
Package ‘MouseFM’
January 9, 2026

Type Package

Title In-silico methods for genetic finemapping in inbred mice

Version 1.20.0

Description This package provides methods for genetic finemapping
in inbred mice by taking advantage of their very high homozygosity rate (>95%).

Encoding UTF-8

LazyData false

BugReports https://github.com/matmu/MouseFM/issues

Depends R (>= 4.0.0)

License GPL-3

VignetteBuilder knitr

biocViews Genetics, SNP, GeneTarget, VariantAnnotation,
GenomicVariation, MultipleComparison, SystemsBiology,
MathematicalBiology, PatternLogic, GenePrediction,
BiomedicalInformatics, FunctionalGenomics

Suggests BiocStyle, testthat, knitr, rmarkdown

Imports httr, curl, GenomicRanges, dplyr, ggplot2, reshape2, scales,
gtools, tidyr, data.table, jsonlite, rlist, Seqinfo, methods,
biomaRt, stats, IRanges

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/MouseFM

git_branch RELEASE_3_22

git_last_commit d76d60a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-08

Author Matthias Munz [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4728-3357>),

Inken Wohlers [aut] (ORCID: <https://orcid.org/0000-0003-4004-0464>),
Hauke Busch [aut] (ORCID: <https://orcid.org/0000-0003-4763-4521>)

Maintainer Matthias Munz <matthias.munz@gmx.de>

1

https://github.com/matmu/MouseFM/issues
https://orcid.org/0000-0002-4728-3357
https://orcid.org/0000-0003-4004-0464
https://orcid.org/0000-0003-4763-4521

2 annotate_consequences

Contents

annotate_consequences . 2
annotate_mouse_genes . 3
avail_chromosomes . 4
avail_consequences . 4
avail_strains . 5
backend_request . 5
comb . 6
df2GRanges . 6
df_split . 7
ensembl_rest_vep . 8
fetch . 8
finemap . 9
finemap_query . 10
getURL . 11
get_top . 11
GRanges2df . 12
prio . 12
reduction . 13
ref_genome . 14
setURL . 14
vis_reduction_factors . 15

Index 16

annotate_consequences Annotate with consequences

Description

Request variant consequences from Variant Effect Predictor (VEP) via Ensembl Rest Service. Not
recommended for large queries.

Usage

annotate_consequences(geno, species)

Arguments

geno Data frame or GenomicRanges::GRanges object including columns rsid, ref, alt.

species Species name, e.g. mouse (GRCm38) or human (GRCh38).

Value

Data frame.

annotate_mouse_genes 3

Examples

geno = finemap("chr1",
start = 5000000, end = 6000000,
strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ")

)

df = annotate_consequences(geno[seq_len(10),], "mouse")

geno.granges = finemap("chr1",
start = 5000000, end = 6000000,
strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ"),
return_obj = "granges"

)

df2 = annotate_consequences(geno.granges[seq_len(10),], "mouse")

annotate_mouse_genes Annotate with genes

Description

Request mouse genes from Ensembl Biomart.

Usage

annotate_mouse_genes(geno, flanking = NULL)

Arguments

geno Data frame or GenomicRanges::GRanges object including columns chr, pos.

flanking Size of flanking sequence to be included.

Value

Data frame.

Examples

geno = finemap("chr1",
start = 5000000, end = 6000000,
strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ")

)

genes = annotate_mouse_genes(geno, 50000)

4 avail_consequences

avail_chromosomes Available chromosomes

Description

Available mouse chromosomes.

Usage

avail_chromosomes()

Value

Data frame

Examples

avail_chromosomes()

avail_consequences Available consequences

Description

Available consequence and impact types.

Usage

avail_consequences()

Value

Data frame.

Examples

avail_consequences()$consequence

unique(avail_consequences()$impact)

avail_strains 5

avail_strains Available strains

Description

There are 37 strains available.

Usage

avail_strains()

Value

Data frame.

Examples

avail_strains()

backend_request Send HTTP request to backend server

Description

Send HTTP request to backend server

Usage

backend_request(q, n.tries = 2, method = "GET")

Arguments

q Query string

n.tries Number of tries

method HTTP method to use

Value

Data frame.

6 df2GRanges

comb Strain combination builder

Description

Generate strain sets and calculate reduction factors

Usage

comb(geno, min_strain_benef = 0.1, max_set_size = 3)

Arguments

geno Data frame of genotypes for additional strains.

min_strain_benef

Minimum reduction factor (min) of a single strain. Default is 0.1.

max_set_size Maximum set of strains. Default is 3.

Value

Data frame

df2GRanges Data frame to GenomicRanges::GRanges object

Description

Wrapper for GenomicRanges::makeGRangesFromDataFrame().

