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.peakRegionMask Peak Region Mask
Description

This function finds the mz region spanning by a peak. It creates an 0/1 matrix used for multiplica-
tions in other functions.

Usage
.peakRegionMask(x, p, k = 30L)

Arguments
X numeric, e.g. intensity values.
integer, indices of identified peaks/local maxima.
k integer(1): maximum number of values left and right of the peak that should
be looked for valleys.
Value

A matrix with a column for each peak in p and 2 * k + 1 rows where the middle row k + 1 is the
peak centroid. If the values is 1 the index belongs to the peak region.

Author(s)
Sebastian Gibb

See Also

Other extreme value functions: localMaxima(), refineCentroids(), valleys()

Examples

ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 2, 9, 12, 14, 13, 8, 3)
mzs <- seqg_along(ints)
peaks <- which(localMaxima(ints, hws = 3L))

m <- MsCoreUtils:::.peakRegionMask(ints, peaks, k = 5L)
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aggregate Aggreagate quantitative features

Description

These functions take a matrix of quantitative features x and aggregate the features (rows) according
to either a vector (or factor) INDEX or an adjacency matrix MAT. The aggregation method is defined
by function FUN.

Adjacency matrices are an elegant way to explicitly encode for shared peptides (see example below)
during aggregation.

Usage
colMeansMat(x, MAT, na.rm = FALSE)
colSumsMat(x, MAT, na.rm = FALSE)
aggregate_by_matrix(x, MAT, FUN, ...)

aggregate_by_vector(x, INDEX, FUN, ...)

Arguments

X A matrix of mode numeric or an HDF5Matrix object of type numeric.

MAT An adjacency matrix that defines peptide-protein relations with nrow(MAT) ==
nrow(x): a non-missing/non-null value at position (i,j) indicates that peptide i
belong to protein j. This matrix is tyically binary but can also contain weighted

relations.
na.rm A logical(1) indicating whether the missing values (including NaN) should
be omitted from the calculations or not. Defaults to FALSE.
FUN A function to be applied to the subsets of x.
Additional arguments passed to FUN.
INDEX A vector or factor of length nrow(x).
Value

aggregate_by_matrix() returns amatrix (or Matrix) of dimensions ncol (MAT) and ncol(x), with dim-
namesequal tocolnames(x)andrownames(MAT)".

aggregate_by_vector() returns a new matrix (if x is a matrix) or HDF5Matrix (if x is an
HDF5Matrix) of dimensions length (INDEX) and ncol(x), with dimnames equal tocolnames(x)andINDEX".

Vector-based aggregation functions

When aggregating with a vector/factor, user-defined functions must return a vector of length equal
to ncol (x) for each level in INDEX. Examples thereof are:

* medianPolish() to fits an additive model (two way decomposition) using Tukey’s median
polish procedure using stats: :medpolish();

* robustSummary () to calculate a robust aggregation using MASS: : rlm();
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¢ base::colMeans() to use the mean of each column;
e base::colSums() to use the sum of each column;

e matrixStats::colMedians() to use the median of each column.

Matrix-based aggregation functions

When aggregating with an adjacency matrix, user-defined functions must return a new matrix. Ex-
amples thereof are:

e colSumsMat(x, MAT) aggregates by the summing the peptide intensities for each protein.
Shared peptides are re-used multiple times.

* colMeansMat(x, MAT) aggregation by the calculating the mean of peptide intensities. Shared
peptides are re-used multiple times.

Handling missing values

By default, missing values in the quantitative data will propagate to the aggregated data. You
can provide na.rm = TRUE to most functions listed above to ignore missing values, except for
robustSummary () where you should supply na.action = na.omit (see ?MASS: : rlm).

Author(s)

Laurent Gatto and Samuel Wieczorek (aggregation from an adjacency matrix).

See Also

Other Quantitative feature aggregation: colCounts(), medianPolish(), robustSummary ()

Examples

x <- matrix(c(10.39, 17.16, 14.10, 12.85, 10.63, 7.52, 3.91,
11.13, 16.53, 14.17, 11.94, 11.51, 7.69, 3.97,
11.93, 15.37, 14.24, 11.21, 12.29, 9.00, 3.83,
12.90, 14.37, 14.16, 10.12, 13.33, 9.75, 3.81),
nrow = 7,
dimnames = list(paste@("Pep”, 1:7), paste@("Sample”, 1:4)))

R
## Aggregation by vector
H —mmmmmmmm oo

(k <- paste@("PFOt", C(”B”, nEuy "X”, ”E”, IIBIV’ ern’ "E")))

aggregate_by_vector(x, k, colMeans)
aggregate_by_vector(x, k, robustSummary)
aggregate_by_vector(x, k, medianPolish)

Hf —mmmm oo
## Aggregation by matrix
e
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nrow = 7,
dimnames = list(paste@("Pep”, 1:7),
pasted("Prot”, c("B”, "E”, "X"))))
adj

## Peptide 4 is shared by 2 proteins (has a rowSums of 2),
## namely proteins B and E
rowSums (adj)

aggregate_by_matrix(x, adj, colSumsMat)
aggregate_by_matrix(x, adj, colMeansMat)

# —mmm oo
## Missing values
# —mmmmmmmm oo

x <- matrix(c(NA, 2:6), ncol = 2,
dimnames = list(paste@("Pep", 1:3),
c("s1”, "S2")))

## simply use na.rm = TRUE to ignore missing values
## during the aggregation

(k <- LETTERS[c(1, 1, 2)D)
aggregate_by_vector(x, k, colSums)
aggregate_by_vector(x, k, colSums, na.rm = TRUE)

(adj <- matrix(c(1, 1, @, @, @, 1), ncol = 2,
dimnames = list(paste@("Pep", 1:3),
C("A”, HBII))))
aggregate_by_matrix(x, adj, colSumsMat, na.rm = FALSE)
aggregate_by_matrix(x, adj, colSumsMat, na.rm = TRUE)

between Range helper functions

Description

These functions help to work with numeric ranges.
Usage

between(x, range)

X %between% range

Arguments

X numeric, input values.

range numeric(2), range to compare against.
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Value

logical vector of length length(x).

Author(s)
Sebastian Gibb

See Also

Other helper functions for developers: isPeaksMatrix(), rbindFill(), validPeaksMatrix(),
vapplylc(), which.first()

Examples

between(1:4, 2:3)
1:4 %between% 2:3

bin Binning

Description

Aggregate values in x for bins defined on y: all values in x for values in y falling into a bin (defined
on y) are aggregated with the provided function FUN.

Usage
bin(
X ’
Y,
size = 1,
breaks = seq(floor(min(y)), ceiling(max(y)), by = size),
FUN = max,
returnMids = TRUE,
.check = TRUE
)
Arguments
X numeric with the values that should be aggregated/binned.
y numeric with same length than x with values to be used for the binning. y must
be increasingly sorted, or else an error will be thrown.
size numeric (1) with the size of a bin.
breaks numeric defining the breaks (bins). See breaks_ppm() to define breaks with
increasing size (depending on ppm).
FUN function to be used to aggregate values of x falling into the bins defined by
breaks. FUN is expected to return a numeric(1).
returnMids logical (1) whether the midpoints for the breaks should be returned in addition

to the binned (aggregated) values of x. Setting returnMids = FALSE might be
useful if the breaks are defined before hand and binning needs to be performed
on a large set of values (i.e. within a loop for multiple pairs of x and y values).
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.check logical(1) whether to check that y is an ordered vector. Setting .check =
FALSE will improve performance, provided you are sure that y is always ordered.

Value

Depending on the value of returnMids:

* returnMids = TRUE (the default): returns a 1ist with elements x (aggregated values of x) and
mids (the bin mid points).

* returnMids = FALSE: returns a numeric with just the binned values for x.

Author(s)

Johannes Rainer, Sebastian Gibb

See Also

Other grouping/matching functions: closest(), gnps()

Examples

## Define example intensities and m/z values
ints <- abs(rnorm(20, mean = 40))
mz <- seq(1:length(ints)) + rnorm(length(ints), sd = 0.001)

## Bin intensities by m/z bins with a bin size of 2
bin(ints, mz, size = 2)

## Repeat but summing up intensities instead of taking the max
bin(ints, mz, size = 2, FUN = sum)

## Get only the binned values without the bin mid points.
bin(ints, mz, size = 2, returnMids = FALSE)

breaks_ppm Sequence with increasing difference between elements

Description

breaks_ppm creates a sequence of numbers with increasing differences between them. Parameter
ppm defines the amount by which the difference between values increases. The value for an element
i+1 is calculated by adding size to the value of element i and in addition also the ppm(a, ppm),
where a is the value of the element i plus size. This iterative calculation is stopped once the value
of an element is larger than to. The last value in the result vector will thus not be equal to to (which
is in contrast to the base seq() function) but slightly higher.

