Package ‘MODA’

January 20, 2026

Type Package

Title MODA: MOdule Differential Analysis for weighted gene
co-expression network

Version 1.36.0

Date 2016-12-16

Author Dong Li, James B. Brown, Luisa Orsini, Zhisong Pan, Guyu Hu and Shan He
Maintainer Dong Li <dx1466@cs.bham.ac.uk>

Description MODA can be used to estimate and construct condition-specific gene
co-expression networks, and identify differentially expressed subnetworks as
conserved or condition specific modules which are potentially associated with
relevant biological processes.

License GPL (>=2)
Depends R (>=3.3)

Imports grDevices, graphics, stats, utils, WGCNA, dynamicTreeCut,
igraph, cluster, AMOUNTAIN, RColorBrewer

RoxygenNote 5.0.1

biocViews GeneExpression, Microarray, DifferentialExpression, Network
Suggests BiocStyle, knitr, rmarkdown

ignetteBuilder knitr

git_url https://git.bioconductor.org/packagess/MODA

git_branch RELEASE_3_22

git_last_commit 2387620

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents

CompareAlINets e
comparemodulestwonets Lol e
datExprlo
datEXpr2o e
getPartition e e

2 CompareAllNets
Mlcondition 5
ModuleFrequency L 6
modulesRank 7
NMImatrix o oo e e e e e 7
PartitionDensity 8
PartitionModularity 9
recursiveigraph L L e e 10
WeightedModulePartitionAmoutain 10
WeightedModulePartitionHierarchical 11
WeightedModulePartitionLouvain 12
WeightedModulePartitionSpectral oL 13

Index 15

CompareAllNets Lllustration of network comparison

Description

Compare the background network and a set of condition-specific network. Conserved or condition-
specific modules are indicated by the plain files, based on the statistics

Usage

CompareAllNets(ResultFolder, intModules, indicator, intconditionModules,

conditionNames, specificTheta, conservedTheta)

Arguments

ResultFolder where to store results

intModules how many modules in the background network
indicator identifier of current profile, served as a tag in name
intconditionModules

a numeric vector, each of them is the number of modules in each condition-
specific network. Or just single number

conditionNames a character vector, each of them is the name of condition. Or just single name

specificTheta the threshold to define min(s)+specificTheta, less than which is considered as

condition specific module. s is the sums of rows in Jaccard index matrix. See
supplementary file.

conservedTheta The threshold to define max(s)-conservedTheta, greater than which is consid-

Value

ered as condition conserved module. s is the sums of rows in Jaccard index
matrix. See supplementary file.

None

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

comparemodulestwonets 3

See Also

WeightedModulePartitionHierarchical, comparemodulestwonets

Examples

data(synthetic)

ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity

indicator1 = 'X' # indicator for data profile 1

indicator2 = 'Y' # indicator for data profile 2

specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1#threshold to define conserved modules

intModules1 <- WeightedModulePartitionHierarchical(datExpr1,ResultFolder,
indicator1,CuttingCriterion)

intModules2 <- WeightedModulePartitionHierarchical(datExpr2,ResultFolder,
indicator2,CuttingCriterion)
CompareAllNets(ResultFolder,intModules1,indicatorl,intModules2,indicator2,
specificTheta, conservedTheta)

comparemodulestwonets [llustration of two networks comparison

Description

Compare the background network and a condition-specific network. A Jaccard index is used to
measure the similarity of two sets, which represents the similarity of each module pairs from two
networks.

Usage

comparemodulestwonets(sourcehead, nml, nm2, indl1, ind2)

Arguments
sourcehead prefix of where to store results
nm1 how many modules in the background network
nm2 how many modules in the condition-specific network
ind1 indicator of the background network
ind2 indicator of the condition-specific network
Value

A matrix where each entry is the Jaccard index of corresponding modules from two networks

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

4 datExpr2

Examples
data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2

intModules1 <- WeightedModulePartitionHierarchical(datExpr1,ResultFolder,
indicator1,CuttingCriterion)

intModules2 <- WeightedModulePartitionHierarchical(datExpr2,ResultFolder,
indicator2,CuttingCriterion)

JaccardMatrix <- comparemodulestwonets(ResultFolder,intModules1,intModules?2,
paste('/DenseModuleGene_"',indicatorl,sep="'"),
paste('/DenseModuleGene_"',indicator2,sep="'"))

datExpri datExprl

Description

Synthetic gene expression profile with 20 samples and 500 genes.

