length of the array must correspond to the length
of the selectD parameter. In addition, the length of the array cannot be more
than 5 entries. Default: c("#5e688a", "#cd5700", "#CC79A7").
Value

a ggplot object containing the graphic representation of the accuracy for different values of PCA
dimensions and K-neighbors through all tested ancestries.

Author(s)

Astrid Deschénes and Pascal Belleau

createAUROCGraph 65

Examples

Required library
library(ggplot2)

Path to RDS file with ancestry information generated by RAIDS (demo file)
dataDir <- system.file("extdata"”, package="RAIDS")
fileRDS <- file.path(dataDir, "TEST_@1.infoCall.RDS")

Create accuracy graph

accuracyGraph <- createAccuracyGraph(fileRDS=fileRDS, title="Test 01"
selectD=c(3,6,9,12,15),
selectColor=c("steelblue”", "darkorange"”, "violet”, "pink"”, "gray8@"))

)

accuracyGraph

createAUROCGraph Generate accuracy graph

Description

This function extracts the required information from an output generated by RAIDS to create a
graphic representation of the accuracy for different values of PCA dimensions and K-neighbors
through all tested ancestries.

Usage

createAUROCGraph(
dfAUROC,
title = "",
selectD = c(3, 7, 11),
selectColor = c("#5e688a", "#cd5700", "#CC79A7")

)
Arguments
dfAUROC adata. frame corresponding to res$paraSample$dfAUROC where res is the re-
sult of inferAncestry() or inferAncestryGeneAware() functions.
title a character string representing the title of the graph. Default: "".
selectD a array of integer representing the selected PCA dimensions to plot. The

length of the array cannot be more than 5 entries. The dimensions must tested
by RAIDS (i.e. be present in the RDS file). Default: c(3,7,11).

selectColor a array of character strings representing the selected colors for the associated
PCA dimensions to plot. The length of the array must correspond to the length
of the selectD parameter. In addition, the length of the array cannot be more
than 5 entries. Default: c("#5e688a", "#cd5700", "#CC79A7").

Value

a ggplot object containing the graphic representation of the accuracy for different values of PCA
dimensions and K-neighbors through all tested ancestries.

66 createProfile

Author(s)

Astrid Deschénes and Pascal Belleau

Examples

Required library
library(ggplot2)

Path to RDS file with ancestry information generated by RAIDS (demo file)
dataDir <- system.file("extdata”, package="RAIDS")

fileRDS <- file.path(dataDir, "TEST_01.infoCall.RDS")

info <- readRDS(fileRDS)

dfAUROC <- info$paraSample$dfAUROC

Some of the column names must be updated to fit new standards
colnames(dfAUROC) <- c("D", "K", "Call"”, "L", "AUROC", "H")

Create accuracy graph

accuracyGraph <- createAUROCGraph(dfAUROC=dfAUROC, title="Test 01",
selectD=c(3, 6, 9, 12, 15),
selectColor=c("steelblue”, "darkorange", "violet"”, "pink"”, "gray40"))

accuracyGraph
createProfile Create the Profile GDS file(s) for one or multiple specific profiles using
the information from a RDS Sample description file and the IKG GDS
file
Description

The function uses the information for the Reference GDS file and the RDS Sample Description file
to create the Profile GDS file. One Profile GDS file is created per profile. One Profile GDS file will
be created for each entry present in the listProfiles parameter.

Usage

createProfile(
profileFile,
profileName,
filePedRDS = NULL,
pedStudy = NULL,
fileNameGDS,
batch = 1,
studyDF,
listProfiles = NULL,
pathProfileGDS = NULL,
genoSource = c("snp-pileup”, "generic”, "VCF", "bam"),
paramProfile = list(ScanBamParam = NULL, PileupParam = NULL, yieldSize = 1e+07),
verbose = FALSE

createProfile 67

Arguments

profileFile a character string representing the path to the file: with genotype and the al-
lele information of the profile A profile would have an associated file called if
genoSource is "VCF", then "vcf.gz", if genoSource is "generic", then ".txt.gz" if
genoSource is "snp-pileup”, then ".txt.gz". if genoSource is "bam”, then ".bam"
and "*.bai".

profileName a character string representing the the profile Name.ID

filePedRDS a character string representing the path to the RDS file that contains the infor-
mation about the sample to analyse. The RDS file must include a data.frame
with those mandatory columns: "Name.ID", "Case.ID", "Sample.Type", "Diag-
nosis", "Source". All columns must be in character strings. The data.frame
must contain the information for all the samples passed in the 1istSamples
parameter. Only filePedRDS or pedStudy can be defined.

pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1listSamples parameter. Only filePedRDS or pedStudy can be
defined.

fileNameGDS a character string representing the file name of the Reference GDS file. The
file must exist.

batch a single positive integer representing the current identifier for the batch. Be-
ware, this field is not stored anymore. Default: 1.

studyDF a data. frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

listProfiles a vector of character string corresponding to the profile identifiers that will
have a Profile GDS file created. The profile identifiers must be present in the
"Name.ID" column of the Profile RDS file passed to the filePedRDS parameter.
If NULL, all profiles present in the filePedRDS are selected. Default: NULL.

pathProfileGDS a character string representing the path to the directory where the Profile GDS
files will be created. Default: NULL.

genoSource a character string with two possible values: ’snp-pileup’, *generic’ or *"VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: ’Chromosome’, *Position’,
’Ref’, *Alt’, *Count’, ’FilelR’ and ’FilelA’. The 'Count’ is the depth at the
specified position; "FileR’ is the depth of the reference allele and "File1 A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

verbose a logical indicating if message information should be printed. Default: FALSE.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

68 createStudy2GDS1KG

Examples

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

The data.frame containing the information about the study
The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",

study.desc = "Description”,

study.platform = "PLATFORM",

stringsAsFactors = FALSE)

The data.frame containing the information about the samples
The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID=c("ex1"),
Case.ID=c("Patient_h11"),
Diagnosis=rep("”Cancer"),
Sample.Type=c("Primary Tumor"),
Source=c("Databank B"), stringsAsFactors=FALSE,
drop=FALSE)
rownames (samplePED) <- samplePED$Name.ID

Create the Profile GDS File for samples in 'listSamples' vector
(in this case, samples "ex1")
The Profile GDS file is created in the pathProfileGDS directory
result <- RAIDS:::createProfile(profileFile=file.path(dataDir, "ex1.txt.gz"),
profileName="ex1",
pedStudy=samplePED, fileNameGDS=fileGDS,
studyDF=studyDF, listProfiles=c("ex1"),
pathProfileGDS=tempdir(),
genoSource="snp-pileup”,
verbose=FALSE)

The function returns OL when successful
result

The Profile GDS file 'ex1.gds' has been created in the
specified directory
list.files(tempdir())

Remove Profile GDS file (created for demo purpose)
unlink(file.path(tempdir(), "ex1.gds"), force=TRUE)

createStudy2GDS1KG Create the Profile GDS file(s) for one or multiple specific profiles using
the information from a RDS Sample description file and the IKG GDS

file

Description

The function uses the information for the Reference GDS file and the RDS Sample Description file
to create the Profile GDS file. One Profile GDS file is created per profile. One Profile GDS file will

createStudy2GDS1KG

69

be created for each entry present in the listProfiles parameter.

Usage

createStudy2GDSTKG(
pathGeno = file.path("data”, "sampleGeno"),
filePedRDS = NULL,
pedStudy = NULL,

fileNameGDS,
batch = 1,
studyDF,
listProfiles

= NULL,

pathProfileGDS = NULL,

genoSource =

c("snp-pileup”, "generic", "VCF"),

verbose = FALSE

Arguments

pathGeno

filePedRDS

pedStudy

fileNameGDS

batch

studyDF

listProfiles

pathProfileGDS

genoSource

a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".

a character string representing the path to the RDS file that contains the infor-
mation about the sample to analyse. The RDS file must include a data.frame
with those mandatory columns: "Name.ID", "Case.ID", "Sample.Type", "Diag-
nosis", "Source". All columns must be in character strings. The data.frame
must contain the information for all the samples passed in the 1istSamples
parameter. Only filePedRDS or pedStudy can be defined.

a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.

a character string representing the file name of the Reference GDS file. The
file must exist.

a single positive integer representing the current identifier for the batch. Be-
ware, this field is not stored anymore. Default: 1.

a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

a vector of character string corresponding to the profile identifiers that will
have a Profile GDS file created. The profile identifiers must be present in the
"Name.ID" column of the Profile RDS file passed to the filePedRDS parameter.
If NULL, all profiles present in the filePedRDS are selected. Default: NULL.

a character string representing the path to the directory where the Profile GDS
files will be created. Default: NULL.

a character string with two possible values: ’snp-pileup’, ’generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a

70 createStudy2GDS1KG
generic format CSV file with at least those columns: *Chromosome’, *Position’,
’Ref’, *Alt’, "Count’, ’FilelR’ and ’FilelA’. The 'Count’ is the depth at the
specified position; 'FileR’ is the depth of the reference allele and "File1 A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.
verbose a logical indicating if message information should be printed. Default: FALSE.
Value
The function returns OL when successful.
Author(s)
Pascal Belleau, Astrid Deschénes and Alexander Krasnitz
Examples

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

The data.frame containing the information about the study
The 3 mandatory columns: "study.id"”, "study.desc”, "study.platform’
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",

study.desc = "Description”,

study.platform = "PLATFORM",

stringsAsFactors = FALSE)

i

The data.frame containing the information about the samples
The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID=c("ex1", "ex2"),
Case.ID=c("Patient_h11", "Patient_h12"),
Diagnosis=rep("Cancer”, 2),
Sample.Type=rep("Primary Tumor”, 2),
Source=rep("Databank B", 2), stringsAsFactors=FALSE)
rownames (samplePED) <- samplePED$Name.ID

Create the Profile GDS File for samples in 'listSamples' vector
(in this case, samples "ex1")
The Profile GDS file is created in the pathProfileGDS directory
result <- createStudy2GDS1KG(pathGeno=dataDir,
pedStudy=samplePED, fileNameGDS=fileGDS,
studyDF=studyDF, listProfiles=c("ex1"),
pathProfileGDS=tempdir(),
genoSource="snp-pileup”,
verbose=FALSE)

The function returns OL when successful
result

The Profile GDS file 'ex1l.gds' has been created in the
specified directory
list.files(tempdir())

Remove Profile GDS file (created for demo purpose)

demoKnownSuperPopl KG 71

unlink(file.path(tempdir(), "ex1.gds"), force=TRUE)

demoKnownSuperPop1KG The known super population ancestry of the demo 1KG reference pro-

files.

Description

The object is a vector.

Usage

data(demoKnownSuperPop1KG)

Format

The vector containing the know super population ancestry for the demo 1KG reference profiles.

Details
This object can be used to test the computeKNNRefSynthetic and computePoolSyntheticAncestryGr
functions.

Value

The vector containing the know super population ancestry for the demo 1KG reference profiles.

See Also

computeKNNRefSynthetic for running a k-nearest neighbors analysis on a subset of the synthetic
data set.

computePoolSyntheticAncestryGr for running a PCA analysis using 1 synthetic profile from
each sub-continental population.

Examples

Required library
library(gdsfmt)

Load the demo PCA on the synthetic profiles projected on the
demo 1KG reference PCA
data(demoPCASyntheticProfiles)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

72 demoPCA1KG

The name of the synthetic study
studyID <- "MYDATA.Synthetic”

Projects synthetic profiles on 1KG PCA

results <- computeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS"”, "EUR", "AFR", "AMR", "SAS"), studyIDSyn=studyID,
spRef=demoKnownSuperPop1KG)

The inferred ancestry for the synthetic profiles for different values
of D and K
head(results$matkNN)

Close Profile GDS file (important)
closefn.gds(gdsProfile)

demoPCATKG The PCA results of the demo 1KG reference dataset for demonstration
purpose. Beware that the PCA has been run on a very small subset
of the 1KG reference dataset and should not be used to call ancestry
inference on a real profile.

Description

The objectis a list.

Usage
data(demoPCA1KG)

Format

The list containing the PCA results for a small subset of the reference 1KG dataset. The list
contains 2 entries:

pruned a vector of SNV identifiers specifying selected SNV for the PCA analysis.

pca.unrel a snpgdsPCAClass object containing the eigenvalues as generated by snpgdsPCA func-
tion.
Details

This object can be used to test the computePCAMultiSynthetic function.

Value

The list containing the PCA results for a small subset of the reference 1KG dataset. The list
contains 2 entries:
pruned a vector of SNV identifiers specifying selected SNVs for the PCA analysis.

pca.unrel a snpgdsPCAClass object containing the eigenvalues as generated by snpgdsPCA func-
tion.

demoPCASyntheticProfiles 73

Examples

Required library
library(gdsfmt)

Loading demo PCA on subset of 1KG reference dataset
data(demoPCA1KG)

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

The name of the synthetic study
studyID <- "MYDATA.Synthetic”

samplesRM <- c("HG0O0246", "HGO®325", "HGO@611", "HGO1173", "HGO2165",
"HG@1112", "HGO1615", "HGO1968", "HGO2658", "HGO1850", "HGO2013",
"HG02465", "HG02974", "HG03814", "HGO3445", "HGO3689", "HGO3789",
"NA12751", "NA19107", "NA18548", "NA19075", "NA19475", "NA19712",
"NA19731", "NA20528", "NA20908")

names(samplesRM) <- c("GBR", "FIN", "CHS","PUR", "CDX", "CLM", "IBS",
"PEL", "PJL", "KHV", "ACB", "GWD", "ESN", "BEB", "MSL", "STu", "ITU",
"CEU", "YRI", "CHB", "JPT", "LWK", "ASW", "MXL", "TSI", "GIH")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

Projects synthetic profiles on demo 1KG PCA

results <- computePCAMultiSynthetic(gdsProfile=gdsProfile,
1istPCA=demoPCA1KG, sampleRef=samplesRM, studyIDSyn=studylID,
verbose=FALSE)

The eigenvectors for the synthetic profiles
head(results$eigenvector)

Close Profile GDS file (important)
closefn.gds(gdsProfile)

demoPCASyntheticProfiles

The PCA result of demo synthetic profiles projected on the demo subset
1KG reference PCA.

Description

The objectis a list.

Usage
data(demoPCASyntheticProfiles)

Format

The list containing the PCA result of demo synthetic profiles projected on the demo subset 1KG
reference PCA. The list contains 3 entries:

74 demoPCASyntheticProfiles

sample.id a character string representing the unique identifier of the synthetic profiles.
eigenvector.ref a matrix of numeric containing the eigenvectors for the reference profiles.

eigenvector a matrix of numeric containing the eigenvectors for the current synthetic profiles
projected on the demo PCA 1KG reference profiles.

Details

This object can be used to test the computeKNNRefSynthetic function.

Value

The 1ist containing the PCA result of demo synthetic profiles projected on the demo subset 1KG
reference PCA. The list contains 3 entries:

sample.id a character string representing the unique identifier of the synthetic profiles.
eigenvector.ref a matrix of numeric containing the eigenvectors for the reference profiles.

eigenvector a matrix of numeric containing the eigenvectors for the current synthetic profiles
projected on the demo PCA 1KG reference profiles.

See Also

computeKNNRefSynthetic for running a k-nearest neighbors analysis on a subset of the synthetic
data set.

Examples

Required library
library(gdsfmt)

Load the demo PCA on the synthetic profiles projected on the
demo 1KG reference PCA
data(demoPCASyntheticProfiles)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

The name of the synthetic study
studyID <- "MYDATA.Synthetic”

Projects synthetic profiles on 1KG PCA

results <- computeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS", "EUR", "AFR", "AMR", "SAS"), studyIDSyn=studyID,
spRef=demoKnownSuperPop1KG)

The inferred ancestry for the synthetic profiles for different values
of D and K
head(results$matkNN)

demoPedigreeEx | 75

Close Profile GDS file (important)
closefn.gds(gdsProfile)

demoPedigreeEx1 The pedigree information about a demo profile called ’exl’.

Description

The object is a data. frame.

Usage

data(demoPedigreeEx1)

Format

The data. frame containing the information about a demo profile called ex1’. the data. frame has
5 columns:

Name.ID a character string representing the unique identifier of the profile.

Case.ID a character string representing the unique identifier of the case associated to the profile.
Sample.Type a character string describing the type of profile.

Diagnosis a character string describing the diagnosis of the profile.

Source a character string describing the source of the profile.

Details

This object can be used to test the runExomeAncestry function.

Value

The data. frame containing the information about a demo profile called ex1’. the data. frame has
5 columns:

Name.ID a character string representing the unique identifier of the profile.

Case.ID a character string representing the unique identifier of the case associated to the profile.
Sample.Type a character string describing the type of profile.

Diagnosis a character string describing the diagnosis of the profile.

Source a character string describing the source of the profile.

See Also

runExomeAncestry for running runs most steps leading to the ancestry inference call on a specific
exome profile.

76

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHHHHARHEH A
Load the information about the profile

HHHEHHAREEE AR R R
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHH A A
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis

S HEHHHE P P
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

S HEHHRHEHER AR EHEH R B SRR REEE R HERRERE
The Sample SNP pileup files (one per sample) need

to be located in the same directory.

HHHEHHARHE R R R
pathGeno <- file.path(dataDir, "example”, "snpPileup”)

B g
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

HHHHHHAREEE AR R R
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

HEHHHHHHEHEBHE AR

A data frame containing general information about the study

is also required. The data frame must have

those 3 columns: "studyID”, "study.desc”, "study.platform”

S A T I B I R i

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHEHHAREEE AR AR R
Fix seed to ensure reproducible results

HHHEHHAEEE AR AR R
set.seed(2043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)

demoPedigreeEx 1

estimateAllelicFraction 77

closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

runExomeAncestry(pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno, pathOut=pathOut,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo, syntheticRefDF=dataRef,
genoSource="snp-pileup"”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

estimateAllelicFraction
Estimate the allelic fraction of the pruned SNV for a specific profile

Description

The function estimates the allelic fraction of the SN'Vs for a specific profile and add the information
to the associated Profile GDS file. The allelic fraction estimation method is adapted to the type of
study (DNA or RNA).

Usage

estimateAllelicFraction(
gdsReference,
gdsProfile,
currentProfile,
studyID,
chrinfo,
studyType = c("DNA", "RNA"),
minCov = 10L,
minProb = 0.999,
eProb = 0.001,
cutOffLOH = -5,
cutOffHomoScore = -3,
wAR = 9,
cutOffAR = 3,
gdsRefAnnot = NULL,
blockID = NULL,

78

estimateAllelicFraction

verbose = FALSE

Arguments

gdsReference
gdsProfile

currentProfile

studyID

chrinfo

studyType

minCov

minProb

eProb

cutOffLOH

cutOffHomoScore

wAR

cutOffAR

gdsRefAnnot

blockID

verbose

Details

an object of class gds.class (a GDS file), the opened Reference GDS file.
an object of class gds. class (a GDS file), the opened Profile GDS file.

a character string corresponding to the sample identifier as used in pruningSample

function.

a character string corresponding to the name of the study as used in pruningSample

function.
a vector of integer values representing the length of the chromosomes. See
“details’ section.

a character string representing the type of study. The possible choices are:
"DNA" and "RNA". The type of study affects the way the estimation of the
allelic fraction is done. Default: "DNA".

a single positive integer representing the minimum required coverage. Default:
10L.

a single numeric between 0 and 1 representing the probability that the calculated
genotype call is correct. Default: @.999.

a single numeric between O and 1 representing the probability of sequencing
error. Default: 0.001.

a single numeric representing the cutoff, in log, for the homozygote score to
assign a region as LOH. Default: -5.

a single numeric representing the cutoff, in log, that the SNVs in a block are
called homozygote by error. Default: -3.

a single positive integer representing the size-1 of the window used to compute
an empty box. Default: 9.

a single numeric representing the cutoff, in log score, that the SNVs in a gene
are allelic fraction different 0.5 Default: 3.

an object of class gds.class (a GDS file), the opened Reference SNV Annota-
tion GDS file. This parameter is RNA specific. Default: NULL.

a character string corresponding to the block identifier in gdsRefAnnot. This
parameter is RNA specific. Default: NULL

a logicial indicating if the function should print message when running. De-
fault: FALSE.

The chrinfo parameter contains the length of the chromosomes. The length of the chromosomes
can be obtain through the seqlengths library.

As example, for hg38 genome:

if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {
chrinfo <- Seqinfo::seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

estimateAllelicFraction

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library for GDS
library(gdsfmt)

Path to the demo 1KG GDS file located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

Profile GDS file for one profile
fileProfile <- file.path(tempdir(), "ex1.gds")

Copy the Profile GDS file demo that has been pruned and annotated

into current directory

file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileProfile)

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

Profile GDS file for one profile
profileGDS <- openfn.gds(fileProfile, readonly=FALSE)

Required library for this example to run correctly
if (requireNamespace("Seginfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Estimate the allelic fraction of the pruned SNVs

estimateAllelicFraction(gdsReference=gds1KG, gdsProfile=profileGDS,
currentProfile="ex1", studyID="MYDATA", chrInfo=chrInfo,
studyType="DNA", minCov=10L, minProb=0.999, eProb=0.001,
cutOffLOH=-5, cutOffHomoScore=-3, wAR=9, cutOffAR=3,
gdsRefAnnot=NULL, blockID=NULL)

The allelic fraction is saved in the 'lap' node of Profile GDS file
The 'lap' entry should be present
profileGDS

Close both GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)

Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

79

80 extractNucleotide

extractNucleotide Filtering the read counts for a specific nucleotide

Description

The function returns the read counts for the specific nucleotide or zero when read counts are not
available.

Usage

extractNucleotide(nucleotide, count, curNucleo)

Arguments
nucleotide a vector of a character strings representing the nucleotides (ex: A, C, G or
T).
count avector of numeric representing the counts for each nucleotide listed in nucleotide
parameter.
curNucleo a character strings representing the nucleotide that will be retained (ex: A, C,
GorT).
Value

a numeric representing the counts for the selected nucleotide. The default value is .

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Nucleotides vector
nuc <- c("A", "G", "C", "T")

Count vector
cnt <- c(100, 200, 4, 32)

Return the count for the nucleotide "G"
RAIDS: : :extractNucleotide(nucleotide=nuc, count=cnt, curNucleo="G")

generateGDS1KG 81

generateGDS1KG Generate the GDS file that will contain the information from Reference
data set (reference data set)

Description

This function generates the GDS file that will contain the information from Reference. The function
also add the samples information, the SNP information and the genotyping information into the
GDS file.

Usage

generateGDSTKG(
pathGeno = file.path("data”, "sampleGeno"),
filePedRDS,
fileSNVIndex,
fileSNVSelected,
fileNameGDS,
listSamples = NULL,
verbose = FALSE

)
Arguments

pathGeno a character string representing the path where the 1K genotyping files for
each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file. Default:
"./data/sampleGeno”.

filePedRDS a character string representing the path and file name of the RDS file that
contains the pedigree information. The file must exist. The file must be a RDS
file.

fileSNVIndex a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

fileSNVSelected
a character string representing the path and file name of the RDS file that
contains the filtered SNP information. The file must exist. The file must be a
RDS file.

fileNameGDS a character string representing the path and file name of the GDS file that
will be created. The GDS file will contain the SNP information, the genotyping
information and the pedigree information from 1000 Genomes. The extension
of the file must be ’.gds’.

listSamples a vector of character string corresponding to samples (must be the sam-
ple.ids) that will be retained and added to the GDS file. When NULL, all the
samples are retained. Default: NULL.

verbose a logical indicating if the funciton must print messages when running. Default:
FALSE.

Details

More information about GDS file format can be found at the Bioconductor gdsfmt website: https://bioconductor.org/pack:

82 generateGDS 1KGgenotypeFromSNPPileup

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Path to the CSV genoytype files
pathGeno <- file.path(dataDir, "demoProfileGenotypes”)

The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary Reference GDS file
tempRefGDS <- file.path(tempdir(), "1KG_TEMP.gds")

Create a temporary Reference GDS file

generateGDS1KG(pathGeno=pathGeno, filePedRDS=pedigreeFile,
fileSNVIndex=snpIndexFile, fileSNVSelected=filterSNVFile,
fileNameGDS=tempRefGDS, listSamples=NULL)

Remove temporary files
unlink(tempRefGDS, force=TRUE)

generateGDS1KGgenotypeFromSNPPileup

Append the genotype information from a profile into the associated
Profile GDS File

Description

This function append the genotype information from a specific profile into the Profile GDS file. The
genotype information is extracted from a SNV file as generated by SNP-pileup or other tools.

