Type Package

Package ‘MetaCyto’

January 20, 2026

Title MetaCyto: A package for meta-analysis of cytometry data

Version 1.32.0

Author Zicheng Hu, Chethan Jujjavarapu, Sanchita Bhattacharya, Atul J. Butte

Maintainer Zicheng Hu <zicheng.hu@ucsf.edu>

Description This package provides functions for preprocessing, automated gating
and meta-analysis of cytometry data. It also provides functions that facilitate
the collection of cytometry data from the ImmPort database.

License GPL (>=2)
RoxygenNote 6.0.1

Imports flowCore (>= 1.4),tidyr (>=
0.7),fastcluster,ggplot2,metafor,cluster,FlowSOM, grDevices,
graphics, stats, utils

Depends R (>=3.4)

Suggests knitr, dplyr, rmarkdown

VignetteBuilder knitr, rmarkdown

biocViews ImmunoOncology, CellBiology, FlowCytometry, Clustering,
StatisticalMethod, Software, CellBasedAssays, Preprocessing

git_url https://git.bioconductor.org/packages/MetaCyto
git_branch RELEASE_3_22

git_last_commit f3c39a8

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents

autoCluster.batch e

clusterStats
collectData
densityPlot
fcsInfoParser
filterLabels

findCutoff . .

2 autoCluster.batch

flowHC e 8
flowSOM.MC e 8
glmAnalysis L e e e 9
labelCluster e 10
labelSummary oL 11
markerFinder L 12
metaAnalysiS e e e e e e e e e 13
nameUpdator L 14
panelSummary e 15
PIOtGA . . e e 15
PIEPrOCESSING o v vt e e e e 16
preprocessing.batch 17
sampleInfoParser 18
searchCluster e 19
searchClusterbatch 20
set2Frame e 21
Index 23
autoCluster.batch Cluster the preprocessed fcs files from different studies in batch
Description

A function that clusters the pre-processed fcs files from different studies in batch.

Usage

autoCluster.batch(preprocessOutputFolder,
excludeClusterParameters = c("TIME"), labelQuantile = 0.95,
clusterFunction = flowSOM.MC, minPercent = .05, ...)

Arguments

preprocessOutputFolder

Directory where the preprocessed results are stored. Should be the same with

the outpath argument in preprocessing.batch function.
excludeClusterParameters

A vector specifying the name of markers not to be used for clustering and label-

ing. Typical example includes: Time, cell_length.

labelQuantile A number between 0.5 and 1. Used to specify the minimum percent of cells in
a cluster required to express higher or lower level of a marker than the cutoff

value for labeling.
clusterFunction

The name of unsupervised clustering function the user wish to use for clustering
the cells. The default is "flowSOM.MC". The first argument of the function must
take a flow frame, the second argument of the function must take a vector of
excludeClusterParameters. The function must return a list of clusters containing
cell IDs. flowSOM.MC and flowHC are implemented in the package. For other

methods, please make your own wrapper functions.

clusterStats 3

minPercent A number between 0 and 0.5. Used to specify the minimum percent of cells in
the positive and negative region after bisection. Keep it small to avoid bisecting
uni-mode distributions.

Pass arguments to clusterFunction

Value

A vector of labels identified in the cytometry data.

Examples

#get meta-data
fn=system.file("extdata"”,"fcs_info.csv",package="MetaCyto")
fcs_info=read.csv(fn,stringsAsFactors=FALSE, check.names=FALSE)
fcs_info$fcs_files=system.file("extdata”,fcs_info$fcs_files,
package="MetaCyto")
Make sure the transformation parameter "b" and the "assay"” argument
are correct of FCM and CyTOF files
b=assay=rep(NA,nrow(fcs_info))
b[grepl("CyTOF",fcs_info$study_id)1=1/8
b[grepl ("FCM", fcs_info$study_id)1=1/150
assayl[grepl("CyTOF", fcs_info$study_id)1="CyTOF"
assay[grepl ("FCM",fcs_info$study_id)]="FCM"
preprocessing
preprocessing.batch(inputMeta=fcs_info,
assay=assay,
b=b,
outpath="Example_Result/preprocess_output”,
excludeTransformParameters=c("FSC-A","FSC-W","FSC-H",
"Time","Cell_length"))
Make sure marker names are consistant in different studies
files=list.files("Example_Result"”,pattern="processed_sample”,
recursive=TRUE, full.names=TRUE)
nameUpdator (”CD8B","CD8",files)
find the clusters
excludeClusterParameters=c("FSC-A","FSC-W","FSC-H","SSC-A",
"SSC-W","SSC-H","Time",
"CELL_LENGTH", "DEAD", "DNA1", "DNA2")
cluster_label=autoCluster.batch(
preprocessOutputFolder="Example_Result/preprocess_output”,
excludeClusterParameters=excludeClusterParameters,
labelQuantile=0.95,
clusterFunction=flowHC)