Format

A matrix with 20 rows and 500 columns.

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

Examples

data(synthetic)
plot the heatmap of the correlation matrix ...
Not run: heatmap(cor(as.matrix(datExpri1)))

datExpr2 datExpr2

Description

Synthetic gene expression profile with 25 samples and 500 genes.

Format

A matrix with 25 rows and 500 columns.

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

getPartition

Examples

data(synthetic)
plot the heatmap of the correlation matrix ...
Not run: heatmap(cor(as.matrix(datExpr2)))

getPartition Get numeric partition from folder

Description

Get identified partitionAssignment, only for synthetic data where gene names are numbers

Usage

getPartition(ResultFolder)

Arguments

ResultFolder folder used to save modules

Value

Number of partitions

MIcondition Modules detection by each condition

Description

Module detection on each condition-specific network, which is constructed from all samples but

samples belonging to that condition

Usage

MIcondition(datExpr, conditionNames, ResultFolder, GeneNames, maxsize = 100,

minsize = 30)

Arguments

datExpr gene expression profile, rows are samples and columns genes, rowname should

contain condition specifier
conditionNames character vector, each as the condition name
ResultFolder where to store the clusters
GeneNames normally the gene official names to replace the colnames of datExpr
maxsize the maximal nodes allowed in one module

minsize the minimal nodes allowed in one module

6 ModuleFrequency

Value

a numeric vector, each entry is the number of modules in condition-specific network

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

ModuleFrequency Statistics of all conditions

Description

Statistics of all conditions. To highlight conserved or condition-specific by counting how frequent
each module is lablelled as which, and then visualize the frequency by bar plot.

Usage

ModuleFrequency(ResultFolder, intModules, conditionNames, legendNames,
indicator)

Arguments

ResultFolder where to store results
intModules how many modules in the background network
conditionNames a character vector, each of them is the name

legendNames a character vector, each of them is the condition name showing up in the fre-
quency barplot of condition. Or just single name

indicator identifier of current profile, served as a tag in name

Value

None

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

See Also

WeightedModulePartitionHierarchical, WeightedModulePartitionLouvain, WeightedModulePartitionSpectr
WeightedModulePartitionAmoutain, CompareAllNets

modulesRank 7

modulesRank Modules rank from recursive communities detection

Description

Assign the module scores by weights, and rank them from highest to lowest

Usage

modulesRank(foldername, indicator, GeneNames)

Arguments

foldername folder used to save modules

indicator normally a specific tag of condition

GeneNames Gene symbols, sometimes we need them instead of probe ids
Value

The numeber of modules

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

See Also

recursiveigraph

NMImatrix Lllustration of network comparison by NMI

Description

Compare the background network and a set of condition-specific network. returning a pair-wise
matrix to show the normalized mutual information between each pair of networks in terms of parti-
tioning

Usage

NMImatrix(ResultFolder, intModules, indicator, intconditionModules,
conditionNames, Nsize, legendNames = NULL, plt = FALSE)

8 PartitionDensity

Arguments

ResultFolder where to store results

intModules how many modules in the background network
indicator identifier of current profile, served as a tag in name
intconditionModules

a numeric vector, each of them is the number of modules in each condition-
specific network. Or just single number

conditionNames a character vector, each of them is the name of condition. Or just single name

Nsize The number of genes in total
legendNames a character vector, each of them is the condition name showing up in the simi-
larity matrix plot if applicable
plt a boolean value to indicate whether plot the similarity matrix
Value

NMI matrix indicating the similarity between each two networks

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

See Also

CompareAllNets

PartitionDensity Lllustration of partition density

Description
Calculate the average density of all resulting modules from a partition. The density of each module
is defined as the average adjacency of the module genes.

Usage

PartitionDensity(ADJ, PartitionSet)

Arguments

ADJ gene similarity matrix

PartitionSet vector indicates the partition label for genes

Value

partition density, defined as average density of all modules

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

PartitionModularity 9

References

Langfelder, Peter, and Steve Horvath. "WGCNA: an R package for weighted correlation network
analysis." BMC bioinformatics 9.1 (2008): 1.

Examples

data(synthetic)

ADJ1=abs(cor(datExpr1,use="p"))*10

dissADJ=1-ADJ1

hierADJ=hclust(as.dist(dissADJ), method="average")
groups <- cutree(hierADJ, h = 0.8)

pDensity <- PartitionDensity(ADJ1,groups)

PartitionModularity Lllustration of modularity density

Description
Calculate the average modularity of a partition. The modularity of each module is defined from a
natural generalization of unweighted case.