Usage

generateGDST1KGgenotypeFromSNPPileup(
pathGeno,
listSamples,
listPos,

generateGDS 1KGgenotypeFromSNPPileup 83

offset,
minCov = 10,

minProb = ©.999,
seqError = 0.001,

dfPedProfile,
batch,
studyDF,
pathProfileGDS,
genoSource,
verbose
)
Arguments
pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".
listSamples a vector of character string corresponding to the sample identifiers that will

listPos

offset

minCov

minProb

seqgError

dfPedProfile

batch

studyDF

pathProfileGDS

genoSource

have a Profile GDS file created. The sample identifiers must be present in the
"Name.ID" column of the data. frame passed to the dfPedProfile parameter.

adata. frame containing 2 columns. The first column, called "snp.chromosome"
contains the name of the chromosome where the SNV is located. The second
column, called "snp.position" contains the position of the SNV on the chromo-
some.

a integer to adjust if the genome start at 0 or 1.

a single positive integer representing the minimum coverage needed to keep
the SNVs in the analysis. Default: 10.

a single positive numeric between 0 and 1 representing the probability that the
base change at the SNV position is not an error. Default: 0.999.

a single positive numeric between 0 and 1 representing the sequencing error
rate. Default: 0.001.

a data.frame with the information about the sample(s). Those are mandatory
columns: "Name.ID", "Case.ID", "Sample.Type", "Diagnosis" and "Source".
All columns must be in character strings format. The data. frame must con-
tain the information for all the samples passed in the 1istSamples parameter.

a single positive integer representing the current identifier for the batch. Be-
ware, this field is not stored anymore.

a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings.

a character string representing the path to the directory where the GDS Sample
files will be created.

a character string with two possible values: ’snp-pileup’, *generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: ’Chromosome’, *Position’,
’Ref’, *Alt’, *Count’, ’FilelR’ and ’FilelA’. The 'Count’ is the depth at the

84

generateGDS 1KGgenotypeFromSNPPileup

specified position; "FileR’ is the depth of the reference allele and "Filel A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at

least those genotype fields: GT, AD, DP.

verbose a logical indicating if the function must print messages when running.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Current directory
dataDir <- file.path(tempdir())

Copy required file into current directory
file.copy(from=file.path(system.file("extdata/tests"”, package="RAIDS"),
"ex1.txt.gz"), to=dataDir)

The data.frame containing the information about the study
The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",

study.desc = "Description”,

study.platform = "PLATFORM",

stringsAsFactors = FALSE)

The data.frame containing the information about the samples
The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID=c("ex1", "ex2"),
Case.ID=c("Patient_h11", "Patient_h12"),
Diagnosis=rep("Cancer”, 2),
Sample.Type=rep("Primary Tumor"”, 2),
Source=rep("Databank B", 2), stringsAsFactors=FALSE)
rownames (samplePED) <- samplePED$Name.ID

List of SNV positions
listPositions <- data.frame(snp.chromosome=c(rep(1, 10)),

snp.position=c(3467333, 3467428, 3469375, 3469387, 3469502, 3469527,

3469737, 3471497, 3471565, 3471618))

Append genotype information to the Profile GDS file

result <- RAIDS:::generateGDS1KGgenotypeFromSNPPileup(pathGeno=dataDir,
listSamples=c("ex1"), listPos=listPositions,
offset=-1, minCov=10, minProb=0.999, seqError=0.001,
dfPedProfile=samplePED, batch=1, studyDF=studyDF,
pathProfileGDS=dataDir, genoSource="snp-pileup”,
verbose=FALSE)

The function returns OL when successful
result

The Profile GDS file 'ex1.gds' has been created in the

generateGDSgenotype 85

specified directory
list.files(dataDir)

Unlink Profile GDS file (created for demo purpose)
unlink(file.path(dataDir, "ex1.gds"))
unlink(file.path(dataDir, "ex1.txt.gz"))

generateGDSgenotype Add information related to profile genotypes into a Population Refer-
ence GDS file

Description
This function adds the genotype fields with the associated information into the Population Reference
GDS file for the selected profiles.

Usage

generateGDSgenotype(gds, pathGeno, fileSNPsRDS, listSamples, verbose)

Arguments
gds an object of class gds.class (a GDS file), the opened Population Reference GDS
file.
pathGeno a character string representing the path where the reference genotyping files

for each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file.

fileSNPsRDS a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be

a RDS file.
listSamples a vector of character string corresponding to profiles (must be the profile
identifiers) that will be retained and added to the Reference GDS file.
verbose a logical indicating if the function must print messages when running.
Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

86 generateGDSRefSample

Path where the demo genotype CSV files are located
pathGeno <- file.path(dataDir, "demoProfileGenotypes")

The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary Reference GDS file in temporary directory
tempRefGDS <- file.path(tempdir(), "Ref_TEMPQ1.gds")

Create temporary Reference GDS file
newGDS <- createfn.gds(tempRefGDS)
put.attr.gdsn(newGDS$root, "FileFormat”, "SNP_ARRAY")

Read the pedigree file
ped1KG <- readRDS(pedigreeFile)

Add information about samples to the Reference GDS file
listSampleGDS <- RAIDS:::generateGDSRefSample(gdsReference=newGDS,
dfPedReference=ped1KG, listSamples=NULL)

Add SNV information to the Reference GDS
RAIDS: : :generateGDSSNPinfo(gdsReference=newGDS, fileFreq=filterSNVFile,
verbose=FALSE)

Add genotype information to the Reference GDS
RAIDS: : :generateGDSgenotype (gds=newGDS, pathGeno=pathGeno,
fileSNPsRDS=snpIndexFile, listSamples=listSampleGDS, verbose=FALSE)

Close file
closefn.gds(newGDS)

Remove temporary files
unlink(tempRefGDS, force=TRUE)

generateGDSRefSample Initialization of the section related to the profile information in the
GDS file

Description

This function initializes the section related to the profile information in the GDS file. The in-
formation is extracted from the data.frame passed to the function. The nodes "sample.id" and
"sample.annot" are created in the GDS file.

Usage

generateGDSRefSample(gdsReference, dfPedReference, listSamples = NULL)

generateGDSRefSample 87

Arguments

gdsReference an object of class gds.class (a GDS file), the opened GDS file.

dfPedReference a data.frame containing the information related to the samples. It must have
those columns: "sample.id", "Name.ID", "sex", "pop.group”, "superPop" and
"batch". All columns, except "sex" and batch", are character strings. The
"batch" and "sex" columns are integer. The unique identifier of this data. frame
is the "Name.ID" column. The row names of the data.frame must correspond
to the identifiers present in the "Name.ID" column.

listSamples a vector of character string representing the identifiers of the selected pro-
files. If NULL, all profiles are selected. Default: NULL.

Value

a vector of character string with the identifiers of the profiles saved in the GDS file.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Temporary GDS file in current directory
gdsFilePath <- file.path(tempdir(), "GDS_TEMP_10@.gds")

Create and open the GDS file
tmpGDS <- createfn.gds(filename=gdsFilePath)

Create "sample.annot” node (the node must be present)
pedInformation <- data.frame(sample.id=c("sample_01", "sample_02"),

Name.ID=c("sample_01", "sample_02"),

sex=c(1,1), # 1:Male 2: Female

pop.group=c("ACB", "ACB"),

superPop=c("AFR", "AFR"),

batch=c(1, 1),

stringsAsFactors=FALSE)

The row names must be the sample identifiers
rownames (pedInformation) <- pedInformation$Name.ID

Add information about 2 samples to the GDS file
RAIDS: : :generateGDSRefSample (gdsReference=tmpGDS,
dfPedReference=pedInformation, listSamples=NULL)

Read sample identifier list
read. gdsn(index.gdsn(node=tmpGDS, path="sample.id"))

Read sample information from GDS file
read.gdsn(index.gdsn(node=tmpGDS, path="sample.annot"))
Close GDS file

closefn.gds(gdsfile=tmpGDS)

88 generateGDSSNPinfo

Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

generateGDSSNPinfo Add information related to SNVs into a Population Reference GDS file

Description

The function adds the SNV information into a Population Reference GDS file.

Usage

generateGDSSNPinfo(gdsReference, fileFreq, verbose)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened Reference GDS file.

fileFreq a character string representing the path and file name of the RDS file with the
filtered SNP information.
verbose a logical indicating if messages should be printed to show how the different

steps in the function.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required package
library(gdsfmt)

The RDS file containing the filtered SNP information
dataDir <- system.file("extdata”, package="RAIDS")
fileFilerterSNVs <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary Reference GDS file in temporary directory
filelKG <- file.path(tempdir(), "1KG_TEMP_002.gds")
filenewGDS <- createfn.gds(filelKG)

Add SNV information to Reference GDS
RAIDS: : :generateGDSSNPinfo(gdsReference=filenewGDS,
fileFreg=fileFilerterSNVs, verbose=TRUE)

Close GDS file (important)
closefn.gds(filenewGDS)

Remove temporary 1KG_TEMP_002.gds file
unlink(file1KG, force=TRUE)

generateGeneBlock 89

generateGeneBlock Generate two indexes based on gene annotation for gdsAnnotlKG
block

Description

Generate two indexes based on gene annotation for gdsAnnot1 KG block

Usage

generateGeneBlock(gdsReference, winSize = 10000, ensDb)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file (reference).

winSize a single positive integer representing the size of the window to use to group
the SNVs when the SNVs are in a non-coding region. Default: 10000.

ensDb An object of class EnsDb with the Ensembl genome annotation. By default, the
EnsDb.Hsapiens.v86 class has been used.

Value

a data. frame with those columns:

chr asingle integer representing the SNV chromosome.
pos asingle integer representing the SNV position.

snp.allele a character string representing the reference allele and alternative allele for each of the
SNV

Exon a character with the ensembl Geneld(s) if the SNV is in one exon. If more than one Geneld
they are separted by ’:’

GName a character with the ensembl Geneld(s) if the SNV is in the gene. If more than one
Geneld they are separted by *:’

Gene a single integer specific to the SNVs that share at least one genes

GeneS a single integer specific to the SNVs that share a unique combination of genes

"chr", "pos", "snp.allele", "Exon", "GName", "Gene", "GeneS" Example for GName and the two in-

dexes "Gene", "GeneS" GName Gene GeneS 470 ENSG00000230021 17 3820 471 ENSG00000230021

17 3820 472 ENSG00000230021:ENSG00000228794 17 3825 473 ENSG00000230021:ENSG00000228794

173825 481 ENSG00000230021:ENSG00000228794:ENSG00000225880 17 3826 482 ENSG0000023002 1:ENSG000!
17 3826 483 ENSG00000230021:ENSG00000228794:ENSG00000225880 17 3826 492 ENSG00000230021:ENSG000!
17 3825 493 ENSG00000230021:ENSG00000228794 17 3825

Author(s)

Pascal Belleau, Astrid Deschénes and Alex Krasnitz

90 generateMapSnvSel

Examples

Required library
library(SNPRelate)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Required library
if (requireNamespace("EnsDb.Hsapiens.v86", quietly=TRUE)) {

Making a "short cut” on the ensDb object
edb <- EnsDb.Hsapiens.v86: :EnsDb.Hsapiens.v86

path1KG <- file.path(dataDir, "tests")

Reference GDS file
fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileReferenceGDS)

The function returns a data.frame containing

gene block information

matGeneBlock <- RAIDS:::generateGeneBlock(gdsReference=gdsi1KG,
ensDb=edb)

print(head(matGeneBlock[grep("ENSGOQ00Q157152",
matGeneBlock$GName), 1))

closefn.gds(gds1KG)

generateMapSnvSel Generate the filter SNP information file in RDS format

Description

The function applies a cut-off filter to the SNP information file to retain only the SNP that have a
frequency superior or equal to the specified cut-off in at least one super population. The information
about the retained SNPs is saved in a RDS format file. A RDS file containing the indexes of the
retained SNP is also created.

Usage

generateMapSnvSel (cutOff = 0.01, fileSNV, fileSNPsRDS, fileFREQ)

Arguments

cutOoff a single numeric value, the cut-off for the frequency in at least one super popu-
lation. Default: 0.01.

generateMapSnvSel 91

fileSNV a character string representing the path and file name of the bulk SNP infor-
mation file from Reference. The file must be in text format. The file must exist.

fileSNPsRDS a character string representing the path and file name of the RDS file that will
contain the indexes of the retained SNPs. The file extension must be ’.rds’.

fileFREQ a character string representing the path and file name of the RDS file that will
contain the filtered SNP information. The file extension must be *.rds’.

Details

The filtered SNP information RDS file (parameter fileFREQ), contains a data.frame with those
columns:

CHROM a character string representing the chromosome where the SNV is located.

POS a character string representing the SNV position on the chromosome.

REF a character string representing the reference DNA base for the SNV.

ALT a character string representing the alternative DNA base for the SNV.\

EAS_AF a character string representing the allele frequency of the EAS super population.
AFR_AF a character string representing the allele frequency of the AFR super population.
AMR_AF a character string representing the allele frequency of the AMR super population.
SAS_AF a character string representing the allele frequency of the SAS super population.

Value

The integer @ when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

Demo SNV information file used as input
snvFile <- file.path(dataDir, "matFreqSNV_Demo.txt.bz2")

Temporary output files

The first file contains the indexes of the retained SNPs
The second file contains the filtered SNP information
snpIndexFile <- file.path(tempdir(), "1istSNP_TEMP.rds")
filterSNVFile <- file.path(tempdir(), "mapSNVSel_TEMP.rds")

Create a data.frame containing the information of the retained

samples (samples with existing genotyping files)

generateMapSnvSel (cutOff=0.01, fileSNV=snvFile,
fileSNPsRDS=snpIndexFile, fileFREQ=filterSNVFile)

Remove temporary files
unlink(snpIndexFile, force=TRUE)
unlink(filterSNVFile, force=TRUE)

92 generatePhase]l KG2GDS

generatePhaselKG2GDS Adding the phase information into the Reference GDS file

Description

The function is adding the phase information into the Reference Phase GDS file. The phase infor-
mation is extracted from a Reference GDS file and is added into a Reference Phase GDS file. An
entry called ’phase’ is added to the Reference Phase GDS file.

Usage

generatePhase1KG2GDS(
gdsReference,
gdsReferencePhase,
pathGeno,
fileSNVIndex,
verbose = FALSE

Arguments

gdsReference an object of class gds.class (GDS file), an opened Reference GDS file.
gdsReferencePhase
an object of class gds.class (GDS file), an opened Reference Phase GDS file.

pathGeno a character string representing the path where the 1K genotyping files for
each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file. Default:
"./data/sampleGeno”.

fileSNVIndex a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

verbose a logicial indicating if the function should print messages when running. De-
fault: FALSE.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required package
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Path where the demo genotype CSV files are located

generatePhaseRef 93

pathGeno <- file.path(dataDir, "demoProfileGenotypes")

The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary Reference GDS file containing reference information
fileReferenceGDS <- file.path(tempdir(), "1KG_TEMP_02.gds")

Create a temporary Reference GDS file containing information from 1KG

generateGDS1KG(pathGeno=pathGeno, filePedRDS=pedigreeFile,
fileSNVIndex=snpIndexFile, fileSNVSelected=filterSNVFile,
fileNameGDS=fileReferenceGDS, listSamples=NULL)

Temporary Phase GDS file that will contain the 1KG Phase information
fileRefPhaseGDS <- file.path(tempdir(), "1KG_TEMP_Phase_02.gds")

Create Reference Phase GDS file
gdsPhase <- createfn.gds(fileRefPhaseGDS)

Open Reference GDS file
gdsRef <- openfn.gds(fileReferenceGDS)

Fill temporary Reference Phase GDS file
if (FALSE) {
generatePhasel1KG2GDS (gdsReference=gdsRef,
gdsReferencePhase=gdsPhase,
pathGeno=pathGeno, fileSNVIndex=snpIndexFile,
verbose=FALSE)
3

Close Reference Phase information file
closefn.gds(gdsPhase)

Close Reference information file
closefn.gds(gdsRef)

Remove temporary files
unlink(fileReferenceGDS, force=TRUE)
unlink(fileRefPhaseGDS, force=TRUE)

generatePhaseRef Adding the phase information into the Reference GDS file

Description

The function is adding the phase information into the Reference Phase GDS file. The phase infor-
mation is extracted from a Reference GDS file and is added into a Reference Phase GDS file. An
entry called ’phase’ is added to the Reference Phase GDS file.

94 generatePhaseRef

Usage

generatePhaseRef (
fileReferenceGDS,
fileReferenceAnnotGDS,
pathGeno,
fileSNVIndex,
verbose = FALSE

Arguments

fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.

fileReferenceAnnotGDS
a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

pathGeno a character string representing the path where the 1K genotyping files for
each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file. Default:
"./data/sampleGeno”.

fileSNVIndex a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

verbose a logicial indicating if the function should print messages when running. De-
fault: FALSE.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Path where the demo genotype CSV files are located
pathGeno <- file.path(dataDir, "demoProfileGenotypes”)

The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary Reference GDS file containing reference information

generateProfileGDS 95

fileReferenceGDS <- file.path(tempdir(), "1KG_TEMP_02.gds")

Create a temporary Reference GDS file containing information from 1KG

generateGDS1KG(pathGeno=pathGeno, filePedRDS=pedigreeFile,
fileSNVIndex=snpIndexFile, fileSNVSelected=filterSNVFile,
fileNameGDS=fileReferenceGDS, listSamples=NULL)

Temporary Phase GDS file that will contain the 1KG Phase information
fileRefPhaseGDS <- file.path(tempdir(), "1KG_TEMP_Phase_02.gds")

Fill temporary Reference Phase GDS file
if (FALSE) {
generatePhaseRef (fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileRefPhaseGDS,
pathGeno=pathGeno, fileSNVIndex=snpIndexFile,
verbose=FALSE)

Remove temporary files
unlink(fileReferenceGDS, force=TRUE)
unlink(fileRefPhaseGDS, force=TRUE)

generateProfileGDS Append the genotype information from a profile into the associated
Profile GDS File

Description

This function append the genotype information from a specific profile into the Profile GDS file. The
genotype information is extracted from a SNV file as generated by SNP-pileup or other tools.

Usage

generateProfileGDS(
profileFile,
profileName,
listPos,
offset,
minCov = 10,
minProb = ©0.999,
seqError = 0.001,
dfPedProfile,
batch,
studyDF,
pathProfileGDS,
genoSource,
paramProfileGDS,
verbose

96 generateProfileGDS

Arguments

profileFile a character string representing the path and the file name of the genotype file
or the bam if genoSource is snp-pileup the fine extension must be .txt.gz, if VCF
the extension must be .vcf.gz

profileName a character string representing the profileName

listPos adata. frame containing 2 columns. The first column, called "snp.chromosome"
contains the name of the chromosome where the SNV is located. The second
column, called "snp.position" contains the position of the SNV on the chromo-
some.

offset a integer to adjust if the genome start at 0 or 1.

minCov a single positive integer representing the minimum coverage needed to keep
the SNVs in the analysis. Default: 10.

minProb a single positive numeric between 0 and 1 representing the probability that the
base change at the SNV position is not an error. Default: @.999.

seqgError a single positive numeric between 0 and 1 representing the sequencing error

rate. Default: 0.001.

dfPedProfile adata.frame with the information about the sample(s). Those are mandatory
columns: "Name.ID", "Case.ID", "Sample.Type", "Diagnosis" and "Source".
All columns must be in character strings format. The data. frame must con-
tain the information for all the samples passed in the 1istSamples parameter.

batch a single positive integer representing the current identifier for the batch. Be-
ware, this field is not stored anymore.

studyDF a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings.

pathProfileGDS acharacter string representing the path to the directory where the GDS Sample
files will be created.

genoSource a character string with two possible values: ’snp-pileup’, *generic’ or *"VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *Chromosome’, Position’,
’Ref’, *Alt’, "Count’, ’FilelR’ and ’FilelA’. The 'Count’ is the depth at the
specified position; 'FileR’ is the depth of the reference allele and "File1 A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

paramProfileGDS
a list parameters ...
verbose a logical indicating if the function must print messages when running.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

getBlockIDs

Examples

Current directory
dataDir <- file.path(tempdir())

Copy required file into current directory
file.copy(from=file.path(system.file("extdata/tests"”, package="RAIDS"),
"ex1.txt.gz"), to=dataDir)

The data.frame containing the information about the study
The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",

study.desc = "Description”,

study.platform = "PLATFORM",

stringsAsFactors = FALSE)

The data.frame containing the information about the samples
The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID=c("ex1", "ex2"),
Case.ID=c("Patient_h11", "Patient_h12"),
Diagnosis=rep("Cancer”, 2),
Sample.Type=rep("Primary Tumor"”, 2),
Source=rep("Databank B", 2), stringsAsFactors=FALSE)
rownames (samplePED) <- samplePED$Name.ID

List of SNV positions

listPositions <- data.frame(snp.chromosome=c(rep(1, 10)),
snp.position=c(3467333, 3467428, 3469375, 3469387, 3469502, 3469527,
3469737, 3471497, 3471565, 3471618))

Append genotype information to the Profile GDS file

result <- RAIDS:::generateProfileGDS(profileFile=file.path(dataDir, "ex1.txt.gz"),
profileName="ex1", listPos=listPositions,
offset=-1, minCov=10, minProb=0.999, seqError=0.001,
dfPedProfile=samplePED, batch=1, studyDF=studyDF,
pathProfileGDS=dataDir, genoSource="snp-pileup”,
verbose=FALSE)

The function returns OL when successful
result

The Profile GDS file 'ex1l.gds' has been created in the
specified directory
list.files(dataDir)

Unlink Profile GDS file (created for demo purpose)
unlink(file.path(dataDir, "ex1.gds"))
unlink(file.path(dataDir, "ex1.txt.gz"))

getBlockIDs Extract the block identifiers for a list of SNVs

98 getBlockIDs

Description

The function uses the GDS Reference Annotation file to extract the unique block identifiers for a
list of SN'Vs. The block type that is going to be used to extract the information has to be provided
by the user.

Usage

getBlockIDs(gdsRefAnnot, snpIndex, blockTypelD)

Arguments

gdsRefAnnot an object of class gds.class (a GDS file), the opened Reference SNV Annota-
tion GDS file.

snpIndex a vectcor of integer representing the indexes of the SNVs of interest.

blockTypeID a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

Value

a vector of numeric corresponding to the block identifiers for the SN'Vs of interest.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Path to the demo 1KG Annotation GDS file located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

path1KG <- file.path(dataDir, "tests")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

gdsRefAnnotation <- openfn.gds(fileAnnotGDS)

The indexes for the SNVs of interest
snpIndex <- ¢(1,3,5,6,9)

Extract the block identifiers for the SNVs represented by their indexes

for the block created using the genes from Hsapiens Ensembl v86

RAIDS: : :getBlockIDs (gdsRefAnnot=gdsRefAnnotation, snpIndex=snpIndex,
blockTypeID="GeneS.Ensembl.Hsapiens.v86")

closefn.gds(gdsRefAnnotation)

getRef1 KGPop 99

getRef1KGPop Extract the specified column from the 1KG GDS ’sample.ref’ node for
the reference profiles (real ancestry assignation)

Description

The function extract the specified column for the ’sample.ref’” node present in the Reference GDS
file. The column must be present in the data. frame saved in the ’sample.ref’ node. Only the infor-
mation for the reference profiles is returned. The values represent the known ancestry assignation.

Usage

getRef1KGPop(gdsReference, popName = "superPop")

Arguments

gdsReference an object of class gds.class (a GDS file), the opened Reference GDS file.

popName a character string representing the name of the column that will be fetched in
the data.frame present in the Reference GDS "sample.ref" node. The column
must be present in the data. frame. Default: "superPop”.

Value

vector of character strings representing the content of the extracted column for the 1KG GDS
’sample.ref’ node. The values represent the known ancestry assignation. The profile identifiers are
used as names for the vector.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

Open existing demo 1K GDS file with "sample.ref” node
nameFileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
fileGDS <- snpgdsOpen(nameFileGDS)

Extract super population information for the 1KG profiles
getRef1KGPop(gdsReference=fileGDS, popName="superPop”)

Close 1K GDS file
closefn.gds(fileGDS)

100 getRefSuperPop

getRefSuperPop Extract the from the 1IKG GDS ’sample.ref’ node for the reference
profiles (real ancestry assignation)

Description

The function extract the specified column for the ’sample.ref’” node present in the Reference GDS
file. The column must be present in the data. frame saved in the ’sample.ref’ node. Only the infor-
mation for the reference profiles is returned. The values represent the known ancestry assignation.

Usage

getRefSuperPop(fileReferenceGDS)

Arguments
fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.
Value

vector of character strings representing the content of the extracted column for the 1IKG GDS
’sample.ref’ node. The values represent the known ancestry assignation. The profile identifiers are
used as names for the vector.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Open existing demo 1K GDS file with "sample.ref” node
nameFileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")

Extract super population information for the 1KG profiles
getRefSuperPop(fileReferenceGDS=nameFileGDS)

getTableSNV 101

getTableSNV Extract the genotype information for a SNV dataset using the Profile
GDS file and the Reference GDS file

Description

The function generates a data.frame containing the genotype information from a initial list of
SNVs associated to a specific profile. The function uses the information present in the Reference
GDS file and the Profile GDS file.

Usage

getTableSNV(
gdsReference,
gdsSample,
currentProfile,
studyID,
minCov = 10,
minProb = ©0.999,
eProb = 0.001,
verbose

Arguments

gdsReference an object of class gds. class (a GDS file), the opened Reference GDS file.

gdsSample an object of class gds. class (a GDS file), the opened Profile GDS file.

currentProfile acharacter string corresponding to the sample identifier used in pruningSample
function.

studyID a character string corresponding to the study identifier used in pruningSample
function.

minCov a single positive integer representing the minimum required coverage. Default:
10L.

minProb a single numeric between @ and 1 representing the probability that the calculated
genotype call is correct. Default: @.999.

eProb a single numeric between @ and 1 representing the probability of sequencing
error. Default: 0.001.

verbose a logicial indicating if messages should be printed when the function is run-
ning.

Value

a data. frame containing:

cnt.tot a single integer representing the total coverage for the SN'V.
cnt.ref asingle integer representing the coverage for the reference allele.
cnt.alt asingle integer representing the coverage for the alternative allele.

snpPos a single integer representing the SNV position.

102 getTableSNV

snp.chr a single integer representing the SNV chromosome.

normal.geno a single numeric indicating the genotype of the SNV. The possibles are: @ (wild-
type homozygote), 1 (heterozygote), 2 (altenative homozygote), 3 indicating that the normal
genotype is unknown.

pruned a logical

snp.index a vector of integer representing the position of the SN'Vs in the Reference GDS file.
keep a logical

hetero a logical

homo a logical

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

Temporary Profile GDS file for one profile in temporary directory
fileProfile <- file.path(tempdir(), "ex1.gds")

Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileProfile)

Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

Open Profile GDS file for one profile
profileGDS <- openfn.gds(fileProfile)

The function returns a data frame containing the SNVs information

result <- RAIDS:::getTableSNV(gdsReference=gds1KG, gdsSample=profileGDS,
currentProfile="ex1", studyID="MYDATA", minCov=10L, minProb=0.999,
eProb=0.001, verbose=FALSE)

head(result)

Close both GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)

Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

groupChrIKGSNV 103

groupChr1KGSNV Merge the genotyping files per chromosome into one file

Description

This function merge all the genotyping files associated to one specific sample into one file. That
merged VCF file will be saved in a specified directory and will have the name of the sample. It will
also be compressed (bzip). The function will merge the files for all samples present in the input
directory.