clusterStats Derive summary statistics for clusters

Description

A function that derives summary statistics for clusters.

Usage

clusterStats(fcsFrame, clusterList, fcsNames)

4 collectData

Arguments
fcsFrame A flow Frame object returned from preprocessing function. Must contain a pa-
rameter called "sample_id" that specify the origin of each cell using integer IDs.
clusterList A list, each element should be a vector containing the IDs of all cells that belong
to a cluster.
fcsNames A vector of fcs file names. Each element corresponds to an integer ID in the
"sample_id" parameter in fcsFrame.
Value

Returns a data frame, rows correspond to each fcs file, columns correspond to MFI of markers or
fractions.

Examples

Find fcs files
files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,
package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

Preprocess

fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)

Search clusters

cluster_list=searchCluster(fcsFrame=fcs,
clusterLabel=c("CD3+|CD8+","CD3-|CD19+"))

derive summary statistics

cluster_stats=clusterStats(fcsFrame=fcs,
clusterList=cluster_list$clusterList,
fcsNames=files)

collectData Collect and combine data from multiple csv files of the same format

Description

A function that collect and combine data from multiple csv files of the same format.

Usage

collectData(files, longform = TRUE)

Arguments
files A vector containing the paths of csv files to be combined.
longform True or False. Used to specify if the table in each csv file should be converted
into long form before combining.
Value

A dataframe containing combined information from multiple csv files.

densityPlot

Examples

find all the files we want to combine
fn=system.file("extdata”,"",package="MetaCyto")
fn=list.files(fn,pattern="cluster_stats_in_each_sample"”, full.names=TRUE)

Comine the data

all_data = collectData(fn,longform=TRUE)

densityPlot

Draw density plot for each cell cluster.

Description

A function that draws density plot for each cell cluster.

Usage

densityPlot(fcsFrame, clusterlList, cutoff, markerToPlot = NULL)

Arguments

fcsFrame

clusterList
cutoff

markerToPlot

Details

A flow Frame object returned from preprocessing function.

A list, each element should be a vector containing the IDs of all cells that belong
to a cluster

A vector of cutoff values to bisect the distribution of each marker. The names of
the vector should be the same as the marker names.

A vector specifying markers included in the plot. If NULL, all markers will be
plotted.

The plot can be very large, we suggest plotting it into a pdf jpeg file directly.

Value

NULL. The plot will show up automatically.

Examples

Find fcs files

files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,

package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

Preprocess

fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)

Search clusters

cluster_list=searchCluster(fcsFrame=fcs,

clusterLabel=c("CD3+|CD8+","CD3-|CD19+"))

plot density plot for clusters

densityPlot(fcs,

clusterList=cluster_list$clusterList,
cutoff=cluster_list$cutoff,
markerToPlot=c("CD3","CD8","CD19"))

6 filterLabels

fcsInfoParser Organize fcs files in a study from ImmPort into panels

Description

A function that organizes fcs files in a study from ImmPort into panels.

Usage
fcsInfoParser(metaData, studyFolder, fcsCol = "ZBXFN", assay = c("FCM",
"CyTOF"))
Arguments
metaData A data frame. Must contain a column listing the names of fcs files included in
the study.
studyFolder Path of the directory containing all the files of a study from ImmPort.
fcsCol A string specifying the name of the column in metaData that lists fcs files in-
cluded in the study.
assay Either "FCM" or "CyTOF" to indicate the type of cytometry data.
Value

A dataframe containing 2 columns: a column called "fcs_files" that contains the location (relative to
the working directory) of each fcs file on the hard drive and a column called "study_id" that specify
what study each fcs file belongs to.