Usage

df2GRanges(
geno,
chr_name = "chr",
start_name = "pos",
end_name = "pos",
strand_name = NULL,
ref_version = ref_genome(),
seq_lengths = NULL,
is_circular = FALSE

)

df_split 7

Arguments

geno Data frame.

chr_name Name of chromosome column. Default is ’chr’.

start_name Name of start position column. Default is ’pos.’

end_name Name of end position column. Default is ’pos’

strand_name Name of end position column. Default is NULL.

ref_version Reference genome version. Default is ’ref_genome()’.

seq_lengths List of sequence lengths with sequence name as key. Default is NULL.

is_circular Whether genome is circular. Default is FALSE.

Value

GenomicRanges::GRanges object.

Examples

geno = finemap("chr1",
start = 5000000, end = 6000000,
strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ")

)

geno$strand = "+"
seq_lengths = stats::setNames(

as.list(avail_chromosomes()$length),
avail_chromosomes()$chr

)
geno.granges = df2GRanges(geno,

strand_name = "strand",
seq_lengths = seq_lengths

)

df_split Splits data frame df into subsets with maximum n rows

Description

Splits data frame df into subsets with maximum n rows

Usage

df_split(df, n)

Arguments

df Data frame.

n Max number of rows per subset.

Value

List of data frames.

8 fetch

ensembl_rest_vep Request variant consequences from Variant Effect Predictor (VEP) via
Ensembl Rest Service

Description

Request variant consequences from Variant Effect Predictor (VEP) via Ensembl Rest Service

Usage

ensembl_rest_vep(geno, species)

Arguments

geno Data frame including columns rsid, ref, alt.

species Species name, e.g. mouse or human.

Value

Data frame.

fetch Fetch

Description

Fetch homozygous genotypes for a specified chromosomal region in 37 inbred mouse strains.

Usage

fetch(
chr,
start = NULL,
end = NULL,
consequence = NULL,
impact = NULL,
return_obj = "dataframe"

)

Arguments

chr Vector of chromosome names.

start Optional vector of chromosomal start positions of target regions (GRCm38).

end Optional vector of chromosomal end positions of target regions (GRCm38).

consequence Optional vector of consequence types.

impact Optional vector of impact types.

return_obj The user can choose to get the result to be returned as data frame ("dataframe")
or as a GenomicRanges::GRanges ("granges") object. Default value is "dataframe".

finemap 9

Value

Data frame or GenomicRanges::GRanges object containing result data.

Examples

geno = fetch("chr7", start = 5000000, end = 6000000)

comment(geno)

finemap Finemapping of genetic regions

Description

Finemapping of genetic regions in 37 inbred mice by taking advantage of their very high homozy-
gosity rate (>95 chromosomal regions (GRCm38), this method extracts homozygous SNVs for
which the allele differs between two sets of strains (e.g. case vs controls) and outputs respective
causal SNV/gene candidates.

Usage

finemap(
chr,
start = NULL,
end = NULL,
strain1,
strain2,
consequence = NULL,
impact = NULL,
thr1 = 0,
thr2 = 0,
return_obj = "dataframe"

)

Arguments

chr Vector of chromosome names.

start Optional vector of chromosomal start positions of target regions (GRCm38).

end Optional vector of chromosomal end positions of target regions (GRCm38).

strain1 First strain set with strains from avail_strains().

strain2 Second strain set with strains from avail_strains().

consequence Optional vector of consequence types.

impact Optional vector of impact types.

thr1 Number discordant strains in strain1. Between 0 and length(strain1)-1. 0 by
default.

thr2 Number discordant strains in strain2. Between 0 and length(strain2)-1. 0 by
default.

return_obj The user can choose to get the result to be returned as data frame ("dataframe")
or as a GenomicRanges::GRanges ("granges") object. Default value is "dataframe".

10 finemap_query

Value

Data frame or GenomicRanges::GRanges object containing result data.

Examples

geno = finemap("chr1",
start = 5000000, end = 6000000,
strain1 = c("C57BL_6J"), strain2 = c(

"129S1_SvImJ", "129S5SvEvBrd",
"AKR_J"

)
)

comment(geno)

finemap_query Finemap query builder

Description

Finemap query builder

Usage

finemap_query(
chr,
start = NULL,
end = NULL,
strain1 = NULL,
strain2 = NULL,
consequence = NULL,
impact = NULL,
thr1 = 0,
thr2 = 0

)

Arguments

chr Vector of chromosome names.

start Optional vector of chromosomal start positions of target regions (GRCm38).

end Optional vector of chromosomal end positions of target regions (GRCm38).

strain1 First strain set with strains from avail_strains().

strain2 Second strain set with strains from avail_strains().

consequence Optional vector of consequence types.

impact Optional vector of impact types.

thr1 Number discordant strains in strain1. Between 0 and length(strain1)-1. 0 by
default.

thr2 Number discordant strains in strain2. Between 0 and length(strain2)-1. 0 by
default.

getURL 11

Value

Query string.

getURL Get backend service url

Description

Get backend service URL. Default: http://45.85.146.64:9000/rest/finemap/

Usage

getURL()

Value

URL string.