Usage
groupChr1KGSNV (pathGenoChr, pathOut)

Arguments
pathGenoChr a character string representing the path where the genotyping files for each
sample and chromosome are located. The path must contains sub-directories
(one per chromosome) and the genotyping files must be present in those sub-
directories. The path must exists.
pathOut a character string representing the path where the merged genotyping files for
each sample will be created. The path must exists.
Value

The integer OL when successful or FALSE if not.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo vcf files in this package
dataDir <- system.file("extdata"”, package="RAIDS")
pathGenoTar <- file.path(dataDir, "demoGenoChr"”, "demoGenoChr.tar")

Path where the chromosomes files will be located
pathGeno <- file.path(tempdir(), "tempGeno")
dir.create(pathGeno, showWarnings=FALSE)

Untar the file that contains the VCF files for 3 samples split by
chromosome (one directory per chromosome)
untar(tarfile=pathGenoTar, exdir=pathGeno)

Path where the output VCF file will be created is
the same where the split VCF are (pathGeno)

The files must not exist

if (!file.exists(file.path(pathGeno, "NA12003.csv.bz2")) &&
Ifile.exists(file.path(pathGeno, "NA12004.csv.bz2")) &&
Ifile.exists(file.path(pathGeno, "NA12005.csv.bz2"))) {

104

identifyRelative

Return @ when successful

The files "NA12003.csv.bz2", "NA12004.csv.bz2" and

"NA12005.csv.bz2" should not be present in the current directory
groupChri1KGSNV (pathGenoChr=pathGeno, pathOut=pathGeno)

Validate that files have been created

file.exists(file.path(pathGeno, "NA12003.csv.bz2"))
file.exists(file.path(pathGeno, "NA12004.csv.bz2"))
file.exists(file.path(pathGeno, "NA12005.csv.bz2"))

}

Remove temporary directory

unlink(pathGeno, recursive=TRUE, force=TRUE)
identifyRelative Identify genetically unrelated patients in GDS Reference file
Description

The function identify patients that are genetically related in the Reference file. It generates a first
RDS file with the list of unrelated patient. It also generates a second RDS file with the kinship
coefficient between the patients.

Usage

identifyRelative(gds, maf = @.05, thresh = 2%(-11/2), filelIBD, filePart)

Arguments

gds

maf

thresh

fileIBD

filePart

Value

NULL invisibly.

Author(s)

an object of class SNPRelate: : SNPGDSFileClass, the Reference GDS file.

a single numeric representing the threshold for the minor allele frequency. Only
the SNPs with ">= maf" will be used. Default: 0. @5.

a single numeric representing the threshold value used to decide if a pair of
individuals is ancestrally divergent. Default: 2% (-11/2).

a character string representing the path and file name of the RDS file that
will be created. The RDS file will contain the kinship coefficient between the
patients. The extension of the file must be *.rds’.

a character string representing the path and file name of the RDS file that
will be created. The RDS file will contain the information about the Reference
patients that are unrelated. The file will contains two lists: the 1ist of related
samples, called rels and the list of unrelated samples, called unrels. The
extension of the file must be ’.rds’.

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

identifyRelativeRef 105

Examples

Required package
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Open existing demo Reference GDS file
fileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
tmpGDS <- snpgdsOpen(fileGDS)

Temporary output files

The first RDS file will contain the list of unrelated patients

The second RDS file will contain the kinship information between patients
patientTmpFile <- "unrelatedPatients_TEMP.rds"

ibdTmpFile <- "ibd_TEMP.rds"

Different code depending of the withr package availability
if (requireNamespace("withr"”, quietly=TRUE)) {

Temporary output files

The first RDS file will contain the list of unrelated patients
The second RDS file will contain the kinship information

between patients

patientTmpFileLocal <- withr::local_file(patientTmpFile)
ibdTmpFilelLocal <- withr::local_file(ibdTmpFile)

Identify unrelated patients in demo Reference GDS file
identifyRelative(gds=tmpGDS, maf=0.05, thresh=2*(-11/2),
fileIBD=ibdTmpFileLocal, filePart=patientTmpFilelLocal)

Close demo Reference GDS file
closefn.gds(tmpGDS)

Remove temporary files
withr::deferred_run()

} else {

Identify unrelated patients in demo Reference GDS file
identifyRelative(gds=tmpGDS, maf=0.05, thresh=2*(-11/2),
fileIBD=ibdTmpFile, filePart=patientTmpFile)

Close demo Reference GDS file
closefn.gds(tmpGDS)

Remove temporary files
unlink(patientTmpFile, force=TRUE)
unlink(ibdTmpFile, force=TRUE)

identifyRelativeRef Identify genetically unrelated patients in GDS Reference file

106

Description

identifyRelativeRef

The function identify patients that are genetically related in the Reference file. It generates a first
RDS file with the list of unrelated patient. It also generates a second RDS file with the kinship
coefficient between the patients.

Usage
identifyRelativeRef (
fileReferenceGDS,
maf = 0.05,
thresh = 2*(-11/2),
filelIBD,
filePart
)
Arguments
fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.
maf a single numeric representing the threshold for the minor allele frequency. Only
the SNPs with ">= maf" will be used. Default: 0. @5.
thresh a single numeric representing the threshold value used to decide if a pair of
individuals is ancestrally divergent. Default: 24 (-11/2).
fileIBD a character string representing the path and file name of the RDS file that
will be created. The RDS file will contain the kinship coefficient between the
patients. The extension of the file must be *.rds’.
filePart a character string representing the path and file name of the RDS file that
will be created. The RDS file will contain the information about the Reference
patients that are unrelated. The file will contains two lists: the 1ist of related
samples, called rels and the list of unrelated samples, called unrels. The
extension of the file must be *.rds’.
Value

NULL invisibly.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Open existing demo Reference GDS file
fileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")

Temporary output files
The first RDS file will contain the list of unrelated patients

inferAncestry 107

The second RDS file will contain the kinship information between patients
patientTmpFile <- "unrelatedPatients_TEMP.rds"
ibdTmpFile <- "ibd_TEMP.rds"

Different code depending of the withr package availability
if (requireNamespace("withr"”, quietly=TRUE)) {

Temporary output files

The first RDS file will contain the list of unrelated patients
The second RDS file will contain the kinship information

between patients

patientTmpFileLocal <- withr::local_file(patientTmpFile)
ibdTmpFileLocal <- withr::local_file(ibdTmpFile)

Identify unrelated patients in demo Reference GDS file
identifyRelativeRef (fileReferenceGDS=fileGDS, maf=0.05, thresh=2*(-11/2),
fileIBD=ibdTmpFilelLocal, filePart=patientTmpFilelocal)

Remove temporary files
withr: :deferred_run()

} else {

Identify unrelated patients in demo Reference GDS file
identifyRelativeRef (fileReferenceGDS=fileGDS, maf=0.05, thresh=2*(-11/2),
fileIBD=ibdTmpFile, filePart=patientTmpFile)

Remove temporary files
unlink(patientTmpFile, force=TRUE)
unlink(ibdTmpFile, force=TRUE)

}
inferAncestry Run most steps leading to the ancestry inference call on a specific DNA
profile
Description

This function runs most steps leading to the ancestry inference call on a specific RNA profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population Reference GDS file.

Usage

inferAncestry(
profileFile,
pathProfileGDS,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic", "VCF", "bam"),
np = 1L,

108

inferAncestry

verbose = FALSE

)
Arguments

profileFile a character string representing the path and the file name of the genotype file
or the bam if genoSource is snp-pileup the fine extension must be .txt.gz, if VCF
the extension must be .vcf.gz

pathProfileGDS acharacter string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

fileReferenceGDS

a character string representing the file name of the Population Reference GDS
file. The file must exist.

fileReferenceAnnotGDS

chrinfo

syntheticRefDF

genoSource

np

verbose

Value

a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

a vector of positive integer values representing the length of the chromo-
somes. See ’details’ section.

a data.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop acharacter string representing the super-population assigned to the
sample.

a character string with four possible values: ’snp-pileup’, ’generic’, *VCF’
or ’bam’. It specifies if the genotype files are generated by snp-pileup (Facets)
or are a generic format CSV file with at least those columns: ’Chromosome’,
"Position’, Ref’, ’Alt’, ’Count’, 'File1R’ and "File1A’. The *’Count’ is the depth
at the specified position; "FileR’ is the depth of the reference allele and "Filel A’
is the depth of the specific alternative allele. Finally the file can be a VCF file
with at least those genotype fields: GT, AD, DP.

a single positive integer specifying the number of threads to be used. Default:
1L.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a list containing 4 entries:

pcaSample a list containing the information related to the eigenvectors. The 1ist contains those

3 entries:

sample.id acharacter string representing the unique identifier of the current profile.

eigenvector.ref amatrix of numeric containing the eigenvectors for the reference pro-

files.

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-
jected on the PCA from the reference profiles.

paraSample a list containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

inferAncestry 109

dfPCA adata.frame containing statistical results on all combined synthetic results done with
a fixed value of D (the number of dimensions). The data. frame contains those columns:

D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

dfPop adata.frame containing statistical results on all combined synthetic results done with
different values of D (the number of dimensions) and K (the number of neighbors). The
data. frame contains those columns:

D a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame
contains those columns:

D anumeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).
Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

AUROC a numeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.

listD a numeric representing the optimal D values (the number of dimensions) for the spe-
cific profile. More than one D is possible.

KNNSample a data.frame containing the inferred ancestry for different values of K and D. The
data. frame contains those columns:
sample.id acharacter string representing the unique identifier of the current profile.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

SuperPop a character string representing the inferred ancestry for the specified D and K
values.

110 inferAncestry

KNNSynthetic a data.frame containing the inferred ancestry for each synthetic data for differ-
ent values of K and D. The data. frame contains those columns: "sample.id", "D", "K", "in-

"non

fer.superPop", "ref.superPop"

sample.id acharacter string representing the unique identifier of the current synthetic data.

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.

K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

infer.superPop a character string representing the inferred ancestry for the specified D

and K values.

ref.superPop a character string representing the known ancestry from the reference
Ancestry adata.frame containing the inferred ancestry for the current profile. The data. frame

contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.

K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHEHHARHEEH R A R
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HEHHHHHHHEEHE AR HEHEREERHH AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

HHEHHHHHHHHEE AR PR

The Sample SNP pileup files (one per sample) need

to be located in the same directory.

HEHHHHHHHHEE AR HEHHREEEEHHHHH R R E R
demoProfileEx1 <- file.path(dataDir, "example”, "snpPileup"”, "ex1.txt.gz")

HEHHHHHHEEE AR HEHHREEEEHHHHHEHHHHHREEEEHEHHEHERHHEHERREEE
The path where the Profile GDS Files (one per sample)

inferAncestryDNA 111

will be created need to be specified.
HHHEHHAREEE AR R R
pathProfileGDS <- file.path(tempdir(), "out.tmp")

HHHHHHAREE R AR R
Fix seed to ensure reproducible results

HHHEHHAEEEEE AR AR AR
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace(”Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

res <- inferAncestry(profileFile=demoProfileEx1,
pathProfileGDS=pathProfileGDS,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo,
syntheticRefDF=dataRef,
genoSource="snp-pileup"”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)

3
inferAncestryDNA Run most steps leading to the ancestry inference call on a specific DNA
profile (alias for inferAncestry)
Description

This function runs most steps leading to the ancestry inference call on a specific RNA profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population Reference GDS file.

Usage

inferAncestryDNA(
profileFile,
pathProfileGDS,
fileReferenceGDS,
fileReferenceAnnotGDS,

112 inferAncestryDNA
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic”, "VCF", "bam"),
np = 1L,
verbose = FALSE
)
Arguments
profileFile a character string representing the path and the file name of the genotype file
or the bam if genoSource is snp-pileup the fine extension must be .txt.gz, if VCF
the extension must be .vcf.gz
pathProfileGDS a character string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.
fileReferenceGDS

a character string representing the file name of the Population Reference GDS
file. The file must exist.

fileReferenceAnnotGDS

chrinfo

syntheticRefDF

genoSource

np

verbose

Value

a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

a vector of positive integer values representing the length of the chromo-
somes. See ’details’ section.

a data. frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop acharacter string representing the super-population assigned to the
sample.

a character string with four possible values: ’snp-pileup’, ’generic’, *VCF’
or “bam’. It specifies if the genotype files are generated by snp-pileup (Facets)
or are a generic format CSV file with at least those columns: ’Chromosome’,
"Position’, Ref’, *Alt’, ’Count’, File1R’ and "File1A’. The *’Count’ is the depth
at the specified position; "FileR’ is the depth of the reference allele and File1 A’
is the depth of the specific alternative allele. Finally the file can be a VCF file
with at least those genotype fields: GT, AD, DP.

a single positive integer specifying the number of threads to be used. Default:
1L.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a list containing 4 entries:

pcaSample a list containing the information related to the eigenvectors. The 1ist contains those

3 entries:

sample.id a character string representing the unique identifier of the current profile.

eigenvector.ref amatrix of numeric containing the eigenvectors for the reference pro-

files.

inferAncestryDNA 113

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-
jected on the PCA from the reference profiles.

paraSample a list containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

dfPCA adata.frame containing statistical results on all combined synthetic results done with
a fixed value of D (the number of dimensions). The data. frame contains those columns:
D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

dfPop adata.frame containing statistical results on all combined synthetic results done with
different values of D (the number of dimensions) and K (the number of neighbors). The
data. frame contains those columns:

D a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame
contains those columns:

D a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).
Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

AUROC a numeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.

listD a numeric representing the optimal D values (the number of dimensions) for the spe-
cific profile. More than one D is possible.

KNNSample a data.frame containing the inferred ancestry for different values of K and D. The
data. frame contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.

114 inferAncestryDNA

K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry for the specified D and K
values.

KNNSynthetic a data.frame containing the inferred ancestry for each synthetic data for differ-
ent values of K and D. The data.frame contains those columns: "sample.id", "D", "K", "in-

non

fer.superPop", "ref.superPop"

sample.id acharacter string representing the unique identifier of the current synthetic data.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

infer.superPop a character string representing the inferred ancestry for the specified D
and K values.

ref.superPop a character string representing the known ancestry from the reference
Ancestry a data.frame containing the inferred ancestry for the current profile. The data. frame

contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.

K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHHHHAREEEE R A R
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HEHHHHHHHEHE AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

B R T e i i S e g it i i i e

The Sample SNP pileup files (one per sample) need

to be located in the same directory.

HEHHHHHREHE AR HEHHREEEEHHHHEEHHEHHREEEEHREHE R
demoProfileEx1 <- file.path(dataDir, "example”, "snpPileup"”, "ex1.txt.gz")

inferAncestryGeneAware 115

HHHEHHAREEE AR A R
The path where the Profile GDS Files (one per sample)

will be created need to be specified.
B S
pathProfileGDS <- file.path(tempdir(), "out.tmp")

HHHHHHAEHE AR A R
Fix seed to ensure reproducible results

HHHEHHAEEEEE AR AR AR
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace(”Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

res <- inferAncestryDNA(profileFile=demoProfileEx1,
pathProfileGDS=pathProfileGDS,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo,
syntheticRefDF=dataRef,
genoSource="snp-pileup”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)

inferAncestryGeneAware
Run most steps leading to the ancestry inference call on a specific RNA
profile

Description

This function runs most steps leading to the ancestry inference call on a specific RNA profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population Reference GDS file.

Usage

inferAncestryGeneAware (

116 inferAncestryGeneAware

profileFile,
pathProfileGDS,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic”, "VCF", "bam"),
np = 1L,
blockTypelD,
verbose = FALSE

)

Arguments
profileFile a character string representing the path and the file name of the genotype file

or the bam if genoSource is snp-pileup the fine extension must be .txt.gz, if VCF
the extension must be .vcf.gz

pathProfileGDS acharacter string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

fileReferenceGDS
a character string representing the file name of the Population Reference GDS
file. The file must exist.

fileReferenceAnnotGDS
a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ‘details’ section.

syntheticRefDF a data.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop a character string representing the super-population assigned to the
sample.

genoSource a character string with four possible values: ’snp-pileup’, ’generic’, *VCF’
or ’bam’. It specifies if the genotype files are generated by snp-pileup (Facets)
or are a generic format CSV file with at least those columns: ’Chromosome’,
"Position’, "Ref’, *Alt’, ’Count’, FilelR’ and "FilelA’. The ’Count’ is the depth
at the specified position; "FileR’ is the depth of the reference allele and "Filel A’
is the depth of the specific alternative allele. Finally the file can be a VCF file
with at least those genotype fields: GT, AD, DP.

np a single positive integer specifying the number of threads to be used. Default:
1L.

blockTypeID a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

inferAncestryGeneAware 117

Details

The runExomeAncestry() function generates 3 types of files in the OUTPUT directory.

Ancestry Inference The ancestry inference CSV file (".Ancestry.csv" file)
Inference Informaton The inference information RDS file (".infoCall.rds" file)

Synthetic Information The parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

Value
a list containing 4 entries:

pcaSample alist containing the information related to the eigenvectors. The 1ist contains those
3 entries:
sample.id acharacter string representing the unique identifier of the current profile.

eigenvector.ref amatrix of numeric containing the eigenvectors for the reference pro-
files.

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-
jected on the PCA from the reference profiles.

paraSample a list containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

dfPCA adata.frame containing statistical results on all combined synthetic results done with
a fixed value of D (the number of dimensions). The data. frame contains those columns:
D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

dfPop adata.frame containing statistical results on all combined synthetic results done with
different values of D (the number of dimensions) and K (the number of neighbors). The
data.frame contains those columns:

D a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame
contains those columns:

D anumeric representing the value of D (the number of dimensions).

118

inferAncestryGeneAware

K a numeric representing the value of K (the number of neighbors).
Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

AUROC a numeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.
listD a numeric representing the optimal D values (the number of dimensions) for the spe-

cific profile. More than one D is possible.

KNNSample a data.frame containing the inferred ancestry for different values of K and D. The
data. frame contains those columns:
sample.id a character string representing the unique identifier of the current profile.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry for the specified D and K

values.

KNNSynthetic a data.frame containing the inferred ancestry for each synthetic data for different
values of K and D. The data. frame contains those columns:
sample.id acharacter string representing the unique identifier of the current synthetic data.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

infer.superPop a character string representing the inferred ancestry for the specified D
and K values.

ref.superPop a character string representing the known ancestry from the reference
Ancestry adata.frame containing the inferred ancestry for the current profile. The data. frame

contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.

K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

inferAncestryGeneAware 119

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHHHHAAHEA A
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HHHEHHEREEE R R
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

S HHHHHE PP

The Sample SNP pileup files (one per sample) need

to be located in the same directory.

S HEHHRHEHERH AR HHEH R B AR REEE R HEARERE
demoProfileEx1 <- file.path(dataDir, "example”, "snpPileup”, "ex1.txt.gz")

S HEHHRHHHEEHE AR HARHHEHEHEH B RH RN REEE R RHERRERE
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

HHHHHHAREEE AR A
pathProfileGDS <- file.path(tempdir(), "out.tmp")

HHHHHHAAEE R AR R
Fix seed to ensure reproducible results

HHHEHHEEEEEE R R AR
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace(”Seqinfo”, quietly=TRUE) &&
requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

res <- inferAncestryGeneAware(profileFile=demoProfileEx1,
pathProfileGDS=pathProfileGDS,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrInfo=chrinfo,
syntheticRefDF=dataRef,

120 matKNNSynthetic

blockTypeID="GeneS.Ensembl.Hsapiens.v86",
genoSource="snp-pileup")

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)

3
matKNNSynthetic A small data. frame containing the inferred ancestry on the synthetic
profiles.
Description

The object is a data. frame with 4 columns.

Usage

data(matkKNNSynthetic)

Format

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:
sample.id acharacter string representing the unique synthetic profile identifier.

D a numeric representing the number of dimensions used to infer the ancestry of the synthetic
profile.

K anumeric representing the number of neighbors used to infer the ancestry of the synthetic profile.

SuperPop a character string representing the inferred ancestry of the synthetic profile for the
specific D and K values.

Details

This dataset can be used to test the computeSyntheticROC function.

Value

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:
sample.id acharacter string representing the unique synthetic profile identifier.

D a numeric representing the number of dimensions used to infer the ancestry of the synthetic
profile.

K anumeric representing the number of neighbors used to infer the ancestry of the synthetic profile.

SuperPop a character string representing the inferred ancestry of the synthetic profile for the
specific D and K values.

pedSynthetic 121

See Also

computeSyntheticROC for calculating the AUROC of the inferences for specific values of D and
K using the inferred ancestry results from the synthetic profiles

Examples

Loading demo dataset containing pedigree information for synthetic
profiles
data(pedSynthetic)

Loading demo dataset containing the inferred ancestry results
for the synthetic data
data(matKNNSynthetic)

Retain one K and one D value
matkKNN <- matKNNSynthetic[matKNNSynthetic$D == 5 & matkKNNSynthetic$K == 4,]

Compile statistics from the

synthetic profiles for fixed values of D and K

results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matKNNAncestryColumn="SuperPop"”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop"”,
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"))

results$matAUROC.ALl
results$matAUROC.Call
results$listR0OC.Call

pedSynthetic A small data.frame containing the information related to synthetic
profiles. The ancestry of the profiles used to generate the synthetic
profiles must be present.

Description
The object is a data. frame with 7 columns. The row names of the data. frame must be the profile
unique identifiers.

Usage

data(pedSynthetic)

Format

The data.frame containing the information about the synthetic profiles. The row names of the
data. frame correspond to the profile unique identifiers. The data. frame contains 7 columns:
data.id acharacter string representing the unique synthetic profile identifier.

case.id acharacter string representing the unique profile identifier that was used to generate the
synthetic profile.

sample.type acharacter string representing the type of profile.

122 pedSynthetic

diagnosis a character string representing the diagnosis of profile that was used to generate the
synthetic profile.

source a character string representing the source of the synthetic profile.

study.id a character string representing the name of the study to which the synthetic profile is
associated.

superPop a character string representing the super population of the profile that was used to
generate the synthetic profile.

Details

This dataset can be used to test the computeSyntheticROC function.

Value

The data.frame containing the information about the synthetic profiles. The row names of the
data. frame correspond to the profile unique identifiers. The data. frame contains 7 columns:

data.id acharacter string representing the unique synthetic profile identifier.

case.id acharacter string representing the unique profile identifier that was used to generate the
synthetic profile.

sample.type acharacter string representing the type of profile.

diagnosis a character string representing the diagnosis of profile that was used to generate the
synthetic profile.

source a character string representing the source of the synthetic profile.

study.id a character string representing the name of the study to which the synthetic profile is
associated.

superPop a character string representing the super population of the profile that was used to
generate the synthetic profile.

See Also

computeSyntheticROC for calculating the AUROC of the inferences for specific values of D and
K using the inferred ancestry results from the synthetic profiles

Examples

Loading demo dataset containing pedigree information for synthetic
profiles
data(pedSynthetic)

Loading demo dataset containing the inferred ancestry results
for the synthetic data
data(matkKNNSynthetic)

Retain one K and one D value
matkKNN <- matKNNSynthetic[matKNNSynthetic$D == 5 & matkKNNSynthetic$K == 4,]

Compile statistics from the

synthetic profiles for fixed values of D and K

results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matkKNNAncestryColumn="SuperPop"”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop”,

prepPed1 KG 123

listCall=c("EAS", "EUR”, "AFR", "AMR", "SAS"))

results$matAUROC.ALl
results$matAUROC.Call
results$listROC.Call

prepPed1KG Prepare the pedigree file using pedigree information from Reference

Description

Using the pedigree file from Reference, this function extracts needed information and formats it into
a data.frame so in can be used in following steps of the ancestry inference process. The function
also requires that the genotyping files associated to each sample be available in a specified directory.

Usage

prepPed1KG(filePed, pathGeno = file.path("data”, "sampleGeno"), batch = 0L)

Arguments
filePed a character string representing the path and file name of the pedigree file (PED
file) that contains the information related to the profiles present in the Reference
GDS file. The PED file must exist.
pathGeno a character string representing the path where the Reference genotyping files
for each profile are located. Only the profiles with associated genotyping files
are retained in the creation of the final data.frame. The name of the genotyp-
ing files must correspond to the individual identification (Individual.ID) in the
pedigree file (PED file). Default: ”./data/sampleGeno”.
batch ainteger that uniquely identifies the source of the pedigree information. The
Reference is usually OL. Default: L.
Value

a data. frame containing the needed pedigree information from Reference. The data. frame con-
tains those columns:

sample.id a character string representing the profile unique ID.

Name.ID a character string representing the profile name.

sex a character string representing the sex of the profile.

pop.group a character string representing the sub-continental ancestry of the profile.

superPop a character string representing the continental ancestry of the profile.

superPop a integer representing the batch of the profile.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

124 prepPedSyntheticl KG

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Path where the demo genotype CSV files are located
pathGeno <- file.path(dataDir, "demoProfileGenotypes")

Demo pedigree file
pedDemoFile <- file.path(dataDir, "PedigreeDemo.ped")

Create a data.frame containing the information of the retained
samples (samples with existing genotyping files)
prepPed1KG(filePed=pedDemoFile, pathGeno=pathGeno, batch=0L)

prepPedSynthetic1KG Extract the sample information from the 1KG GDS file for a list of
profiles associated to a specific study in the Profile GDS file

Description

The function extracts the information for the profiles associated to a specific study in the GDS
Sample file. The information is extracted from the ’study.annot’ node as a ’data.frame’.