Examples

fn=system.file("extdata”,
"SDY736/SDY736-DR19_Subject_2_Flow_cytometry_result.txt",
package="MetaCyto")
meta_data=read. table(fn,sep="\t',header=TRUE, check.names= FALSE)
Organize fcs file into panels
fn=system.file("extdata","”SDY736",package="MetaCyto")
fcs_info_SDY736=fcsInfoParser(metaData=meta_data,
studyFolder=fn,
fcsCol="File Name",
assay="FCM")

filterLabels Filter cluster labels

Description

A function that filter cluster labels.

Usage

filterLabels(labels, minPlus, minMarker, maxMarker)

findCutoff 7

Arguments
labels A vector containing labels for cell clusters
minPlus An integer, used to specify the minimum number of "+" a label should contain.
minMarker An integer, used to specify the minimum number of markers a label should
contain.
maxMarker An integer, used to specify the max number of markers a label should contain.
Value

Returns a vector of labels that pass through the filter.

Examples

labels= c("CD3-|CD4-|CD8-","CD3+|CD4+|CD8-",
"CD3+|CD4-|CD8+","CD3+|CD4-|CD8+|CCR7+|CD45RA-|CCR6-")
labels=filterLabels(labels=1abels,minPlus=1,minMarker=2,maxMarker=5)

findCutoff Find cutoff for a 1D distribution

Description

A function that finds cutoff for a 1D distribution.

Usage

findCutoff(x, returnSil = FALSE, useBL = TRUE, minX = @)

Arguments

X A vector of values.

returnSil Logic, used to specify if the max average silhouette is returned

useBL Logic, used to specify if outliers should be ignored

minX A numerical value, used to specify the min value allowed for the cutoff.
Value

If returnSil=F, returns a single cutoff value. Otherwise, returns a list containing the cutoff value and
the max average silhouette

Examples

x=c(rnorm(1000),rnorm(1000,5))
findCutoff(x)

8 flowSOM.MC

flowHC Cluster cytometry data using hierarchical clustering

Description

A function that cluster cytometry data using hierarchical clustering.

Usage

flowHC(fcsFrame, excludeClusterParameters, minimumClusterSizePercent = 0.05)

Arguments

fcsFrame A flow frame.
excludeClusterParameters

A vector specifying the name of markers not to be used for clustering.
minimumClusterSizePercent

A number between 0 and 1, used to specify the minimum size of a cluster relative
to all events.

Value

A list of clusters. Each cluster contains the ID of all cells that belong to the cluster.

Examples

Find fcs files

files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,
package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

Preprocess

fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)

cluster using flowHC

cluster_list=flowHC(fcsFrame=fcs,

excludeClusterParameters=c("Time","Cell_length"))

flowSOM.MC Cluster cytometry data using FlowSOM

Description

A function that cluster cytometry data using FlowSOM.

Usage

flowSOM.MC(fcsFrame, excludeClusterParameters, xdim = 10, ydim = 10,
k = 40, seed = NULL)

glmAnalysis 9

Arguments

fcsFrame A flow frame.
excludeClusterParameters

A vector specifying the name of markers not to be used for clustering.

xdim An integer, defines the width of SOM
ydim An integer, defines the height of SOM
k An integer, defines the number of clusters to be identified by flowSOM.
seed Set seed for reproducible results.
Value

A list of clusters. Each cluster contains the ID of all cells that belong to the cluster.

Examples

Find fcs files
files=system.file("extdata”,
"SDY420/ResultFiles/CyTOF _result”,package="MetaCyto")
files=list.files(files,pattern="fcs$",full.names=TRUE)
Preprocess
fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)
cluster using flowSOM.MC
cluster_list=f1owSOM.MC(fcsFrame=fcs,
excludeClusterParameters=c("Time","Cell_length"))

glmAnalysis Perform generalized linear model analysis to estimate effect size.

Description

A function that performs generalized linear model analysis to estimate effect size.

Usage

glmAnalysis(value = "value”, variableOfInterst = "Subject Age", parameter,
otherVariables = c("Gender"), studyID = "study”, label = "label”, data,
CILevel = 0.95, ifScale = c(TRUE, FALSE))

Arguments
value A string to specify the column name of the dependent variable (y)
variableOfInterst
A string to specify the column name of the independent variable of interest (x1)
parameter A string to specify what summary statistics is the dependent variable.

otherVariables A string vector to specify the column names of independent variables included
in the regression model other than the variableOfInterst.

studyID A string to specify the column name of study ID.

label A string to specify the name the column that contains the cluster label or name.