Examples

getURL()

get_top Best strain combinations

Description

Get best strain combinations

Usage

get_top(red, n_top)

Arguments

red Reduction factors data frame.

n_top Number of combinations to be returned.

Value

Data frame

Examples

l = prio("chr1",
start = 5000000, end = 6000000,
strain1 = "C57BL_6J", strain2 = "AKR_J"

)

get_top(l$reduction, 3)

12 prio

GRanges2df GenomicRanges::GRanges object to data frame

Description

Wrapper for as.data.frame().

Usage

GRanges2df(granges)

Arguments

granges GenomicRanges::GRanges object

Value

Data frame.

Examples

geno.granges = finemap("chr1",
start = 5000000, end = 6000000,
strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ"),
return_obj = "granges"

)

geno = GRanges2df(geno.granges)

prio Prioritization of inbred mouse strains for refining genetic regions

Description

This method allows to select strain combinations which best refine a specified genetic region (GRCm38).
E.g. if a crossing experiment with two inbred mouse strains ’strain1’ and ’strain2’ resulted in a QTL,
the outputted strain combinations can be used to refine the respective region in further crossing ex-
periments.

Usage

prio(
chr,
start = NULL,
end = NULL,
strain1 = NULL,
strain2 = NULL,
consequence = NULL,
impact = NULL,
min_strain_benef = 0.1,
max_set_size = 3,
return_obj = "dataframe"

)

reduction 13

Arguments

chr Vector of chromosome names.

start Optional vector of chromosomal start positions of target regions (GRCm38).

end Optional vector of chromosomal end positions of target regions (GRCm38).

strain1 First strain set with strains from avail_strains().

strain2 Second strain set with strains from avail_strains().

consequence Optional vector of consequence types.

impact Optional vector of impact types.
min_strain_benef

Minimum reduction factor (min) of a single strain.

max_set_size Maximum set of strains.

return_obj The user can choose to get the result to be returned as data frame ("dataframe")
or as a GenomicRanges::GRanges ("granges") object. Default value is "data
frame".

Value

Data frame

Examples

res = prio("chr1",
start = 5000000, end = 6000000, strain1 = "C57BL_6J",
strain2 = "AKR_J"

)

comment(res$genotypes)

reduction Reduction factor calculation

Description

Generate strain sets and calculate reduction factors

Usage

reduction(combs, geno)

Arguments

combs Data frame of strain sets.

geno Data frame of genotypes for additional strains.

Value

Data frame

14 setURL

ref_genome Reference genome version

Description

Returns version of reference genome used in package MouseFM.

Usage

ref_genome()

Value

Vector.

Examples

ref_genome()

setURL Set backend service url

Description

Set backend service URL. Default: http://45.85.146.64:9000/rest/finemap/

Usage

setURL(url)

Arguments

url URL of backend service. With backslash at the end.

Value

No return value.

Examples

setURL("http://45.85.146.64:9000/rest/finemap/")

vis_reduction_factors 15

vis_reduction_factors Visualize

Description

Visualize reduction factors

Usage

vis_reduction_factors(geno, red, n_top)

Arguments

geno Genotype data frame or GenomicRanges::GRanges object.

red Reduction factor data frame.

n_top Number if combinations to be returned.

Value

Data frame

Examples

l = prio(c("chr1", "chr2"),
start = c(5000000, 5000000),
end = c(6000000, 6000000), strain1 = c("C3H_HeH"), strain2 = "AKR_J"

)

plots = vis_reduction_factors(l$genotypes, l$reduction, 2)

plots[[1]]
plots[[2]]

Index

∗ internal
backend_request, 5
comb, 6
df_split, 7
ensembl_rest_vep, 8
finemap_query, 10
reduction, 13

annotate_consequences, 2
annotate_mouse_genes, 3
avail_chromosomes, 4
avail_consequences, 4
avail_strains, 5

backend_request, 5

comb, 6

df2GRanges, 6
df_split, 7

ensembl_rest_vep, 8

fetch, 8
finemap, 9
finemap_query, 10

get_top, 11
getURL, 11
GRanges2df, 12

prio, 12

reduction, 13
ref_genome, 14

setURL, 14

vis_reduction_factors, 15

16

	annotate_consequences
	annotate_mouse_genes
	avail_chromosomes
	avail_consequences
	avail_strains
	backend_request
	comb
	df2GRanges
	df_split
	ensembl_rest_vep
	fetch
	finemap
	finemap_query
	getURL
	get_top
	GRanges2df
	prio
	reduction
	ref_genome
	setURL
	vis_reduction_factors
	Index