A typical use case of this function would be to calculate breaks for the binning of m/z values of mass
spectra. This function allows to create m/z-relative bin sizes which better represents measurement
errors observed on certain mass spectrometry instruments.

Usage
breaks_ppm(from = 1, to = 1, by = 1, ppm = 0)
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Arguments
from numeric(1) with the value from which the sequence should start.
to numeric(1) defining the upper bound of the sequence. Note that the last value
of the result will not be equal to to but equal to the first number in the sequence
which is larger than this value.
by numeric(1) defining the constant part of the difference by which numbers should
increase.
ppm numeric(1) defining the variable part of the difference by which numbers should
increase (expressed in parts-per-million of the values).
Value

numeric with the sequence of values with increasing differences. The returned values include from
and to.
Author(s)

Johannes Rainer

Examples

res <- breaks_ppm(20, 50, by = 1, ppm = 50)
res

## difference between the values increases (by ppm)
diff(res)

closest Relaxed Value Matching

Description

These functions offer relaxed matching of one vector in another. In contrast to the similar match()
and %in% functions they just accept numeric arguments but have an additional tolerance argument
that allows relaxed matching.

Usage

closest(
X,
table,
tolerance = Inf,
ppm = @,
duplicates = c("keep”, "closest”, "remove"),
nomatch = NA_integer_,
.check = TRUE

common (
X!
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table,
tolerance = Inf,
ppm = @,
duplicates = c("keep”, "closest”, "remove"),
.check = TRUE

)

join(
X ’
Y,
tolerance = 0,
ppm = @,
type = c("outer”, "left”, "right”, "inner"),
.check = TRUE,

)

Arguments

X numeric, the values to be matched. In contrast to match() x has to be sorted in
increasing order and must not contain any NA.

table numeric, the values to be matched against. In contrast to match() table has to
be sorted in increasing order and must not contain any NA.

tolerance numeric, accepted tolerance. Could be of length one or the same length as x.

ppm numeric(1) representing a relative, value-specific parts-per-million (PPM) tol-
erance that is added to tolerance.

duplicates character (1), how to handle duplicated matches. Has to be one of c("keep”,
"closest"”, "remove"). No abbreviations allowed.

nomatch integer(1), if the difference between the value in x and table is larger than
tolerance nomatch is returned.

.check logical(1) turn off checks for increasingly sorted x and y. This should just
be done if it is ensured by other methods that x and y are sorted, see also
closest().

y numeric, the values to be joined. Should be sorted.

type character (1), defines how x and y should be joined. See details for join.
ignored.

Details

For closest/common the tolerance argument could be set to @ to get the same results as for
match()/%in%. If it is set to Inf (default) the index of the closest values is returned without any
restriction.

It is not guaranteed that there is a one-to-one matching for neither the x to table nor the table to
x matching.

If multiple elements in x match a single element in table all their corresponding indices are
returned if duplicates="keep” is set (default). This behaviour is identical to match(). For
duplicates="closest" just the closest element in x gets the corresponding index in table and
for duplicates="remove" all elements in x that match to the same element in table are set to
nomatch.
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If a single element in x matches multiple elements in table the closest is returned for duplicates="keep”
or duplicates="closest" (keeping multiple matches isn’t possible in this case because the return

value should be of the same length as x). If the differences between x and the corresponding matches

in table are identical the lower index (the smaller element in table) is returned. There is one ex-
ception: if the lower index is already returned for another x with a smaller difference to this index

the higher one is returned for duplicates = "closer” (but only if there is no other x that is closer

to the higher one). For duplicates="remove” all multiple matches are returned as nomatch as
above.

.checks = TRUE tests among other input validation checks for increasingly sorted x and table
arguments that are mandatory assumptions for the closest algorithm. These checks require to loop
through both vectors and compare each element against its precursor. Depending on the length and
distribution of x and table these checks take equal/more time than the whole closest algorithm. If
it is ensured by other methods that both arguments x and table are sorted the tests could be skipped
by .check = FALSE. In the case that .check = FALSE is used and one of x and table is not sorted
(or decreasingly sorted) the output would be incorrect in the best case and result in infinity loop in
the average and worst case.

join: joins two numeric vectors by mapping values in x with values in y and vice versa if they are
similar enough (provided the tolerance and ppm specified). The function returns a matrix with
the indices of mapped values in x and y. Parameter type allows to define how the vectors will be
joined: type = "left": values in x will be mapped to values in y, elements in y not matching any
value in x will be discarded. type = "right": same as type = "left"” but for y. type = "outer":
return matches for all values in x and in y. type = "inner": report only indices of values that could
be mapped.

Value

closest returns an integer vector of the same length as x giving the closest position in table of
the first match or nomatch if there is no match.

common returns a logical vector of length x that is TRUE if the element in x was found in table. It
is similar to %in%.

join returns a matrix with two columns, namely x and y, representing the index of the values in x
matching the corresponding value in y (or NA if the value does not match).

Note
joinisbased on closest(x, y, tolerance, duplicates = "closest"”). That means for multiple
matches just the closest one is reported.

Author(s)

Sebastian Gibb, Johannes Rainer

See Also
match()
%in%

Other grouping/matching functions: bin(), gnps()
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Examples

## Define two vectors to match
x <- c¢(1, 3, 5)
y <- 1:10

## Compare match and closest
match(x, y)
closest(x, y)

## If there is no exact match
X <-x + 0.1

match(x, y) # no match
closest(x, y)

## Some new values
x <= ¢c(1.11, 45.02, 556.45)
y <- c(3.01, 34.12, 45.021, 46.1, 556.449)

## Using a single tolerance value
closest(x, y, tolerance = 0.01)

## Using a value-specific tolerance accepting differences of 20 ppm
closest(x, y, ppm = 20)

## Same using 50 ppm

closest(x, y, ppm = 50)

## Sometimes multiple elements in “x~ match to ~table”
x <- c(1.6, 1.75, 1.8)

y <-1:2

closest(x, y, tolerance = 0.5)

closest(x, y, tolerance = 0.5, duplicates = "closest")
closest(x, y, tolerance = 0.5, duplicates = "remove")

## Are there any common values?
x <- c(1.6, 1.75, 1.8)
y <-1:2

common(x, y, tolerance = 0.5)
common(x, y, tolerance = 0.5, duplicates = "closest"”)
common(x, y, tolerance = 0.5, duplicates = "remove")

## Join two vectors
x <- c(1, 2, 3, 6)
y <-¢c(3, 4,5,6,7)

jo <- join(x, y, type = "outer™)
jo

x[jo$x]

y[josy]

jl <- join(x, y, type = "left")
jl

x[31$x]

y[jlsy]

jr <= join(x, y, type = "right")
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jr
x[jr$x]
yLirsyl

ji <- join(x, y, type = "inner")
ji

x[jis$x]

y[jisy]

coerce Coerce functions

Description

e asInteger: convert X to an integer and throw an error if x is not a numeric.

Usage

asInteger(x)

Arguments

X input argument.

Author(s)

Johannes Rainer

Examples

## Convert numeric to integer
asInteger(3.4)

asInteger(3)

colCounts Counts the number of features

Description

Returns the number of non-NA features in a features by sample matrix.

Usage
colCounts(x, ...)
Arguments
X A matrix of mode numeric.

Currently ignored.
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Value

A numeric vector of length identical to ncol(x).

Author(s)

Laurent Gatto

See Also

Other Quantitative feature aggregation: aggregate(), medianPolish(), robustSummary ()

Examples

m <- matrix(c(1, NA, 2, 3, NA, NA, 4, 5 6),

nrow = 3)
colCounts(m)
m <- matrix(rnorm(30), nrow = 3)
colCounts(m)
common_path Extract the common file path

Description

Find the common part of the path up to a provided set of files. Be aware that the last element (after
the last file separator) is treated as a file. Thus, if only directories, without files are submitted, the
common path containing these directories is returned.

Usage

common_path(x, fsep = .Platform$file.sep)

Arguments
X character with the file names (including paths).
fsep character (1) defining the file separator to be used in the returned common
path. Defaults to the system platform’s file separator.
Value

character (1) representing the path common to all files in x.

Note
This function uses " (\\\\) | /" to split the provided paths into the individual directories to support
both Windows-specific and unix-specific separators between folders. File and folder names should
thus not contain these characters.

