
Package ‘InteractionSet’
January 20, 2026

Version 1.38.0

Date 2025-07-15

Title Base Classes for Storing Genomic Interaction Data

Depends GenomicRanges, SummarizedExperiment

Imports methods, Matrix, Rcpp, BiocGenerics, S4Vectors (>= 0.27.12),
IRanges, Seqinfo

Suggests testthat, knitr, rmarkdown, BiocStyle

LinkingTo Rcpp

biocViews Infrastructure, DataRepresentation, Software, HiC

Description Provides the GInteractions, InteractionSet and ContactMatrix
objects and associated methods for storing and manipulating genomic
interaction data from Hi-C and ChIA-PET experiments.

License GPL-3

NeedsCompilation yes

SystemRequirements C++11

VignetteBuilder knitr

Collate AllGenerics.R AllClasses.R ContactMatrix-methods.R
GInteractions-methods.R InteractionSet-methods.R
GRanges-methods.R getset.R swapAnchors.R pairs.R conversion.R
linearize.R boundingBox.R distances.R overlaps.R linkOverlaps.R
matching.R updateObject.R

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/InteractionSet

git_branch RELEASE_3_22

git_last_commit b784a04

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Aaron Lun [aut, cre],
Malcolm Perry [aut],
Elizabeth Ing-Simmons [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2 boundingBox

Contents

boundingBox . 2
ContactMatrix accessors . 4
ContactMatrix class . 7
ContactMatrix distances . 9
ContactMatrix overlaps . 10
ContactMatrix sorting . 12
ContactMatrix subsetting . 14
Convert classes . 15
GInteractions class . 18
GRanges methods . 21
Interaction accessors . 23
Interaction binding . 29
Interaction compare . 30
Interaction distances . 34
Interaction overlaps . 35
Interaction subsetting . 39
InteractionSet class . 41
Linearize interactions . 42
linkOverlaps . 43
pairs . 46
updateObject . 47

Index 48

boundingBox Get the bounding box

Description

Computing a minimum bounding box for groups of pairwise interactions.

Usage

S4 method for signature 'GInteractions'
boundingBox(x, f)

Note, the same call is used for the InteractionSet method.

Arguments

x A GInteractions or InteractionSet object.

f A factor or vector of length equal to that of x, indicating the group to which each
pairwise interaction belongs.

boundingBox 3

Details

For any group of pairwise interactions, the minimum bounding box is the smallest rectangle in the
interaction space that contains all interactions in the group. Each side of the box has coordinates
spanning the most extreme anchor regions on the corresponding chromosome. This is often useful
for summarizing clusters of interactions.

Grouping of interactions is specified using f, where interactions in x with the same level of f are
considered to be in the same group. If f is not specified, all interactions in x are assumed to be in
a single group (named as “1”). An error will be raised if a group spans multiple chromosomes for
either the first or second anchor regions.

The function returns a GInteractions object containing the coordinates of the bounding boxes for all
groups. Each interaction represents a bounding box for a group, where the anchor regions represent
the sides of the box. Entries are named according to the levels of f, in order to specify which
bounding box corresponds to which group.

It is recommended to run swapAnchors prior to computing the bounding box for intra-chromosomal
groups. If all anchor1 >= anchor2 or all anchor1 <= anchor2, all interactions will lie on one side
of the diagonal of the intra-chromosomal interaction space. This results in the smallest possible
minimum bounding box, which will only increase in size if interactions are placed on the other side
of the diagonal. Alternatively, users can specify a StrictGInteractions object as an input into x, in
which anchor1 <= anchor2 is enforced automatically.

Value

A GInteractions object containing the coordinates of each bounding box.

Author(s)

Aaron Lun

Examples

example(GInteractions, echo=FALSE)

Making up a sensible grouping.
gi <- sort(gi)
all.chrs <- as.character(seqnames(regions(gi)))
f <- paste0(all.chrs[anchors(gi, type="first", id=TRUE)], ".",

all.chrs[anchors(gi, type="second", id=TRUE)])

boundingBox(gi, f)
boundingBox(swapAnchors(gi), f)

Fails for multiple chromosomes
try(out <- boundingBox(gi))
in.A <- f=="chrA.chrA"
out <- boundingBox(gi[in.A])

4 ContactMatrix accessors

ContactMatrix accessors

ContactMatrix accessors

Description

Methods to get and set fields in an ContactMatrix object.

Usage

S4 method for signature 'ContactMatrix'
anchors(x, type="both", id=FALSE)
S4 method for signature 'ContactMatrix'
anchorIds(x, type="both")
S4 replacement method for signature 'ContactMatrix'
anchorIds(x, type="both") <- value

S4 method for signature 'ContactMatrix'
regions(x)
S4 replacement method for signature 'ContactMatrix'
regions(x) <- value
S4 replacement method for signature 'ContactMatrix'
replaceRegions(x) <- value
S4 replacement method for signature 'ContactMatrix'
appendRegions(x) <- value
S4 method for signature 'ContactMatrix'
reduceRegions(x)

S4 method for signature 'ContactMatrix'
show(x)
S4 method for signature 'ContactMatrix'
as.matrix(x)
S4 replacement method for signature 'ContactMatrix'
as.matrix(x) <- value
S4 method for signature 'ContactMatrix'
t(x)

S4 method for signature 'ContactMatrix'
dim(x)
S4 method for signature 'ContactMatrix'
dimnames(x)
S4 replacement method for signature 'ContactMatrix'
dimnames(x) <- value
S4 method for signature 'ContactMatrix'
length(x)

S4 method for signature 'ContactMatrix'
seqinfo(x)
S4 replacement method for signature 'ContactMatrix'
seqinfo(x, new2old = NULL,

pruning.mode = c("error", "coarse", "fine", "tidy")) <- value

ContactMatrix accessors 5

Arguments

x A ContactMatrix object.

type A string specifying which anchors are to be extracted or replaced.

id A scalar logical indicating whether indices should be returned. If FALSE, GRanges
are returned instead.

value For anchorIds<-, a list of two integer vectors when type="both". The first
and second vectors must have length equal to the number of rows and columns
of x, respectively. For type="row" or "column", only one vector needs to be
supplied corresponding to either the rows or columns.
For regions<-, a GRanges object of length equal to that of regions(x). For
newRegions<-, a GRanges object that is a superset of all entries in regions(x)
involved in interactions. For appendRegions<-, a GRanges of any length con-
taining additional regions.
For as.matrix<-, a matrix-like object of the same dimensions as that in the
matrix slot.
For dimnames<-, a list of two character vectors corresponding to the row and
column names, respectively. These can also be passed separately via rownames<-
and colnames<-.
For seqinfo<-, a Seqinfo object containing the sequence information.

new2old, pruning.mode
See ?"seqinfo<-" for details.

Details

The return value of anchors varies depending on type and id:

• If id=FALSE, a GRanges object is returned containing the regions specified by the anchor1 or
anchor2 slots in x, for type=="row" or "column", respectively.

• If id=FALSE and type="both", a list is returned with two entries row and column, containing
regions specified by anchor1 and anchor2 respectively.