Then, the function used the 1IKG GDS file to extract specific information about each sample and
add it, as an extra column, to the ’data.frame’.

As example, this function can extract the synthetic profiles for a GDS Sample and the super-
population of the 1KG samples used to generate each synthetic profile would be added as an extra
column to the final "data.frame’.

Usage
prepPedSynthetic1KG(gdsReference, gdsSample, studyID, popName)

Arguments

gdsReference an object of class gdsfmt: :gds.class, the opened 1 KG GDS file.
gdsSample an object of class gdsfmt: : gds.class, the opened Profile GDS file.

studyID a character string representing the name of the study that will be extracted
from the GDS Sample ’study.annot’ node.

popName a character string representing the name of the column from the data.frame
stored in the ’sample.annot’ node of the 1KG GDS file. The column must be
present in the data. frame.

Details

As example, this function can extract the synthetic profiles for a Profile GDS and the super-population
of the 1KG samples used to generate each synthetic profile would be added as an extra column to
the final ’data.frame’. In that situation, the ’popName’ parameter would correspond to the super-
population column and the ’studyID’ parameter would be the name given to the synthetic dataset.

prepSynthetic 125

Value

data.frame containing the columns extracted from the GDS Sample ’study.annot’ node with a
extra column named as the *’popName’ parameter that has been extracted from the 1KG GDS ’sam-
ple.annot’ node. Only the rows corresponding to the specified study (’studyID’ parameter) are
returned.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

The open 1KG GDS file is required (this is a demo file)
dataDir <- system.file("extdata"”, package="RAIDS")

gds_1KG_file <- file.path(dataDir, "PopulationReferenceDemo.gds")
gds1KG <- openfn.gds(gds_1KG_file)

fileSampleGDS <- file.path(dataDir, "GDS_Sample_with_study_demo.gds")
gdsSample <- openfn.gds(fileSampleGDS)

Extract the study information for "TCGA.Synthetic” study present in the

Profile GDS file and merge column "superPop” from 1KG GDS to the

returned data.frame

This function enables to extract the super-population associated to the

1KG samples that has been used to create the synthetic profiles

RAIDS: : :prepPedSynthetic1KG(gdsReference=gds1KG, gdsSample=gdsSample,
studyID="TCGA.Synthetic"”, popName="superPop")

The GDS files must be closed
gdsfmt: :closefn.gds(gds1KG)
gdsfmt: :closefn.gds(gdsSample)

prepSynthetic Add information related to the synthetic profiles (study and synthetic
reference profiles information) into a Profile GDS file

Description
This function add entries related to synthetic profiles into a Profile GDS file. The entries are related
to two types of information: the synthetic study and the synthetic profiles.

The study information is appended to the Profile GDS file "study.list" node. The "study.platform"
entry is always set to *Synthetic’.

The profile information, for all selected synthetic profiles, is appended to the Profile GDS file
"study.annot" node. Both the "Source" and the "Sample.Type" entries are always set to ’Synthetic’.

The synthetic profiles are assigned unique names by combining: prefix.data.id.profile.listSampleRef.simulatio
number (1 to nbSim)

126

Usage

prepSynthetic(

prepSynthetic

fileProfileGDS,
listSampleRef,

profilelD,
studyDF,
nbSim = 1L,
prefix = ""

verbose = FALSE

Arguments

fileProfileGDS a character string representing the file name of the Profile GDS file contain-

listSampleRef

profilelD

studyDF

nbSim

prefix

verbose

Value

ing the information about the reference profiles used to generate the synthetic
profiles.

a vector of character string representing the identifiers of the selected 1KG
profiles that will be used as reference to generate the synthetic profiles.

acharacter string representing the profile identifier present in the fileProfileGDS
that will be used to generate synthetic profiles.

a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data.frame must have those 2 columns: "study.id" and
"study.desc". Those 2 columns must be in character strings (no factor). Other
columns can be present, such as "study.platform", but won’t be used.

a single positive integer representing the number of simulations per combina-
tion of sample and 1KG reference. Default: 1L.

a single character string representing the prefix that is going to be added to
the name of the synthetic profile. The prefix enables the creation of multiple
synthetic profile using the same combination of sample and 1KG reference. De-
fault: "".

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

oL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")

Temporary Profile GDS file
fileNameGDS <- file.path(tempdir(), "ex1.gds")

processBlockChr 127

Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileNameGDS)

Information about the synthetic data set

syntheticStudyDF <- data.frame(study.id="MYDATA.Synthetic",
study.desc="MYDATA synthetic data”, study.platform="PLATFORM",
stringsAsFactors=FALSE)

Add information related to the synthetic profiles into the Profile GDS
prepSynthetic(fileProfileGDS=f1ileNameGDS,
listSampleRef=c("HG0O0243", "HGOO150"), profilelID="ex1",
studyDF=syntheticStudyDF, nbSim=1L, prefix="synthetic",
verbose=FALSE)

Open Profile GDS file
profileGDS <- openfn.gds(fileNameGDS)

The synthetic profiles should be added in the 'study.annot' entry
tail(read.gdsn(index.gdsn(profileGDS, "study.annot")))

The synthetic study information should be added to
the 'study.list' entry
tail(read.gdsn(index.gdsn(profileGDS, "study.list")))

Close GDS file (important)
closefn.gds(profileGDS)

Remove Profile GDS file (created for demo purpose)
unlink(fileNameGDS, force=TRUE)

processBlockChr The function create a vector of integer representing the linkage dise-
quilibrium block for each SNV in the in the same order than the variant
in Population reference dataset.

Description
The function create a vector of integer representing the linkage disequilibrium block for each SNV
in the in the same order than the variant in Population reference dataset.

Usage

processBlockChr(fileReferenceGDS, fileBlock)

Arguments
fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.
fileBlock a character string representing the file name of output file det from the plink

block command for a chromosome.

128 processPileupChrBin

Value
a list containing 2 entries:

chr ainteger representing a the chromosome from fileBlock.

block.snp a array of integer representing the linkage disequilibrium block for each SNV in the
in the same order than the variant in Population reference dataset.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

Demo of Reference GDS file containing reference information
fileReferenceGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")

Demo of of output file det from the plink block
command for chromosome 1

fileLdBlock <- file.path(dataDir, "block.sp.EUR.Ex.chr1.blocks.det")

listLdBlock <- RAIDS:::processBlockChr(fileReferenceGDS, fileLdBlock)

processPileupChrBin Extract SNV information from pileup file for a selected chromosome

Description
The function reads pileup file and returns a data. frame containing the information about the read
counts for the SNVs present in the selected chromosome.

Usage

processPileupChrBin(chr, resPileup, varDf, verbose)

Arguments
chr a character string representing the name of the chromosome to keep
resPileup adata.frame as generated by the pileup function from Rsamtools package
varDf a list containing a data.frame representing the positions to keep for each

chromosome.

verbose a logical indicating if messages should be printed

profileAncestry 129

Value

a data.frame containing at least:

seqnames a character representing the name of the chromosome
pos a numeric representing the position on the chromosome

REF a character string representing the reference nucleotide
ALT a character string representing the alternative nucleotide

A anumeric representing the count for the A nucleotide

C anumeric representing the count for the C nucleotide

G anumeric representing the count for the G nucleotide

T anumeric representing the count for the T nucleotide

count a numeric representing the total count

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Demo pileup result data.frame

resDemo <- data.frame(segnames=rep(”chri4”, 10),
pos=c(19069583, 19069584, 19069586, 19069588, 19069589, 19069590,

19069591, 19069592, 19069609, 19069760),

strand=c(rep("+", 5), rep("-", 5)),
nucleotide=c("T", "G", "G", "C", "A", "A", "C", "T", "T", "G"),
count=c(5, 3, 2, 4, 1, 2, 1, 8, 7, 4))

resDemo$seqnames <- factor(resDemo$seqgnames)

resDemo$strand <- factor(resDemo$strand)

resDemo$nucleotide <- factor(resDemo$nucleotide)

Position to keep in a data.frame format
varInfo <- list("chr14"=data.frame(chr=c(”"chr14", "chri14"),
start=c(19069584, 19069609), REF=c("A", "G"), ALT=c("T", "A")))

Extract information from pileup for selected positions
RAIDS: : :processPileupChrBin(chr="chr14"”, resPileup=resDemo, varDf=varlInfo,
verbose=FALSE)

profileAncestry Run most steps leading to the ancestry inference call on a specific
profile (LD or geneAware)

Description

This function runs most steps leading to the ancestry inference call on a specific profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population reference GDS file.

130 profileAncestry
Usage
profileAncestry(
gdsReference,
gdsRefAnnot,
studyDF,
currentProfile,
pathProfileGDS,
chrinfo,
syntheticRefDF,
studyDFSyn,
listProfileRef,
studyType = c("LD", "GeneAware"),
np = 1L,
blockTypeID = NULL,
verbose = FALSE
)
Arguments
gdsReference an object of class gds.class (a GDS file), the opened Population Reference
GDS file.
gdsRefAnnot an object of class gds.class (a GDS file), the opened Population Reference
SNV Annotation GDS file. This parameter is RNA specific.
studyDF a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).
currentProfile acharacter string representing the profile identifier.
pathProfileGDS acharacter string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.
chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ‘details’ section.
syntheticRefDF adata.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:
sample.id a character string representing the sample identifier.
pop.group a character string representing the subcontinental population as-
signed to the sample.
superPop acharacter string representing the super-population assigned to the
sample.
studyDFSyn a data.frame containing the information about the synthetic data to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).
listProfileRef a vector of character string representing the identifiers of the selected 1IKG
profiles that will be used as reference to generate the synthetic profiles.
studyType a character string representing the type of study. The possible choices are:
"LD" and "GeneAware". The type of study affects the way the estimation of the
allelic fraction is done. Default: "LD".
np a single positive integer specifying the number of threads to be used. Default:

1L.

profileAncestry 131

blockTypeID a character string corresponding to the block type used to extract the block

verbose

Value

identifiers. The block type must be present in the GDS Reference Annotation
file.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a list containing 4 entries:

pcaSample a list containing the information related to the eigenvectors. The 1ist contains those
3 entries:

sample.id a character string representing the unique identifier of the current profile.

eigenvector.ref amatrix of numeric containing the eigenvectors for the reference pro-

files.

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-

jected on the PCA from the reference profiles.

paraSample alist containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

dfPCA adata.frame containing statistical results on all combined synthetic results done with

a fixed value of D (the number of dimensions). The data. frame contains those columns:
D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

dfPop adata.frame containing statistical results on all combined synthetic results done with

different values of D (the number of dimensions) and K (the number of neighbors). The
data. frame contains those columns:

D a numeric representing the value of D (the number of dimensions).

K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame

contains those columns:

D a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).
Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

132 profileAncestry

AUROC a numeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.

listD a numeric representing the optimal D values (the number of dimensions) for the spe-
cific profile. More than one D is possible.

KNNSample a data.frame containing the inferred ancestry for different values of K and D. The
data. frame contains those columns:
sample.id acharacter string representing the unique identifier of the current profile.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry for the specified D and K
values.

KNNSynthetic a data.frame containing the inferred ancestry for each synthetic data for differ-
ent values of K and D. The data.frame contains those columns: "sample.id", "D", "K", "in-

non

fer.superPop", "ref.superPop"

sample.id acharacter string representing the unique identifier of the current synthetic data.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

infer.superPop a character string representing the inferred ancestry for the specified D
and K values.

ref.superPop a character string representing the known ancestry from the reference

Ancestry a data.frame containing the inferred ancestry for the current profile. The data. frame
contains those columns:

sample.id a character string representing the unique identifier of the current profile.

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

profileAncestry 133

HHHEHHAREEE AR A R
Load the information about the profile

HEHHHHHHHEBE AR EEHEREEREH AR
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHEHHAAEEE R A
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis

W HHHHHHHEE AR PR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

HEHHHHHRHHEE AR HPHHREEEEHHHHHEHHHHHREEEEHEHHEHHRHHEHHRR
The Sample SNP pileup files (one per sample) need

to be located in the same directory.

HEHHHHHHEHE A EHHEHHREEEEHHHHH RSP EHHEHEREHEHERREEE
pathGeno <- file.path(dataDir, "example”, "snpPileup")

HEHHHEHHHEE S HEHH R HPHEREHEEHHHHHEHHHHHREEEEHEEHEE R
The path where the Profile GDS Files (one per sample)

will be created need to be specified.
HEHHHHHREEHHEEHHEHEHEHAHREBHBHEEHHRHEHEHRHEEEHEEHEEH AR

pathProfileGDS <- file.path(tempdir(), "outTest.tmp")

AR AR R R

A data frame containing general information about the study

is also required. The data frame must have

those 3 columns: "studyID", "study.desc”, "study.platform”

SHEHHHHHHEEHEHEEEHEEHHHHHEHEEHHBHEEHEEHHHHHREEEEHEEHEEHHEHEEHEHE

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHEHHAREEE R R A
Fix seed to ensure reproducible results

HHHEHHEEEEEE AR R AR
set.seed(3043)

dataRef <- select1KGPopForSynthetic(fileReferenceGDS, nbProfiles=2L)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

134 pruning] KGbyChr

studyDFSyn <- data.frame(study.id=paste@(studyDF$study.id, ".Synthetic"),
study.desc=paste@(studyDF$study.id, " synthetic data"),
study.platform=studyDF$study.platform, stringsAsFactors=FALSE)

listProfileRef <- dataRef$sample.id
profileFile <- file.path(pathProfileGDS, "ex1.gds")

Not run:

dir.create(pathProfileGDS)
file.copy(file.path(dataDir, "tests"”, "ex1_demo.gds"), profileFile)

gdsReference <- snpgdsOpen(fileReferenceGDS)
gdsRefAnnot <- openfn.gds(fileAnnotGDS)

res <- RAIDS:::profileAncestry(gdsReference=gdsReference,
gdsRefAnnot=gdsRefAnnot,
studyDF=studyDF, currentProfile=demoPedigreeEx1[1,"Name.ID"],
pathProfileGDS=pathProfileGDS,
chrinfo=chrinfo,
syntheticRefDF=dataRef,
studyDFSyn=studyDFSyn,
listProfileRef=1istProfileRef,
studyType="LD")

closefn.gds(gdsReference)
closefn.gds(gdsRefAnnot)

End(Not run)

3
pruning1KGbyChr Extract the pruned SNVs in a population reference data set (ex:1KG)
by chromosome and/or allelic frequency
Description

The function extracts the pruned SNVs in a population reference data set (ex: 1KG) by chromosome
and/or allelic frequency. The pruning is done through the linkage disequilibrium analysis. The
pruned SNVs are saved in a RDS file.

Usage

pruning1KGbyChr(
gdsReference,
method = "corr”,
listSamples = NULL,
slideWindowMaxBP = 5e+05,
thresholdLD = sqrt(0.1),
np = 1L,
verbose = FALSE,

pruning] KGbyChr 135

chr = NULL,

minAF = NULL,

outPrefix = "pruned_1KG",
keepObj = FALSE

Arguments

gdsReference an object of class SNPRelate: : SNPGDSFileClass, an opened SNP GDS file.

method a character string that represents the method that will be used to calculate
the linkage disequilibrium in the snpgdsLDpruning() function. The 4 possible
values are: "corr", "r", "dprime" and "composite". Default: "corr”.

listSamples a character string that represents the method that will be used to calculate
the linkage disequilibrium in the snpgdsLDpruning() function. The 4 possible
values are: "corr", "r", "dprime" and "composite". Default: "corr".
slideWindowMaxBP
a single positive integer that represents the maximum basepairs (bp) in the slid-
ing window. This parameter is used for the LD pruning done in the runLDPruning
function. Default: 5e5.

thresholdLD a single numeric value that represents the LD threshold used in the runLDPruning
function. Default: sqrt(0.1).

np a single positive integer specifying the number of threads to be used. Default:
1L.

verbose a logical specifying if the function must provide more information about the

process. Default: FALSE.

chr acharacter string representing the chromosome where the selected SNVs should
belong. Only one chromosome can be handled. If NULL, the chromosome is not
used as a filtering criterion. Default: NULL.

minAF a single positive numeric representing the minimum allelic frequency used to
select the SN'Vs. If NULL, the allelic frequency is not used as a filtering criterion.
Default: NULL.

outPrefix a character string that represents the prefix of the RDS file(s) that will be
generated. Default: "pruned_1KG".

keepObj a logical specifying if the function must save the the processed information
into a second RDS file. Default: FALSE.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required libraries
library(SNPRelate)
library(gdsfmt)

Path to the demo pedigree file is located in this package

136 pruningSample

dataDir <- system.file("extdata”, package="RAIDS")

The 1KG Population Reference GDS demo file (opened)
gds1KG <- snpgdsOpen(file.path(dataDir, "PopulationReferenceDemo.gds"))

The prefix of the RDS file to be created and containing the pruned SNVs
outPrefix <- file.path(tempdir(), "Pruned_Demo_Reference")

Create a RDS file with the pruned SNVs
RAIDS: : :pruning1KGbyChr (gdsReference=gds1KG, outPrefix=outPrefix)

prunedSNVs <- readRDS(file.path(paste@(outPrefix, ".rds")))
prunedSNVs

Close 1K GDS file
closefn.gds(gds1KG)

Delete temporary file
unlink(paste@(outPrefix, ".rds"), force=TRUE)

pruningSample Compute the list of pruned SNVs for a specific profile using the in-
formation from the Reference GDS file and a linkage disequilibrium
analysis
Description

This function computes the list of pruned SNVs for a specific profile. When a group of SNVs are
in linkage disequilibrium, only one SNV from that group is retained. The linkage disequilibrium
is calculated with the snpgdsLDpruning() function. The initial list of SN'Vs that are passed to the
snpgdsLDpruning() function can be specified by the user.

Usage

pruningSample(
gdsReference,
method = c("corr”, "r", "dprime"”, "composite"),
currentProfile,
studyID,
listSNP = NULL,
slideWindowMaxBP = 500000L,
thresholdlLD = sqrt(0.1),

np = 1L,
verbose = FALSE,
chr = NULL,

superPopMinAF = NULL,
keepPrunedGDS = TRUE,
pathProfileGDS = NULL,
keepFile = FALSE,
pathPrunedGDS = ".",
outPrefix = "pruned”

pruningSample 137

Arguments

gdsReference an object of class gds.class (a GDS file), the 1 KG GDS file (reference data set).

method a character string that represents the method that will be used to calculate
the linkage disequilibrium in the snpgdsLDpruning() function. The 4 possible
values are: "corr", "r", "dprime" and "composite". Default: "corr".

currentProfile a character string corresponding to the profile identifier used in LD pruning
done by the snpgdsLDpruning() function. A Profile GDS file corresponding to
the profile identifier must exist and be located in the pathProfileGDS directory.

studyID a character string corresponding to the study identifier used in the snpgdsLDpruning
function. The study identifier must be present in the Profile GDS file.

1listSNP a vector of SNVs identifiers specifying selected to be passed the the pruning
function; if NULL, all SN'Vs are used in the snpgdsLDpruning function. Default:
NULL.

slideWindowMaxBP

a single positive integer that represents the maximum basepairs (bp) in the slid-
ing window. This parameter is used for the LD pruning done in the snpgdsLDpruning
function. Default: 500000L.

thresholdLD a single numeric value that represents the LD threshold used in the snpgdsLDpruning
function. Default: sqrt(0.1).

np a single positive integer specifying the number of threads to be used. Default:
1L.
verbose alogicial indicating if information is shown during the process in the snpgdsLDpruning

function. Default: FALSE.

chr a character string representing the chromosome where the selected SNV should
belong. Only one chromosome can be handled. If NULL, the chromosome is not
used as a filtering criterion. Default: NULL.

superPopMinAF a single positive numeric representing the minimum allelic frequency used to
select the SN'Vs. If NULL, the allelic frequency is not used as a filtering criterion.
Default: NULL.

keepPrunedGDS a logicial indicating if the information about the pruned SNVs should be
added to the GDS Sample file. Default: TRUE.

pathProfileGDS a character string representing the directory where the Profile GDS files will
be created. The directory must exist.

keepFile a logical indicating if RDS files containing the information about the pruned
SNVs must be created. Default: FALSE.

pathPrunedGDS a character string representing an existing directory. The directory must exist.
Default: ".".

outPrefix a character string that represents the prefix of the RDS files that will be gen-
erated. The RDS files are only generated when the parameter keepFile=TRUE.
Default: "pruned”.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

138 pruningSample

Examples

Required library for GDS
library(gdsfmt)

Path to the demo Reference GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

The data.frame containing the information about the study
The 3 mandatory columns: "study.id"”, "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",

study.desc = "Description”,

study.platform = "PLATFORM",

stringsAsFactors = FALSE)

The data.frame containing the information about the samples
The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID = c("ex1", "ex2"),

Case.ID = c("Patient_h11", "Patient_h12"),

Diagnosis = rep(”Cancer”, 2),

Sample.Type = rep("Primary Tumor”, 2),

Source = rep("Databank B", 2), stringsAsFactors = FALSE)
rownames (samplePED) <- samplePED$Name.ID

Temporary Profile GDS file
profileFile <- file.path(tempdir(), "ex1.gds")

Copy the Profile GDS file demo that has not been pruned yet
file.copy(file.path(dataDir, "ex1_demo.gds"), profileFile)

Open 1KG file
gds1KG <- snpgdsOpen(fileGDS)

Compute the list of pruned SNVs for a specific profile 'ex1'
and save it in the Profile GDS file 'ex1.gds'
pruningSample(gdsReference=gds1KG, currentProfile=c("ex1"),

studyID = studyDF$study.id, pathProfileGDS=tempdir())

Close the Reference GDS file (important)
closefn.gds(gds1KG)

Check content of Profile GDS file

The 'pruned.study' entry should be present
content <- openfn.gds(profileFile)

content

Close the Profile GDS file (important)
closefn.gds(content)

Remove Profile GDS file (created for demo purpose)
unlink(profileFile, force=TRUE)

readSNVBAM

139

readSNVBAM

Read a VCF file with the genotypes use for the ancestry call

Description

The function reads VCF file and returns a data frame containing the information about the read
counts for the SNVs present in the file.

Usage

readSNVBAM(
fileName,

varSelected,
offset = oL,

paramSNVBAM = list(ScanBamParam = NULL, PileupParam = NULL, yieldSize = 1e+07),
verbose = FALSE

Arguments

fileName

varSelected

offset

paramSNVBAM

verbose

Value

a character string representing the name, including the path, of a BAM file
with the index file in the same directory

a data. frame representing the position to keep

a integer representing the offset to be added to the position of the SNVs. The
value of offset is added to the position present in the file. Default: oL.

a list containing the parameters passed to the BamFile() function. Default:
list(ScanBamParam=NULL, PileupParam=NULL,yieldSize=10000000).

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a data.frame containing at least:

Chromosome a numeric representing the name of the chromosome

Position a numeric representing the position on the chromosome

Ref a character string representing the reference nucleotide

Alt a character string representing the alternative nucleotide

FilelR a numeric representing the count for the reference nucleotide

FilelA a numeric representing the count for the alternative nucleotide

count a numeric representing the total count

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

140 readSN VFileGeneric

Examples

Required library for this example to run correctly
if (requireNamespace("Rsamtools”, quietly=TRUE)) {
Demo bam
fl <- system.file("extdata”, "no_which_buffered_pileup.bam”,
package="Rsamtools”, mustWork=TRUE)

RAIDS: : :readSNVBAM(f1l, varSelected=data.frame(chr=c(1,1),
start=c(3,5), REF=c("A", "A"), ALT=c("C", "C")))

readSNVFileGeneric Read a generic SNP pileup file

Description

The function reads a generic SNP pileup file and returns a data frame containing the information
about the read counts for the SN'Vs present in the file.

Usage

readSNVFileGeneric(fileName, offset = QL)

Arguments
fileName a character string representing the name, including the path, of a text file con-
taining the SNV read counts. The text file must be comma separated. The
text file must contain those columns: Chromosome, Position, Ref, Alt, Count,
FilelR and FilelA.
offset a integer representing the offset to be added to the position of the SNVs. The
value of offset is added to the position present in the file. Default: oL.
Value

a data.frame containing at least:

Chromosome a numeric representing the name of the chromosome
Position a numeric representing the position on the chromosome

Ref a character string representing the reference nucleotide

Alt a character string representing the alternative nucleotide

FilelR a numeric representing the count for the reference nucleotide
FilelA a numeric representing the count for the alternative nucleotide

count a numeric representing the total count

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

readSNVPileupFile 141

Examples

Directory where demo SNP-pileup file
dataDir <- system.file("extdata/example/snpPileup”, package="RAIDS")

The SNP-pileup file
snpPileupFile <- file.path(dataDir, "ex1.generic.txt.gz")

info <- RAIDS:::readSNVFileGeneric(fileName=snpPileupFile)
head(info)

readSNVPileupFile Read a SNP-pileup file

Description

The function reads a generic SNP pileup file and returns a data frame containing the information
about the read counts for the SN'Vs present in the file.

Usage
readSNVPileupFile(fileName, offset = 0L)

Arguments

fileName a character string representing the name, including the path, of a text file con-
taining the SNV read counts as generated by snp-pileup software. The text file
must be comma separated. The text file must contain those columns: Chromo-
some, Position, Ref, Alt, FilelR, FilelA, FilelE and File1D.

offset a integer representing the offset to be added to the position of the SNVs. The
value of offset is added to the position present in the file. Default: QL.