Author(s)

Johannes Rainer
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Examples

## Find the common part of the file path
pths <- c("/tmp/some/dir/a.txt", "/tmp/some/dir/b.txt",
"/tmp/some/other/dir/c.txt", "/tmp/some/other/dir/d.txt")

common_path(pths)

## If there is no common part
common_path(c("/a/b", "b"))

## Windows paths; note that "/" is used as file separator in the result
common_path(c("C:\\some\\path\\a.txt"”, "C:\\some\\path\\b.txt"))

## No input
common_path(character())

## No path
common_path(c("a.txt”, "b.txt"))

## Same path for all
common_path(c("a/a.txt", "a/a.txt"))

distance Spectra Distance/Similarity Measurements

Description

These functions provide different normalized similariy/distance measurements.

Usage
ndotproduct(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)
dotproduct(x, y, m = 0L, n = @.5, na.rm = TRUE, ...)
neuclidean(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)
navdist(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)
nspectraangle(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)
Arguments
matrix, two-columns e.g. m/z, intensity
matrix, two-columns e.g. m/z, intensity
numeric, weighting for the first column of x and y (e.g. "mz"), default: @ means
don’t weight by the first column. For more details see the ndotproduct details
section.
n numeric, weighting for the second column of x and y (e.g. "intensity"), default:
0.5 means effectly using sqrt(x[,2]) and sqrt(y[,2]). For more details see
the ndotproduct details section.
na.rm logical(1), should NA be removed prior to calculation (default TRUE).

ignored.
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Details

All functions that calculate normalized similarity/distance measurements are prefixed with a n.

ndotproduct: the normalized dot product is described in Stein and Scott 1994 as: NDP =

EX%:VE)#%; where W; = 2™ % y", where z and y are the m/z and intensity values, respec-
tively. Please note also that NDP = N Cos?; where NCos is the cosine value (i.e. the orthodox
normalized dot product) of the intensity vectors as described in Yilmaz et al. 2017. Stein and Scott
1994 empirically determined the optimal exponents as m= 3 and n = @.6 by analyzing ca. 12000
EI-MS data of 8000 organic compounds in the NIST Mass Spectral Library. MassBank (Horai et
al. 2010) uses m = 2 and n = @. 5 for small compounds. In general with increasing values for m, high
m/z values will be taken more into account for similarity calculation. Especially when working
with small molecules, a value m > @ can be set to give a weight on the m/z values to accommodate
that shared fragments with higher m/z are less likely and will mean that molecules might be more
similar. Increasing n will result in a higher importance of the intensity values. Most commonly m =
@ and n = 0.5 are used.

neuclidean: the 2normalized euclidean distance is described in Stein and Scott 1994 as: NED =
(14 %)_1; where W; = 2™ x y", where x and y are the m/z and intensity values,
respectively. See the details section about ndotproduct for an explanation how to set m and n.

navdist: the normalized absolute values distance is described in Stein and Scott 1994 as: NED =
1+ M)’l; where W; = 2™ % y™, where = and y are the m/z and intensity values,

sum((W2)) . . .
respectively. See the details section about ndotproduct for an explanation how to set m and n.

nspectraangle: the normalized spectra angle is described in Toprak et al 2014 as: NSA = 1 —
—1

M; where W; = 2™ xy™, where x and y are the m/z and intensity values, respectively.

The weighting was not originally proposed by Toprak et al. 2014. See the details section about

ndotproduct for an explanation how to set m and n.

Value

double (1) value between @: 1, where 0 is completely different and 1 identically.

Note

These methods are implemented as described in Stein and Scott 1994 (navdist, ndotproduct,
neuclidean) and Toprak et al. 2014 (nspectraangle) but because there is no reference imple-
mentation available we are unable to guarantee that the results are identical. Note that the Stein
and Scott 1994 normalized dot product method (and by extension ndotproduct) corresponds to the
square of the orthodox normalized dot product (or cosine distance) used also commonly as spec-
trum similarity measure (Yilmaz et al. 2017). Please see also the corresponding discussion at the
github pull request linked below. If you find any problems or reference implementation please open
an issue at https://github.com/rformassspectrometry/MsCoreUtils/issues.

Author(s)

navdist, neuclidean, nspectraangle: Sebastian Gibb

ndotproduct: Sebastian Gibb and Thomas Naake, <thomasnaake@googlemail .com>
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https://github.com/rformassspectrometry/MsCoreUtils/issues
https://doi.org/10.1016/1044-0305%2894%2987009-8
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Yilmaz, S., Vandermarliere, E., and Lennart Martens (2017). Methods to Calculate Spectrum Sim-
ilarity. In S. Keerthikumar and S. Mathivanan (eds.), Proteome Bioinformatics: Methods in Molec-
ular Biology, vol. 1549 (pp. 81). doi:10.1007/9781493967407_7.

Horai et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences.
Journal of mass spectrometry, 45(7), 703—714. doi:10.1002/jms.1777.

Toprak et al. (2014). Conserved peptide fragmentation as a benchmarking tool for mass spectrome-
ters and a discriminating feature for targeted proteomics. Molecular & Cellular Proteomics : MCP,
13(8), 2056-2071. doi:10.1074/mcp.0113.036475.

Pull Request for these distance/similarity measurements: https://github.com/rformassspectrometry/
MsCoreUtils/pull/33

See Also

Other distance/similarity functions: gnps()

Examples

x <- matrix(c(1:5, 1:5), ncol
y <- matrix(c(1:5, 5:1), ncol

2, dimnames
2, dimnames

list(c(), c("mz", "intensity")))
list(c(), c("mz", "intensity")))

ndotproduct(x, y)

ndotproduct(x, y, m =2, n = 0.5)
ndotproduct(x, y, m = 3, n = 0.6)
neuclidean(x, y)
navdist(x, y)
nspectraangle(x, y)

entropy Spectral entropy

Description

These functions allow to calculate entropy measurements of an MS/MS spectrum based on the

metrics suggested by Li et al. (https://doi.org/10.1038/s41592-021-01331-z). Spectral entropy and

normalized entropy are used to measure the complexity of an spectra. MassBank of North America

(MoNA) defines spectra entropy as the intensity weighted spectral peak number (https://mona.fiehnlab.ucdavis.edu/docun
Additionally it is suggested to consider spectra with a normalized entropy larger than 0.8, or a spec-

tral entropy larger than 3 as low-quality spectra.

Usage

entropy(x)

nentropy (x)

Arguments

X numeric, intensities of the fragment ions.


https://doi.org/10.1007/978-1-4939-6740-7_7
https://doi.org/10.1002/jms.1777
https://doi.org/10.1074/mcp.O113.036475
https://github.com/rformassspectrometry/MsCoreUtils/pull/33
https://github.com/rformassspectrometry/MsCoreUtils/pull/33

18 estimateBaseline

Value

numeric: (normalized) entropy of x.

Author(s)

Mar Garcia-Aloy
Examples
spectrum <- rbind(c(41.04, 37.16), c(69.07, 66.83), c(86.1, 999.0))

entropy(spectruml,2])
nentropy(spectrum[,2])

estimateBaseline Estimates the Baseline of a Mass Spectrum

Description

This function estimates the the baseline of mass spectrometry data, represented by numeric vectors
of masses and intensities of identical lengths.

Usage

estimateBaseline(
X’

Y,
method = c(”"SNIP”, "TopHat"”, "ConvexHull”, "median"),

estimateBaselineConvexHull(x, y)
estimateBaselineMedian(x, y, halfWindowSize = 100L)
estimateBaselineSnip(x, y, iterations = 100L, decreasing = TRUE)

estimateBaselineTopHat(x, y, halfWindowSize = 100L)

Arguments
X numeric() vector of masses.
y numeric() vector of intensities.
method character (1) specifying the estimation method. One of "SNIP" (default),

"TopHat", "ConvexHull"” or "median”. See details below.
Additional parameters passed to the respective functions.

halfWindowSize integer() defining the half window size. Default is 100L. The resulting win-
dow reaches from x[cur_index - halfWindowSize] to x[cur_index + halfWindowSize].
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iterations integer() controling the window size (k, similar to halfWindowSize in "TopHat",
"median”) of the algorithm. The resulting window reaches from x[cur_index
- iterations] to x[cur_index + iterations].

decreasing logical(1) whether the cliping window should be decreasing, as defined in
Morhac (2009). A decreasing clipping window is suggested to get a smoother
baseline. For TRUE (FALSE) k=iterations is decreased (increased) by one until
zero (iterations) is reached. The default setting is decreasing = TRUE.

Details

e SNIP: This baseline estimation is based on the Statistics-sensitive Non-linear Iterative Peak-
clipping algorithm (SNIP) described in Ryan et al 1988.

The algorithm based on the following equation:

(Yi—r + yz+k)}

yi(k) = min{y;, 5

It has two additional arguments namely an integer iterations and a logical decreasing.