• If id=TRUE, the integer vectors in the anchor1 or anchor2 slots of x are returned directly,
depending on type. A list of length two is returned for type="both", containing both of
these vectors.

Note that anchorIds is equivalent to calling anchors with id=TRUE.

Replacement in anchorIds<- can only be performed using anchor indices. If type="both", a list
of two integer vectors is required in value, specifying the indices of the row- and column-wise
interacting regions in x. If type="row" or "column", an integer vector is required to replace the
existing row- or column-wise indices in the anchor1 or anchor2 slot, respectively.

For regions, a GRanges is returned equal to the regions slot in x. For regions<-, the GRanges
in value is used to replace the regions slot. Resorting of the replacement GRanges is performed
automatically, along with re-indexing of the anchors. In addition, the input GRanges must be of
the same length as the existing object in the regions slot. The newRegions replacement method
can take variable length GRanges, but requires that the replacement contain (at least) all ranges
contained in anchors(x). The appendRegions replacement method appends extra intervals to the
existing regions slot of x. The reduceRegions method removes unused entries in the regions
slot, to save memory – see reduceRegions,GInteractions-method for more details.

The show method will print out various details of the object, such as the dimensions of the matrix
slot and the length of the regions slot. The as.matrix method will return the value of the matrix
slot, containing a matrix-like object of interaction data. Replacement with a matrix-like object of the

6 ContactMatrix accessors

same dimensions can be performed using the as.matrix<- function. The t method will transpose
the matrix, i.e., switch the rows and columns (and switch the vectors in the anchor1 and anchor2
slots).

The dim method will return a vector of length 2, containing the dimensions of the matrix slot. The
dimnames method will return a list of length 2, containing the row and column names of matrix
(these can be modified with the dimnames<- method). The length method will return an integer
scalar corresponding to the total number of entries in the matrix slot.

The seqinfo method will return the sequence information of the GRanges in the regions slot. This
can be replaced with the seqinfo<- method.

As the ContactMatrix class inherits from the Annotated class, additional metadata can be stored in
the metadata slot. This can be accessed or modified with metadata<-.

Value

For the getters, values in various slots of x are returned, while for the setters, the slots of x are
modified accordingly – see Details.

Author(s)

Aaron Lun

Examples

example(ContactMatrix, echo=FALSE) # Generate a nice object.
show(x)

Various matrix methods:
as.matrix(x)
t(x)

nrow(x)
ncol(x)
length(x)

Accessing anchor ranges or indices:
anchors(x)
anchors(x, type="row")
anchors(x, id=TRUE)

anchors(x, id=TRUE, type="row")
anchors(x, id=TRUE, type="column")

Modifying anchor indices:
nregs <- length(regions(x))
anchorIds(x) <- list(sample(nregs, nrow(x), replace=TRUE),

sample(nregs, ncol(x), replace=TRUE))
anchors(x, id=TRUE, type="row")
anchors(x, id=TRUE, type="column")

Accessing or modifying regions:
regions(x)
regions(x)$score <- runif(length(regions(x)))

new.ranges <- c(regions(x), resize(regions(x), fix="center", width=50))
try(regions(x) <- new.ranges) # Fails

ContactMatrix class 7

replaceRegions(x) <- new.ranges # Succeeds

length(regions(x))
appendRegions(x) <- GRanges("chrA", IRanges(5:10+1000, 1100+5:10), score=runif(6))
length(regions(x))

reduceRegions(x)

Setting metadata
metadata(x)$name <- "I am a contact matrix"
metadata(x)

ContactMatrix class ContactMatrix class and constructors

Description

The ContactMatrix class contains a matrix where rows and columns represent genomic loci. Each
entry of the matrix contains information about the interaction between the loci represented by the
corresponding row/column, e.g., contact frequencies. Coordinates of the loci are also contained
within this class.

Usage

S4 method for signature 'ANY,numeric,numeric,GRanges'
ContactMatrix(matrix, anchor1, anchor2, regions, metadata=list())

S4 method for signature 'ANY,GRanges,GRanges,GenomicRanges_OR_missing'
ContactMatrix(matrix, anchor1, anchor2, regions, metadata=list())

S4 method for signature 'missing,missing,missing,GenomicRanges_OR_missing'
ContactMatrix(matrix, anchor1, anchor2, regions, metadata=list())

Arguments

matrix Any matrix-like object containing interaction data.
anchor1, anchor2

Either a pair of numeric vectors containing indices to regions or a pair of
GRanges objects. In both cases, anchor1 and anchor2 should have lengths
equal to the number of rows and columns in matrix, respectively.

regions A GRanges object containing the coordinates of the interacting regions. This
argument is optional for InteractionSet,ANY,GRanges,GRanges-method.

metadata A list containing experiment-wide metadata - see ?Annotated for more details.

Details

The ContactMatrix class inherits from the Annotated class, with several additional slots:

matrix: A matrix or matrix-like object from, e.g., the Matrix or DelayedArray packages.

anchor1: An integer vector specifying the index of the first interacting region.

anchor2: An integer vector specifying the index of the second interacting region.

8 ContactMatrix class

regions: A sorted GRanges object containing the coordinates of all interacting regions.

Each entry of anchor1 corresponds to a row in matrix, while each entry of anchor2 corresponds
to a column. Each entry of matrix represents an interaction between the corresponding entries in
anchor1 and anchor2, i which point to the relevant coordinates in regions for each locus.

ContactMatrix objects can be constructed by specifying numeric vectors as anchor1 and anchor2
in the ContactMatrix function. These vectors will define the regions corresponding to the rows
and columns of the matrix. Specifically, each value of the vector acts as an index to specify the
relevant coordinates from regions. This means that the range of entries must lie within [1,
length(regions)].

Alternatively, ContactMatrix objects can be constructed by directly supplying the GRanges of the
interacting loci in ContactMatrix. If regions is not specified, this will be constructed automat-
ically from the two sets of supplied GRanges. If regions is supplied, exact matching will be
performed to identify the indices in regions corresponding to the regions in the supplied GRanges.
Missing values are not tolerated and will cause an error to be raised.

Both methods will return an ContactMatrix object containing all of the specified information. Sort-
ing of regions is also performed automatically, with re-indexing of all anchor indices to preserve
the correct pairings between regions.

Value

For the constructors, a ContactMatrix object is returned.

Choosing between matrix classes

The ContactMatrix class provides support for any matrix-like object that implements dim, rbind,
cbind, [and t methods. The choice of class depends on the type of data and the intended applica-
tion. Some of the common choices are described in more detail here:

• Base matrices are simple to generate and are most efficient for dense data. This is often
sufficient for most use cases where small regions of the interaction space are being examined.

• Sparse matrices from the Matrix package are useful for large areas of the interaction space
where most entries are zero. This reduces memory usage compared to a dense representation
(though conversely, is less efficient for dense data). Note that all numeric values are coerced to
double-precision types, which may take up more memory than a direct integer representation.
Another issue is how missing values should be interpreted in the sparseMatrix – see ?inflate
for more details.