10

data

CILevel

ifScale

Details

labelCluster

A data frame containing the data. Usually a long form data frame returned by
collectData.

A number between O to 1, used to specify the confidence levels. e.g. 0.95
represent 95 percent confidence interval.

A vector of two logic values, specifying if the dependent variable and the vari-
ableOfInterst should be scaled when calculating the effect size.

The function use the model value ~ variableOflInterst + otherVariables + studyID to estimate the
effect size. Use it as a screening tool. Use metaAnalysis function to analyze an effect size in more

detail.

Value

Returns data frame describing the overall effect size of variableOfInterst on value. May be slightly
different from the value reported from the function metaAnalysis.

Examples

library(dplyr)

#collect all summary statistics

nonn

fn=system.file("extdata”,"",package="MetaCyto")
files=list.files(fn,pattern="cluster_stats_in_each_sample”,

recursive=TRUE, full.names=TRUE)

fcs_stats=collectData(files,longform=TRUE)

Collect sample information
files=list.files(fn,pattern="sample_info",recursive=TRUE, full.names=TRUE)
sample_info=collectData(files, longform=FALSE)

join the cluster summary statistics with sample information
all_data=inner_join(fcs_stats,sample_info,by="fcs_files")

See the fraction of what clusters are affected by

age (while controlling for Gender)
GA=glmAnalysis(value="value”,fvariableOfInterst="Subject Age",

parameter="fraction"”,
otherVariables=c("Gender"),studyID="study_id",label="1abel",
data=all_data,CILevel=0.95,ifScale=c(TRUE,FALSE))

"o

labelCluster Label each cluster as "+" or "-" or neutral for each marker

Description

non

A function that labels each cluster as "+" or or neutral for each marker

Usage

labelCluster(fcsFrame, clusterList, excludeClusterParameters = c("TIME"),
minPercent = 0.05, labelQuantile = 0.95, cutoff = NULL)

labelSummary 11

Arguments
fcsFrame A flowFrame object.
clusterList A list, each element should be a vector containing the IDs of all cells that belongs

to a cluster
excludeClusterParameters
A vector specifying the name of markers not to be used for labeling.

minPercent A number between 0 and 0.5. Used to specify the minimum percent of cells in
the positive and negative region after bisection. Keep it small to avoid bisecting
uni-mode distributions.

labelQuantile A number between 0.5 and 1. Used to specify the minimum percent of a cluster
required to be larger or smaller than the cutoff value for labeling.

cutoff A vector of cutoff values to bisect the distribution of each marker. The names of
the vector should be the same as the marker names. If NULL, the cutoff value
will be determined automatically.

Value

Returns a list with two components: 1) clusterLabel, contains a vector of labels, each corresponds
to a cluster in clusterList. 2) cutoff, contains a vector of cutoff values used to bisect each marker.

Examples

Find fcs files

files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,
package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

Preprocess

fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)

cluster using flowSOM.MC

cluster_list=f1owSOM.MC(fcsFrame=fcs,

excludeClusterParameters=c("Time","Cell_length"))
label each clusters
cluster_label=1abelCluster(fcsFrame=fcs,clusterList=cluster_list,
excludeClusterParameters=c("Time","Cell_length"))

labelSummary Make a summary for the labels (cell populations) identified in different
cytometry panels.

Description

A function that summarizes the labels (cell populations) identified in different cytometry panels.

Usage

labelSummary(allData, minStudy = 2)

12 markerFinder

Arguments
allData A table containing the summary statistics of cell populations. Often is the output
of the function "collectData".
minStudy Minimum number of cytometry panels a label should appear in. Set it >1 to find
cell populations identified in more than 1 cytometry panel for meta-analysis.
Value

A data frame summarizing the labels identified in different cytometry panels.

Examples

nonn

fn=system.file("extdata"”,"", package="MetaCyto")

files=list.files(fn,pattern="cluster_stats_in_each_sample”,
recursive=TRUE, full.names=TRUE)

fcs_stats=collectData(files, longform=TRUE)

label_summary = labelSummary(allData=fcs_stats,minStudy=2)

markerFinder Find markers in a flow frame object

Description

A function that finds markers in a flow frame object.

Usage

markerFinder (fcsFrame)

Arguments

fcsFrame A flow frame object.