Usage

PartitionModularity(ADJ, PartitionSet)

Arguments

ADJ gene similarity matrix

PartitionSet vector indicates the partition label for genes

Value

partition modularity, defined as average modularity of all modules

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

References

Newman, Mark EJ. "Analysis of weighted networks." Physical review E 70.5 (2004): 056131.

Examples

data(synthetic)

ADJ1=abs(cor(datExpr1,use="p"))*10

dissADJ=1-ADJ1

hierADJ=hclust(as.dist(dissADJ), method="average")
groups <- cutree(hierADJ, h = 0.8)

pDensity <- PartitionModularity(ADJ1,groups)

10 WeightedModulePartitionAmoutain

recursiveigraph Modules identification by recursive community detection

Description

Modules detection using igraph’s community detection algorithms, when the resulted module is
larger than expected, it is further devided by the same program

Usage

recursiveigraph(g, savefile, method = c("fastgreedy”, "louvain”),
maxsize = 200, minsize = 30)

Arguments
g igraph object, the network to be partitioned
savefile plain text, used to store module, each line as a module
method specify the community detection algorithm
maxsize maximal module size
minsize minimal module size
Value
None
Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical
mechanics: theory and experiment 2008.10 (2008): P10008.

WeightedModulePartitionAmoutain
Modules detection by AMOUNTAIN algorithm

Description

Module detection based on the AMOUNTAIN algorithm, which tries to find the optimal module
every time and use a modules extraction way

Usage

WeightedModulePartitionAmoutain(datExpr, Nmodule, foldername, indicatename,
GeneNames, maxsize = 200, minsize = 3, power = 6, tao = 0.2)

WeightedModulePartitionHierarchical 11

Arguments

datExpr
Nmodule
foldername
indicatename
GeneNames
maxsize
minsize
power

tao

Value

None

Author(s)

gene expression profile, rows are samples and columns genes

the number of clusters(modules)

where to store the clusters

normally a specific tag of condition

normally the gene official names to replace the colnames of datExpr
the maximal nodes allowed in one module

the minimal nodes allowed in one module

the power parameter of WGCNA, W_ij=Icor(x_i,x_j)I*pwr

the threshold to cut the adjacency matrix

Dong Li, <dx1466@cs.bham.ac. uk>

References

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical
mechanics: theory and experiment 2008.10 (2008): P10008.

Examples

data(synthetic)

ResultFolder <- 'ForSynthetic' # where middle files are stored

GeneNames <- colnames(datExpr1)

intModules1 <- WeightedModulePartitionAmoutain(datExpr1,5,ResultFolder, 'X",
GeneNames,maxsize=100,minsize=50)

truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)

#randIndex(table(mymodule, truemodule),adjust=F)

WeightedModulePartitionHierarchical

Modules detection by hierarchical clustering

Description

Module detection based on the optimal cutting height of dendrogram, which is selected to make
the average density or modularity of resulting partition maximal. The clustering and visulization
function are from WGCNA.

Usage

WeightedModulePartitionHierarchical (datExpr, foldername, indicatename,
cutmethod = c("Density"”, "Modularity”), power = 10)

12 WeightedModulePartitionLouvain

Arguments
datExpr gene expression profile, rows are samples and columns genes
foldername where to store the clusters

indicatename normally a specific tag of condition

cutmethod cutting the dendrogram based on maximal average Density or Modularity
power the power parameter of WGCNA, W_ij=Icor(x_i,x_j)I*power
Value

The number of clusters

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

References

Langfelder, Peter, and Steve Horvath. "WGCNA: an R package for weighted correlation network
analysis." BMC bioinformatics 9.1 (2008): 1.

See Also
PartitionDensity
PartitionModularity

Examples
data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2

specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = @.1#threshold to define conserved modules

intModules1 <- WeightedModulePartitionHierarchical(datExpr1,ResultFolder,
indicator1,CuttingCriterion)

#mymodule <- getPartition(ResultFolder)

#randIndex(table(mymodule, truemodule),adjust=F)

WeightedModulePartitionLouvain
Modules detection by Louvain algorithm

Description

Module detection based on the Louvain algorithm, which tries to maximize overall modularity of
resulting partition.