• Packed symmetric matrices from the Matrix package provide some memory savings for sym-
metric regions of the interaction space.

• Delayed or HDF5-backed matrices from the DelayedArray and HDF5Array packages allow
very large matrices to be represented without loading into memory.

Author(s)

Aaron Lun

See Also

?"ContactMatrix-access", ?"ContactMatrix-subset", ?"ContactMatrix-sort"

ContactMatrix distances 9

Examples

set.seed(1000)
N <- 30
all.starts <- sample(1000, N)
all.ends <- all.starts + round(runif(N, 5, 20))
all.regions <- GRanges(rep(c("chrA", "chrB"), c(N-10, 10)),

IRanges(all.starts, all.ends))

Nr <- 10
Nc <- 20
all.anchor1 <- sample(N, Nr)
all.anchor2 <- sample(N, Nc)
counts <- matrix(rpois(Nr*Nc, lambda=10), Nr, Nc)
x <- ContactMatrix(counts, all.anchor1, all.anchor2, all.regions)

Equivalent construction:
ContactMatrix(counts, all.regions[all.anchor1],

all.regions[all.anchor2])
ContactMatrix(counts, all.regions[all.anchor1],

all.regions[all.anchor2], all.regions)

Also works directly with Matrix objects.
counts2 <- Matrix::Matrix(counts)
x2 <- ContactMatrix(counts2, all.anchor1, all.anchor2, all.regions)
counts2 <- as(counts2, "dgCMatrix")
x2 <- ContactMatrix(counts2, all.anchor1, all.anchor2, all.regions)

ContactMatrix distances

Compute linear distances from ContactMatrix objects

Description

Methods to compute linear distances between pairs of interacting regions in a ContactMatrix object.

Usage

S4 method for signature 'ContactMatrix'
pairdist(x, type="mid")

S4 method for signature 'ContactMatrix'
intrachr(x)

Arguments

x A ContactMatrix object.

type A character string specifying the type of distance to compute. See ?"pairdist,GInteractions-method"
for possible values.

10 ContactMatrix overlaps

Details

pairdist,ContactMatrix-method will return a matrix of integer (or, if type="intra", logi-
cal) values. Each entry of this matrix specifies the distance between the interacting loci that
are represented by the corresponding row and column. If type="intra", each entry indicates
whether the corresponding interaction is intra-chromosomal. Running intrachr(x) is equivalent to
pairdist(x, type="intra") for any ContactMatrix object x. See pairdist,InteractionSet-method
for more details on the type of distances that can be computed.

Value

An integer or logical matrix of the same dimensions as x, containing the specified distances.

Author(s)

Aaron Lun

Examples

example(ContactMatrix, echo=FALSE)

pairdist(x)
pairdist(x, type="gap")
pairdist(x, type="span")
pairdist(x, type="diag")

intrachr(x)

ContactMatrix overlaps

Find overlaps between GRanges and a ContactMatrix

Description

Find overlaps for the set of regions representing the rows or columns of a ContactMatrix.

Usage

S4 method for signature 'ContactMatrix,Vector'
overlapsAny(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
ignore.strand=TRUE, ...)

S4 method for signature 'ContactMatrix,GInteractions'
overlapsAny(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
ignore.strand=TRUE, ..., use.region="both")

S4 method for signature 'ContactMatrix,InteractionSet'
overlapsAny(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
ignore.strand=TRUE, ..., use.region="both")

ContactMatrix overlaps 11

Arguments

query A ContactMatrix object.

subject A GRanges, GRangesList, GInteractions or InteractionSet object.
maxgap, minoverlap, type, ..., ignore.strand

See ?findOverlaps in the GenomicRanges package.

use.region A string specifying how the interacting regions are to be matched to row/column
regions, see Details.

Details

When subject is a GRanges, overlaps are identified between the row regions of query and the
regions in subject. This is repeated for the column regions of query. A list of two logical vectors is
returned, specifying the rows and columns in query that are overlapped by any region in subject.
These vectors can be directly used to subset query. Alternatively, they can be used in outer to
generate a logical matrix for masking – see Examples.

For all other classes of subject, two-dimensional overlaps are identified. A logical matrix is re-
turned indicating which entries in the ContactMatrix have overlaps with the specified interactions.
For any given entry, an overlap is only considered if the regions for the corresponding row and col-
umn both overlap anchor regions in the subject. See ?"findOverlaps,GInteractions,GInteractions-method"
for more details.

If use.region="both", overlaps between any row/column region and the first/second interacting
region of subject are considered. If use.region="same", only overlaps between row regions
and the first interacting regions, or between column regions and the second interacting regions
are considered. If use.region="reverse", only overlaps between row regions and the second
interacting regions, or between row regions and the first interacting regions are considered.

Value

For overlapsAny,ContactMatrix,GRanges-method, a named list of two logical vectors is re-
turned specifying the rows of columns of query overlapped by subject.

For the other overlapsAny methods, a logical matrix is returned indicating which entries in query
are overlapped by subject.

Author(s)

Aaron Lun

Examples

example(ContactMatrix, echo=FALSE)

of.interest <- resize(sample(regions(x), 2), width=1, fix="center")
olap <- overlapsAny(x, of.interest)
olap
x[olap$row,]
x[,olap$column]
x[olap$row,olap$column]

keep <- outer(olap$row, olap$column, "|") # OR mask
temp <- as.matrix(x)
temp[!keep] <- NA

12 ContactMatrix sorting

keep <- outer(olap$row, olap$column, "&") # AND mask
temp <- as.matrix(x)
temp[!keep] <- NA

Two dimensional overlaps.
pairing <- GRangesList(first=regions(x), second=regions(x))
olap <- overlapsAny(x, pairing)
olap
olap <- overlapsAny(sort(x), pairing) # A bit prettier
olap

ContactMatrix sorting ContactMatrix sorting and ordering

Description

Methods to sort and order ContactMatrix objects, based on the anchor indices. Also, methods to
remove duplicate rows or columns in each ContactMatrix.

Usage

S4 method for signature 'ContactMatrix'
order(..., na.last=TRUE, decreasing=FALSE)
S4 method for signature 'ContactMatrix'
sort(x, decreasing=FALSE, ...)
S4 method for signature 'ContactMatrix'
duplicated(x, incomparables=FALSE, fromLast=FALSE, ...)
S4 method for signature 'ContactMatrix'
unique(x, incomparables=FALSE, fromLast=FALSE, ...)

Arguments

... For sort, one or more ContactMatrix objects with the same dimensions. Other-
wise, ignored in all other methods.

x A ContactMatrix object.

na.last A logical scalar indicating whether NA values should be ordered last. This should
not be relevant as anchor indices should be finite.

decreasing A logical scalar indicating whether sorting should be performed in decreasing
order.

incomparables A logical scalar, ignored.

fromLast A logical scalar indicating whether the last entry of a repeated set in x should be
considered as a non-duplicate.