Details

If the antibody name is available, the antibody name will be returned, otherwise, the channel name
will be returned.

Value

Returns a vector of markers.

Examples

library(flowCore)

files=system.file("extdata"”, "SDY420/ResultFiles/CyTOF_result”,
package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)[1]

fcs = read.FCS(files)

markers = markerFinder(fcs)

metaAnalysis

13

metaAnalysis

Performs meta-analysis

Description

A function that performs meta-analysis

Usage

metaAnalysis(value, variableOfInterst, otherVariables, studyID, data, CILevel,

main, ifScale

= c(TRUE, FALSE), cex = 1)

Arguments
value A string to specify the column name of the dependent variable (y)
variableOfInterst
A string to specify the column name of the independent variable of interest (x1)
otherVariables A string vector to specify the column names of independent variables included
in the regression model other than the variableOfInterst.
studyID A string to specify the column name of study ID.
data A data frame containing the data
CILevel A number between O to 1, used to specify the confidence interval to be plotted
in the forest plot.
main A string to specify the title of the forest plot
ifScale A vector of two logic values, specifying if the dependent variable and the vari-
ableOfInterst should be scaled when calculating the effect size.
cex A number specifying the amount by which plotting text and symbols should be
scaled relative to the default in the forest plot.
Value

Returns data frame describing the effect size of variableOfInterst on value in each individual studies,

as well as the over
out analysis result.

Examples

library(dplyr)

all effect size. In addition, it returns the random effect model and the leave one

#collect all summary statistics
fn=system.file("extdata"”,"",6 package="MetaCyto")
files=list.files(fn,pattern="cluster_stats_in_each_sample”,recursive=TRUE,

full.names=TRUE)

fcs_stats=collectData(files, longform=TRUE)

Collect sample

information

files=list.files(fn,pattern="sample_info",recursive=TRUE, full.names=TRUE)
sample_info=collectData(files, longform=FALSE)

join the cluster summary statistics with sample information
all_data=inner_join(fcs_stats,sample_info,by="fcs_files")

plot forrest plot to see if the proportion of CCR7+ CD8 T cell

14 nameUpdator

is affected by age (while controlling for Gender)
L="CD3+|CD4-|CD8+|CCR7+"
dat=subset(all_data,all_data$parameter_name=="fraction"&
all_data$label==L)
MA=metaAnalysis(value="value”,variableOfInterst="Subject Age",main=L,
otherVariables=c("Gender"), studyID="study_id",
data=dat,CILevel=0.95,ifScale=c(TRUE,FALSE))

nameUpdator Used to update marker names

Description

A function that updates marker names in the files output by the preprocessing.batch function.

Usage

nameUpdator (oldNames, newNames, files)

Arguments
oldNames A vector of marker names you wish to change
newNames A vector of marker names you wish each oldNames to be changed to.
files A list of "processed_sample_summary.csv" files output by the preprocessing.batch
function, in which the name change will occur.
Value
Null
Examples

#get meta-data
fn=system.file("extdata"”,"fcs_info.csv",package="MetaCyto")
fcs_info=read.csv(fn,stringsAsFactors=FALSE, check.names=FALSE)
fcs_info$fcs_files=system.file("extdata”,fcs_info$fcs_files,
package="MetaCyto")
make sure the transformation parameter "b" and the "assay" argument
are correct of FCM and CyTOF files
b=assay=rep(NA,nrow(fcs_info))
b[grepl("CyTOF",fcs_info$study_id)1=1/8
bl[grepl("FCM", fcs_info$study_id)1=1/150
assayl[grepl("CyTOF",fcs_info$study_id)J="CyTOF"
assayl[grepl ("FCM", fcs_info$study_id)J="FCM"
preprocessing
preprocessing.batch(inputMeta=fcs_info,
assay=assay,
b=b,
outpath="Example_Result/preprocess_output”,
excludeTransformParameters=c("FSC-A","FSC-W","FSC-H",
"Time","Cell_length"))
Make sure marker names are consistant in different studies
files=list.files("Example_Result”, pattern="processed_sample”,recursive=TRUE,
full.names=TRUE)
nameUpdator ("CD8B","CD8",files)

panelSummary 15

panelSummary Summarize markers in panels.

Description

A function that summarizes markers in cytometry panels.