Value
the a data. frame containing at least:

Chromosome a numeric representing the name of the chromosome
Position a numeric representing the position on the chromosome

Ref a character string representing the reference nucleotide

Alt a character string representing the alternative nucleotide

FilelR a numeric representing the count for the reference nucleotide
FilelA a numeric representing the count for the alternative nucleotide
FilelE a numeric representing the count for the errors

FilelD a numeric representing the count for the deletions

count a numeric representing the total count

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

142 readSNVVCF

Examples

Directory where demo SNP-pileup file
dataDir <- system.file("extdata/example/snpPileup”, package="RAIDS")

The SNP-pileup file
snpPileupFile <- file.path(dataDir, "ex1.txt.gz")

info <- RAIDS:::readSNVPileupFile(fileName=snpPileupFile)
head(info)

readSNVVCF Read a VCF file with the genotypes use for the ancestry call

Description

The function reads VCF file and returns a data frame containing the information about the read
counts for the SN'Vs present in the file.

Usage
readSNVVCF (fileName, profileName = NULL, offset = QL)

Arguments
fileName a character string representing the name, including the path, of a VCF file
containing the SNV read counts. The VCF must contain those genotype fields:
GT, AD, DP.
profileName a character with Name.ID for the genotype name. Default: NULL.
offset a integer representing the offset to be added to the position of the SNVs. The
value of offset is added to the position present in the file. Default: QL.
Value

a data.frame containing at least:

Chromosome a numeric representing the name of the chromosome
Position a numeric representing the position on the chromosome

Ref a character string representing the reference nucleotide

Alt a character string representing the alternative nucleotide

FilelR a numeric representing the count for the reference nucleotide
FilelA a numeric representing the count for the alternative nucleotide

count a numeric representing the total count

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

runExomeAncestry

Examples

143

Directory where demo SNP-pileup file
dataDir <- system.file("extdata/example/snpPileup”, package="RAIDS")

The SNP-pileup file

snpPileupFile <-

file.path(dataDir, "ex1.vcf.gz")

info <- RAIDS:::readSNVVCF(fileName=snpPileupFile)

head(info)
runExomeAncestry Run most steps leading to the ancestry inference call on a specific
exome profile
Description

This function runs most steps leading to the ancestry inference call on a specific exome profile.
First, the function creates the Profile GDS file for the specific profile using the information from a
RDS Sample description file and the Population reference GDS file.

Usage
runExomeAncestry(
pedStudy,
studyDF,
pathProfileGDS,
pathGeno,
pathOut,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic", "VCF"),
np = 1L,
verbose = FALSE
)
Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1listSamples parameter. Only filePedRDS or pedStudy can be
defined.
studyDF a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).
pathProfileGDS a character string representing the path to the directory where the GDS Profile

files will be created. Default: NULL.

144 runExomeAncestry

pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCEF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".

pathOut a character string representing the path to the directory where the output files
are created.
fileReferenceGDS

a character string representing the file name of the Reference GDS file. The
file must exist.

fileReferenceAnnotGDS
a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ‘details’ section.

syntheticRefDF a data.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop a character string representing the super-population assigned to the
sample.

genoSource a character string with two possible values: ’snp-pileup’, ’generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *’Chromosome’, *Position’,
Ref’, "Alt’, ’Count’, ’FilelR’ and ’FilelA’. The *Count’ is the depth at the
specified position; "FileR’ is the depth of the reference allele and "Filel A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

np a single positive integer specifying the number of threads to be used. Default:
1L.
verbose a logical indicating if messages should be printed to show how the different

steps in the function. Default: FALSE.

Details
The runExomeAncestry() function generates 3 types of files in the OUTPUT directory.

Ancestry Inference The ancestry inference CSV file (".Ancestry.csv" file)
Inference Informaton The inference information RDS file (".infoCall.rds" file)

Synthetic Information The parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

Value

The integer OL when successful. See details section for more information about the generated output
files.

runExomeAncestry 145

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHH A AR A
Load the information about the profile

S HHHHHE PP
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHHEHHHHHAHEHHHHHHEHA AR
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HHHHHHAREEE AR A
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

HHHHHHAREEE R AR R
The Sample SNP pileup files (one per sample) need

to be located in the same directory.
B S
pathGeno <- file.path(dataDir, "example"”, "snpPileup”)

B S
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

SR A T B I R 1
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

S HHHHHHHEE AR PR

A data frame containing general information about the study

is also required. The data frame must have

those 3 columns: "studyID”, "study.desc”, "study.platform”

HHHEHHARHEEE R A R

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",

146 runIBDKING

stringsAsFactors=FALSE)

HHHEHHHEHE AR AR AR
Fix seed to ensure reproducible results
B S
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

runExomeAncestry (pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno,
pathOut=pathOut,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo,
syntheticRefDF=dataRef,
genoSource="snp-pileup"”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

3
runIBDKING Identity-by-descent (IBD) analysis
Description
This function calculates the IDB coefficients by KING method of moment using the SNPRelate: : snpgdsIBDKING
function.
Usage
runIBDKING(gds, profileID = NULL, snpID = NULL, maf = @.05, verbose)
Arguments
gds an object of class SNPRelate: : SNPGDSFileClass, an opened SNP GDS file.
profileID avector of character strings representing the samples to keep for the analysis.

If NULL, all samples are used. Default: NULL.

runLDPruning 147

snpID a vector of character strings representing the SNPs to keep for the analysis.
If NULL, all SNPs are used. Default: NULL.
maf a single numeric representing the threshold for the minor allele frequency. Only
the SNPs with ">= maf" are retained. Default: @.@5.
verbose a logical indicating if information is shown during the process in the snpgdsIBDKING()
function.
Value

a list containing:

sample.id a character string representing the sample ids used in the analysis

snp.id a character string representing the SNP ids used in the analysis

k0 anumeric, the IBD coefficient, the probability of sharing zero IBD

k1 anumeric, the IBD coefficient, the probability of sharing one IBD

IBSO a numeric, the proportion of SNPs with zero IBS

kinship a numeric, the proportion of SNPs with zero IBS, if the parameter kinship=TRUE

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required
library(SNPRelate)

Open an example dataset (HapMap)
genoFile <- snpgdsOpen(snpgdsExampleFileName())

Extract CEU population
samples <- read.gdsn(index.gdsn(genoFile, "sample.id"))
CEU <- samples[
read.gdsn(index.gdsn(genoFile, "sample.annot/pop.group”))=="CEU"]

Infer the presence of population stratification
ibd.robust <- RAIDS:::runIBDKING(gds=genoFile, profileID=CEU, snpID=NULL,
maf=0.05, verbose=FALSE)

close the genotype file
snpgdsClose(genoFile)

runLDPruning SNP pruning based on linkage disequilibrium (LD)

Description

This function is a wrapper for the snpgdsLDpruning() function that generates a pruned subset of
SNPs that are in approximate linkage equilibrium.

148 runLDPruning

Usage

runLDPruning(
gds,
method,
listSamples = NULL,
listKeep = NULL,
slideWindowMaxBP = 500000L,
thresholdlLD = sqrt(0.1),

np = 1L,
verbose
)
Arguments
gds an object of class SNPGDSFileClass, a SNP GDS file.
method a character string that represents the method that will be used to calculate
the linkage disequilibrium in the snpgdsLDpruning() function. The 4 possible
values are: "corr", "r", "dprime" and "composite".
listSamples a vector of character strings corresponding to the sample identifiers used in
LD pruning done by the snpgdsLDpruning() function. If NULL, all samples are
used. Default: NULL.
listKeep a vector of SNVs identifiers specifying selected; if NULL, all SN'Vs are used in
the snpgdsLDpruning function. Default: NULL.
slideWindowMaxBP

a single positive integer that represents the maximum basepairs (bp) in the slid-
ing window. This parameter is used for the LD pruning done in the snpgdsLDpruning()
function. Default: 500000L.

thresholdLD a single numeric value that represents the LD threshold used in the snpgdsLDpruning
function. Default: sqrt(0.1).

np a single positive integer specifying the number of threads to be used. Default:
1L.
verbose a logical indicating if information is shown during the process in the snpgdsLDpruning()
function.
Details

The SNP pruning is based on linkage disequilibrium (LD) and is done by the snpgdsLDpruning()
function in the SNPRelate package (https://bioconductor.org/packages/SNPRelate/).

Value

a list of SNP identifiers stratified by chromosomes as generated by snpgdsLDpruning function.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

runProfileAncestry 149

Examples

Required
library(SNPRelate)

Open an example dataset (HapMap)
genoFile <- snpgdsOpen(snpgdsExampleFileName())

Fix seed to get reproducible results
set.seed(1000)

Get linkage Disequilibrium (LD) based SNP pruning
snpSet <- RAIDS:::runLDPruning(gds=genoFile, verbose=FALSE)
names(snpSet)

Get SNP ids
snp.id <- unlist(unname(snpSet))

Close the genotype file
snpgdsClose(genoFile)

runProfileAncestry Run most steps leading to the ancestry inference call on a specific
profile (RNA or DNA)

Description

This function runs most steps leading to the ancestry inference call on a specific profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population reference GDS file.

Usage

runProfileAncestry(
gdsReference,
gdsRefAnnot,
studyDF,
currentProfile,
pathProfileGDS,
pathOut,
chrinfo,
syntheticRefDF,
studyDFSyn,
listProfileRef,
studyType = c(”"DNA", "RNA"),
np = 1L,
blockTypeID = NULL,
verbose = FALSE

150

Arguments

gdsReference

gdsRefAnnot

studyDF

currentProfile
pathProfileGDS

pathOut

chrinfo

syntheticRefDF

studyDFSyn

listProfileRef

studyType

np

blockTypelD

verbose

Details

runProfileAncestry

an object of class gds.class (a GDS file), the opened Population Reference
GDS file.

an object of class gds.class (a GDS file), the opened Population Reference
SNV Annotation GDS file. This parameter is RNA specific.

a data. frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

a character string representing the profile identifier.

a character string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

a character string representing the path to the directory where the output files
are created.

a vector of positive integer values representing the length of the chromo-
somes. See ’details’ section.

a data. frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop acharacter string representing the super-population assigned to the
sample.

a data.frame containing the information about the synthetic data to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).

a vector of character string representing the identifiers of the selected 1KG
profiles that will be used as reference to generate the synthetic profiles.

a character string representing the type of study. The possible choices are:
"DNA" and "RNA". The type of study affects the way the estimation of the
allelic fraction is done. Default: "DNA".

a single positive integer specifying the number of threads to be used. Default:
1L.

a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

The runWrapperAncestry() function generates 3 types of files in the pathOut directory:

Ancestry Inference The ancestry inference CSV file (".Ancestry.csv" file)

Inference Informaton The inference information RDS file (".infoCall.rds" file)

Synthetic Information The parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

runProfileAncestry 151

Value

The integer OL when successful. See details section for more information about the generated output
files.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

S HEHHRHEHER AR HHEH B AR REEE R AR
Load the information about the profile

AR AR AR AR
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHHHHAREEEH R A
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HEHHHHHHEHEHE AR AR AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

S
The Sample SNP pileup files (one per sample) need

to be located in the same directory.
S
pathGeno <- file.path(dataDir, "example"”, "snpPileup")

HEHHHHHHHEHHE AR EEHEREERHH AR
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

W HHHHHHHEE AR PR HHH R
pathProfileGDS <- file.path(tempdir(), "outTest.tmp")

pathOut <- file.path(tempdir(), "resTest.out")

B g g S S S
A data frame containing general information about the study

152

is also required. The data frame must have

those 3 columns: "studyID”, "study.desc”, "study.platform”

HHHEHHHEHE AR AR AR

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHEHHEEEE A A
Fix seed to ensure reproducible results

HHHEHHARHEE AR AR A
set.seed(3043)

gdsReference <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gdsReference, nbProfiles=2L)
closefn.gds(gdsReference)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25

runProfileAncestry

chrinfo <- Seqinfo::seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

studyDFSyn <- data.frame(study.id=paste@(studyDF$study.id, ".Synthetic"),

study.desc=paste@(studyDF$study.id, " synthetic data"),

study.platform=studyDF$study.platform, stringsAsFactors=FALSE)

listProfileRef <- dataRef$sample.id
profileFile <- file.path(pathProfileGDS, "ex1.gds")

Not run:

dir.create(pathProfileGDS)
dir.create(pathOut)

file.copy(file.path(dataDir, "tests"”, "ex1_demo.gds"), profileFile)

gdsReference <- snpgdsOpen(fileReferenceGDS)
gdsRefAnnot <- openfn.gds(fileAnnotGDS)

RAIDS: : :runProfileAncestry(gdsReference=gdsReference,
gdsRefAnnot=gdsRefAnnot,
studyDF=studyDF, currentProfile=ped[1,"Name.ID"],
pathProfileGDS=pathProfileGDS,
pathOut=pathOut,
chrinfo=chrinfo,
syntheticRefDF=dataRef,
studyDFSyn=studyDFSyn,
listProfileRef=listProfileRef,
studyType="DNA")

closefn.gds(gdsReference)
closefn.gds(gdsRefAnnot)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

runRNA Ancestry

End(Not run)
3

153

runRNAAncestry

Run most steps leading to the ancestry inference call on a specific RNA
profile

Description

This function runs most steps leading to the ancestry inference call on a specific RNA profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population Reference GDS file.

Usage
runRNAAncestry(
pedStudy,
studyDF,
pathProfileGDS,
pathGeno,
pathOut,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic", "VCF"),
np = 1L,
blockTypelD,
verbose = FALSE
)
Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.
studyDF a data. frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).
pathProfileGDS acharacter string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.
pathGeno a character string representing the path to the directory containing the VCF

output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".

154 runRNAAncestry

pathOut a character string representing the path to the directory where the output files
are created.
fileReferenceGDS

a character string representing the file name of the Population Reference GDS
file. The file must exist.

fileReferenceAnnotGDS
a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ’details’ section.

syntheticRefDF a data.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:
sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop a character string representing the super-population assigned to the
sample.

genoSource a character string with two possible values: ’snp-pileup’, *generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *’Chromosome’, *Position’,
’Ref’, *Alt’, ’Count’, ’FilelR’ and ’FilelA’. The *Count’ is the depth at the
specified position; 'FileR’ is the depth of the reference allele and "File1 A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

np a single positive integer specifying the number of threads to be used. Default:
1L.

blockTypeID a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.
Details
The runExomeAncestry() function generates 3 types of files in the OUTPUT directory.

Ancestry Inference The ancestry inference CSV file (".Ancestry.csv" file)
Inference Informaton The inference information RDS file (".infoCall.rds" file)

Synthetic Information The parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

Value

The integer OL when successful. See details section for more information about the generated output
files.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

runRNAAncestry 155

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHEHHEREEE R R
Load the information about the profile

AR AR AR R
data(demoPedigreeEx1)

head(demoPedigreeEx1)

S HHHHHE PP
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HHHHHHHHHEHEHE AR AR AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

S
The Sample SNP pileup files (one per sample) need

to be located in the same directory.
S
pathGeno <- file.path(dataDir, "example"”, "snpPileup")

HEHHHHHHHEHEH AR AR R
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

HEHHHHHHHEEHE AR HEHEREEREH AR
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

HHHEHHHHHE A

A data frame containing general information about the study

is also required. The data frame must have

those 3 columns: "studyID", "study.desc”, "study.platform”

S HHHHHHHEE AR PR

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM"
stringsAsFactors=FALSE)

HHHEHHAEEEE R R AR
Fix seed to ensure reproducible results

156 runWrapperAncestry

S
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace(”Seqinfo”, quietly=TRUE) &&
requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

runRNAAncestry(pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno,
pathOut=pathOut,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrInfo=chrinfo,
syntheticRefDF=dataRef,
blockTypeID="GeneS.Ensembl.Hsapiens.v86",
genoSource="snp-pileup"”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

3
runWrapperAncestry Run most steps leading to the ancestry inference call on a specific
profile (RNA or DNA)
Description

This function runs most steps leading to the ancestry inference call on a specific profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population reference GDS file.

Usage

runWrapperAncestry (
pedStudy,
studyDF,
pathProfileGDS,
pathGeno,
pathOut,
fileReferenceGDS,

runWrapperAncestry 157

fileReferenceAnnotGDS,

chrinfo,

syntheticRefDF,

genoSource = c("snp-pileup”, "generic", "VCF"),
studyType = c("DNA", "RNA"),

np = 1L,

blockTypeID = NULL,
verbose = FALSE

)
Arguments

pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.

studyDF a data.frame containing the information about the study associated to the anal-

ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).

pathProfileGDS a character string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".

pathOut a character string representing the path to the directory where the output files
are created.
fileReferenceGDS

a character string representing the file name of the Reference GDS file. The
file must exist.

fileReferenceAnnotGDS
a character string representing the file name of the Reference GDS Annotation
file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ‘details’ section.

syntheticRefDF adata.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop acharacter string representing the super-population assigned to the
sample.

genoSource a character string with two possible values: ’snp-pileup’, *generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *Chromosome’, *Position’,
’Ref’, *Alt’, ’Count’, ’FilelR’ and ’FilelA’. The 'Count’ is the depth at the
specified position; 'FileR’ is the depth of the reference allele and "File1 A’ is the

158 runWrapperAncestry

depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

studyType a character string representing the type of study. The possible choices are:
"DNA" and "RNA". The type of study affects the way the estimation of the
allelic fraction is done. Default: "DNA".

np a single positive integer specifying the number of threads to be used. Default:
1L.

blockTypeID a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

Details
The runWrapperAncestry() function generates 3 types of files in the pathOut directory.

Ancestry Inference The ancestry inference CSV file (".Ancestry.csv" file)
Inference Informaton The inference information RDS file (".infoCall.rds" file)

Synthetic Information The parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

Value

The integer OL when successful. See details section for more information about the generated output
files.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

HHHHHHHEEEE AR AR AR
Load the information about the profile

HHHEHHAREEE R A
data(demoPedigreeEx1)

head(demoPedigreeEx1)

runWrapperAncestry 159

HEHHHHHHHEHEH AR AR AR
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HHHEHHHHEE AR AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

HHHEHHHEHEE A
The Sample SNP pileup files (one per sample) need

to be located in the same directory.

HHHEHHHEEEH AR A
pathGeno <- file.path(dataDir, "example”, "snpPileup")

HHHEHHHEEEEE AR A
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

HHHEHHHEHEEE AR AR AR
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

B S S

A data frame containing general information about the study

is also required. The data frame must have

those 3 columns: "studyID", "study.desc"”, "study.platform”

HHHEHHHEEEEE AR AR AR

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHHHHAHEEE AR A
Fix seed to ensure reproducible results

HHHHHHAEHE R AR A
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace("Seqinfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Not run:
RAIDS: : : runWrapperAncestry(pedStudy=demoPedigreeEx1, studyDF=studyDF,

pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno, pathOut=pathOut,

160 select1 KGPop

fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo, syntheticRefDF=dataRef,
studyType="DNA", genoSource="snp-pileup”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

End(Not run)

3
select1KGPop Random selection of a specific number of reference profiles in each
subcontinental population present in the 1KG GDS file
Description

The function randomly selects a fixed number of reference for each subcontinental population
present in the 1KG GDS file. When a subcontinental population has less samples than the fixed
number, all samples from the subcontinental population are selected.

Usage

select1KGPop(gdsReference, nbProfiles)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

nbProfiles a single positive integer representing the number of samples that will be se-
lected for each subcontinental population present in the 1KG GDS file. If the
number of samples in a specific subcontinental population is smaller than the
nbProfiles, the number of samples selected in this subcontinental population
will correspond to the size of this population.

Value

a data.frame containing those columns:

sample.id a character string representing the sample identifier.
pop.group a character string representing the subcontinental population assigned to the sample.

superPop a character string representing the super-population assigned to the sample.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

select]1 KGPopForSynthetic 161

Examples

Required library
library(gdsfmt)

The number of samples needed by subcontinental population
The number is small for demonstration purpose
nbProfiles <- 5L

Open 1KG GDS Demo file

This file only one superpopulation (for demonstration purpose)
dataDir <- system.file("extdata”, package="RAIDS")

fileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
gdsFileOpen <- openfn.gds(fileGDS, readonly=TRUE)

Extract a selected number of random samples

for each subcontinental population

In the 1KG GDS Demo file, there is one subcontinental population
dataR <- select1KGPop(gdsReference=gdsFileOpen, nbProfiles=nbProfiles)

Close the 1KG GDS Demo file (important)
closefn.gds(gdsFileOpen)

select1KGPopForSynthetic
Random selection of a specific number of reference profiles in each
subcontinental population present in the 1IKG GDS file (same as se-
lect1KGPop but the function doesn’t need gds object as parameters
but the file name of the referenceGDS)

Description

The function randomly selects a fixed number of reference for each subcontinental population
present in the 1KG GDS file. When a subcontinental population has less samples than the fixed
number, all samples from the subcontinental population are selected.

Usage

select1KGPopForSynthetic(fileReferenceGDS, nbProfiles)

Arguments
fileReferenceGDS
a character string representing the file name of the Reference GDS file. The
file must exist.
nbProfiles a single positive integer representing the number of samples that will be se-

lected for each subcontinental population present in the 1KG GDS file. If the
number of samples in a specific subcontinental population is smaller than the
nbProfiles, the number of samples selected in this subcontinental population
will correspond to the size of this population.

162 selParaPCAUpQuartile

Value
a data.frame containing those columns:

sample.id a character string representing the sample identifier.
pop.group a character string representing the subcontinental population assigned to the sample.

superPop a character string representing the super-population assigned to the sample.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

The number of samples needed by subcontinental population
The number is small for demonstration purpose
nbProfiles <- 5L

1KG GDS Demo file

This file only one superpopulation (for demonstration purpose)
dataDir <- system.file("extdata"”, package="RAIDS")

fileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")

Extract a selected number of random samples

for each subcontinental population

In the 1KG GDS Demo file, there is one subcontinental population

dataR <- select1KGPopForSynthetic(fileReferenceGDS=fileGDS, nbProfiles=nbProfiles)

selParaPCAUpQuartile Compile all the inferred ancestry results done on the synthetic profiles
for different D and K values in the objective of selecting the optimal D
and K values for a specific profile

Description

The function calculates the accuracy of the inferred ancestry called done on the synthetic profiles
for different D and K values. The accuracy is also calculated for each super-population used to
generate the synthetic profiles. The known ancestry from the reference profiles used to generate the
synthetic profiles is required to calculate the accuracy.

Usage

selParaPCAUpQuartile(
matkNN,
pedCall,
refCall,
predCall,
listCall,

selParaPCAUpQuartile 163

kList = seq(3, 15, 1),
pcaList = seq(2, 15, 1)

)
Arguments

matkNN a data. frame containing the inferred ancestry for the synthetic profiles for dif-
ferent K and D values. The data. frame must contained those columns: "sam-
ple.id", "D", "K" and the fourth column name must correspond to the predCall
argument.

pedCall a data.frame containing the information about the super-population informa-
tion from the 1KG GDS file for profiles used to generate the synthetic profiles.
The data. frame must contained a column named as the refCall argument.

refCall a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file.

predCall a character string representing the name of the column that contains the in-
ferred ancestry for the specified profiles. The column must be present in the
matKNN data. frame argument.

listCall a vector of character strings representing the list of possible ancestry assig-
nations.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. Default: seq(3,15,1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
Default: seq(2,15,1).

Value

a list containing 5 entries:

dfPCA a data.frame containing statistical results on all combined synthetic results done with a
fixed value of D (the number of dimensions). The data. frame contains those columns:
D anumeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super pop-
ulations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC obtained
(within super populations) for all combination of the fixed D value and all tested K values.

k anumeric representing the optimal K value (the number of neighbors) for a fixed D value.
dfPop a data.frame containing statistical results on all combined synthetic results done with

different values of D (the number of dimensions) and K (the number of neighbors). The

data. frame contains those columns:

D anumeric representing the value of D (the number of dimensions).

K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the syn-
thetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results for
the specified values of D and K.

164 snpPositionDemo

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained by
grouping all the synthetic results for the specified values of D and K.

D anumeric representing the optimal D value (the number of dimensions) for the specific profile.
K a numeric representing the optimal K value (the number of neighbors) for the specific profile.

1listD a numeric representing the optimal D values (the number of dimensions) for the specific
profile. More than one D is possible.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Loading demo dataset containing pedigree information for synthetic
profiles and known ancestry of the profiles used to generate the
synthetic profiles

data(pedSynthetic)

Loading demo dataset containing the inferred ancestry results
for the synthetic data
data(matKNNSynthetic)

Compile all the results for ancestry inference done on the

synthetic profiles for different D and K values

Select the optimal D and K values

results <- RAIDS:::selParaPCAUpQuartile(matKNN=matKNNSynthetic,
pedCall=pedSynthetic, refCall="superPop", predCall="SuperPop”,
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"), kList=seq(3,15,1),
pcaList=seq(2,15,1))

results$D

results$k

snpPositionDemo A small data. frame containing the SNV information.

Description

The object is a data. frame with 17 columns.

Usage

data(snpPositionDemo)

Format

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:
cnt.tot a integer representing the number of reads at the SNV position.

cnt.ref a integer representing the number of reads corresponding to the reference at the SNV
position.

snpPositionDemo 165

cnt.alt ainteger representing the number of reads different than the reference at the SNV posi-
tion.

snp.pos a integer representing the position of the SNV on the chromosome.
snp.chr a integer representing the chromosome on which the SNV is located.

normal.geno ainteger representing the genotype (O=wild-type reference; 1=heterozygote; 2=ho-
mozygote alternative; 3=unkown).

pruned a logical indicated if the SNV is pruned.

snp.index a integer representing the index of the SNV in the reference SNV GDS file.
keep a logical indicated if the genotype exists for the SN'V.

hetero alogical indicated if the SNV is heterozygote.

homo a logical indicated if the SNV is homozygote.

block.id a integer representing the block identifier associated to the current SN'V.
phase a integer representing the block identifier associated to the current SNV.

lap anumeric representing the lower allelic fraction.