Details

Sorting is performed based on the anchor indices of the ContactMatrix object. Rows are ordered
for increasing values of the anchor1 slot, while columns are ordered for increasing values of the
anchor2 slot. This equates to ordering by the coordinates directly, as the GRanges in the regions
slot is always sorted. Based on this, sort,ContactMatrix-method will return a sorted copy of x
with permuted rows/columns in increasing order. This can be set to decreasing order by specifying
decreasing=TRUE.

ContactMatrix sorting 13

order,ContactMatrix-method returns a list of 2 integer vectors. The first vector contains the
permutation to rearrange the rows of x in increasing order, while the second vector does the same
for the columns of x. If multiple objects are supplied to order, ordering will be computed using
anchor indices from successive objects. In other words, ordering will be performed using anchor
indices from the first object; any rows with the same anchor1 or columns with the same anchor2
will be split using the corresponding indices in the second object; and so on.

duplicated,ContactMatrix-method returns a list of two logical vectors. The first vector indicates
whether rows are duplicated, based on identical values in the anchor1 slot. The second does the
same for columns based on the anchor2 slot. For a set of duplicated rows or columns, the first
occurrence of that row/column is marked as the non-duplicate if fromLast=FALSE, and the last
entry otherwise.

unique,ContactMatrix-method returns an ContactMatrix object where all duplicate rows and
columns have been removed from x. This is equivalent to subsetting based on the non-duplicate
rows and columns defined in duplicated,ContactMatrix-method.

Note that sorting and duplicate identification only use the anchor indices. The values of the matrix
slot are not used in distinguishing between rows or columns with the same index.

Value

For sort and unique, a ContactMatrix object is returned with sorted or unique rows/columns,
respectively.

For order, a list of two integer vectors is returned containing row/column permutations.

For duplicated, a list of logical vectors is returned specifying which rows/columns are duplicated.

Author(s)

Aaron Lun

Examples

example(ContactMatrix, echo=FALSE)

anchors(x)
x2 <- sort(x)
x2
anchors(x2)

Can also order them.
o <- order(x)
o
stopifnot(all.equal(x[orow,ocolumn], x2))

Checking duplication.
duplicated(x)
duplicated(rbind(x, x))
stopifnot(all.equal(unique(x), unique(rbind(x, x))))

14 ContactMatrix subsetting

ContactMatrix subsetting

ContactMatrix subsetting and combining

Description

Methods to subset or combine ContactMatrix objects.

Usage

Subsetting

S4 method for signature 'ContactMatrix,ANY,ANY'
x[i, j, ..., drop=TRUE]
S4 replacement method for signature 'ContactMatrix,ANY,ANY,ContactMatrix'
x[i, j] <- value
S4 method for signature 'ContactMatrix'
subset(x, i, j)

Combining

S4 method for signature 'ContactMatrix'
cbind(..., deparse.level=1)
S4 method for signature 'ContactMatrix'
rbind(..., deparse.level=1)

Arguments

x A ContactMatrix object.

i, j A vector of subscripts, indicating the rows and columns to be subsetted for i
and j, respectively.

... For cbind, rbind and c, ... contains ContactMatrix objects to be combined.
Otherwise, this argument is ignored during subsetting.

drop A logical scalar, ignored by [,ContactMatrix,ANY,ANY-method.

value A ContactMatrix object with dimensions equal to the length of the two sub-
scripts (or the corresponding dimensions of x, if either subscript is missing.

deparse.level An integer scalar; see ?base::cbind for a description of this argument.

Details

Subsetting of ContactMatrix objects behaves like that for standard matrices. Rows and columns
can be selected and rearranged, with concomitant changes to the anchor1 and anchor2 slots. All
subsetting operations will return an ContactMatrix with the specified rows and columns. However,
note that the value of regions will not be modified by subsetting.

cbind will combines objects with the same rows but different columns. Errors will occur if the
row regions are not identical between objects (i.e., must have same values in the slots for regions
and anchor1). Conversely, rbind will combines objects with the same columns but different rows.
Again, errors will occur if the columns are not identical (i.e., must have same values in the slots for
regions and anchor2).

Convert classes 15

If subsetted anchors are required, see ?"interaction-subset" for why subsetting should be done
before calling the anchors method.

Value

A subsetted or combined ContactMatrix object.

Author(s)

Aaron Lun

Examples

example(ContactMatrix, echo=FALSE)

Subsetting:
x[1:5,]
x[,10:15]
x[1:5,10:15]

x2 <- x
x2[1:5,] <- x[6:10,]
as.matrix(x2[,1]) <- 20

Combining
cbind(x, x)
rbind(x, x)

Convert classes Convert between classes

Description

Inflate a GInteractions or InteractionSet into a ContactMatrix, or deflate a ContactMatrix to an
InteractionSet.

Usage

S4 method for signature 'GInteractions'
inflate(x, rows, columns, fill=TRUE, swap=TRUE, sparse=FALSE, ...)

S4 method for signature 'InteractionSet'
inflate(x, rows, columns, assay=1L, sample=1L, fill, swap=TRUE, sparse=FALSE, ...)

S4 method for signature 'ContactMatrix'
deflate(x, collapse=TRUE, extract, use.zero, use.na, ...)

Arguments

x A GInteractions or InteractionSet object for inflate, or a ContactMatrix object
for deflate.

rows, columns An integer, logical or character vector, a GRanges object or NULL, indicating the
regions of interest to be used as the rows or columns of the ContactMatrix.

16 Convert classes

assay A numeric scalar indicating the assay of the InteractionSet object, from which
values are extracted to fill the ContactMatrix.

sample A numeric scalar indicating the sample (i.e., column) of the assay to extract
values to fill the ContactMatrix.

fill A vector (usually logical or numeric) of length equal to nrow(x), containing
values with which to fill the ContactMatrix. If specified, this overrides extraction
of assay values for inflate,InteractionSet-method.

swap A logical scalar indicating whether filling should also be performed after swap-
ping anchor indices.

sparse A logical scalar indicating whether the inflated matrix should use a sparseMatrix
representation.

collapse A logical scalar indicating whether duplicated interactions should be removed
from x prior to deflation.

extract A logical vector or matrix indicating which entries of x to convert into pairwise
interactions.

use.zero, use.na
A logical scalar indicating whether to convert zero or NA entries into pairwise
interactions.

... For inflate, additional arguments to pass to overlapsAny when rows or columns
is a GRanges.
For deflate, additional arguments to pass to the InteractionSet constructor.

Value

For inflate, a ContactMatrix is returned.

For deflate, an InteractionSet object is returned.

Inflating to a ContactMatrix

The inflate method will return a ContactMatrix where the rows and columns correspond to spec-
ified regions of interest in rows and columns. Regions can be specified by supplying an object of
various types:

• If it is an integer vector, it is assumed to refer to intervals in the regions slot of the input object
x. Values of the vector need not be sorted or unique, but must lie within [1, regions(x)].

• If it is a logical vector, it will subset to retain intervals in regions(x) that are TRUE.

• If it is a character vector, it is assumed to contain the names of the reference sequences of
interest (i.e., chromosome names).

• If it is a GRanges object, overlapsAny will be called to identify the overlapping intervals of
regions(x).