Usage

panelSummary(panelInfo, folder, cluster = TRUE, plotImage = TRUE,
width = 20, height = 20)

Arguments
panelInfo A data frame returned by the collectData function. It should contain all the
information outputted by the preprocessing.batch function.
folder The directory where the output should be written.
cluster True or False. Used to indicate if the markers and panels should be clustered in
the plot.
plotImage True or False. Used to indicate if a plot summarizing markers in panels should
be produced.
width Used to specify the width of the plot
height Used to specify the height of the plot
Value

A dataframe describing what markers are in each panel.

Examples

fn=system.file("extdata"”,"", package="MetaCyto")
fn=list.files(fn,pattern="processed_sample”,full.names=TRUE)
panel_info=collectData(fn,longform=FALSE)

dir.create("Example_Result")

PS=panelSummary(panel_info, "Example_Result"”,cluster=FALSE,width=30,height=20)

plotGA Plot the result from the glmAnalysis function

Description

A function that plots the result from the glmAnalysis function.

Usage
plotGA(GA, size = 16)

16 preprocessing

Arguments
GA A data frame returned from the function glmAnalysis.
size The font size of texts in the plot

Value

The plot will show up automatically.

Examples
library(dplyr)
#collect all summary statistics
fn=system.file("extdata”,"",package="MetaCyto")

files=list.files(fn,pattern="cluster_stats_in_each_sample"”, recursive=TRUE,
full.names=TRUE)

fcs_stats=collectData(files,longform=TRUE)

Collect sample information

files=list.files(fn,pattern="sample_info",recursive=TRUE, full.names=TRUE)

sample_info=collectData(files, longform=FALSE)

join the cluster summary statistics with sample information

all_data=inner_join(fcs_stats,sample_info,by="fcs_files")

See the fraction of what clusters are affected

by age (while controlling for Gender)

GA=glmAnalysis(value="value”, 6 variableOfInterst="Subject Age",
parameter="fraction"”,
otherVariables=c("Gender"),studyID="study_id",label="label",
data=all_data,CILevel=0.95,ifScale=c(TRUE,FALSE))

GA=GA[order (GA$Effect_size),]

plot the effect sizes

plotGA(GA)

preprocessing Preprocess fcs files from a single experiment

Description

A function that preprocesses fcs files from a single experiment.

Usage

preprocessing(fcsFiles, assay = c("FCM", "CyTOF"), b = 1/200,
fileSampleSize = 5000, compFiles = NULL,
excludeTransformParameters = c("FSC-A", "FSC-W", "FSC-H", "Time",
"Cell_length"))

Arguments
fcsFiles A vector specifying the location of all fcs files.
assay Either "FCM" or "CyTOF" to indicate the type of cytometry data.
b A positive number used to specify the arcsinh transformation. f(x) = asinh (b*x)

where x is the original value and f(x) is the value after transformation. The
suggested value is 1/150 for flow cytometry (FCM) data and 1/8 for CyTOF
data. If b = 0, the transformation is skipped.

preprocessing.batch

fileSampleSize

compFiles

17

An integer specifying the number of events sampled from each fcs file. If NULL,
all the events will be pre-processed and wrote out to the new fcs files.

A vector specifying the paths of user supplied compensation matrix for each fcs
file. The matrix must be stored in csv files.

excludeTransformParameters

Value

A vector specifying the name of parameters not to be transformed (left at linear
scale).

Returns a flowFrame object containing the preprocessed cytometry data. Cells from different fcs
files are combined into one flow frame. A new parameter, sample_id, is introduced to indicate the

origin of each cell.

Examples

Find fcs files

files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,

package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

Preprocess

fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)

preprocessing.batch Preprocessing fcs files from different studies in batch.

Description

It transform and compensate for the raw fcs files and write out the processed data to a new set of fcs

files.

Usage

preprocessing.batch(inputMeta, assay = c("FCM", "CyTOF"), outpath,
b = 1/150, fileSampleSize = 5000,
excludeTransformParameters = c("FSC-A", "FSC-W", "FSC-H", "Time",
"Cell_length"))

Arguments

inputMeta

assay

outpath
b

A data frame containing 2 columns: a column called "fcs_files" that contains
the location (relative to the working directory) of each fcs file on the hard drive
and a column called "study_id" that specify what study each fcs file belongs to.

A vector, each element is either "FCM" or "CyTOF" to indicate the type of
cytometry data.

A string indicating the directory the pre-processed fcs files will be written to.