LOH a integer indicating if the SNV is in an LOH region (O=not LOH, 1=in LOH).

imbAR a integer indicating if the SNV is in an imbalanced region (-1=not classified as imbalanced
or LOH, 0=in LOH; 1=tested positive for imbalance in at least 1 window).

freq a numeric representing the frequency of the variant in the the reference.

Details

This dataset can be used to test the calcAFMLRNA and tableBlockAF internal functions.

Value

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:
cnt.tot ainteger representing the number of reads at the SNV position.

cnt.ref a integer representing the number of reads corresponding to the reference at the SNV
position.

cnt.alt ainteger representing the number of reads different than the reference at the SNV posi-
tion.

snp.pos a integer representing the position of the SNV on the chromosome.
snp.chr a integer representing the chromosome on which the SNV is located.

normal.geno ainteger representing the genotype (O=wild-type reference; 1=heterozygote; 2=ho-
mozygote alternative; 3=unkown).

pruned a logical indicated if the SNV is pruned.

snp.index a integer representing the index of the SNV in the reference SNV GDS file.
keep a logical indicated if the genotype exists for the SN'V.

hetero alogical indicated if the SNV is heterozygote.

homo a logical indicated if the SNV is homozygote.

block.id a integer representing the block identifier associated to the current SN'V.
phase a integer representing the block identifier associated to the current SN'V.

lap anumeric representing the lower allelic fraction.

166 snvListVCF

LOH a integer indicating if the SNV is in an LOH region (O=not LOH, 1=in LOH).

imbAR a integer indicating if the SNV is in an imbalanced region (-1=not classified as imbalanced
or LOH, 0=in LOH; 1=tested positive for imbalance in at least 1 window).

freq anumeric representing the frequency of the variant in the the reference.

Examples

Loading demo dataset containing SNV information
data(snpPositionDemo)

Only use a subset of heterozygote SNVs related to one block
subset <- snpPositionDemo[which(snpPositionDemo$block.id == 2750 &
snpPositionDemo$hetero), c("cnt.ref”, "cnt.alt”, "phase”)]

Compute the log likelihood ratio based on the coverage of
each allele in a specific block
result <- RAIDS:::calcAFMLRNA(subset)

head(result)
snvListVCF Generate a VCF with the information from the SNPs that pass a cut-off
threshold
Description

This function extract the SNPs that pass a frequency cut-off in at least one super population from a
GDS SNP information file and save the retained SNP information into a VCF file.

Usage
snvListVCF(gdsReference, fileOut, offset = @L, freqCutoff = NULL)

Arguments

gdsReference an object of class gds . class (a GDS file), the 1KG GDS file.

fileOut a character string representing the path and file name of the VCF file that will
be created wit the retained SNP information. The file should have the ".vcf"
extension.

offset a single integer that is added to the SNP position to switch from 0-based to

1-based coordinate when needed (or reverse). Default: oL.

freqCutoff a single positive numeric specifying the cut-off to keep a SNP. If NULL, all SNPs
are retained. Default: NULL.

Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

splitSelectByPop 167

Examples

Required library
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

Demo 1KG Reference GDS file
fileGDS <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"))

Output VCF file that will be created (temporary)
vcfFile <- file.path(tempdir(), "Demo_TMP_@1.vcf")

Create a VCF file with the SNV dataset present in the GDS file

No cutoff on frequency, so all SNVs are saved

snvListVCF (gdsReference=fileGDS, fileOut=vcfFile, offset=0L,
freqCutoff=NULL)

Close GDS file (IMPORTANT)
closefn.gds(fileGDS)

Remove temporary VCF file
unlink(vcfFile, force=TRUE)

splitSelectByPop Group samples per subcontinental population

Description
The function groups the samples per subcontinental population and generates a matrix containing
the sample identifiers and where each column is a subcontinental population.

Usage

splitSelectByPop(dataRef)

Arguments
dataRef a data. frame containing those columns:
sample.id a character string representing the sample identifier.
pop.group a character string representing the subcontinental population as-
signed to the sample.
superPop acharacter string representing the super-population assigned to the
sample.
Value

amatrix containing the sample identifiers and where each column is the name of a subcontinental
population. The number of row corresponds to the number of samples for each subcontinental
population.

168 syntheticGeno

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

A data.frame containing samples from 2 subcontinental populations

demo <- data.frame(sample.id=c("SampleA”, "SampleB", "SampleC"”, "SampleD"),
pop.group=c("TSI", "TSI", "YRI", "YRI"),
superPop=c("EUR", "EUR", "AFR", "AFR"))

Generate a matrix populated with the sample identifiers and where
each row is a subcontinental population
splitSelectByPop(dataRef=demo)

syntheticGeno Generate synthetic profiles for each cancer profile and 1KG reference
profile combination and add them to the Profile GDS file

Description

The functions uses one cancer profile in combination with one 1KG reference profile to generate an
synthetic profile that is saved in the Profile GDS file.

When more than one 1KG reference profiles are specified, the function recursively generates syn-
thetic profiles for each cancer profile + 1KG reference profile combination.

The number of synthetic profiles generated by combination is specified by the number of simulation
requested.

Usage

syntheticGeno(
gdsReference,
gdsRefAnnot,
fileProfileGDS,
profilelD,
listSampleRef,
nbSim = 1L,
prefix = ""
pRecomb = 0.01,
minProb = 0.999,
seqError = 0.001

Arguments

gdsReference an object of class gds. class (a GDS file), the opened 1KG GDS file.

gdsRefAnnot an object of class gds.class (a GDS file), the opened 1KG SNV Annotation
GDS file.

fileProfileGDS acharacter string representing the file name of Profile GDS file containing the
information about the sample. The file must exist.

syntheticGeno

profileID
listSampleRef

nbSim

prefix

pRecomb

minProb

seqgError

Value

169

a character string representing the unique identifier of the cancer profile.

a vector of character strings representing the sample identifiers of the 1IKG
selected reference samples.

a single positive integer representing the number of simulations that will be
generated per sample + 1KG reference combination. Default: 1L.
a character string that represent the prefix that will be added to the name of

nn

the synthetic profiles generated by the function. Default: "".

a single positive numeric between 0 and 1 that represents the frequency of phase
switching in the synthetic profiles, Default: 0.01.

a single positive numeric between O and 1 that represents the probability that
the genotype is correct. Default: @.999.

a single positive numeric between 0 and 1 representing the sequencing error
rate. Default: 0.001.

The integer OL when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library

library(gdsfmt)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests”, package="RAIDS")

Profile GDS file (temporary)
fileNameGDS <- file.path(tempdir(), "ex1.gds")

Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),

fileNameGDS)

Information about the synthetic data set

syntheticStudyDF

<- data.frame(study.id="MYDATA.Synthetic",

study.desc="MYDATA synthetic data”, study.platform="PLATFORM",
stringsAsFactors=FALSE)

Add information related to the synthetic profiles into the Profile GDS
prepSynthetic(fileProfileGDS=f1ileNameGDS,
listSampleRef=c("HGO@243", "HGO®150"), profileID="ex1",
studyDF=syntheticStudyDF, nbSim=1L, prefix="synthTest"”,
verbose=FALSE)

The 1KG files

gds1KG <- snpgdsOpen(file.path(dataDir,

"ex1_good_small_1KG.gds"))

gds1KGAnnot <- openfn.gds(file.path(dataDir,

"ex1_good_small_1KG_Annot.gds"))

170 tableBlockAF

Generate the synthetic profiles and add them into the Profile GDS
syntheticGeno(gdsReference=gds1KG, gdsRefAnnot=gds1KGAnnot,
fileProfileGDS=fileNameGDS, profileID="ex1",
listSampleRef=c("HGO0243", "HGOO150"), nbSim=1,
prefix="synthTest",
pRecomb=0.01, minProb=0.999, seqError=0.001)

Open Profile GDS file
profileGDS <- openfn.gds(fileNameGDS)

tail(read.gdsn(index.gdsn(profileGDS, "sample.id")))

Close GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)
closefn.gds(gds1KGAnnot)

Remove Profile GDS file (created for demo purpose)
unlink(fileNameGDS, force=TRUE)

tableBlockAF Compile the information about the SNV for each block

Description

The function evaluates a score about loss of heterozygosity and allelic fraction for each block. It
generates specific information about the variants in the block, like the number of homozygotes or
heterozygotes. In the case of RNA-seq, the blocks are genes.

Usage
tableBlockAF (snpPos)
Arguments
snpPos a data.frame with lower allelic fraction (lap) for the SNVs with coverage >
minCov, for a specific chromosome.
Value

a data.frame containing only heterozygote SNV information. The data.frame contain those
columns:
block a single integer representing the unique identifier of the block.

aRF a single numeric representing the final allelic fraction; not computed yet, -1 value assigned
to all entries.

aFraction a single integer representing the possible allelic fraction in absence of loss of het-
erozygosity (LOH).

IR asingle integer representing the coverage for the alternative allele.

nPhase a single integer representing the number of SNV phases.

testAlleleFractionChange 171

sumAlleleLow a single integer representing the sum of the alleles with the less coverage.
sumAlleleHigh a single integer representing the sum of the alleles with more coverage.

IH a single numeric for the homozygotes log10 of the product frequencies of the allele not found
in the profile (not a probability).

IM a single numeric logl0 product frequency allele in population.

IRhomo a single numeric representing the score 1H - 1M.

nbHomo a single integer representing the number of homozygote SN'Vs per block.
nbKeep a single integer representing the number of SNVs retained per block.

nbHetero a single integer representing the number of heterozygote SNVs per block.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Loading demo dataset containing SNV information
data(snpPositionDemo)

Retain SNVs on chromosome 1
subset <- snpPositionDemo[which(snpPositionDemo$snp.chr == 1),]

##Compile the information about the SNVs for each block
result <- RAIDS:::tableBlockAF (subset)
head(result)

testAlleleFractionChange
Calculate presence of allelic fraction change using specified SNVs sep-
arately and together

Description
The function tests allelic fraction change using all specified SNVs separately and together. The
function reports the associated results, including statistic for the region represented by all the SN'Vs.
Usage

testAlleleFractionChange(matCov, pCutOff = -3, vMean)

Arguments
matCov a data.frame containing only heterozygote SNVs. The data. frame must con-
tain those columns:
cnt.ref asingle integer representing the coverage for the reference allele.
cnt.alt asingle integer representing the coverage for the alternative allele.
pCutOff a numeric representing the cut-off for considering a region imbalanced when

comparing likelihood to gave allelic fraction change and likelihood not to have
allelic fraction change. Default: -3.

172 testEmptyBox

vMean a positive numeric representing the current ratio (minor allele/(minor allele +
second allele)) that is going to be used as reference to see if there is a allelic
fraction change.

Value
a list containing 4 entries:

pWin a vector of numeric representing the probability (x2) of obtaining the current alterna-
tive/(alternative+reference) ratio from a reference distribution specified by user.

P ainteger indicating if all SN'Vs tested positive (1=TRUE, 0=FALSE). The cut-off is 0.5.

pCut a integer indicating if all SNVs tested positive (1=TRUE, 0-FALSE).

pCutl a integer indicating if the region tested positive (1=TRUE, 0=FALSE) for allelic ratio
change.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Data frame with SNV information

snpInfo <- data.frame(
cnt.ref=c(40, 17, 27, 15, 4, 14, 16, 32),
cnt.alt=c(2, 4, 5, 10, 7, 23, 0, 0))

RAIDS: : :testAlleleFractionChange(matCov=snpInfo, pCutOff=-3, vMean=0.5)

testEmptyBox Calculate imbalance region using specified heterozygote SNVs sepa-
rately and together

Description
The function tests imbalance region using all specified SN'Vs separately and together. The function
reports the associated results, including statistic for the region.

Usage
testEmptyBox(matCov, pCutOff = -3)

Arguments
matCov a data.frame containing only heterozygote SNVs. The data. frame must con-
tain those columns:
cnt.ref asingle integer representing the coverage for the reference allele.
cnt.alt asingle integer representing the coverage for the alternative allele.
pCutOff a numeric representing the cut-off for considering a region imbalanced when

comparing likelihood to be imbalanced and likelihood not to be imbalanced.
Default: -3.

validateAccuracyGraphlInternal 173

Value

a list containing 4 entries:

pWin a vector of numeric representing the probability (x2) of obtaining the current alterna-
tive/(alternative+reference) ratio from a 0.5 distribution.

P anumeric representing the likelihood for the region

pCut a integer indicating if all SNVs tested positive (1=TRUE, 0=FALSE). The cut-off is 0.5.

pCutl a integer indicating if the window tested positive (1=TRUE, 0=FALSE) for imbalance.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Data frame with SNV information for a list of heterozygote SNVs
snpInfo <- data.frame(

cnt.ref=c(40, 17, 27, 15, 4, 14, 16, 32),

cnt.alt=c(2, 4, 5, 10, 7, 23, 0, 0))

Calculate imbalance for the region represented by the SNVs
RAIDS: : : testEmptyBox (matCov=snpInfo, pCutOff=-3)

validateAccuracyGraphInternal

Validate input parameters for createAccuracyGraph and createAU-
ROCGraph functions

Description
This function validates the parameters for the createAccuracyGraph and createAUROCGraph
functions.

Usage

validateAccuracyGraphInternal(title, selectD, selectColor)

Arguments
title a character string representing the title of the graph.
selectD a array of integer representing the selected PCA dimensions to plot. The

length of the array cannot be more than 5 entries. The dimensions must tested
by RAIDS (i.e. be present in the RDS file).

selectColor a array of character strings representing the selected colors for the associated
PCA dimensions to plot. The length of the array must correspond to the length
of the selectD parameter. In addition, the length of the array cannot be more
than 5 entries.

174 validateAdd1KG2SampleGDS

Value

The function returns 0L when successful.

Author(s)

Astrid Deschénes and Pascal Belleau

Examples

Validate parameters
RAIDS: ::validateAccuracyGraphInternal(title="Accuracy Graph”,
selectD=c(5, 10), selectColor=c("blue”,"darkblue”))

validateAdd1KG2SampleGDS
Validate input parameters for add1 KG2SampleGDS() function

Description

This function validates the input parameters for the add1KG2SampleGDS function.

Usage

validateAdd1KG2SampleGDS (gdsReference, gdsProfileFile, currentProfile, studyID)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened Population Reference GDS
file.

gdsProfileFile a character string representing the path and file name of the Profile GDS file.
The Profile GDS file must exist.

currentProfile a character string corresponding to the profile identifier associated to the cur-
rent list of pruned SNVs.

studyID a character string corresponding to the study identifier associated to the current
list of pruned SN'Vs.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

validateAddStudy 1Kg 175

Examples

Required library
library(gdsfmt)

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

The 1KG Population Reference GDS demo file (opened)
gds1KG <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"), readonly=TRUE)

The validatiion should be successful

RAIDS: : :validateAdd1KG2SampleGDS (gdsReference=gdsiKG,
gdsProfileFile=file.path(dataDir, "GDS_Sample_with_study_demo.gds"),
currentProfile="Sample@1", studyID="Synthetic")

All GDS file must be closed
closefn.gds(gdsfile=gds1KG)

validateAddStudy1Kg Validate the parameters for the addStudyIKg() function

Description

The function validates the input parameters for the addStudy1Kg function. When a parameter is not
as expected, an error message is generated.

Usage

validateAddStudy1Kg(gdsReference, fileProfileGDS, verbose)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

fileProfileGDS a character string representing the path and file name of the GDS Sample file.
The GDS Sample file must exist.

verbose a logical indicating if messages should be printed to show how the different
steps in the function.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

176 validateCharacterString

Examples

Path to the demo 1KG GDS file is located in this package

dataDir <- system.file("extdata”, package="RAIDS")

fileReferenceGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
gds1KG <- snpgdsOpen(fileReferenceGDS)

Path to demo Profile GDS file
fileProfileGDS <- file.path(dataDir, "GDS_Sample_with_study_demo.gds")

Returns OL when all parameters are valid
RAIDS: : :validateAddStudy1Kg(gdsReference=gds1KG,
fileProfileGDS=fileProfileGDS, verbose=TRUE)

All GDS file must be closed
closefn.gds(gdsfile=gds1KG)

validateCharacterString
Validate that the input parameter is a character sting

Description
This function validates that the input parameter is a character string (vector of 1 entry). If the
parameter is not a character string, the function generates an error with a specific message.

Usage

validateCharacterString(value, name)

Arguments

value a character string that will be validated.

name a character string that represents the name of the parameter that is tested.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

The validation should be successful
RAIDS: ::validateCharacterString(value="hi", name="test")

validateComputeAncestryFromSyntheticFile 177

validateComputeAncestryFromSyntheticFile

Validate input parameters for computeAncestryFromSyntheticFile()
function

Description

This function validates the input parameters for the computeAncestryFromSyntheticFile func-

tion.
Usage
validateComputeAncestryFromSyntheticFile(
gdsReference,
gdsProfile,
listFiles,
currentProfile,
spRef,
studyIDSyn,
np,
listCatPop,
fieldPopIniKG,
fieldPopInfAnc,
kList,
pcalList,
algorithm,
eigenCount,
missingRate,
verbose
)
Arguments
gdsReference an object of class gds.class (a GDS file), the opened Population Reference GDS
file.
gdsProfile an object of class gds . class (a GDS file), the opened Profile GDS file.
listFiles a vector of character strings representing the name of files that contain the
results of ancestry inference done on the synthetic profiles for multiple values
of D and K. The files must exist.
currentProfile a character string representing the profile identifier of the current profile on
which ancestry will be inferred.
spRef a vector of character strings representing the known super population ances-
try for the 1KG profiles. The Population Reference profile identifiers are used
as names for the vector.
studyIDSyn a character string corresponding to the study identifier. The study identifier
must be present in the GDS Sample file.
np a single positive integer representing the number of threads.
listCatPop a vector of character string representing the list of possible ancestry assigna-

tions.

178

fieldPopIn1KG

fieldPopInfAnc

kList

pcalList

algorithm

eigenCount

missingRate

verbose

Value

validateComputeAncestryFromSyntheticFile

a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file.

a character string representing the name of the column that will contain the
inferred ancestry for the specified dataset. Default: "SuperPop”.

a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis.

a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.

a character string representing the algorithm used to calculate the PCA.

a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigenCount’ <= 0, then all eigenvectors are
returned.

a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SN'Vs are retained in the snpgdsPCA with "<= missingRate" only;
if NaN, no missing threshold.

a logical indicating if messages should be printed to show how the different
steps in the function.

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library

library(gdsfmt)

Directory where demo GDS files are located
dataDir <- system.file("extdata"”, package="RAIDS")

The 1KG Population Reference GDS demo file (opened)
gds1KG <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"), readonly=TRUE)

The Profile GDS (opened)
gdsSample <- openfn.gds(file.path(dataDir,

"GDS_Sample_with_study_demo.gds"), readonly=TRUE)

listFiles <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The validation should be successful
RAIDS: : :validateComputeAncestryFromSyntheticFile(gdsReference=gds1KG,

validateComputeKNNRefSample 179

gdsProfile=gdsSample, listFiles=listFiles, currentProfile="sample@1”,
spRef=c("EUR", "AFR"), studyIDSyn="Synthetic”, np=1L,
listCatPop=c("EAS”, "EUR", "AFR”, "AMR", "SAS"),
fieldPopIn1KG="superpop”, fieldPopInfAnc="Superpop”, kList=c(2, 3, 4),
pcaList=c(3, 4, 5), algorithm="exact"”, eigenCount=32L, missingRate=0.2,
verbose=FALSE)

All GDS file must be closed
closefn.gds(gdsfile=gds1KG)
closefn.gds(gdsfile=gdsSample)

validateComputeKNNRefSample
Validate the input parameters for compute KNNRefSample() function

Description

The function validates the input parameters for the computeKNNRefSample function. When a pa-
rameter is not as expected, an error message is generated.

Usage
validateComputeKNNRefSample(
listEigenvector,
listCatPop,
spRef,
fieldPopInfAnc,
kList,
pcalList
)
Arguments
listEigenvector
a list with 3 entries: ’sample.id’, ’eigenvector.ref” and ’eigenvector’. The list
represents the PCA done on the 1KG reference profiles and the specific profile
projected onto it. The ’sample.id’ entry must contain only one identifier (one
profile).
listCatPop a vector of character string representing the list of possible ancestry assigna-
tions.
spRef vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

fieldPopInfAnc a character string representing the name of the column that will contain the
inferred ancestry for the specified dataset.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbors analysis.

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.

180 validateComputeKNNRefSynthetic

Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Load the demo PCA on the synthetic profiles projected on the
demo 1KG reference PCA
data(demoPCASyntheticProfiles)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

pcaSynthetic <- demoPCASyntheticProfiles
pcaSynthetic$sample.id <- pcaSynthetic$sample.id[1]

The function returns OL when all parameters are valid

RAIDS: : :validateComputeKNNRefSample(listEigenvector=pcaSynthetic,
listCatPop=c("EAS”, "EUR"”, "AFR", "AMR", "SAS"),
spRef=demoKnownSuperPop1KG, fieldPopInfAnc="Superpop”,
kList=c(10, 11, 12), pcaList=c(13, 14, 15))

validateComputeKNNRefSynthetic
Validate the input parameters for computeKNNRefSynthetic() function

Description

The function validates the input parameters for the computeKNNRefSynthetic function. When a
parameter is not as expected, an error message is generated.

Usage

validateComputeKNNRefSynthetic(
gdsProfile,
listEigenvector,
listCatPop,
studyIDSyn,
spRef,
fieldPopInfAnc,
kList,
pcalList

validateComputeKNNRefSynthetic 181

Arguments

gdsProfile

listEigenvector

listCatPop

studyIDSyn

spRef

fieldPopInfAnc

kList

pcalList

Value

an object of class SNPRelate: : SNPGDSFileClass, the opened Profile GDS file.

a list with 3 entries: ’sample.id’, "eigenvector.ref’ and "eigenvector’. The list
represents the PCA done on the 1KG reference profiles and the synthetic profiles
projected onto it.

a vector of character string representing the list of possible ancestry assigna-
tions.

a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.

vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

a character string representing the name of the column that will contain the
inferred ancestry for the specified dataset.

a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbors analysis.

a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Load the demo PCA on the synthetic profiles projected on the
demo 1KG reference PCA
data(demoPCASyntheticProfiles)

Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

Path to the demo GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")
fileProfileGDS <- file.path(dataDir, "ex1.gds")

Open GDS files

gdsProfile <- openfn.gds(fileProfileGDS)

The function returns OL when all parameters are valid

RAIDS: : :validateComputeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS", "EUR", "AFR", "AMR", "SAS"),
studyIDSyn="MyStudy"”, spRef=demoKnownSuperPoplKG,
fieldPopInfAnc="Superpop"”, kList=c(10, 11, 12),
pcaList=c(13, 14, 15))

182 validateComputePCAMultiSynthetic

Close GDS file (it is important to always close the GDS files)
closefn.gds(gdsProfile)

validateComputePCAMultiSynthetic

Validate the input parameters for computePCAMultiSynthetic() func-
tion

Description

The function validates the input parameters for the computePCAMultiSynthetic function. When a
parameter is not as expected, an error message is generated.

Usage
validateComputePCAMultiSynthetic(
gdsProfile,
1istPCA,
sampleRef,
studyIDSyn,
verbose
)
Arguments
gdsProfile an object of class gds.class (a GDS file), an opened Profile GDS file.
listPCA a list containing the PCA object generated with the 1KG reference profiles
(excluding the ones used to generate the synthetic data set) in an entry called
"pca.unrel”.
sampleRef a vector of character strings representing the identifiers of the 1KG reference
profiles that should not be used to create the reference PCA.
studyIDSyn a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.
verbose a logical indicating if messages should be printed to show how the different
steps in the function.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

validateComputePCARefSample 183

Examples

Loading demo PCA on subset of 1KG reference dataset
data(demoPCA1KG)

Path to the demo GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")
fileProfileGDS <- file.path(dataDir, "ex1.gds")

Open GDS files
gdsProfile <- openfn.gds(fileProfileGDS)

The function returns OL when all parameters are valid
RAIDS: ::validateComputePCAMultiSynthetic(gdsProfile=gdsProfile,
1istPCA=demoPCA1KG, sampleRef=c("HG00@246", "HG0Q@325"),

studyIDSyn="MyStudy"”, verbose=FALSE)

Close GDS file (it is important to always close the GDS files)
closefn.gds(gdsProfile)

validateComputePCARefSample
Validate input parameters for computePCARefSample() function

Description

This function validates the input parameters for the computePCARefSample function.

Usage
validateComputePCARefSample(
gdsProfile,
currentProfile,
studyIDRef,
np,
algorithm,
eigenCount,
missingRate,
verbose
)
Arguments
gdsProfile an object of class gds.class, an opened Profile GDS file.
currentProfile asingle character string representing the profile identifier.
studyIDRef a single character string representing the study identifier.
np a single positive integer representing the number of CPU that will be used.
algorithm a character string representing the algorithm used to calculate the PCA.
eigenCount a single integer indicating the number of eigenvectors that will be in the out-

put of the snpgdsPCA function; if ’eigen.cnt’ <= 0, then all eigenvectors are
returned.

184 validateComputePoolSyntheticAncestryGr

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; if NaN, no missing threshold.

verbose a logical indicating if messages should be printed to show how the different
steps in the function.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Directory where demo GDS files are located
dataDir <- system.file("extdata”, package="RAIDS")

The GDS Sample (opened)
gdsSample <- openfn.gds(file.path(dataDir,
"GDS_Sample_with_study_demo.gds"), readonly=TRUE)

The validation should be successful

RAIDS: : :validateComputePCARefSample (gdsProfile=gdsSample,
currentProfile="HCCO1", studyIDRef="1KG", np=1L, algorithm="exact",
eigenCount=32L, missingRate=0.02, verbose=FALSE)

All GDS file must be closed
closefn.gds(gdsfile=gdsSample)

validateComputePoolSyntheticAncestryGr

Validate input parameters for computePoolSyntheticAncestryGr()
function

Description

This function validates the input parameters for the computePoolSyntheticAncestryGr function.