Usage

WeightedModulePartitionLouvain(datExpr, foldername, indicatename, GeneNames,
maxsize = 200, minsize = 30, power = 6, tao = 0.2)

WeightedModulePartitionSpectral 13

Arguments
datExpr gene expression profile, rows are samples and columns genes
foldername where to store the clusters

indicatename normally a specific tag of condition

GeneNames normally the gene official names to replace the colnames of datExpr
maxsize the maximal nodes allowed in one module
minsize the minimal nodes allowed in one module
power the power parameter of WGCNA, W_ij=lcor(x_i,x_j)I"*power
tao the threshold to cut the adjacency matrix
Value

The number of clusters

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical
mechanics: theory and experiment 2008.10 (2008): P10008.

Examples
data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
indicator <- 'X' # indicator for data profile 1

GeneNames <- colnames(datExpr1)

intModules1 <- WeightedModulePartitionlLouvain(datExpr1,ResultFolder,indicator,GeneNames)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))

#mymodule <- getPartition(ResultFolder)

#randIndex(table(mymodule, truemodule),adjust=F)

WeightedModulePartitionSpectral
Modules detection by spectral clustering

Description
Module detection based on the spectral clustering algorithm, which mainly solve the eigendecom-
position on Laplacian matrix

Usage

WeightedModulePartitionSpectral(datExpr, foldername, indicatename, GeneNames,
power = 6, nn = 10, k = 2)

14

Arguments

datExpr
foldername
indicatename
GeneNames
power

nn

k

Value

None

Author(s)

WeightedModulePartitionSpectral

gene expression profile, rows are samples and columns genes

where to store the clusters

normally a specific tag of condition

normally the gene official names to replace the colnames of datExpr
the power parameter of WGCNA, W_ij=lcor(x_i,x_j)I*power

the number of nearest neighbor, used to construct the affinity matrix

the number of clusters(modules)

Dong Li, <dx1466@cs.bham.ac. uk>

References

Von Luxburg, Ulrike. "A tutorial on spectral clustering.” Statistics and computing 17.4 (2007):

395-416.

Examples

data(synthetic)

ResultFolder <- 'ForSynthetic' # where middle files are stored

indicator <-

indicator for data profile 1

GeneNames <- colnames(datExpr1)
WeightedModulePartitionSpectral(datExpr1,ResultFolder,indicator,

GeneNames, k=5)

truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule, truemodule),adjust=F)

Index

x NMI
NMImatrix, 7
* Statistics
ModuleFrequency, 6
* community
recursiveigraph, 10
* comparison
comparemodulestwonets, 3
* cutting
WeightedModulePartitionHierarchical,
11
WeightedModulePartitionLouvain, 12
WeightedModulePartitionSpectral,
13
* data
datExpr1, 4
datExpr2, 4
* dendrogram
WeightedModulePartitionHierarchical,
11
WeightedModulePartitionLouvain, 12
WeightedModulePartitionSpectral,
13
* density
PartitionDensity, 8
x detection
recursiveigraph, 10
x differential
CompareAllNets, 2
ModuleFrequency, 6
NMImatrix, 7
* modularity
PartitionModularity, 9
+* module
CompareAllNets, 2
comparemodulestwonets, 3
ModuleFrequency, 6
NMImatrix, 7
* multiplecondition
MIcondition, 5
* optimization
WeightedModulePartitionAmoutain,
10

15

CompareAllNets, 2, 6, 8
comparemodulestwonets, 3, 3

datExpri, 4
datExpr2, 4

getPartition, 5

MIcondition, 5
ModuleFrequency, 6
modulesRank, 7

NMImatrix, 7

PartitionDensity, 8, 12
PartitionModularity, 9, 12

recursiveigraph, 7, 10

WeightedModulePartitionAmoutain, 6, 10
WeightedModulePartitionHierarchical, 3,
6,11
WeightedModulePartitionLouvain, 6, 12
WeightedModulePartitionSpectral, 6, 13

	CompareAllNets
	comparemodulestwonets
	datExpr1
	datExpr2
	getPartition
	MIcondition
	ModuleFrequency
	modulesRank
	NMImatrix
	PartitionDensity
	PartitionModularity
	recursiveigraph
	WeightedModulePartitionAmoutain
	WeightedModulePartitionHierarchical
	WeightedModulePartitionLouvain
	WeightedModulePartitionSpectral
	Index