A positive number used to specify the arcsinh transformation. f(x) = asinh (b*x)
where x is the original value and f(x) is the value after transformation. The
suggested value is 1/150 for flow cytometry (FCM) data and 1/8 for CyTOF
data. If b = 0, the transformation is skipped.

18 sampleInfoParser

fileSampleSize An integer specifying the number of events sampled from each fcs file. If NULL,
all the events will be pre-processed and wrote out to the new fcs files.

excludeTransformParameters
A vector specifying the name of parameters not to be transformed (left at linear
scale).

Details

The function takes a data frame which specifies the location of the fcs files and the panels the fcs
files belong to. It transform the cytometry data using the arcsinh transformation. For flow cytometry
data, it compensate the data using the compensation matrix supplied in the fcs file. the preprocessed
fcs files and a table called "processed_sample_summary.csv" will be wrote out to outpath as well.

Value

Does not return anything. The output is written to the directory specified by the "outpath".

Examples

#get meta-data
fn=system.file("extdata"”,"fcs_info.csv",package="MetaCyto")
fcs_info=read.csv(fn,stringsAsFactors=FALSE, check.names=FALSE)
fcs_info$fcs_files=system.file("extdata”,fcs_info$fcs_files, package="MetaCyto")
make sure the transformation parameter "b" and the "assay"” argument are
correct for FCM and CyTOF files
b=assay=rep(NA,nrow(fcs_info))
b[grepl("CyTOF",fcs_info$study_id)1=1/8
b[grepl ("FCM",fcs_info$study_id)]1=1/150
assayl[grepl ("CyTOF",fcs_info$study_id)]="CyTOF"
assay[grepl("FCM",fcs_info$study_id)]="FCM"
preprocessing
preprocessing.batch(inputMeta=fcs_info,
assay=assay,
b=b,
outpath="Example_Result/preprocess_output”,
excludeTransformParameters=c("FSC-A","FSC-W","FSC-H",
"Time","Cell_length"))

sampleInfoParser Collect sample information for fcs files in a study from ImmPort.

Description

A function that collects sample information for fcs files in a study from ImmPort.

Usage

sampleInfoParser(metaData, studyFolder, fcsCol = "ZBXFN", assay = "FCM",
attrCol)

searchCluster

Arguments

metaData

studyFolder
fcsCol

assay
attrCol

Value

19

A data frame. Must contain a column listing the names of fcs files included in
the study.

Path of the directory containing all the files of a study from ImmPort.

A string specifying the name of the column in metaData that lists fcs files in-
cluded in the study.

Either "FCM" or "CyTOF" to indicate the type of cytometry data.

A vector of column names. Used to specify the information about each cytome-
try the user wish to include in the analysis.

A dataframe containing sample information.

Examples

fn=system.file("extdata”,

"SDY736/SDY736-DR19_Subject_2_Flow_cytometry_result.txt"”,
package="MetaCyto")

meta_data=read. table(fn,sep="\t', header=TRUE, check.names=FALSE)
Find the AGE, GENDER info from selected_data
fn=system.file("extdata"”, "SDY736",package="MetaCyto")
sample_info_SDY736=sampleInfoParser(metaData=meta_data,

studyFolder=fn,

assay="FCM",

fcsCol="File Name",
attrCol=c("Subject Age","Gender"))

searchCluster

Search for clusters using pre-defined labels

Description

A function that searches for clusters using pre-defined labels (cell definitions).

Usage

searchCluster(fcsFrame, clusterLabel, cutoff = NULL, rmNull = TRUE,

preGate =

Arguments

fcsFrame
clusterLabel

cutoff

rmNull
preGate

NULL)

A flowFrame object.

A vector of labels, such as "CD3+ICD4+ICD8-". Each marker is followed by
"+" or "-" and are separated by "I".

A vector of cutoff values to bisect the distribution of each marker. The names of
the vector should be the same as the marker names. If NULL, the cutoff value

will be determined automatically.
True or False. Used to specify if a cluster with O cells should be returned or not.

A character string specifying the gated used to clean up the data. For example,
use "PI-" to only analyze live cell. Or use "Cell_Length+" to only analyze non-
debris.

20 searchCluster.batch

Value

Returns a list with two components: 1) clusterList is a list in which each element of the list is a
vector containing the ID of all cells in a cluster. The names correspond to the labels specified in
clusterLabel. 2) cutoff, contains a vector of cutoff values used to bisect each marker.