• If it is NULL, all regions in regions(x) will be used to construct that dimension of the Con-
tactMatrix.

For the GInteractions method, values in the matrix are filled based on user-supplied values in fill.
Each element of fill corresponds to an interaction in x and is used to set the matrix entry at the
matching row/column. Some entries of the matrix will correspond to pairwise interactions that are
not present in x - these are filled with NA values.

By default, filling is repeated after swapping the anchor indices. This means that the value of the
matrix at (1, 2) will be the same as that at (2, 1), i.e., the matrix is symmetric around the diagonal
of the interaction space. However, if swap=FALSE, filling is performed so that the first and second

Convert classes 17

anchor indices correspond strictly to rows and columns, respectively. This may be preferable if the
order of the anchors contains some relevant information. In all cases, if duplicated interactions are
present in x (and redundant permutations, when swap=TRUE), one will be arbitrarily chosen to fill
the matrix.

For the InteractionSet inflate method, entries in the matrix are filled in based on the values in
the first sample of the first assay when fill is missing. For more complex x, values from different
assays and samples can be extracted using the assay and sample arguments. Note that if fill is
specified, it will override any extraction of values from the assays.

If sparse=TRUE, inflate will return a ContactMatrix containing a sparseMatrix in the matrix slot.
Here, entries without a corresponding interaction in x are set to zero, not NA. See below for some
considerations when interpreting zeroes and NAs in contact matrices.

The default fill=TRUE has the effect of producing a logical sparse matrix in the output ContactMa-
trix, indicating which pairs of regions were present in x.

Deflating from a ContactMatrix

The deflate method will return an InteractionSet where each relevant entry in the ContactMatrix
is converted into a pairwise interaction. Relevant entries are defined as those that are non-zero, if
use.zero is FALSE; and non-NA, if use.na is FALSE. If x contains a sparseMatrix representation,
the former is set to FALSE while the latter is set to TRUE, if either are not specified. For all other
matrices, use.zero=TRUE and use.na=FALSE by default.

If extract is specified, this overrides all values of use.zero and use.na. A typical application
would be to deflate a number of ContactMatrix objects with the same extract matrix. This en-
sures that the resulting InteractionSet objects can be easily combined with cbind, as the interactions
are guaranteed to be the same. Otherwise, different interactions may be extracted depending on the
presence of zero or NA values.

The values of all matrix entries are stored as a one-sample assay, with each value corresponding
to its pairwise interaction after conversion. Duplicate interactions are removed by default, along
with redundant permutations of the anchor indices. These can be included in the returned object by
setting collapse=FALSE. This setting will also store the pairs as a GInteractions object, rather than
using the default StrictGInteractions object where duplicates are not stored.

Additional arguments can be used to specify the colData and metadata, which are stored in the
ContactMatrix itself.

Interpreting zeroes in a sparse matrix

Storing data as a sparseMatrix may be helpful as it is more memory-efficient for sparse areas of the
interaction space. However, users should keep in mind that the zero values in the sparseMatrix may
not represent zeroes in fill. The majority of these values are likely to be zero just because there
was no corresponding interaction in x to set it to a non-zero value.

Whether or not this is a problem depends on the application. For example, if fill represents count
data and only interactions with non-zero counts are stored in x, then setting all other entries to zero
is sensible. However, in other cases, it is not appropriate to fill entries corresponding to missing
interactions with zero. If fill represents, e.g., log-fold changes, then setting missing entries to a
value of zero will be misleading. One could simply ignore zeroes altogether, though this will also
discard entries that are genuinely zero.

These problems are largely avoided with the default dense matrices, where missing entries are
simply set to NA.

18 GInteractions class

Author(s)

Aaron Lun

Examples

example(InteractionSet, echo=FALSE)

inflate(iset, 1:10, 1:10)
inflate(iset, 1:10, 1:10, sparse=TRUE)
inflate(iset, 1:10, 1:5+10)
inflate(iset, "chrA", 1:5+10)
inflate(iset, "chrA", "chrB")
inflate(iset, "chrA", GRanges("chrB", IRanges(1, 10)))

y <- inflate(iset, 1:10, 1:10)
iset2 <- deflate(y)
iset2
assay(iset2)

y <- inflate(iset, 1:10, 1:10, swap=FALSE)
iset2 <- deflate(y)
iset2
assay(iset2)

Testing with different fillings:
y <- inflate(iset, 1:10, 1:10, sample=2)
iset2 <- deflate(y)
assay(iset2)

y <- inflate(iset, 1:10, 1:10, fill=rowSums(assay(iset)))
iset2 <- deflate(y)
assay(iset2)

y2 <- inflate(interactions(iset), 1:10, 1:10, rowSums(assay(iset)))
identical(y, y2) # should be TRUE

Effect of 'collapse'
y <- inflate(iset, c(8, 1:10), 1:10)
deflate(y)
deflate(y, collapse=FALSE)

GInteractions class GInteractions class and constructors

Description

The GInteractions class stores pairwise genomic interactions, and is intended for use in data analysis
from Hi-C or ChIA-PET experiments. Each row of the GInteractions corresponds to a pairwise
interaction between two loci, with indexing to improve computational efficiency.

Usage

S4 method for signature 'numeric,numeric,GRanges'
GInteractions(anchor1, anchor2, regions, metadata=list(), mode="normal", ...)

GInteractions class 19

S4 method for signature 'GRanges,GRanges,GenomicRanges_OR_missing'
GInteractions(anchor1, anchor2, regions, metadata=list(), mode="normal", ...)

S4 method for signature 'missing,missing,GenomicRanges_OR_missing'
GInteractions(anchor1, anchor2, regions, metadata=list(), mode="normal", ...)

Arguments

anchor1, anchor2
Either a pair of numeric vectors containing indices to regions, or a pair of
GRanges objects specifying the interacting loci. Lengths of both anchor1 and
anchor2 must be equal.

regions A GRanges object containing the coordinates of the interacting regions. This is
only mandatory if anchor1 and anchor2 are numeric vectors.

metadata An optional list of arbitrary content describing the overall experiment.

mode A string indicating what type of GInteractions object should be constructed.

... Optional metadata columns.

Value

For the constructors, a GInteractions (or StrictGInteractions, or ReverseStrictGInteractions) object
is returned.

Description of the class

The GInteractions class inherits from the Vector class and has access to all of its data members and
methods, e.g, metadata and elementMetadata. It also contains several additional slots:

anchor1: An integer vector specifying the index of the first interacting region.

anchor2: An integer vector specifying the index of the second interacting region.

regions: A sorted GRanges object containing the coordinates of all interacting regions.

Each interaction is defined by the corresponding entries in the anchor1 and anchor2 slots, which
point to the relevant coordinates in regions for each locus.

The StrictGInteractions class inherits from the GInteractions class and has the same slots. The only
difference is that, for each interaction, anchor1 must be less than or equal to anchor2. This means
that the first interacting region has a start position that is "lower" than the second interacting region.
This condition is useful for comparing interactions within and between objects, as it ensures that
redundant permutations of the same interaction are not being overlooked. However, it is not used
by default as there may conceivably be instances where the order of interactions is informative. The
ReverseStrictGInteractions class has the opposite behaviour, where anchor1 must be greater than
or equal to anchor2.