» TopHat: This algorithm applies a moving minimum (erosion filter) and subsequently a moving
maximum (dilation filter) filter on the intensity values. The implementation is based on van
Herk (1996). It has an additional halfWindowSize argument determining the half size of the
moving window for the TopHat filter.

» ConvexHull: The baseline estimation is based on a convex hull constructed below the spec-
trum.

* Median: This baseline estimation uses a moving median. It is based on stats: :runmed().
The additional argument halfWindowSize corresponds to the k argument in stats: : runmed ()
(k =2 * halfWindowSize + 1) and controls the half size of the moving window.

Value

numeric() with estimated baseline intensities.

Author(s)
Sebastian Gibb

References

These functions have been ported from the MALDIqaunt package.
SNIP:

* C.G. Ryan, E. Clayton, W.L. Griffin, S.H. Sie, and D.R. Cousens (1988). Snip, a statistics-
sensitive background treatment for the quantitative analysis of pixe spectra in geoscience ap-
plications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interac-
tions with Materials and Atoms, 34(3): 396-402.

* M. Morhac (2009). An algorithm for determination of peak regions and baseline elimina-
tion in spectroscopic data. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 600(2), 478-487.

TopHat:

* M. van Herk (1992). A Fast Algorithm for Local Minimum and Maximum Filters on Rectan-
gular and Octagonal Kernels. Pattern Recognition Letters 13.7: 517-521.


https://strimmerlab.github.io/software/maldiquant/

20

estimateBaseline

* J. Y. Gil and M. Werman (1996). Computing 2-Dimensional Min, Median and Max Filters.

IEEE Transactions: 504-507.

ConvexHull:

* Andrew, A. M. (1979). Another efficient algorithm for convex hulls in two dimensions. Infor-

mation Processing Letters, 9(5), 216-219.

Examples

## -
## Simulation example data

nmz <- 5000

mz <- seq(1000, length.out = nmz)
## create peaks

center <- seq(50, nmz, by = 500)

peaks <- lapply(center, function(cc)1000 * dpois(0:100, (1000 + cc) / 75))

## create baseline

intensity <- 100 * exp(-seg_len(nmz)/2000)

## add peaks to baseline

for (i in seq(along = center)) {

intensity[center[i]: (center[i] + 100)] <-
intensity[center[i]: (center[i] + 100)] + peaks[[i]]

}

## add noise

intensity <- intensity + rnorm(nmz, mean = @, sd = 1)

plot(mz, intensity, type = "1")

e

## SNIP baseline

base_SNIP <- estimateBaseline(mz, intensity,
method = "SNIP",
iterations = 20L)

## same as estimateBaselineSnip(mz, intensity, iterations

lines(mz, base_SNIP, col = "red")

e

## TopHat baseline

base_TH25 <- estimateBaseline(mz, intensity,
method = "TopHat",
halfWindowSize = 25L)

## same as estimateBaselineTopHat(mz, intenstity, halfWindowSize

lines(mz, base_TH25, col = "blue")

base_TH15 <- estimateBaseline(mz, intensity,
method = "TopHat",
halfWindowSize = 15L)
lines(mz, base_TH15, col = "steelblue")

#H# -
## Convex hull baseline
base_CH <- estimateBaseline(mz, intensity,

method = "ConvexHull")
## same as estimateBaselineConvexHull(mz, intensity)
lines(mz, base_CH, col = "green")
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e e
## Median baseline
base_med <- estimateBaseline(mz, intensity,

method = "median”)
## same as estimateBaselineMedian(mz, intensity)
lines(mz, base_med, col = "orange")

legend("topright”, 1lwd = 1,
legend = c("SNIP”, "TopHat (hws = 25)",
"TopHat (hws = 15)",

"ConvexHull"”, "Median"),
col = c("red”, "blue”, "steelblue”,
"green”, "orange"))
force_sorted Forcing a numeric vector into a monotonously increasing sequence.

Description

This function performs interpolation on the non-increasing parts of a numeric input vector to ensure
its values are monotonously increasing. If the values are non-increasing at the end of the vector,
these values will be replaced by a sequence of numeric values, starting from the last increasing
value in the input vector, and increasing by a very small value, which can be defined with parameter
by

Usage

force_sorted(x, by = .Machine$double.eps)

Arguments
X numeric vector.
by numeric(1) value that will determine the monotonous increase in case the val-
ues at the end of the vector are non-increasing and therefore interpolation would
not be possible. Defaults to by = .Machine$double.eps which is the smallest
positive floating-point number x such that 1 + x !=1.
Value

A vector with continuously increasing values.

Note

NA values will not be replaced and be returned as-is.

Examples

x <= c(NA, NA, NA, 1.2, 1.1, 1.14, 1.2, 1.3, NA, 1.04, 1.4, 1.6, NA, NA)
y <- force_sorted(x)
is.unsorted(y, na.rm = TRUE)

## Vector non increasing at the end
x <= c(1, 2, 1.5, 2)
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y <- force_sorted(x, by = 0.1)
is.unsorted(y, na.rm = TRUE)

## We can see the values were not interpolated but rather replaced by the
## last increasing value “2° and increasing by 0.1.
y

gnps GNPS spectrum similarity scores

Description

The join_gnps and gnps functions allow to calculate spectra similarity scores as used in GNPS.
The approach matches first peaks between the two spectra directly using a user-defined ppm and/or
tolerance as well as using a fixed delta m/z (considering the same ppm and tolerance) that is defined
by the difference of the two spectras’ precursor m/z values. For peaks that match multiple peaks in
the other spectrum only the matching peak pair with the higher value/similarity is considered in the
final similarity score calculation. Note that GNPS similarity scores are calculated only if the two
functions are used together.

* join_gnps: matches/maps peaks between spectra with the same approach as in GNPS: peaks
are considered matching if a) the difference in their m/z values is smaller than defined by
tolerance and ppm (this is the same as joinPeaks) and b) the difference of their m/z adjusted
for the difference of the spectras’ precursor is smaller than defined by tolerance and ppm.
Based on this definition, peaks in x can match up to two peaks in y hence returned peak indices
might be duplicated. Note that if one of xPrecursorMz or yPrecursorMz are NA or if both are
the same, the results are the same as with join(). The function returns a 1ist of two integer
vectors with the indices of the peaks matching peaks in the other spectrum or NA otherwise.

* gnps: calculates the GNPS similarity score on peak matrices’ previously aligned (matched)
with join_gnps. For multi-mapping peaks the pair with the higher similarity are considered
in the final score calculation.

Usage
gnps(x, y, ...)
join_gnps(
X,
Y,

xPrecursorMz = NA_real_,
yPrecursorMz = NA_real_,
tolerance = 0,

ppm = @,

type = "outer”,


https://gnps.ucsd.edu/
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Arguments
X for join_gnps: numeric with m/z values from a spectrum. For gnps: matrix
with two columns "mz"” and "intensity"” containing the peaks aligned with
peaks in y (with join_gnps).
y for join_gnps: numeric with m/z values from a spectrum. For gnps: matrix

with two columns "mz"” and "intensity"” containing the peaks aligned with
peaks in x (with join_gnps).

for join_gnps: optional parameters passed to the join() function. For gnps:
ignored.

xPrecursorMz for join_gnps: numeric(1) with the precursor m/z of the spectrum x.
yPrecursorMz for join_gnps: numeric(1) with the precursor m/z of the spectrum y.

tolerance for join_gnps: numeric(1) defining a constant maximal accepted difference
between m/z values of peaks from the two spectra to be matched/mapped.

ppm for join_gnps: numeric(1) defining a relative, m/z-dependent, maximal ac-
cepted difference between m/z values of peaks from the two spectra to be matched/mapped.

type for join_gnps: character (1) specifying the type of join that should be per-
formed. See join() for details and options. Defaults to type = "outer”.
Details

The implementation of gnps bases on the R code from the publication listed in the references.

Value

See function definition in the description section.

Author(s)

Johannes Rainer, Michael Witting, based on the code from Xing et al. (2020).

References

Xing S, Hu Y, Yin Z, Liu M, Tang X, Fang M, Huan T. Retrieving and Utilizing Hypothetical Neu-
tral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite
Annotation. Anal Chem. 2020 Nov 3;92(21):14476-14483. doi:10.1021/acs.analchem.0c02521.