Usage

validateComputePoolSyntheticAncestryGr(
gdsProfile,
sampleRM,
spRef,
studyIDSyn,
np,
listCatPop,
fieldPopInfAnc,

validateComputePoolSyntheticAncestryGr 185

kList,
pcalist,
algorithm,
eigenCount,
missingRate,
verbose

Arguments

gdsProfile
sampleRM

spRef

studyIDSyn

np
listCatPop

fieldPopInfAnc

kList

pcalList

algorithm

eigenCount

missingRate

verbose

Value

an object of class SNPRelate: : SNPGDSFileClass, the opened Profile GDS file.

a vector of character strings representing the identifiers of the population
reference samples that should not be used to create the reference PCA.

a vector of character strings representing the known super population an-
cestry for the population reference profiles. The population reference profile
identifiers are used as names for the vector.

a character string corresponding to the study identifier. The study identifier
must be present in the GDS Sample file.

a single positive integer representing the number of threads.

a vector of character string representing the list of possible ancestry assigna-
tions.

a character string representing the name of the column that will contain the
inferred ancestry for the specified dataset.

a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis.

a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.

a character string representing the algorithm used to calculate the PCA. The 2
choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016).

a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigenCount’ <= 0, then all eigenvectors are
returned.

a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SN'Vs are retained in the snpgdsPCA only with "<= missingRate"
only; if NaN, no missing threshold.

a logical indicating if message information should be printed.

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

186 validateComputeSyntheticRoc

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Directory where demo GDS files are located
dataDir <- system.file("extdata"”, package="RAIDS")

The Profile GDS (opened)
gdsSample <- openfn.gds(file.path(dataDir,
"GDS_Sample_with_study_demo.gds"), readonly=TRUE)

The known super population ancestry for the population reference profiles
spRef <- c("EUR", "SAS", "EAS", "EUR", "AFR")
names (spRef) <- c("HG0O100", "HGOO101", "HGOQ102", "HGOO103", "HGOO104")

The validation should be successful

RAIDS: : :validateComputePoolSyntheticAncestryGr(gdsProfile=gdsSample,
sampleRM="TGCA_0@1", spRef=spRef,
studyIDSyn="TCGA", np=1L, listCatPop=c("AFR", "EAS", "SAS"),
fieldPopInfAnc="Pop", kList=seq_len(3),
pcalList=seq_len(10), algorithm="exact"”, eigenCount=12L,
missingRate=0.02, verbose=FALSE)

All GDS file must be closed
closefn.gds(gdsfile=gdsSample)

validateComputeSyntheticRoc
Validate input parameters for computeSyntheticROC() function

Description

This function validates the input parameters for the computeSyntheticROC() function.

Usage
validateComputeSyntheticRoc(
matkKNN,
matkKNNAncestryColumn,
pedCall,
pedCallAncestryColumn,
listCall
)
Arguments
matkKNN a data.frame containing the inferred ancestry results for fixed values of D

and K. On of the column names of the data.frame must correspond to the
matKNNAncestryColumn argument.

validateCreateAccuracyGraph 187

matKNNAncestryColumn
a character string representing the name of the column that contains the in-
ferred ancestry for the specified synthetic profiles. The column must be present
in the matKNN argument.

pedCall a data.frame containing the information about the super-population informa-
tion from the 1KG GDS file for profiles used to generate the synthetic profiles.
The data. frame must contained a column named as the pedCallAncestryColumn
argument.

pedCallAncestryColumn
a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file. The column must
be present in the pedCall argument.

listCall a vector of character strings representing the list of all possible ancestry
assignations.

Value

oL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Loading demo dataset containing pedigree information for synthetic
profiles and known ancestry of the profiles used to generate the
synthetic profiles

data(pedSynthetic)

Loading demo dataset containing the inferred ancestry results
for the synthetic data
data(matKNNSynthetic)

The inferred ancestry results for the synthetic data using
values of D=6 and K=5
matkKNN <- matKNNSynthetic[matKNNSynthetic$K == 6 & matkKNNSynthetic$D == 5,]

The validation should be successful

RAIDS: : :validateComputeSyntheticRoc(matKNN=matkNN,
matKNNAncestryColumn="SuperPop”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop"”,
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"))

validateCreateAccuracyGraph
Validate input parameters for createAccuracyGraph function

Description

This function validates the parameters for the createAccuracyGraph function.

188 validatecreate AUROCGraph

Usage

validateCreateAccuracyGraph(fileRDS, title, selectD, selectColor)

Arguments
fileRDS a character string representing the path and file name of the RDS file contain-
ing the ancestry information as generated by RAIDS.
title a character string representing the title of the graph.
selectD a array of integer representing the selected PCA dimensions to plot. The
length of the array cannot be more than 5 entries. The dimensions must tested
by RAIDS (i.e. be present in the RDS file).
selectColor a array of character strings representing the selected colors for the associated
PCA dimensions to plot. The length of the array must correspond to the length
of the selectD parameter. In addition, the length of the array cannot be more
than 5 entries.
Value

The function returns 0L when successful.

Author(s)

Astrid Deschénes and Pascal Belleau

Examples

Path to RDS file with ancestry information generated by RAIDS (demo file)
dataDir <- system.file("extdata"”, package="RAIDS")
fileRDS <- file.path(dataDir, "TEST_@1.infoCall.RDS")

Validate parameters
RAIDS: ::validateCreateAccuracyGraph(fileRDS=fileRDS, title="Accuracy Graph",
selectD=c(5, 10), selectColor=c("blue”,"darkblue”))

validatecreateAUROCGraph
Validate input parameters for createAccuracyGraph function

Description

This function validates the parameters for the createAccuracyGraph function.

Usage

validatecreateAUROCGraph(dfAUROC, title, selectD, selectColor)

validatecreateProfile

Arguments

dfAUROC

title

selectD

selectColor

Value

189

a data. frame corresponding to res$paraSample$df AUROC where res is the re-
sult of inferAncestry() or inferAncestryGeneAware() functions.

a character string representing the title of the graph.

a array of integer representing the selected PCA dimensions to plot. The
length of the array cannot be more than 5 entries. The dimensions must tested
by RAIDS (i.e. be present in the RDS file).

a array of character strings representing the selected colors for the associated
PCA dimensions to plot. The length of the array must correspond to the length
of the selectD parameter. In addition, the length of the array cannot be more
than 5 entries.

The function returns 0L when successful.

Author(s)

Astrid Deschénes and Pascal Belleau

Examples

Path to RDS file with ancestry information generated by RAIDS (demo file)
dataDir <- system.file("extdata”, package="RAIDS")

fileRDS <- file.path(dataDir, "TEST_01.infoCall.RDS")

info <- readRDS(fileRDS)

dfAUROC <- info$paraSample$dfAUROC

Some of the column names must be updated to fit new standards
colnames(dfAUROC) <- c("D", "K", "Call"”, "L", "AUROC", "H")

Validate parameters
RAIDS: : :validatecreateAUROCGraph (dfAUROC=dfAUROC, title="Accuracy Graph",
selectD=c(6, 12), selectColor=c("blue"”,"darkblue"))

validatecreateProfile Validate input parameters for createProfile() function

Description

This function validates the input parameters for the createStudy2GDS1KG function.

Usage

validatecreateProfile(

pedStudy,
fileNameGDS,
batch,
studyDF,
listProfiles,

190 validatecreateProfile

pathProfileGDS,
genoSource,
verbose
)
Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.
fileNameGDS a character string representing the file name of the Population Reference GDS
file. The file must exist.
batch a single positive integer representing the current identifier for the batch. Be-
ware, this field is not stored anymore.
studyDF a data. frame containing the information about the study associated to the anal-

ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).

listProfiles a vector of character string corresponding to the profile identifiers that will
have a GDS Sample file created. The profile identifiers must be present in the
"Name.ID" column of the RDS file passed to the filePedRDS parameter. If
NULL, all profiles in the filePedRDS are selected.

pathProfileGDS acharacter string representing the path to the directory where the Profile GDS
files will be created.

verbose a logical indicating if message information should be printed.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Demo 1KG Population Reference GDS file
gds1KG <- file.path(dataDir, "PopulationReferenceDemo.gds")

The data.frame containing the information about the study
The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyInfo <- data.frame(study.id="Pancreatic.WES",
study.desc="Pancreatic study”,
study.platform="WES",
stringsAsFactors=FALSE)

PED Study
ped <- data.frame(Name.ID=c("Sample_01", "Sample_02"),

validateCreateStudy2GDS1KG 191

Case.ID=c("TCGA-H@1", "TCGA-H@2"),
Sample.Type=c("DNA", "DNA"),
Diagnosis=c("Cancer"”, "Cancer"), Source=c("TCGA", "TCGA"))

The validation should be successful

RAIDS: ::validateCreateStudy2GDS1KG(pathGeno=dataDir, pedStudy=ped,
fileNameGDS=gds1KG, batch=1, studyDF=studyInfo,
listProfiles=c("Sample_01", "Sample_02"),
pathProfileGDS=dataDir,
genoSource="snp-pileup”, verbose=TRUE)

validateCreateStudy2GDS1KG

Validate input parameters for createStudy2GDS1KG() function

Description

This function validates the input parameters for the createStudy2GDS1KG function.

Usage
validateCreateStudy2GDS1KG(
pathGeno,
pedStudy,
fileNameGDS,
batch,
studyDF,
listProfiles,
pathProfileGDS,
genoSource,
verbose
)
Arguments
pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated SNP-pileup file called "Name.ID.txt.gz".
The directory must exist.
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.
fileNameGDS a character string representing the file name of the Population Reference GDS
file. The file must exist.
batch a single positive integer representing the current identifier for the batch. Be-

ware, this field is not stored anymore.

192 validateCreateStudy2GDS1KG

studyDF a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

listProfiles a vector of character string corresponding to the profile identifiers that will
have a GDS Sample file created. The profile identifiers must be present in the
"Name.ID" column of the RDS file passed to the filePedRDS parameter. If
NULL, all profiles in the filePedRDS are selected.

pathProfileGDS a character string representing the path to the directory where the Profile GDS
files will be created.

verbose a logical indicating if message information should be printed.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

Demo 1KG Population Reference GDS file
gds1KG <- file.path(dataDir, "PopulationReferenceDemo.gds")

The data.frame containing the information about the study
The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
The entries should be strings, not factors (stringsAsFactors=FALSE)
studyInfo <- data.frame(study.id="Pancreatic.WES",
study.desc="Pancreatic study”,
study.platform="WES",
stringsAsFactors=FALSE)

PED Study

ped <- data.frame(Name.ID=c("Sample_01", "Sample_02"),
Case.ID=c("TCGA-HQ1", "TCGA-H@2"),
Sample.Type=c("DNA", "DNA"),
Diagnosis=c("Cancer"”, "Cancer"), Source=c("TCGA", "TCGA"))

The validation should be successful

RAIDS: ::validateCreateStudy2GDS1KG(pathGeno=dataDir, pedStudy=ped,
fileNameGDS=gds1KG, batch=1, studyDF=studyInfo,
listProfiles=c("Sample_01", "Sample_02"),
pathProfileGDS=dataDir,
genoSource="snp-pileup"”, verbose=TRUE)

validateDataRefSynParameter 193

validateDataRefSynParameter
Validate that the reference profile data set has the mandatory columns

Description

The function validates the input reference profile data set. The reference profile data set must be a

data.frame with those mandatory columns: "sample.id", "pop.group"”, "superPop". All columns
must be in character strings (no factor).

Usage

validateDataRefSynParameter(syntheticRefDF)

Arguments
syntheticRefDF a data.frame containing a subset of reference profiles for each sub-population

present in the Reference GDS file. The mandatory columns are: "sample.id",

non

"pop.group”, "superPop". All columns must be in character strings (no factor).

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Profiles used for synthetic data set

syntheticRefDF <- data.frame(sample.id=c("HG@@150", "HG0Q138", "HG00330",
"HGEQ275"), pop.group=c("GBR", "GBR","FIN", "FIN"),
superPop=c("EUR", "EUR", "EUR", "EUR"), stringsAsFactors=FALSE)

Return OL when the reference profile data set is valid
RAIDS: ::validateDataRefSynParameter (syntheticRefDF=syntheticRefDF)

validateEstimateAllelicFraction
Validate input parameters for estimateAllelicFraction() function

Description

This function validates the input parameters for the estimateAllelicFraction function.

194 validateEstimateAllelicFraction

Usage

validateEstimateAllelicFraction(
gdsReference,
gdsProfile,
currentProfile,
studyID,
chrinfo,
studyType,
minCov,
minProb,
eProb,
cutOffLOH,
cutOffHomoScore,
WAR,
CcutOffAR,
gdsRefAnnot,
blockID,
verbose

Arguments

gdsReference an object of class gds. class (a GDS file), the Population Reference GDS file.

gdsProfile an object of class gds.class (a GDS file), the Profile GDS file.

currentProfile acharacter string corresponding to the sample identifier as used in pruningSample
function.

studyID acharacter string corresponding to the name of the study as used in pruningSample
function.

chrinfo a vector of integer values representing the length of the chromosomes.

studyType a character string representing the type of study. The possible choices are:

"DNA" and "RNA". The type of study affects the way the estimation of the
allelic fraction is done. Default: "DNA".

minCov a single positive integer representing the minimum required coverage.

minProb a single positive numeric between 0 and 1 that represents the probability that
the genotype is correct.

eProb a single numeric between O and 1 representing the probability of sequencing
error.

cutOffLOH a single numeric representing the cutoff, in log, for the homozygote score to

assign a region as LOH.

cutOffHomoScore
a single numeric representing the cutoff, in log, that the SNVs in a block are
called homozygote by error.

WAR a single positive integer representing the size-1 of the window used to compute
an empty box.

cutOffAR a single numeric representing the cutoff, in log score, that the SNVs in a gene
are allelic fraction different from 0.5.

gdsRefAnnot an object of class gds.class (a GDS file), thel Population Reference SNV
Annotation GDS file. This parameter is RNA specific.

validateEstimateAllelicFraction 195

blockID a character string corresponding to the block identifier in gdsRefAnnot. This
parameter is RNA specific.
verbose a logicial indicating if the function should print message when running.
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Directory where demo GDS files are located
dataDir <- system.file("extdata”, package="RAIDS")

The 1KG Population Reference GDS Demo file (opened)
gds1KG <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"), readonly=TRUE)

The GDS Sample (opened)
gdsSample <- openfn.gds(file.path(dataDir,
"GDS_Sample_with_study_demo.gds"), readonly=TRUE)

Required library for this example to run correctly
if (requireNamespace("Seqginfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

The validation should be successful

RAIDS: ::validateEstimateAllelicFraction(gdsReference=gdsiKG,
gdsProfile=gdsSample,
currentProfile="Sample@1"”, studyID="Synthetic”, chrInfo=chrinfo,
studyType="DNA", minCov=10L, minProb=0.03, eProb=0.002, cutOffLOH=10,
cutOffHomoScore=11, wAR=2, cutOffAR=10, gdsRefAnnot=gdsiKG,
blockID="1", verbose=FALSE)

All GDS file must be closed
closefn.gds(gdsfile=gds1KG)
closefn.gds(gdsfile=gdsSample)

196 validateGenerateGDS1KG

validateGDSClass Validate that the input parameter is a GDS object

Description

This function validates that the input parameter inherits the gds.class class.

Usage

validateGDSClass(gds, name)

Arguments

gds an object of class gds.class (a GDS file), the 1 KG GDS file.

name a character string that represents the name of the parameter that is tested.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Directory where demo GDS files are located
dataDir <- system.file("extdata"”, package="RAIDS")

The 1KG GDS file (opened)
gds1KG <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"), readonly=TRUE)

The validation should be successful
RAIDS: ::validateGDSClass(gds=gds1KG, name="gds")

All GDS file must be closed
closefn.gds(gdsfile=gds1KG)

validateGenerateGDS1KG
Validate input parameters for generateGDS1KG() function

Description

This function validates the input parameters for the generateGDSTKG function.

validateGenerateGDS1KG 197

Usage
validateGenerateGDSTKG(
pathGeno,
filePedRDS,
fileSNVIndex,
fileSNVSelected,
fileNameGDS,
listSamples,
verbose
)
Arguments
pathGeno a character string representing the path where the 1K genotyping files for each
sample are located. The name of the genotyping files must correspond to the
individual identification (Individual.ID) in the pedigree file.
filePedRDS a character string representing the path and file name of the RDS file that
contains the pedigree information. The file must exist. The file must be a RDS
file.

fileSNVIndex a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

fileSNVSelected
a character string representing the path and file name of the RDS file that
contains the filtered SNP information. The file must exist. The file must be a
RDS file.

fileNameGDS a character string representing the path and file name of the GDS file that
will be created. The GDS file will contain the SNP information, the genotyping
information and the pedigree information from 1000 Genomes. The extension
of the file must be *.gds’.

listSamples a vector of character string corresponding to samples (must be the sam-
ple.ids) that will be retained and added to the GDS file. When NULL, all the
samples are retained.

verbose a logical indicating if the function must print messages when running.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

The RDS file containing the indexes of the retained SNPs

198 validateLogical

snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

Temporary GDS file containing 1KG information
gdsFile <- file.path(dataDir, "1KG_TEMP.gds")

The validation should be successful

RAIDS: ::validateGenerateGDS1KG(pathGeno=dataDir, filePedRDS=pedigreeFile,
fileSNVIndex=snpIndexFile, fileSNVSelected=filterSNVFile,
fileNameGDS=gdsFile, listSamples=NULL, verbose=FALSE)

validatelLogical Validate that the input parameter is a logical

Description

This function validates that the input parameter is a logical. If the parameter is not a logicial, the
function generates an error with a specific message.

Usage

validatelLogical(logical, name)

Arguments

logical a logical that will be validated.

name a character string that represents the name of the parameter that is tested.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

The validation should be successful
RAIDS: ::validatelLogical (logical=TRUE, name="test")

validatePEDStudyParameter 199

validatePEDStudyParameter
Validate that the PED study has the mandatory columns

Description

The function validates the input PED study. The PED study must be a data.frame with those
mandatory columns: "Name.ID", "Case.ID", "Sample.Type", "Diagnosis", "Source". All columns
must be in character strings (no factor).

Usage

validatePEDStudyParameter (pedStudy)

Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor).
Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Pedigree Study data frame

ped <- data.frame(Name.ID=c("Sample_01", "Sample_02"),
Case.ID=c("TCGA-H@1", "TCGA-H@2"),
Sample.Type=c("DNA", "DNA"),
Diagnosis=c("Cancer”, "Cancer"), Source=c("TCGA", "TCGA"))

Return oL when PED is valid
RAIDS: : :validatePEDStudyParameter (pedStudy=ped)

validatePepSynthetic Validate input parameters for prepSynthetic() function

Description

This function validates the input parameters for the prepSynthetic() function.

200 validatePepSynthetic

Usage

validatePepSynthetic(
fileProfileGDS,
listSampleRef,
profilelD,
studyDF,
nbSim,
prefix,
verbose

Arguments
fileProfileGDS acharacter string representing the file name of the GDS Sample file containing
the information about the sample used to generate the synthetic profiles.

listSampleRef a vector of character string representing the identifiers of the selected 1KG
samples that will be used as reference to generate the synthetic profiles.

profileID acharacter string representing the profile identifier present in the fileProfileGDS
that will be used to generate synthetic profiles.

studyDF a data. frame containing the information about the study associated to the anal-
ysed sample(s). The data.frame must have those 2 columns: "study.id" and
"study.desc". Those 2 columns must be in character strings (no factor). Other
columns can be present, such as "study.platform", but won’t be used.

nbSim a single positive integer representing the number of simulations per combina-
tion of sample and 1KG reference.

prefix a single character string representing the prefix that is going to be added to
the name of the synthetic profile. The prefix enables the creation of multiple
synthetic profile using the same combination of sample and 1KG reference.

verbose a logical indicating if messages should be printed to show how the different
steps in the function.
Value

oL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Directory where demo GDS files are located
dataDir <- system.file("extdata"”, package="RAIDS")

The Profile GDS Sample
gdsSample <- file.path(dataDir, "GDS_Sample_with_study_demo.gds")

The study data frame

studyDF <- data.frame(study.id="MYDATA.Synthetic",
study.desc="MYDATA synthetic data”, study.platform="PLATFORM",
stringsAsFactors=FALSE)

validatePositivelnteger Vector 201

The validation should be successful

RAIDS: ::validatePepSynthetic(fileProfileGDS=gdsSample,
listSampleRef=c(”"Sample@1”, "Sample@2"), profileID="A101TCGA",
studyDF=studyDF, nbSim=1L, prefix="TCGA", verbose=TRUE)

validatePositivelIntegerVector
Validate that the input parameter is a vector of positive numeric

Description

This function validates that the input parameter is a vector of positive numeric values (vector of 1
entry or more). All values have to be positive (>0). If the parameter is not respecting the validation,
the function generates an error with a specific message.

Usage

validatePositivelIntegerVector(value, name)

Arguments

value a vector of numeric that will be validated.

name a character string that represents the name of the parameter that is tested.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

The validation should be successful
RAIDS: ::validatePositiveIntegerVector(value=c(1, 2 ,3, 5), name="test")

202 validatePrepPed 1 KG

validatePrepPedl1KG Validate input parameters for prepPedl KG() function

Description

This function validates the input parameters for the prepPed1KG function.

Usage

validatePrepPed1KG(filePed, pathGeno, batch)

Arguments
filePed a character string representing the path and file name of the pedigree file (PED
file) that contains the information related to the profiles present in the 1KG GDS
file. The PED file must exist.
pathGeno a character string representing the path where the Reference genotyping files
for each profile are located. Only the profiles with associated genotyping files
are retained in the creation of the final data. frame. The name of the genotyp-
ing files must correspond to the individual identification (Individual.ID) in the
pedigree file (PED file).
batch ainteger that uniquely identifies the source of the pedigree information. The
Reference is usually oL.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Directory where demo GDS files are located
dataDir <- system.file("extdata”, package="RAIDS")

Demo pedigree file
pedDemoFile <- file.path(dataDir, "PedigreeDemo.ped")

The validation should be successful
RAIDS: ::validatePrepPed1KG(filePed=pedDemoFile,
pathGeno=dataDir, batch=1)

validateProfileGDSEXxist 203

validateProfileGDSExist
Validate that the Profile GDS file exists for the specified profile

Description

The function validates that the Profile GDS file associated to a profile identifier exists in the specified
directory.

Usage

validateProfileGDSExist(pathProfile, profile)

Arguments

pathProfile a character string representing the directory where the Profile GDS files will
be created. The directory must exist.

profile a character string corresponding to the profile identifier. A Profile GDS file
corresponding to the profile identifier must exist and be located in the pathProfile
directory.
Value

a character string representing the path to the existing Profile GDS file.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")

The function returns the path to the existing Profile GDS file
RAIDS: ::validateProfileGDSExist(pathProfile=dataDir,
profile="ex1_demo")

validatePruningSample Validate input parameters for pruningSample() function

Description

This function validates the input parameters for the pruningSample function.

204 validatePruningSample

Usage

validatePruningSample(
gdsReference,
method,
currentProfile,
studylID,
1istSNP,
slideWindowMaxBP,
thresholdLD,
np,
verbose,
chr,
superPopMinAF,
keepPrunedGDS,
pathProfileGDS,
keepFile,
pathPrunedGDS,
outPrefix

Arguments

gdsReference an object of class gds.class (a GDS file), the Population Reference GDS file.

method a character string that represents the method that will be used to calculate the
linkage disequilibrium in the snpgdsLDpruning() function.

currentProfile a character string corresponding to the profile identifier used in LD pruning
done by the snpgdsLDpruning() function. A Profile GDS file corresponding to
the profile identifier must exist and be located in the pathProfileGDS directory.

studyID a character string corresponding to the study identifier used in the snpgdsLDpruning
function. The study identifier must be present in the Profile GDS file.

1istSNP a vector of SNVs identifiers specifying selected to be passed the the pruning
function; if NULL, all SN'Vs are used in the snpgdsLDpruning function.
slideWindowMaxBP
a single positive integer that represents the maximum basepairs (bp) in the slid-
ing window. This parameter is used for the LD pruning done in the snpgdsLDpruning
function.

thresholdLD a single numeric value that represents the LD threshold used in the snpgdsLDpruning

function.

np a single positive integer specifying the number of threads to be used.

verbose alogicial indicating if information is shown during the process in the snpgdsLDpruning
function.

chr a character string representing the chromosome where the selected SNV should

belong. Only one chromosome can be handled. If NULL, the chromosome is not
used as a filtering criterion.

superPopMinAF a single positive numeric representing the minimum allelic frequency used to
select the SN'Vs. If NULL, the allelic frequency is not used as a filtering criterion.

keepPrunedGDS a logicial indicating if the information about the pruned SNVs should be
added to the GDS Sample file.

validateRunExomeOrRNA Ancestry 205

pathProfileGDS a character string representing the directory where the Profile GDS files will
be created. The directory must exist.

keepFile a logical indicating if RDS files containing the information about the pruned
SNVs must be created.

pathPrunedGDS a character string representing an existing directory. The directory must exist.

outPrefix a character string that represents the prefix of the RDS files that will be gen-
erated. The RDS files are only generated when the parameter keepFile=TRUE.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Required library
library(gdsfmt)

Directory where demo GDS files are located
dataDir <- system.file("extdata”, package="RAIDS")

The 1KG GDS file (opened)
gds1KG <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"), readonly=TRUE)

The validation should be successful

RAIDS: ::validatePruningSample (gdsReference=gds1KG, method="corr",
currentProfile="TGCA_01", studyID="TCGA",
listSNP=c("sr10103", "sr10202"), slideWindowMaxBP=1000L,
thresholdLD=0.008, np=1L, verbose=TRUE, chr=1,
superPopMinAF=0.002, keepPrunedGDS=TRUE, pathProfileGDS=dataDir,
keepFile=FALSE, pathPrunedGDS=dataDir, outPrefix="test")

All GDS file must be closed
closefn.gds(gdsfile=gds1KG)

validateRunExomeOrRNAAncestry
Validate the parameters of the runExomeAncestry() function

Description

The function validates the input parameters for the runExomeAncestry function. When a parameter
is not as expected, an error message is generated.