Class construction

GInteractions objects can be constructed by specifying integer vectors to define the pairwise inter-
actions in the GInteractions call. For entry x, the corresponding interaction is defined between
regions[anchor1[x]] and regions[anchor2[x]]. Obviously, coordinates of all of the interact-
ing loci must be specified in the regions argument. Any metadata in regions will be preserved.
Note that regions will be resorted in the returned object, so the anchor indices may not be equal to
the input anchor1 and anchor2.

20 GInteractions class

Alternatively, GInteractions objects can be constructed by directly supplying the GRanges of the
interacting loci to the GInteractions function. If regions is not specified, this will be constructed
automatically from the two sets of supplied GRanges. If regions is supplied, exact matching will
be performed to identify the indices in regions corresponding to the regions in the supplied anchor
GRanges. Missing values are not tolerated and will cause an error to be raised. In both cases, any
metadata in the input GRanges will be transferred to the mcols of the output GInteractions object.

All constructors will return a GInteractions object containing all of the specified information. Sort-
ing of regions is performed automatically, with re-indexing of all anchor indices to preserve the
correct pairings between regions. If mode="strict", a StrictGInterctions object is returned with
anchor indices swapped such that anchor1 <= anchor2 for all interactions. If mode="reverse",
a ReverseStrictGInterctions object is returned with anchor indices swapped such that anchor1 >=
anchor2. If both anchors are missing, the constructor will return an empty GInteractions object.

Author(s)

Aaron Lun, with contributions from Malcolm Perry and Liz Ing-Simmons.

See Also

?"interaction-access", ?"interaction-subset", ?"interaction-compare"

Examples

set.seed(1000)
N <- 30
all.starts <- sample(1000, N)
all.ends <- all.starts + round(runif(N, 5, 20))
all.regions <- GRanges(rep(c("chrA", "chrB"), c(N-10, 10)),

IRanges(all.starts, all.ends))

Np <- 20
all.anchor1 <- sample(N, Np)
all.anchor2 <- sample(N, Np)
gi <- GInteractions(all.anchor1, all.anchor2, all.regions)

Equivalent construction:
GInteractions(all.regions[all.anchor1], all.regions[all.anchor2])
GInteractions(all.regions[all.anchor1], all.regions[all.anchor2],

all.regions)

Putting in metadata, elementMetadata
temp.gi <- gi
metadata(temp.gi)$name <- "My GI object"
mcols(temp.gi)$score <- runif(Np)

Strict construction
sgi <- GInteractions(all.regions[all.anchor1], all.regions[all.anchor2],

all.regions, mode="strict")
rsgi <- GInteractions(all.regions[all.anchor1], all.regions[all.anchor2],

all.regions, mode="reverse")

GRanges methods 21

GRanges methods Equivalents of GRanges methods

Description

Methods for GInteractions, InteractionSet and ContactMatrix that operate on the internal Genomi-
cRanges.

Usage

S4 method for signature 'GInteractions'
shift(x, shift=0L, use.names=TRUE)
S4 method for signature 'InteractionSet'
shift(x, shift=0L, use.names=TRUE)
S4 method for signature 'ContactMatrix'
shift(x, shift=0L, use.names=TRUE)

S4 method for signature 'GInteractions'
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)
S4 method for signature 'InteractionSet'
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)
S4 method for signature 'ContactMatrix'
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)

S4 method for signature 'GInteractions'
resize(x, width, fix="start", use.names=TRUE, ...)
S4 method for signature 'InteractionSet'
resize(x, width, fix="start", use.names=TRUE, ...)
S4 method for signature 'ContactMatrix'
resize(x, width, fix="start", use.names=TRUE, ...)

S4 method for signature 'GInteractions'
flank(x, width, start=TRUE, both=FALSE, use.names=TRUE, ignore.strand=FALSE)
S4 method for signature 'InteractionSet'
flank(x, width, start=TRUE, both=FALSE, use.names=TRUE, ignore.strand=FALSE)
S4 method for signature 'ContactMatrix'
flank(x, width, start=TRUE, both=FALSE, use.names=TRUE, ignore.strand=FALSE)

S4 method for signature 'GInteractions'
trim(x, use.names=FALSE)
S4 method for signature 'InteractionSet'
trim(x, use.names=FALSE)
S4 method for signature 'ContactMatrix'
trim(x, use.names=FALSE)

S4 method for signature 'GInteractions'
width(x)
S4 method for signature 'InteractionSet'
width(x)
S4 method for signature 'ContactMatrix'
width(x)

22 GRanges methods

Arguments

x A GInteractions, InteractionSet or ContactMatrix object.
shift, start, end, width, fix, both

Further interaction-specific arguments to pass to the relevant GenomicRanges
methods, see details.

use.names, ignore.strand, ...
Further overall arguments to pass to the relevant GenomicRanges methods.

Details

The trim, resize, narrow and shift methods will apply the GenomicRanges methods with the
same name to the anchor regions of x. For example, resize(x, width) will produce an object
that is equivalent to running resize on the first and second anchor regions directly. This is not the
same as running the methods on the regions slot of x, which is an important distinction when the
arguments are vectors.

The interaction-specific arguments can be scalars, vectors or a list of two scalars/vectors. Scalars
and vectors will be recycled across the length of the first and second anchor regions. For lists, the
first element will be applied to the first anchor regions, and the second element will be applied to
the second anchor regions.

After any modifications are applied, resorting may be performed to ensure that the entries in the
regions slot of the output object are ordered. This means that the order of the ranges in the
regions slot may change between the input and output object. However, the number and order
of the interactions will not change.

For GInteractions and InteractionSet objects, the width method will return a list with two integer
vectors first and second with the same length as x. These contain the widths of the first or
second anchor regions corresponding to each interaction. For ContactMatrix objects, the method
will return a list with the vectors row and column, with lengths equal to the number of rows and
column respectively.

Value

Depending on the method, an object of the same class as x, or information regarding the genomic
regions – see Details.

Author(s)

Aaron Lun, based on suggestions from Liz Ing-Simmons.

See Also

?"trim,GenomicRanges-method", ?"resize,GenomicRanges-method", ?"narrow,GenomicRanges-method",
?"shift,GenomicRanges-method", ?"flank,GenomicRanges-method", ?"width,GenomicRanges-method"

Examples

example(GInteractions, echo=FALSE)

trim(gi)
width(gi)

Functions are applied along the length of 'gi':
new.sizes <- round(runif(length(gi), 10, 50))

Interaction accessors 23

gi2 <- resize(gi, width=new.sizes)
gi2
resize(first(gi), width=new.sizes)
resize(second(gi), width=new.sizes)

... not along the length of 'regions(gi)': note the difference!
mod.regions <- suppressWarnings(resize(regions(gi), width=new.sizes))
mod.regions[anchors(gi, type="first", id=TRUE)] # not the same as first(gi2)!
mod.regions[anchors(gi, type="second", id=TRUE)] # not the same second(gi2)!

example(ContactMatrix, echo=FALSE)
trim(x)
width(x)

Interaction accessors Interaction accessors

Description

Methods to get and set fields in an InteractionSet or GInteractions object.