See Also

Other grouping/matching functions: bin(), closest()

Other distance/similarity functions: distance

Examples

## Define spectra

x <= cbind(mz = c(10, 36, 63, 91, 93), intensity = c(14, 15, 999, 650, 1))
y <- cbind(mz = c(10, 12, 50, 63, 105), intensity = c(35, 5, 16, 999, 450))
## The precursor m/z

pmz_x <- 91

pmz_y <- 105

## Plain join identifies only 2 matching peaks


https://doi.org/10.1021/acs.analchem.0c02521
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join(xC, 11, y[, 11)

## join_gnps finds 4 matches
join_gnps(x[, 11, y[, 11, pmz_x, pmz_y)

## with one of the two precursor m/z being NA, the result are the same as
## with join.
join_gnps(x[, 11, y[, 11, pmz_x, yPrecursorMz = NA)

## Calculate GNPS similarity score:
map <- join_gnps(x[, 11, y[, 11, pmz_x, pmz_y)
gnps(x[map[[11], 1, y[map[[2]1]1, 1)

group Grouping of numeric values by similarity

Description

The group function groups numeric values by first ordering and then putting all values into the
same group if their difference is smaller defined by parameters tolerance (a constant value) and
ppm (a value-specific relative value expressed in parts-per-million).

Usage

group(x, tolerance = @, ppm = 0)

Arguments
X increasingly ordered numeric with the values to be grouped.
tolerance numeric(1) with the maximal accepted difference between values in x to be
grouped into the same entity.
ppm numeric(1) defining a value-dependent maximal accepted difference between
values in x expressed in parts-per-million.
Value

integer of length equal to x with the groups.

Note

Since grouping is performed on pairwise differences between consecutive values (after ordering x),
the difference between the smallest and largest value in a group can be larger than tolerance and

ppm.

Author(s)

Johannes Rainer, Sebastin Gibb
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Examples

## Define a (sorted) numeric vector
x <- c(34, 35, 35, 35 + ppm(35, 10), 56, 56.05, 56.1)

## With “ppm = @ and ~tolerance = @~ only identical values are grouped
group(x)

## With ~tolerance = 0.05°
group(x, tolerance = 0.05)

## Also values 56, 56.05 and 56.1 were grouped into a single group,

## although the difference between the smallest 56 and largest value in
## this group (56.1) is 0.1. The (pairwise) difference between the ordered
## values is however 0.05.

## With ppm

group(x, ppm = 10)

## Same on an unsorted vector

x <- c(65, 34, 65.1, 35, 66, 65.2)

group(x, tolerance = 0.1)

## Values 65, 65.1 and 65.2 have been grouped into the same group.

i2index Input parameter check for subsetting operations

Description

i2index is a simple helper function to be used in subsetting functions. It checks and converts the
parameter i, which can be of type integer, logical or character to integer vector that can be
used as index for subsetting.

Usage

i2index(i, length = length(i), names = NULL)

Arguments
i character logical or integer used in [i] for subsetting.
length integer representing the length of the object to be subsetted.
names character with the names (rownames or similar) of the object. This is only
required if i is of type character.
Value

integer with the indices

Author(s)

Johannes Rainer
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Examples

## With ~i~ being an “integer”
i2index(c(4, 1, 3), length = 10)

## With i~ being a “logical"
i2index(c(TRUE, FALSE, FALSE, TRUE, FALSE), length = 5)

## With ~i~ being a “character-
i2index(c("b”, "a”, "d"), length = 5, names = c("a”, "b", "c", "d", "e"))

impute_matrix Quantitative mass spectrometry data imputation

Description

The impute_matrix function performs data imputation on matrix objects instance using a variety
of methods (see below).

Users should proceed with care when imputing data and take precautions to assure that the impu-
tation produces valid results, in particular with naive imputations such as replacing missing values
with 0.

Usage
impute_matrix(x, method, FUN, ...)

imputeMethods ()

min(x, na.rm = TRUE), MARGIN = 1L)

impute_neighbour_average(x, k

impute_knn(x, MARGIN = 1L, ...)

impute_mle(x, MARGIN = 2L, ...)

impute_bpca(x, MARGIN = 1L, ...)

impute_RF(x, MARGIN = 2L, ...)

impute_mixed(x, randna, mar, mnar, MARGIN = 1L, ...)

impute_min(x)

impute_MinDet(x, g = ©0.01, MARGIN = 2L)

impute_MinProb(x, q = ©0.01, sigma = 1, MARGIN = 2L)
impute_QRILC(x, sigma = 1, MARGIN = 2L)
impute_zero(x)

impute_with(x, val)
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impute_fun(x, FUN, MARGIN = 1L, ...)
getImputeMargin(fun)
Arguments
X A matrix or an HDF5Matrix object to be imputed.
method character (1) defining the imputation method. See imputeMethods () for avail-
able ones.
FUN A user-provided function that takes a matrix as input and returns an imputed

matrix of identical dimensions.
Additional parameters passed to the inner imputation function.

k numeric(1) providing the imputation value used for the first and last samples if
they contain an NA. The default is to use the smallest value in the data.

MARGIN integer (1) defining the margin along which to apply imputation, with 1L for
rows and 2L for columns. The default value will depend on the imputation
method. Use getImputeMargin(fun) to get the default margin of imputation
function fun. If the function doesn’t take a margin argument, NA is returned.

randna logical of length equal to nrow(object) defining which rows are missing at
random. The other ones are considered missing not at random. Only relevant
when methods is mixed.

mar Imputation method for values missing at random. See method above.

mnar Imputation method for values missing not at random. See method above.

q numeric(1) indicating the quantile to be used to estimate the minimum in
MinDet and MinProb. Default is 0.01.

sigma numeric(1) controling the standard deviation of the MNAR distribution in MinProb
and QRILC. Default is 1.

val numeric(1) used to replace all missing values.

fun The imputation function to get the default margin from.

Value

A matrix of same class as x with dimensions dim(x).

Types of missing values
There are two types of mechanisms resulting in missing values in LC/MSMS experiments.

* Missing values resulting from absence of detection of a feature, despite ions being present at
detectable concentrations. For example in the case of ion suppression or as a result from the
stochastic, data-dependent nature of the DDA MS acquisition method. These missing value
are expected to be randomly distributed in the data and are defined, in statistical terms, as
missing at random (MAR) or missing completely at random (MCAR).

* Biologically relevant missing values resulting from the absence or the low abundance of ions
(i.e. below the limit of detection of the instrument). These missing values are not expected to
be randomly distributed in the data and are defined as missing not at random (MNAR).

MNAR features should ideally be imputed with a left-censor method, such as QRILC below. Con-
versely, it is recommended to use hot deck methods such nearest neighbours, Bayesian missing
value imputation or maximum likelihood methods when values are missing at random.
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Imputing by rows or columns

We assume that the input matrix x contains features along the rows and samples along the columns,
as is generally the case in omics data analysis. When performing imputation, the missing values are
taken as a feature-specific property: feature x is missing because it is absent (in a sample or group),
or because it was missed during acquisition (not selected during data dependent acquisition) or data
processing (not identified or with an identification score below a chosen false discovery threshold).
As such, imputation is by default performed at the feature level. In some cases, such as imputation
by zero or a global minimum value, it doesn’t matter. In other cases, it does matter very much, such
as for example when using the minimum value computed for each margin (i.e. row or column) as in
the MinDet method (see below) - do we want to use the minimum of the sample or of that feature?
KNN is another such example: do we consider the most similar features to impute a feature with
missing values, or the most similar samples to impute all missing in a sample.

The MARGIN argument can be used to change the imputation margin from features/rows (MARGIN =
1) to samples/columns (MARGIN = 2). Different imputations will have different default values, and
changing this parameter can have a major impact on imputation results and downstream results.

Imputation methods

Currently, the following imputation methods are available.

* MLE: Maximum likelihood-based imputation method using the EM algorithm. The impute_mle()

function relies on norm: : imp.norm(). function. See norm: :imp.norm() for details and ad-
ditional parameters. Note that here, . .. are passed to the norm: :em.norm() function, rather
to the actual imputation function imp.norm.

* bpca: Bayesian missing value imputation are available, as implemented in the pcaMethods: : pca()

function. See pcaMethods: :pca() for details and additional parameters.

* RF: Random Forest imputation, as implemented in the missForest: :missForest function.
See missForest: :missForest()] for details and additional parameters.

* knn: Nearest neighbour averaging, as implemented in the impute: : impute.knn function. See
impute::impute.knn()] for details and additional parameters.

* QRILC: A missing data imputation method that performs the imputation of left-censored
missing data using random draws from a truncated distribution with parameters estimated us-
ing quantile regression. The impute_QRILC() function calls imputeLCMD: : impute.QRILC()
from the imputelLCMD package.