Examples

Find fcs files

files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,
package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

Preprocess

fcs = preprocessing(fcsFiles=files,assay ="CyTOF",b=1/8)

Search clusters

cluster_list=searchCluster(fcsFrame=fcs,

clusterLabel=c("CD3+|CD8+","CD3-|CD19+"))

searchCluster.batch Search for clusters using pre-defined labels in cytometry data from
different studies in batch

Description

A function that searches for clusters using pre-defined labels in cytometry data from different studies
in batch.

Usage

searchCluster.batch(preprocessOutputFolder, outpath = "search_output”,
clusterLabel, ifPlot = TRUE)

Arguments

preprocessOutputFolder
Directory where the pre-processed results are stored.

outpath A string indicating the directory the results should be written to.
clusterLabel A vector containing labels, such as c("CD3+ICD4+ICDS8-")
ifPlot True or False. Used to specify if a the density plot for each cluster should be

plotted
Details
The function writes out the summary statistics for each cluster. A separate directory will be created
for each study.
Value

Results will be written to the outpath folder

set2Frame

Examples

#get meta-data
fn=system.file("extdata”,"fcs_info.csv",package="MetaCyto")
fcs_info=read.csv(fn,stringsAsFactors=FALSE, check.names=FALSE)
fcs_info$fcs_files=system.file("extdata”,fcs_info$fcs_files,
package="MetaCyto")
Make sure the transformation parameter "b" and the "assay" argument
are correct of FCM and CyTOF files
b=assay=rep(NA,nrow(fcs_info))
b[grepl("CyTOF",fcs_info$study_id)1=1/8
b[grepl ("FCM",fcs_info$study_id)]1=1/150
assayl[grepl("CyTOF",fcs_info$study_id)J]="CyTOF"
assay[grepl("FCM",fcs_info$study_id)]="FCM"
preprocessing
preprocessing.batch(inputMeta=fcs_info,
assay=assay,
b=b,
outpath="Example_Result/preprocess_output”,
excludeTransformParameters=c("FSC-A","FSC-W","FSC-H",
"Time","Cell_length"))
Make sure marker names are consistant in different studies
files=list.files("Example_Result"”, pattern="processed_sample”, recursive=TRUE,
full.names=TRUE)
nameUpdator (”"CD8B","CD8",files)
find the clusters
cluster_label=c("CD3-|CD19+","CD3+|CD4-|CD8+")
searchCluster.batch(preprocessOutputFolder="Example_Result/preprocess_output”,
outpath="Example_Result/search_output”,
clusterLabel=cluster_label)

21

set2Frame Combine cells in a flow set into a flow frame.

Description

A function that combines cells in a flow set into a flow frame.

Usage

set2Frame(flowSet)

Arguments

flowSet A flow set object

Value

Returns a flowFrame object. All cells from flow set are combined into one flow frame.

parameter, sample_id, is introduced to indicate the origin of each cell.

A new

22 set2Frame

Examples

library(flowCore)

files=system.file("extdata”,"SDY420/ResultFiles/CyTOF_result”,
package="MetaCyto")

files=list.files(files,pattern="fcs$",full.names=TRUE)

flow_set = read.flowSet(files)

flow_frame = set2Frame(flow_set)

Index

autoCluster.batch, 2

clusterStats, 3
collectData, 4

densityPlot, 5

fcsInfoParser, 6
filterLabels, 6
findCutoff, 7
flowHC, 8
flowSOM.MC, 8

glmAnalysis, 9

labelCluster, 10
labelSummary, 11

markerFinder, 12
metaAnalysis, 13

nameUpdator, 14

panelSummary, 15
plotGA, 15
preprocessing, 16
preprocessing.batch, 17

sampleInfoParser, 18
searchCluster, 19
searchCluster.batch, 20
set2Frame, 21

23

	autoCluster.batch
	clusterStats
	collectData
	densityPlot
	fcsInfoParser
	filterLabels
	findCutoff
	flowHC
	flowSOM.MC
	glmAnalysis
	labelCluster
	labelSummary
	markerFinder
	metaAnalysis
	nameUpdator
	panelSummary
	plotGA
	preprocessing
	preprocessing.batch
	sampleInfoParser
	searchCluster
	searchCluster.batch
	set2Frame
	Index