206 validateRunExomeOrRNA Ancestry

Usage
validateRunExomeOrRNAAncestry(
pedStudy,
studyDF,
pathProfileGDS,
pathGeno,
pathOut,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource,
verbose
)
Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.
studyDF a data. frame containing the information about the study associated to the anal-

ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

pathProfileGDS a character string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated SNP-pileup file called "Name.ID.txt.gz".
The directory must exist.

pathOut a character string representing the path to the directory where the output files
are created.
fileReferenceGDS

a character string representing the file name of the Population Reference GDS
file. The file must exist.
fileReferenceAnnotGDS

a character string representing the file name of the Population Reference GDS
annotation file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ‘details’ section.

syntheticRefDF adata.frame containing those columns:

sample.id a character string representing the sample identifier.
pop.group a character string representing the subcontinental population as-
signed to the sample.
superPop acharacter string representing the super-population assigned to the
sample.
verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

validateRunExomeOrRNA Ancestry 207

Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

Path where the output file will be generated
pathOut <- file.path(dataDir, "example”, "res.out")

Study data frame

study <- data.frame(study.id = "MYDATA",
study.desc = "Description”,
study.platform = "PLATFORM",
stringsAsFactors = FALSE)

Population Reference GDS demo file
gdsRef <- file.path(dataDir, "PopulationReferenceDemo.gds")

gdsAnnotRef <- file.path(dataDir, "PopulationReferenceSNVAnnotationDemo.gds")

Pedigree Study data frame

ped <- data.frame(Name.ID=c("Sample_01", "Sample_02"),
Case.ID=c("TCGA-HO1", "TCGA-H02"),
Sample.Type=c("DNA", "DNA"),
Diagnosis=c("Cancer”, "Cancer"), Source=c("TCGA", "TCGA"))

Required library for this example to run correctly
if (requireNamespace("Seqginfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Profiles used for synthetic data set

syntheticRefDF <- data.frame(sample.id=c("HG0@150", "HGO®138", "HG0O330",
"HG@0275"), pop.group=c(”"GBR", "GBR","FIN", "FIN"),
superPop=c("EUR", "EUR", "EUR", "EUR"), stringsAsFactors=FALSE)

Returns OL when all parameters are valid

RAIDS: : :validateRunExomeOrRNAAncestry(pedStudy=ped, studyDF=study,
pathProfileGDS=dataDir, pathGeno=dataDir, pathOut=pathOut,
fileReferenceGDS=gdsRef, fileReferenceAnnotGDS=gdsAnnotRef,
chrinfo=chrinfo, syntheticRefDF=syntheticRefDF,
genoSource="snp-pileup”, verbose=FALSE)

208 validateStudyDataFrameParameter

validateSingleRatio Validate that the input parameter is a single positive numeric between
zero and one (included)

Description
This function validates that the input parameter is a single numeric between zero and one (included).
If the parameter is not, the function generates an error with a specific message.

Usage

validateSingleRatio(value, name)

Arguments

value a single positive numeric that will be validated.

name a character string that represents the name of the parameter that is tested.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

The validation should be successful
RAIDS: ::validateSingleRatio(value=0.02, name="test")

validateStudyDataFrameParameter
Validate that the study data set has the mandatory columns

Description

The function validates the input dtudy data set. The study data set must be a data. frame with those

mandatory columns: "studyID", "study.desc", "study.platform". All columns must be in character
strings (no factor).

Usage

validateStudyDataFrameParameter (studyDF)

Arguments

studyDF a data.frame containing the study information. The mandatory columns are:

"study.id", "study.desc", "study.platform". All columns must be in character
strings (no factor).

validateSyntheticGeno 209

Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Study data frame

study <- data.frame(study.id = "MYDATA",
study.desc = "Description”,
study.platform = "PLATFORM",
stringsAsFactors = FALSE)

Return OL when the study data set is valid
RAIDS: : :validateStudyDataFrameParameter (studyDF=study)

validateSyntheticGeno Validate input parameters for syntheticGeno() function

Description

This function validates the input parameters for the syntheticGeno() function.

Usage

validateSyntheticGeno(
gdsReference,
gdsRefAnnot,
fileProfileGDS,
profilelD,
listSampleRef,
nbSim,
prefix,
pRecomb,
minProb,
seqError

Arguments

gdsReference an object of class gds.class (a GDS file), the 1IKG GDS file.
gdsRefAnnot an object of class gds.class (a GDS file), thel 1KG SNV Annotation GDS file.

fileProfileGDS acharacter string representing the file name of the GDS Sample file containing
the information about the sample. The file must exist.

profileID a character string representing the unique identifier of the cancer sample.

listSampleRef a vector of character strings representing the sample identifiers of the 1KG
selected reference samples.

210 wrapperAncestry

nbSim a single positive integer representing the number of simulations that will be
generated per sample + 1KG reference combination.

prefix a character string that represent the prefix that will be added to the name of
the synthetic profiles generated by the function.

pRecomb a single positive numeric between 0 and 1 that represents the frequency of phase
switching in the synthetic profiles.

minProb a single positive numeric between O and 1 that represents the probability that
the genotype is correct.
seqError a single positive numeric between 0 and 1 representing the sequencing error
rate.
Value

The integer 0L when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

Directory where demo GDS files are located
dataDir <- system.file("extdata”, package="RAIDS")

The 1KG GDS file (opened)
gdsRef <- openfn.gds(file.path(dataDir,
"PopulationReferenceDemo.gds"), readonly=TRUE)

The 1KG GDS Annotation file (opened)
gdsRefAnnot <- openfn.gds(file.path(dataDir,
"PopulationReferenceSNVAnnotationDemo.gds"), readonly=TRUE)

The GDS Sample file
gdsSample <- file.path(dataDir, "GDS_Sample_with_study_demo.gds")

The validation should be successful

RAIDS: ::validateSyntheticGeno(gdsReference=gdsRef, gdsRefAnnot=gdsRefAnnot,
fileProfileGDS=gdsSample, profileID="A101TCGA",
listSampleRef="A101TCGA", nbSim=1L, prefix="TCGA", pRecomb=0.02,
minProb=0.999, seqError=0.002)

All GDS file must be closed
closefn.gds(gdsfile=gdsRef)
closefn.gds(gdsfile=gdsRefAnnot)

wrapperAncestry Run most steps leading to the ancestry inference call on a specific
profile (RNA or DNA)

wrapperAncestry

Description

211

This function runs most steps leading to the ancestry inference call on a specific profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population reference GDS file.

Usage

wrapperAncestry(

pedStudy,
studyDF,

pathProfileGDS,

profileFile,

fileReferenceGDS,
fileReferenceAnnotGDS,

chrinfo,

syntheticRefDF,
genoSource = c("snp-pileup”, "generic”, "VCF", "bam"),

studyType =
np = 1L,

blockTypelID =

c("LD", "GeneAware"),

NULL,

paramAncestry = list(ScanBamParam = NULL, PileupParam = NULL, yieldSize = 1e+07),
verbose = FALSE

)
Arguments

pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.

studyDF a data. frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

pathProfileGDS a character string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

fileReferenceGDS

a character string representing the file name of the Reference GDS file. The
file must exist.

fileReferenceAnnotGDS

chrinfo

syntheticRefDF

a character string representing the file name of the Reference GDS Annotation
file. The file must exist.

a vector of positive integer values representing the length of the chromo-
somes. See ’details’ section.

a data. frame containing a subset of reference profiles for each sub-population

present in the Reference GDS file. The data. frame must have those columns:

sample.id a character string representing the sample identifier.

pop.group a character string representing the subcontinental population as-
signed to the sample.

superPop a character string representing the super-population assigned to the
sample.

212

genoSource

studyType

np

blockTypelD

paramAncestry

verbose

pathGeno

Value

wrapperAncestry

a character string with two possible values: ’snp-pileup’, *generic’ or *"VCF’,
"bam". It specifies if the genotype files are generated by snp-pileup (Facets)
or are a generic format CSV file with at least those columns: ’Chromosome’,
"Position’, ’Ref’, ’Alt’, ’Count’, File1R’ and "File1A’. The *’Count’ is the depth
at the specified position; "FileR’ is the depth of the reference allele and "Filel A’
is the depth of the specific alternative allele. Finally the file can be a VCF file
with at least those genotype fields: GT, AD, DP.

a character string representing the type of study. The possible choices are:
"DNA" and "RNA". The type of study affects the way the estimation of the
allelic fraction is done. Default: "DNA".

a single positive integer specifying the number of threads to be used. Default:
1L.

a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

a list parameters ...

a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".

a list containing 4 entries:

pcaSample alist containing the information related to the eigenvectors. The 1ist contains those

3 entries:

sample.id acharacter string representing the unique identifier of the current profile.

eigenvector.ref a matrix of numeric containing the eigenvectors for the reference pro-

files.

eigenvector a matrix of numeric containing the eigenvectors for the current profile pro-
jected on the PCA from the reference profiles.

paraSample a list containing the results with different D and K values that lead to optimal param-
eter selection. The 1ist contains those entries:

dfPCA adata.frame containing statistical results on all combined synthetic results done with
a fixed value of D (the number of dimensions). The data. frame contains those columns:

D a numeric representing the value of D (the number of dimensions).

median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

mad a numeric representing the MAD of the minimum AUROC obtained (within super
populations) for all combination of the fixed D value and all tested K values.

upQuartile a numeric representing the upper quartile of the minimum AUROC ob-
tained (within super populations) for all combination of the fixed D value and all
tested K values.

k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.

wrapperAncestry 213

dfPop adata.frame containing statistical results on all combined synthetic results done with
different values of D (the number of dimensions) and K (the number of neighbors). The
data.frame contains those columns:

D a numeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).

AUROC.min a numeric representing the minimum accuracy obtained by grouping all the
synthetic results by super-populations, for the specified values of D and K.

AUROC a numeric representing the accuracy obtained by grouping all the synthetic results
for the specified values of D and K.

Accu.CM a numeric representing the value of accuracy of the confusion matrix obtained
by grouping all the synthetic results for the specified values of D and K.

dfAUROC a data.frame the summary of the results by super-population. The data.frame
contains those columns:

D anumeric representing the value of D (the number of dimensions).
K a numeric representing the value of K (the number of neighbors).
Call acharacter string representing the super-population.

L anumeric representing the lower value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

AUROC a numeric representing the AUROC obtained for the fixed values of super-population,
D and K.

H anumeric representing the higher value of the 95% confidence interval for the AUROC
obtained for the fixed values of super-population, D and K.

D a numeric representing the optimal D value (the number of dimensions) for the specific
profile.

K a numeric representing the optimal K value (the number of neighbors) for the specific pro-
file.

listD a numeric representing the optimal D values (the number of dimensions) for the spe-
cific profile. More than one D is possible.

KNNSample a data.frame containing the inferred ancestry for different values of K and D. The
data. frame contains those columns:
sample.id acharacter string representing the unique identifier of the current profile.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry for the specified D and K
values.

KNNSynthetic a data.frame containing the inferred ancestry for each synthetic data for differ-
ent values of K and D. The data. frame contains those columns: "sample.id", "D", "K", "in-

non

fer.superPop", "ref.superPop"

sample.id acharacter string representing the unique identifier of the current synthetic data.
D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.

infer.superPop a character string representing the inferred ancestry for the specified D
and K values.

ref.superPop a character string representing the known ancestry from the reference

Ancestry a data.frame containing the inferred ancestry for the current profile. The data. frame
contains those columns:

sample.id acharacter string representing the unique identifier of the current profile.

214 wrapperAncestry

D anumeric representing the value of D (the number of dimensions) used to infer the ancestry.
K a numeric representing the value of K (the number of neighbors) used to infer the ancestry.
SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

Required library for GDS
library(SNPRelate)

Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

S HEHHARHEHER AR HHEH R B AR RE R RHERRERE
Load the information about the profile

AR AR AR AR
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHHHHAREEEH R R A
The 1KG GDS file and the 1KG SNV Annotation GDS file

need to be located in the same directory

Note that the 1KG GDS file used for this example is a

simplified version and CANNOT be used for any real analysis
HEHHHHHHEHEEEH AR AR AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

S
The Sample SNP pileup files (one per sample) need

to be located in the same directory.
S
pathGeno <- file.path(dataDir, "example"”, "snpPileup”)

HEHHHHHHHEEE AR HEHPREERHH AR
The path where the Profile GDS Files (one per sample)

will be created need to be specified.

W HHHHHHHEE AR PR
pathProfileGDS <- file.path(tempdir(), "out.tmp")

HHHEHHARHEE R A
A data frame containing general information about the study

is also required. The data frame must have

those 3 columns: "studyID"”, "study.desc”, "study.platform”

wrapperAncestry 215

HEHHHHHHHEHEH AR AR AR

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

S
Fix seed to ensure reproducible results
S
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

Required library for this example to run correctly
if (requireNamespace("Seqginfo”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

Chromosome length information
chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- Seqinfo::seqglengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Not run:

res <- RAIDS:::wrapperAncestry(pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo, syntheticRefDF=dataRef,
studyType="LD", genoSource="snp-pileup”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)

End(Not run)
3

Index

x datasets

demoKnownSuperPop1KG, 71
demoPCA1KG, 72
demoPCASyntheticProfiles, 73
demoPedigreeEx1, 75
matKNNSynthetic, 120
pedSynthetic, 121
snpPositionDemo, 164

* internal

addBlockInGDSAnnot, 9
addGDS1KGLDBlock, 10
addGDSRef, 11
addGDSStudyPruning, 12
addStudyGDSSample, 20
addUpdateLap, 21
addUpdateSegment, 23
appendGDSgenotype, 24
appendGDSgenotypeMat, 26
appendGDSRefSample, 27
appendGDSSampleOnly, 29
calcAFMLRNA, 30
computeAlleleFraction, 31
computeAllelicFractionDNA, 32
computeAllelicFractionRNA, 34
computeAllelicImbDNAChr, 37
computelLOHBlocksDNAChr, 51
computePCARefRMMulti, 55
computeSyntheticConfMat, 61
createProfile, 66
extractNucleotide, 80

generateGDS1KGgenotypeFromSNPPileup,

82
generateGDSgenotype, 85
generateGDSRefSample, 86
generateGDSSNPinfo, 88
generateGeneBlock, 89
generateProfileGDS, 95
getBlockIDs, 97
getTableSNV, 101
prepPedSynthetic1KG, 124
processBlockChr, 127
processPileupChrBin, 128
profileAncestry, 129

216

pruning1KGbyChr, 134
RAIDS-package, 4
readSNVBAM, 139
readSNVFileGeneric, 140
readSNVPileupFile, 141
readSNVVCF, 142
runIBDKING, 146
runLDPruning, 147
runProfileAncestry, 149
runWrapperAncestry, 156
selParaPCAUpQuartile, 162
tableBlockAF, 170
testAlleleFractionChange, 171
testEmptyBox, 172
validateAccuracyGraphlnternal, 173
validateAdd1KG2SampleGDS, 174
validateAddStudyi1Kg, 175
validateCharacterString, 176
validateComputeAncestryFromSyntheticFile,
177
validateComputeKNNRefSample, 179
validateComputeKNNRefSynthetic
180
validateComputePCAMultiSynthetic,
182
validateComputePCARefSample, 183
validateComputePoolSyntheticAncestryGr,
184
validateComputeSyntheticRoc, 186
validateCreateAccuracyGraph, 187
validatecreateAUROCGraph, 188
validatecreateProfile, 189
validateCreateStudy2GDS1KG, 191
validateDataRefSynParameter, 193
validateEstimateAllelicFraction,
193
validateGDSClass, 196
validateGenerateGDS1KG, 196
validatelogical, 198
validatePEDStudyParameter, 199
validatePepSynthetic, 199
validatePositivelIntegerVector, 201
validatePrepPed1KG, 202

INDEX

validateProfileGDSExist, 203
validatePruningSample, 203
validateRunExomeOrRNAAncestry, 205
validateSingleRatio, 208
validateStudyDataFrameParameter,
208

validateSyntheticGeno, 209
wrapperAncestry, 210

x package
RAIDS-package, 4

add1KG2SampleGDS, 5, 174
addBlockFromDetFile, 7
addBlockInGDSAnnot, 9
addGDSTKGLDBlock, 10
addGDSRef, 11
addGDSStudyPruning, 12
addGeneBlockGDSRefAnnot, 14
addGeneBlockRefAnnot, 15
addRef2GDS1KG, 17
addStudy1Kg, 18, 175
addStudyGDSSample, 20
addUpdateLap, 21
addUpdateSegment, 23
appendGDSgenotype, 24
appendGDSgenotypeMat, 26
appendGDSRefSample, 27
appendGDSSampleOnly, 29

calcAFMLRNA, 30, 165
computeAlleleFraction, 31
computeAllelicFractionDNA, 32
computeAllelicFractionRNA, 34
computeAllelicImbDNAChr, 37
computeAncestryFromSynthetic, 39
computeAncestryFromSyntheticFile, 43,
177
computeKNNRefSample, 47, 179
computeKNNRefSynthetic, 49, 71, 74, 180
computelLOHBlocksDNAChr, 51
computePCAMultiSynthetic, 53, 72, 182
computePCARefRMMulti, 55
computePCARefSample, 57, 183
computePoolSyntheticAncestryGr, 58, 71,
184
computeSyntheticConfMat, 61
computeSyntheticROC, 62, 120-122
computeSyntheticROC(), /186
createAccuracyGraph, 5, 64, 173, 187, 188
createAUROCGraph, 65, 173
createProfile, 66
createStudy2GDS1KG, 68, 189, 191

217

demoKnownSuperPop1KG, 71
demoPCA1KG, 72
demoPCASyntheticProfiles, 73
demoPedigreeEx1, 75

estimateAllelicFraction, 77, 193
extractNucleotide, 80

gds.class, 6, 10, 12-14, 19, 20, 22-24, 26,
27,29, 32, 35,40, 44, 54, 57, 78, 85,
87-89, 92, 98, 99, 101, 130, 137,
150, 160, 166, 168, 174, 175, 177,
182, 183, 194, 196, 204, 209

gdsfmt::gds.class, 124

generateGDS1KG, 81, 196

generateGDST1KGgenotypeFromSNPPileup,
82

generateGDSgenotype, 85

generateGDSRefSample, 86

generateGDSSNPinfo, 88

generateGeneBlock, 89

generateMapSnvSel, 90

generatePhase1KG2GDS, 92

generatePhaseRef, 93

generateProfileGDS, 95

getBlockIDs, 97

getRef1KGPop, 99

getRefSuperPop, 100

getTableSNV, 101

groupChr1KGSNY, 103

identifyRelative, 104
identifyRelativeRef, 105
inferAncestry, 107
inferAncestryDNA, 111
inferAncestryGeneAware, 115

matkKNNSynthetic, 120

pedSynthetic, 121

prepPed1KG, 123, 202
prepPedSyntheticl1KG, 124
prepSynthetic, 125

prepSynthetic(), 199
processBlockChr, 127
processPileupChrBin, 128
profileAncestry, 129
pruning1KGbyChr, 134
pruningSample, 33, 35, 78, 101, 136, 194, 203

RAIDS (RAIDS-package), 4
RAIDS-package, 4
readSNVBAM, 139
readSNVFileGeneric, 140

218

readSNVPileupFile, 141
readSNVVCF, 142
runExomeAncestry, 5, 75, 143, 205
runIBDKING, 146
runLDPruning, 147
runProfileAncestry, 149
runkRNAAncestry, 153
runWrapperAncestry, 156

select1KGPop, 160
select1KGPopForSynthetic, 161
selParaPCAUpQuartile, 162
seqlengths, 78
SNPGDSFileClass, 55, 148
snpgdsIBDKING, /47
snpgdsLDpruning, 135-137, 147, 148, 204
snpgdsPCA, 40, 44, 45, 55-57, 59, 72, 178,
183,185
snpPositionDemo, 164
SNPRelate: : SNPGDSFileClass, 49, 51, 59,
104, 135, 146, 181, 185
SNPRelate: : snpgdsIBDKING, /46
snvListVCF, 166
splitSelectByPop, 167
syntheticGeno, 168
syntheticGeno(), 209

tableBlockAF, 165, 170
testAlleleFractionChange, 171
testEmptyBox, 172

validateAccuracyGraphInternal, 173
validateAdd1KG2SampleGDS, 174
validateAddStudyiKg, 175
validateCharacterString, 176
validateComputeAncestryFromSyntheticFile
177
validateComputeKNNRefSample, 179
validateComputeKNNRefSynthetic, 180
validateComputePCAMultiSynthetic, 182
validateComputePCARefSample, 183
validateComputePoolSyntheticAncestryGr,
184
validateComputeSyntheticRoc, 186
validateCreateAccuracyGraph, 187
validatecreateAUROCGraph, 188
validatecreateProfile, 189
validateCreateStudy2GDS1KG, 191
validateDataRefSynParameter, 193
validateEstimateAllelicFraction, 193
validateGDSClass, 196
validateGenerateGDS1KG, 196
validatelogical, 198

INDEX

validatePEDStudyParameter, 199
validatePepSynthetic, 199
validatePositivelIntegerVector, 201
validatePrepPed1KG, 202
validateProfileGDSExist, 203
validatePruningSample, 203
validateRunExomeOrRNAAncestry, 205
validateSingleRatio, 208
validateStudyDataFrameParameter, 208
validateSyntheticGeno, 209

wrapperAncestry, 210

	RAIDS-package
	add1KG2SampleGDS
	addBlockFromDetFile
	addBlockInGDSAnnot
	addGDS1KGLDBlock
	addGDSRef
	addGDSStudyPruning
	addGeneBlockGDSRefAnnot
	addGeneBlockRefAnnot
	addRef2GDS1KG
	addStudy1Kg
	addStudyGDSSample
	addUpdateLap
	addUpdateSegment
	appendGDSgenotype
	appendGDSgenotypeMat
	appendGDSRefSample
	appendGDSSampleOnly
	calcAFMLRNA
	computeAlleleFraction
	computeAllelicFractionDNA
	computeAllelicFractionRNA
	computeAllelicImbDNAChr
	computeAncestryFromSynthetic
	computeAncestryFromSyntheticFile
	computeKNNRefSample
	computeKNNRefSynthetic
	computeLOHBlocksDNAChr
	computePCAMultiSynthetic
	computePCARefRMMulti
	computePCARefSample
	computePoolSyntheticAncestryGr
	computeSyntheticConfMat
	computeSyntheticROC
	createAccuracyGraph
	createAUROCGraph
	createProfile
	createStudy2GDS1KG
	demoKnownSuperPop1KG
	demoPCA1KG
	demoPCASyntheticProfiles
	demoPedigreeEx1
	estimateAllelicFraction
	extractNucleotide
	generateGDS1KG
	generateGDS1KGgenotypeFromSNPPileup
	generateGDSgenotype
	generateGDSRefSample
	generateGDSSNPinfo
	generateGeneBlock
	generateMapSnvSel
	generatePhase1KG2GDS
	generatePhaseRef
	generateProfileGDS
	getBlockIDs
	getRef1KGPop
	getRefSuperPop
	getTableSNV
	groupChr1KGSNV
	identifyRelative
	identifyRelativeRef
	inferAncestry
	inferAncestryDNA
	inferAncestryGeneAware
	matKNNSynthetic
	pedSynthetic
	prepPed1KG
	prepPedSynthetic1KG
	prepSynthetic
	processBlockChr
	processPileupChrBin
	profileAncestry
	pruning1KGbyChr
	pruningSample
	readSNVBAM
	readSNVFileGeneric
	readSNVPileupFile
	readSNVVCF
	runExomeAncestry
	runIBDKING
	runLDPruning
	runProfileAncestry
	runRNAAncestry
	runWrapperAncestry
	select1KGPop
	select1KGPopForSynthetic
	selParaPCAUpQuartile
	snpPositionDemo
	snvListVCF
	splitSelectByPop
	syntheticGeno
	tableBlockAF
	testAlleleFractionChange
	testEmptyBox
	validateAccuracyGraphInternal
	validateAdd1KG2SampleGDS
	validateAddStudy1Kg
	validateCharacterString
	validateComputeAncestryFromSyntheticFile
	validateComputeKNNRefSample
	validateComputeKNNRefSynthetic
	validateComputePCAMultiSynthetic
	validateComputePCARefSample
	validateComputePoolSyntheticAncestryGr
	validateComputeSyntheticRoc
	validateCreateAccuracyGraph
	validatecreateAUROCGraph
	validatecreateProfile
	validateCreateStudy2GDS1KG
	validateDataRefSynParameter
	validateEstimateAllelicFraction
	validateGDSClass
	validateGenerateGDS1KG
	validateLogical
	validatePEDStudyParameter
	validatePepSynthetic
	validatePositiveIntegerVector
	validatePrepPed1KG
	validateProfileGDSExist
	validatePruningSample
	validateRunExomeOrRNAAncestry
	validateSingleRatio
	validateStudyDataFrameParameter
	validateSyntheticGeno
	wrapperAncestry
	Index