Usage

S4 method for signature 'GInteractions'
anchors(x, type="both", id=FALSE)
S4 method for signature 'InteractionSet'
anchors(x, type="both", id=FALSE)

S4 method for signature 'GInteractions'
anchorIds(x, type="both")
S4 method for signature 'InteractionSet'
anchorIds(x, type="both")

S4 method for signature 'GInteractions'
first(x)
S4 method for signature 'InteractionSet'
first(x)

S4 method for signature 'GInteractions'
second(x)
S4 method for signature 'InteractionSet'
second(x)

S4 method for signature 'GInteractions'
regions(x)
S4 method for signature 'InteractionSet'
regions(x)

S4 method for signature 'GInteractions'
seqinfo(x)
S4 method for signature 'InteractionSet'
seqinfo(x)

24 Interaction accessors

S4 method for signature 'GInteractions'
show(x)
S4 method for signature 'InteractionSet'
show(x)

S4 replacement method for signature 'GInteractions'
anchorIds(x, type="both") <- value
S4 replacement method for signature 'InteractionSet'
anchorIds(x, type="both") <- value

S4 replacement method for signature 'GInteractions'
regions(x) <- value
S4 replacement method for signature 'InteractionSet'
regions(x) <- value

S4 replacement method for signature 'GInteractions'
seqinfo(x, new2old = NULL,

pruning.mode = c("error", "coarse", "fine", "tidy")) <- value
S4 replacement method for signature 'InteractionSet'
seqinfo(x, new2old = NULL,

pruning.mode = c("error", "coarse", "fine", "tidy")) <- value

S4 replacement method for signature 'GInteractions'
replaceRegions(x) <- value
S4 replacement method for signature 'InteractionSet'
replaceRegions(x) <- value

S4 replacement method for signature 'GInteractions'
appendRegions(x) <- value
S4 replacement method for signature 'InteractionSet'
appendRegions(x) <- value

S4 method for signature 'GInteractions'
reduceRegions(x)
S4 method for signature 'InteractionSet'
reduceRegions(x)

S4 method for signature 'GInteractions'
names(x)
S4 method for signature 'InteractionSet'
names(x)

S4 replacement method for signature 'GInteractions'
names(x) <- value
S4 replacement method for signature 'InteractionSet'
names(x) <- value

S4 replacement method for signature 'StrictGInteractions'
anchors(x, type="both") <- value
S4 replacement method for signature 'ReverseStrictGInteractions'
anchors(x, type="both") <- value

Interaction accessors 25

S4 method for signature 'GInteractions'
length(x)
S4 method for signature 'GInteractions'
as.data.frame(x, row.names=NULL, optional=FALSE, ...)
S4 method for signature 'GInteractions'
x$name
S4 replacement method for signature 'GInteractions'
x$name <- value

S4 method for signature 'InteractionSet'
interactions(x)
S4 replacement method for signature 'InteractionSet'
interactions(x) <- value

S4 method for signature 'InteractionSet'
mcols(x, use.names=FALSE)
S4 replacement method for signature 'InteractionSet'
mcols(x) <- value

Arguments

x An InteractionSet or GInteractions object.

type a string specifying which anchors are to be extracted or replaced.

id a scalar logical indicating whether indices or GRanges should be returned. If
FALSE, GRanges are returned instead.

new2old, pruning.mode
Additional arguments to pass to seqinfo.

name a string indicating the field of mcols to be accessed or modified for a GInterac-
tions object.

value For anchorIds<- and type="first" or "second", an integer vector of length
equal to the number of rows in x. For type="both", a list of two such vectors
must be supplied.
For regions<-, a GRanges object of length equal to that of regions(x). For
replaceRegions<-, a GRanges object that is a superset of all entries in regions(x)
involved in interactions. For appendRegions<-, a GRanges of any length con-
taining additional regions.
For seqinfo<-, a SeqInfo object containing chromosome length data for all
regions. For interactions<-, a GInteractions object of length equal to that of
interactions(x). For mcols<-, a DataFrame with number of rows equal to
the length of x. For names<-, a character vector of length equal to that of x.

row.names, optional, ...
Additional arguments, see ?as.data.frame for more details.

use.names A logical scalar, see ?mcols for more details.

Value

For the getters, values in various slots of x are returned, while for the setters, the slots of x are
modified accordingly – see Details.

26 Interaction accessors

Anchor manipulations for GInteractions

The return value of anchors varies depending on type and id:

• If id=FALSE, a GRanges object is returned containing the regions specified by the anchor1
or anchor2 slots in x, for type=="first" or "second", respectively. The first and second
methods are synonyms for anchors in these respective cases.

• If id=FALSE and type="both", a list is returned with two entries first and second, contain-
ing regions specified by anchor1 and anchor2 respectively.

• If id=TRUE and type="both", a list is returned containing the two integer vectors in the
anchor1 or anchor2 slots of x. Otherwise, each vector is returned corresponding to the re-
quested value of type.

Note that anchorIds is the same as calling anchors with id=TRUE.

Replacement in anchorIds<- requires anchor indices rather than a GRanges object. If type="both",
a list of two integer vectors is required in value, specifying the indices of the interacting regions
in regions(x). If type="first" or "second", an integer vector is required to replace the existing
values in the anchor1 or anchor2 slot, respectively. If the object is a StrictGInteractions, indices
are automatically swapped so that anchor1 >= anchor2 for each interaction. The opposite applies
if the object is a ReverseStrictGInteractions.

Region manipulations for GInteractions

For regions, a GRanges is returned equal to the regions slot in x. For regions<-, the GRanges
in value is used to replace the regions slot. Resorting of the replacement GRanges is performed
automatically, along with re-indexing of the anchors. In addition, the replacement must be of the
same length as the existing object in the regions slot.

The replaceRegions replacement method can take variable length GRanges, but requires that the
replacement contain (at least) all ranges contained in anchors(x). The appendRegions replace-
ment method appends extra intervals to the existing regions slot of x. This is more efficient than
calling replaceRegions on a concatenated object with regions(x) and the extra intervals.

The reduceRegions method will return a GInteractions object where the regions slot is reduced
to only those entries used in anchors(x). This may save some memory in each object by removing
unused regions. However, this is not recommended for large workflows with many GInteractions
objects. R uses a copy-on-write memory management scheme, so only one copy of the GRanges in
regions should be stored so long as it is not modified in different objects.

Other methods for GInteractions

For access and setting of all other slots, see Vector for details on the appropriate methods. This in-
cludes mcols or metadata, to store interactions-specific or experiment-wide metadata, respectively.
The length method will return the number of interactions stored in x.

The show method will print out the class, the number of pairwise interactions, and the total num-
ber of regions in the GInteractions object. The number and names of the various metadata fields
will also be printed. The as.data.frame method will return a data.frame object containing the
coordinates for the two anchor regions as well as any element-wise metadata.