* MinDet: Performs the imputation of left-censored missing data using a deterministic minimal
value approach. Considering a expression data with n samples and p features, for each sample,
the missing entries are replaced with a minimal value observed in that sample. The minimal
value observed is estimated as being the g-th quantile (default q = @.01) of the observed val-
ues in that sample. The implementation in based on the imputeLCMD: : impute.MinDet ()
function.

* MinProb: Performs the imputation of left-censored missing data by random draws from a
Gaussian distribution centred to a minimal value. Considering an expression data matrix with
n samples and p features, for each sample, the mean value of the Gaussian distribution is
set to a minimal observed value in that sample. The minimal value observed is estimated as
being the g-th quantile (default q = @.01) of the observed values in that sample. The standard
deviation is estimated as the median of the feature (or sample) standard deviations. Note that
when estimating the standard deviation of the Gaussian distribution, only the peptides/proteins
which present more than 50\ values are considered. The impute_MinProb() function calls
imputeLCMD: : impute.MinProb() from the imputeLCMD package.

» min: Replaces the missing values with the smallest non-missing value in the data.
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* zero: Replaces the missing values with 0.

* mixed: A mixed imputation applying two methods (to be defined by the user as mar for val-
ues missing at random and mnar for values missing not at random, see example) on two
MCAR/MNAR subsets of the data (as defined by the user by a randna logical, of length
equal to nrow(object)).

» nbavg: Average neighbour imputation for fractions collected along a fractionation/separation

gradient, such as sub-cellular fractions. The method assumes that the fraction are ordered
along the gradient and is invalid otherwise.
Continuous sets NA value at the beginning and the end of the quantitation vectors are set to the
lowest observed value in the data or to a user defined value passed as argument k. Then, when
a missing value is flanked by two non-missing neighbouring values, it is imputed by the mean
of its direct neighbours.

 with: Replaces all missing values with a user-provided value.

* none: No imputation is performed and the missing values are left untouched. Implemented
in case one wants to only impute value missing at random or not at random with the mixed
method.

The imputeMethods () function returns a vector with valid imputation method names. Use getImputeMargin()
to get the default margin for each imputation function.

Author(s)

Laurent Gatto

References

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays Bioin-
formatics (2001) 17 (6): 520-525.

Oba et al., A Bayesian missing value estimation method for gene expression profile data, Bioinfor-
matics (2003) 19 (16): 2088-2096.

Cosmin Lazar (2015). imputeLCMD: A collection of methods for left-censored missing data impu-
tation. R package version 2.0. http://CRAN.R-project.org/package=imputel CMD.

Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of Missing Val-
ues in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome
Res. 2016 Apr 1;15(4):1116-25. doi: 10.1021/acs.jproteome.5Sb00981. PubMed PMID:26906401.

Examples

## test data

set.seed(42)

m <- matrix(rlnorm(60), 10)

dimnames(m) <- list(letters[1:10], LETTERS[1:6])
m[sample(60, 10)] <- NA

## available methods
imputeMethods ()

impute_matrix(m, method = "zero")

impute_matrix(m, method = "min")


http://CRAN.R-project.org/package=imputeLCMD
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impute_matrix(m, method = "knn")

## same as impute_zero
impute_matrix(m, method = "with"”, val = @)

## impute with half of the smalles value
impute_matrix(m, method = "with",
val = min(m, na.rm = TRUE) * 0.5)

## all but third and fourth features' missing values
## are the result of random missing values

randna <- rep(TRUE, 10)

randnalc(3, 9)] <- FALSE

impute_matrix(m, method = "mixed"”,
randna = randna,
mar = "knn",
mnar = "min")

## user provided (random) imputation function
random_imp <- function(x) {
m <- mean(x, na.rm = TRUE)
sdev <- sd(x, na.rm = TRUE)
n <- sum(is.na(x))
x[is.na(x)] <- rnorm(n, mean = m, sd = sdev)
X

impute_matrix(m, FUN = random_imp)

## get the default margin

getImputeMargin(impute_knn) ## default imputes along features

getImputeMargin(impute_mle) ## default imputes along samples

getImputeMargin(impute_zero) ## NA: no margin here

## default margin for all MsCoreUtils::impute_* functions
sapply(1s("package:MsCoreUtils"”, pattern = "impute_"), getImputeMargin)

isPeaksMatrix

isPeaksMatrix Check functions

Description

These functions are used to check input arguments.

Usage

isPeaksMatrix(x)

Arguments

X object to test.
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Details
isPeaksMatrix: test for a numeric matrix with two columns named "mz" and "intensity". The
"mz" column has to be sorted increasingly.

Value

logical (1), TRUE if checks are successful otherwise FALSE.

Author(s)
Sebastian Gibb

See Also

Other helper functions for developers: between(), rbindFill(), validPeaksMatrix(), vapplyic(),
which.first()

Examples

isPeaksMatrix(1:2)
isPeaksMatrix(cbind(mz = 2:1, intensity = 1:2))
isPeaksMatrix(cbind(mz = 1:2, intensity = 1:2))

localMaxima Local Maxima

Description
This function finds local maxima in a numeric vector. A local maximum is defined as maximum in
a window of the current index +/- hws.

Usage

localMaxima(x, hws = 1L)

Arguments
X numeric, vector that should be searched for local maxima.
hws integer (1), half window size, the resulting window reaches from (i - hws): (i
+ hws).
Value

A logical of the same length as x that is TRUE for each local maxima.

Author(s)
Sebastian Gibb

See Also

Other extreme value functions: .peakRegionMask(), refineCentroids(), valleys()
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Examples

x <- c(1:5, 4:1, 1:10, 9:1, 1:5, 4:1)
localMaxima(x)
localMaxima(x, hws = 10)

maxi Maximum MS Intensity Value

Description

maxi determines the maximum or mass spectrometry intensity values, e.g. from a spectrum or chro-
matogram. In contrast to the base R max () function this function returns NA_real_ if all intensity
values are NA or if 1length(x) is O (the base R max function returns -Inf in these cases).

Usage
maxi (x)
Arguments
X numeric with intensity values from which the maximum should be reported.
Will be coerced to numeric.
Value

numeric(1) representing the maximum of values in x. Returns always a numeric (double) even if
X is an integer.

Author(s)

Johannes Rainer, Sebastian Gibb

See Also

sumi()

Examples

x <- c(3.2, 34.4, 1.3, NA)
maxi(x)

## Compared to base R max:
max (x)
max(x, na.rm = TRUE)

max(numeric(), na.rm = TRUE)
maxi(numeric())

max(c(NA, NA), na.rm = TRUE)
maxi(c(NA, NA))
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medianPolish Return the Median Polish (Robust Twoway Decomposition) of a matrix

Description

Fits an additive model (two way decomposition) using Tukey’s median polish procedure using
stats: :medpolish().

Usage
medianPolish(x, verbose = FALSE, ...)
Arguments
X A matrix of mode numeric.
verbose Default is FALSE.
Additional arguments passed to stats: :medpolish().
Value

A numeric vector of length identical to ncol(x).

Author(s)

Laurent Gatto

See Also

Other Quantitative feature aggregation: aggregate(), colCounts(), robustSummary ()

Examples

X <- matrix(rnorm(30), nrow = 3)
medianPolish(x)

noise Noise Estimation

Description

This functions estimate the noise in the data.

Usage

noise(x, y, method = c("MAD", "SuperSmoother”), ...)
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Arguments
X numeric, x values for noise estimation (e.g. mz)
y numeric, y values for noise estimation (e.g. intensity)
method character (1) used method. Currently MAD (median absolute deviation) and
Friedman’s SuperSmoother are supported.
further arguments passed to method.
Value

A numeric of the same length as x with the estimated noise.

Author(s)
Sebastian Gibb

See Also

stats::mad(), stats: :supsmu()

Other noise estimation and smoothing functions: smooth()

Examples

X <- 1:20
y <= c(1:10, 10:1)
noise(x, y)

noise(x, y, method = "SuperSmoother”, span =1 / 3)
normalizeMethods Quantitative data normalisation
Description

Function to normalise a matrix of quantitative omics data. The nature of the normalisation is con-
trolled by the method argument, described below.

Usage
normalizeMethods()
normalize_matrix(x, method, ...)
Arguments
X A matrix or an HDF5Matrix object to be normalised.
method character (1) defining the normalisation method. See normalizeMethods()

for available ones.

Additional parameters passed to the inner normalisation function.
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Details

non n on n on

The method parameter can be one of "sum”, "max”, "center.mean”, "center.median”, "div.mean",
n n

"div.median”, "diff.median"”, "quantiles", "quantiles.robust" or "vsn”. The normalizeMethods ()
function returns a vector of available normalisation methods.

e For "sum” and "max", each feature’s intensity is divided by the maximum or the sum of the
feature respectively. These two methods are applied along the features (rows).

* "center.mean"” and "center.median” center the respective sample (column) intensities by
subtracting the respective column means or medians. "div.mean” and "div.median” divide
by the column means or medians.

e "diff.median" centers all samples (columns) so that they all match the grand median by
subtracting the respective columns medians differences to the grand median.

* Using "quantiles” or "quantiles.robust"” applies (robust) quantile normalisation, as im-
plemented in preprocessCore: :normalize.quantiles() and preprocessCore: :normalize.quantiles.robu
"vsn" uses the vsn: :vsn2() function. Note that the latter also glog-transforms the intensities.
See respective manuals for more details and function arguments.

Value

A matrix of same class as x with dimensions dim(x).

Author(s)

Laurent Gatto

See Also

The scale() function that centers (like center.mean above) and scales.

Examples
normalizeMethods()
## test data

set.seed(42)
m <- matrix(rlnorm(60), 10)

normalize_matrix(m, method = "sum")
normalize_matrix(m, method = "max")
normalize_matrix(m, method = "quantiles")

normalize_matrix(m, method = "center.mean")
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ppm PPM - Parts per Million

Description

ppm is a small helper function to determine the parts-per-million for a user-provided value and ppm.

Usage

ppm(x, ppm)

Arguments

X numeric, value(s) used for ppm calculation, e.g. mz value(s).

ppm numeric, parts-per-million (ppm) value(s).

Value

numeric: parts-per-million of x (always a positive value).

Author(s)
Sebastian Gibb

Examples

ppm(c(1000, 2000), 5)

ppm(c(-300, 200), 5)

rbindFill Combine R Objects by Row

Description
This function combines instances of matrix, data.frame or DataFrame objects into a single in-
stance adding eventually missing columns (filling them with NAs).

Usage
rbindfFill(...)

Arguments

2 or more: matrix, data.frame or DataFrame.

Value

Depending on the input a single matrix, data.frame or DataFrame.
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Note

rbindFill might not work if one of the columns contains S4 classes.

Author(s)

Johannes Rainer, Sebastian Gibb

See Also
Other helper functions for developers: between(), isPeaksMatrix(), validPeaksMatrix(), vapplyic(),
which.first()

Examples

## Combine matrices
a <- matrix(1:9, nrow = 3, ncol = 3)

colnames(a) <- c("a", "b", "c")
b <- matrix(1:12, nrow = 3, ncol = 4)
colnames(b) <- c("b”, "a”, "d", "e")

rbindFill(a, b)
rbindFill(b, a, b)

reduce Reduce overlapping numeric ranges to disjoined ranges

Description

The reduce () function reduces the provided numeric ranges to non-overlapping (disjoint) ranges.
This is similar to the IRanges: :reduce() function, but works with numeric vectors instead of
integer ranges (IRanges).

Usage

reduce(start = numeric(), end = numeric(), .check = TRUE)

Arguments

start numeric with the lower (start) values for each numeric range.

end numeric with the upper (end) values for each numeric range. Has to match the
length of start and all(start <= end) has to be TRUE.

.check logical(1) whether input parameter validations should be performed. With
.check = TRUE (the default) the function checks if the length of input parameters
start and end is the same and whether all values in start are <= the values in
end.

Value

list of length 2, the first element being the start (mininum) values for the disjoint ranges, the
second the end (maximum) values.
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Note

The IRanges package defines a reduce () method for IRanges and other S4 classes. This reduce()
function is not an S4 method, but a function, thus it is suggested to specifically import it if used in
another R package, or to call it with MsCoreUtils: :reduce().

Author(s)

Johannes Rainer and Sebastian Gibb

Examples

## Define start and end values for the numeric ranges
s <- ¢c(12.23, 21.2, 13.4, 14.2, 15.0, 43.12)
e <- c(12.40, 24.1, 14.4, 16.2, 15.2, 55.23)

reduce(s, e)

## Empty vectors
reduce()

## Single value
reduce(3.12, 34)

## Non-overlapping ranges
reduce(c(3, 9), c(4, 19))

refineCentroids Refine Peak Centroids

Description

This function refines the centroided values of a peak by weighting the y values in the neighbourhood
that belong most likely to the same peak.

Usage

refineCentroids(x, y, p, k = 2L, threshold = @.33, descending = FALSE)

Arguments

X numeric, i.e. m/z values.

y numeric, i.e. intensity values.

p integer, indices of identified peaks/local maxima.

k integer (1), number of values left and right of the peak that should be consid-
ered in the weighted mean calculation.

threshold double (1), proportion of the maximal peak intensity. Just values above are
used for the weighted mean calclulation.

descending logical, if TRUE just values between the nearest valleys around the peak cen-

troids are used.
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Details

For descending = FALSE the function looks for the k nearest neighbouring data points and use their
x for weighted mean with their corresponding y values as weights for calculation of the new peak
centroid. If k are chosen too large it could result in skewed peak centroids, see example below. If
descending = TRUE is used the k should be general larger because it is trimmed automatically to
the nearest valleys on both sides of the peak so the problem with skewed centroids is rare.

Author(s)

Sebastian Gibb, Johannes Rainer

See Also

Other extreme value functions: .peakRegionMask(), localMaxima(), valleys()

Examples

ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 9, 12, 14, 13, 8, 3)
mzs <- seqg_along(ints)

plot(mzs, ints, type = "h")

pidx <- as.integer(c(3, 8, 16))
points(mzs[pidx], ints[pidx], pch = 16)

## Use the weighted average considering the adjacent mz
mzs1 <- refineCentroids(mzs, ints, pidx,
k = 2L, descending = FALSE, threshold = @)
mzs2 <- refineCentroids(mzs, ints, pidx,
k = 5L, descending = FALSE, threshold = 0)
mzs3 <- refineCentroids(mzs, ints, pidx,
k = 5L, descending = TRUE, threshold = @)
points(mzs1, ints[pidx], col = "red", type = "h")
## please recognize the artificial moved centroids of the first peak caused
## by a too large k, here
points(mzs2, ints[pidx], col = "blue”, type = "h")
points(mzs3, ints[pidx], col = "green", type = "h")
legend("topright”,
legend = paste@("k = ", c(2, 5, 5),
", descending =", c("FALSE", "FALSE", "TRUE")),
col = c("red”, "blue"”, "green"), lwd = 1)

rla Calculate relative log abundances

Description

rla calculates the relative log abundances (RLA, see reference) on a numeric vector. rowRla
performs row-wise RLA calculations on a numeric matrix.
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Usage

rla(
X,
f = rep_len(1, length(x)),
transform = c("log2", "logl@", "identity"),
na.rm = TRUE
)

rowRla(x, f = rep_len(1, ncol(x)), transform = c("log2", "logl@", "identity"))

Arguments

X numeric (for rla) or matrix (for rowR1la) with the abundances (in natural scale)
on which the RLA should be calculated.

f factor, numeric or character with the same length than x (or, for rowRla
equal to the number of columns of x) allowing to define the grouping of values
in x. If omitted all values are considered to be from the same group.

transform character (1) defining the function to transform x. Defaults to transform =
"log2" which log? transforms x prior to calculation. If x is already in log scale
use transform = "identity" to avoid transformation of the values.

na.rm logical(1) whether NA values should be removed prior to calculation of the
group-wise medians.

Details

The RLA is defined as the (log2) abundance of an analyte relative to the median across all abun-
dances of that analyte in samples of the same group. The grouping of values can be defined with
parameter f.

Value

numeric with the relative log abundances (in log2 scale) with the same length than x (for rla) or
matrix with the same dimensions than x (for rowR1a).

Author(s)

Johannes Rainer

References

De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M,
Speed TP. Normalizing and integrating metabolomics data. Anal Chem 2012 Dec 18;84(24):10768-
76.

Examples
x <-c(3, 4, 5,1, 2,3,7, 8,9
grp <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
rla(x, grp)

x <- rbind(c(324, 4542, 3422, 3232, 5432, 6535, 3321, 1121),
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c(12, 3341, 3034, 6540, 34, 4532, 56, 1221))
grp <_ C(”a"’ Ilbll, Ilbll’ lIbIV’ nan, Vlbll’ Ilall, Ilbll)

## row-wise RLA values
rowRla(x, grp)

robustSummary Return the Robust Expression Summary of a matrix

Description

This function calculates the robust summarisation for each feature (protein). Note that the function
assumes that the intensities in input e are already log-transformed.

Usage
robustSummary(x, ...)
Arguments
X A feature by sample matrix containing quantitative data with mandatory colnames
and rownames.
Additional arguments passed to MASS: :r1m().
Value

numeric() vector of length ncol (x) with robust summarised values.

Author(s)

Adriaan Sticker, Sebastian Gibb and Laurent Gatto

See Also

Other Quantitative feature aggregation: aggregate(), colCounts(), medianPolish()

Examples

x <= matrix(rnorm(30), nrow = 3)
colnames(x) <- letters[1:10]
rownames(x) <- LETTERS[1:3]
robustSummary (x)
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rt2numeric Format Retention Time

Description

These vectorised functions convert retention times from a numeric in seconds to/from a character
as "mm:ss". rt2character() performs the numeric to character conversion while rt2numeric()
performs the character to numeric conversion. formatRt () does one of the other depending on the
input type.

Usage

rt2numeric(rt)
rt2character(rt)

formatRt(rt)

Arguments

rt A vector of retention times of length > 1. Either a numeric() in seconds or a
character() as "mm:ss" depending on the function.

Value

A reformatted retention time.

Author(s)

Laurent Gatto

Examples

## rt2numeric

rt2numeric("”25:24")
rt2numeric(c(”25:24", "25:25", "25:26"))

## rt2character

rt2character(1524)
rt2character(1)
rt2character(1:10)

## formatRt

formatRt(1524)

formatRt (1)

formatRt(1:10)

formatRt("25:24")

formatRt(c(”25:24", "25:25", "25:26"))
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smooth Smoothing

Description

This function smoothes a numeric vector.

Usage

smooth(x, cf)
coefMA(hws)
coefWMA (hws)

coefSG(hws, k = 3L)

Arguments
X numeric, i.e. m/z values.
cf matrix, a coefficient matrix generated by coefMA, coefWMA or coefSG.
hws integer (1), half window size, the resulting window reaches from (i - hws): (i
+ hws).
k integer (1), set the order of the polynomial used to calculate the coefficients.
Details

For the Savitzky-Golay-Filter the hws should be smaller than FWHM of the peaks (full width at half
maximum; please find details in Bromba and Ziegler 1981).

In general the hws for the (weighted) moving average (coefMA/coefWMA) has to bemuch smaller
than for the Savitzky-Golay-Filter to conserve the peak shape.

Value

smooth: A numeric of the same length as x.
coefMA: A matrix with coefficients for a simple moving average.
coefWMA: A matrix with coefficients for a weighted moving average.

coefSG: A matrix with Savitzky-Golay-Filter coefficients.

Functions

* coefMA(): Simple Moving Average
This function calculates the coefficients for a simple moving average.

* coefWMA(): Weighted Moving Average
This function calculates the coefficients for a weighted moving average with weights depend-
ing on the distance from the center calculated as 1/2*abs(-hws:hws) with the sum of all
weigths normalized to 1.

* coefSG(): Savitzky-Golay-Filter
This function calculates the Savitzky-Golay-Coefficients. The additional argument k controls
the order of the used polynomial. If k is set to zero it yield a simple moving average.
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Note

The hws depends on the used method ((weighted) moving average/Savitzky-Golay).

Author(s)

Sebastian Gibb, Sigurdur Smarason (weighted moving average)

References

A. Savitzky and M. J. Golay. 1964. Smoothing and differentiation of data by simplified least squares
procedures. Analytical chemistry, 36(8), 1627-1639.

M. U. Bromba and H. Ziegler. 1981. Application hints for Savitzky-Golay digital smoothing filters.
Analytical Chemistry, 53(11), 1583-1586.

Implementation based on: Steinier, J., Termonia, Y., & Deltour, J. (1972). Comments on Smoothing
and differentiation of data by simplified least square procedure. Analytical Chemistry, 44(11), 1906-
1909.

See Also

Other noise estimation and smoothing functions: noise()

Examples

x <= c(1:10, 9:1)
plot(x, type = "b", pch = 20)
cf <- list(MovingAverage = coefMA(2),

WeightedMovingAverage = coefWMA(2),

SavitzkyGolay = coefSG(2))
for (i in seqg_along(cf)) {

lines(smooth(x, cf[[i]]), col =i + 1, pch = 20, type = "b")
3
legend("bottom”, legend = c("x", names(cf)), pch = 20,
col = seqg_len(length(cf) + 1))

sumi Summing MS Intensity Values

Description

sumi sums mass spectrometry intensity values, e.g. from a spectrum or chromatogram. In contrast
to the base R sum() function this function returns NA_real_ if all intensity values are NA or if
length(x) is 0.

Usage

sumi (x)

Arguments

X numeric with intensity values to be summed up. Will be coerced to numeric
using as.double.



validPeaksMatrix 45

Value
numeric(1) representing the sum of values in x. Always returns a numeric (double) even if x is an
integer.

Author(s)

Johannes Rainer

See Also

maxi()

Examples

x <- c(3.2, 34.4, 1.3, NA)
sumi(x)

## Compared to base R sum:
sum(x)
sum(x, na.rm = TRUE)

sum(numeric(), na.rm = TRUE)
sumi (numeric())

sum(c(NA, NA), na.rm = TRUE)
sumi(c(NA, NA))

validPeaksMatrix Validation functions

Description

These functions are used to validate input arguments. In general they are just wrapper around their
corresponding is* function with an error message.

Usage

validPeaksMatrix(x)
Arguments

X object to test.
Details

validPeaksMatrix: see isPeaksMatrix.

Value

logical (1), TRUE if validation are successful otherwise an error is thrown.
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Author(s)
Sebastian Gibb

See Also

valleys

Other helper functions for developers: between(), isPeaksMatrix(), rbindFill(), vapplyic(),

which.first()

Examples

try(validPeaksMatrix(1:2))
validPeaksMatrix(cbind(mz = 1:2, intensity = 1:2))

valleys Find Peak Valleys

Description

This function finds the valleys around peaks.

Usage
valleys(x, p)

Arguments

X numeric, e.g. intensity values.

p integer, indices of identified peaks/local maxima.

Value

A matrix with three columns representing the index of the left valley, the peak centroid, and the

right valley.

Note

The detection of the valleys is based on localMaxima. It returns the first occurence of a local
maximum (in this specific case the minimum). For plateaus, e.g. c(0, @, @, 1:3, 2:1, @) this
results in a wrongly reported left valley index of 1 (instead of 3, see the example section as well).
In real data this should not be a real problem. x[x == min(x)] <- Inf could be used before running
valleys to circumvent this specific problem but it is not really tested and could cause different

problems.

Author(s)
Sebastian Gibb

See Also

Other extreme value functions: .peakRegionMask(), localMaxima(), refineCentroids()
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Examples

ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 2, 9, 12, 14, 13, 8, 3)
mzs <- seqg_along(ints)

peaks <- which(localMaxima(ints, hws = 3))

cols <- seg_along(peaks) + 1

plot(mzs, ints, type = "h", ylim = c(@, 16))
points(mzs[peaks], ints[peaks], col = cols, pch = 20)

v <- valleys(ints, peaks)
segments(mzs[v[, "left"”]], @, mzs[v[, "right"”]], col = cols, lwd = 2)

## Known limitations for plateaus
y <- c(0, 0, 0, 0, @, 1:5, 4:1, @)
valleys(y, 10L) # left should be 5 here but is 1

## a possible workaround that may cause other problems
y[min(y) == y] <~ Inf
valleys(y, 10L)

vapplyic vapply wrappers

Description

These functions are short wrappers around typical vapply calls for easier development.

Usage

vapplylc(X, FUN, ..., USE.NAMES = FALSE)

vapply1ld(X, FUN, ..., USE.NAMES = FALSE)

vapply11(X, FUN, ..., USE.NAMES = FALSE)
Arguments

X a vector (atomic or list).

FUN the function to be applied to each element of X.

optional arguments to FUN.

USE . NAMES logical, should the return value be named.

Value

vapplyic returns a vector of characters of length X.
vapply1d returns a vector of doubles of length X.

vapply11 returns a vector of logicals of length X.

Author(s)
Sebastian Gibb
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See Also

Other helper functions for developers: between(), isPeaksMatrix(), rbindFill(), validPeaksMatrix(),
which.first()

Examples

1 <- list(a=1:3, b=4:6)
vapplyl1d(1l, sum)

which.first Which is the first/last TRUE value.

Description

Determines the location, i.e., index of the first or last TRUE value in a logical vector.

Usage

which.first(x)

which.last(x)

Arguments

X logical, vector.

Value

integer, index of the first/last TRUE value. integer (@) if no TRUE (everything FALSE or NA) was
found.

Author(s)
Sebastian Gibb

See Also

which.min()

Other helper functions for developers: between(), isPeaksMatrix(), rbindFill(), validPeaksMatrix(),
vapplylc()

Examples

1 <-2<=1:3
which.first(l)
which.last(1)
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