The seqinfo method will return the sequence information of the GRanges in the regions slot. This
can be replaced with the seqinfo<- method.

Interaction accessors 27

Details for InteractionSet

Almost all InteractionSet methods operate by calling the equivalent method for the GInteractions
object, and returning the resulting value. The only exception is interactions, which returns the
GInteractions object in the interactions slot of the InteractionSet object. This slot can also be set
by supplying a valid GInteractions object in interactions<-.

The show method will print information equivalent to that done for a SummarizedExperiment ob-
ject. An additional line is added indicating the number of regions in the regions slot of the object.

For access and setting of all other slots, see the documentation for the SummarizedExperiment class.
This includes assays, colData, mcols or metadata, which can all be applied to InteractionSet
objects.

Handling different metadata

Note that there are several options for metadata - experiment-wide metadata, which goes into
metadata(x)<-; region-specific metadata (e.g., adjacent genes, promoter/enhancer identity, GC
content), which goes into mcols(regions(x))<-; and interaction-specific metadata (e.g., interac-
tion distance, interaction type), which goes directly into mcols(x)<-. This is applicable to both
GInteractions and InteractionSet objects. In addition, library-specific data (e.g., library size) should
be placed into colData(x)<- for InteractionSet objects.

Users should take care with the differences in the $ and $<- operators between these two classes.
For GInteractions objects, this will access or modify fields in the mcols slot, i.e., for interaction-
specific metadata. For InteractionSet objects, this will access or modify fields in the colData slot,
i.e., for library-specific data. The difference in behaviour is due to the concept of libraries in the
InteractionSet, which is lacking in the GInteractions class.

For InteractionSet objects, the mcols getter and setter functions operate on the GInteractions object
stored in interactions slot, rather than accessing the elementMetadata slot of the Summarized-
Experiment base class. This makes no difference for practical usage in the vast majority of cases,
except that any metadata stored in this manner is carried over when the GInteractions object is
extracted with interactions(x). Similarly, the names getter and setter will operate the names
of the internal GInteractions object. However, the metadata getter and setter will operate on the
SummarizedExperiment base class, not on the internal GInteractions object.

Author(s)

Aaron Lun

Examples

example(GInteractions, echo=FALSE) # Generate a nice object.
show(gi)

Accessing anchor ranges or indices:
anchors(gi)
anchors(gi, type="first")
anchors(gi, id=TRUE)

anchors(gi, id=TRUE, type="first")
anchors(gi, id=TRUE, type="second")

Modifying anchor indices:
nregs <- length(regions(gi))
mod <- list(sample(nregs, length(gi), replace=TRUE),

sample(nregs, length(gi), replace=TRUE))

28 Interaction accessors

anchorIds(gi) <- mod
anchors(gi, id=TRUE, type="first")
anchors(gi, id=TRUE, type="second")

anchorIds(gi, type="both") <- mod
anchorIds(gi, type="first") <- mod[[1]]
anchorIds(gi, type="first") <- mod[[2]]

Accessing or modifying regions:
regions(gi)
reduceRegions(gi)
regions(gi)$score <- runif(length(regions(gi)))

new.ranges <- c(regions(gi), resize(regions(gi), fix="center", width=50))
try(regions(gi) <- new.ranges) # Fails
replaceRegions(gi) <- new.ranges # Succeeds

length(regions(gi))
appendRegions(gi) <- GRanges("chrA", IRanges(5:10+1000, 1100+5:10), score=runif(6))
length(regions(gi))

seqinfo(gi)
seqinfo(gi) <- Seqinfo(seqnames=c("chrA", "chrB"), seqlengths=c(1000, 2000))

Accessing or modifying metadata.
gi$score <- runif(length(gi))
mcols(gi)
as.data.frame(gi)

#################
Same can be done for an InteractionSet object:

example(InteractionSet, echo=FALSE)

anchors(iset)
regions(iset)
reduceRegions(iset)
regions(iset)$score <- regions(gi)$score
replaceRegions(iset) <- new.ranges

seqinfo(iset)
seqinfo(iset) <- Seqinfo(seqnames=c("chrA", "chrB"), seqlengths=c(1000, 2000))

Standard SE methods also available:
colData(iset)
metadata(iset)
mcols(iset)

Note the differences in metadata storage:
metadata(iset)$name <- "metadata for SE0"
metadata(interactions(iset))$name <- "metadata for GI"

iset$lib.size <- runif(ncol(iset))*1e6
colData(iset)
mcols(iset) # untouched by "$" operator

mcols(iset)$whee <- runif(nrow(iset))

Interaction binding 29

mcols(iset)
mcols(interactions(iset)) # preserved

names(iset) <- paste0("X", seq_along(iset))
names(iset)
names(interactions(iset))

Interaction binding Interaction combining

Description

Methods to combine InteractionSet or GInteractions objects.

Usage

S4 method for signature 'GInteractions'
c(x, ..., recursive=FALSE)

S4 method for signature 'InteractionSet'
rbind(..., deparse.level=1)
S4 method for signature 'InteractionSet'
cbind(..., deparse.level=1)

Arguments

x A GInteractions or InteractionSet object.

... For rbind and c, ... contains GInteractions or InteractionSet objects to be com-
bined row-wise. All objects must be of the same class. For c, any objects are
additional to that already specified in x. For cbind, ... contains InteractionSet
objects to be combined column-wise.

deparse.level An integer scalar; see ?base::cbind for a description of this argument.

recursive An integer scalar, ignored.

Value

A combined object of the same class as x.

Details for GInteractions

c will concatenate GInteractions objects. It will check whether the regions slot of all supplied
objects are the same, in which case the regions and anchor indices are used directly. Otherwise, the
regions slot is set to a new GRanges object consisting of the (sorted) union of all regions across
the input objects. Anchor indices in each object are refactored appropriately to refer to the relevant
entries in the new GRanges.

Note that the column names in mcols must be identical across all supplied objects. The column
names of mcols for the regions slot must also be identical across objects. If GInteractions ob-
jects of different strictness (i.e., StrictGInteractions and ReverseGInteractions) are concatenated,
the returned object will be of the same class as the first supplied object.

30 Interaction compare

Details for InteractionSet

cbind will combine objects with the same interactions but different samples. Errors will occur if
the interactions are not identical between objects (i.e., must have same values in the interactions
slots). Additional restrictions apply on the column and assay names - see cbind,SummarizedExperiment-method
for details.

rbind will combine objects with the same samples but different interactions. In this case, the inter-
actions need not be identical, and will be concatenated using the methods described above for GIn-
teractions objects. Again, additional restrictions apply - see rbind,SummarizedExperiment-method
for details.

Author(s)

Aaron Lun

Examples

example(GInteractions, echo=FALSE)
c(gi, gi)

new.gi <- gi
regions(new.gi) <- resize(regions(new.gi), width=20, fix="start")
c(gi, new.gi)

#################
Same can be done for an InteractionSet object:

example(InteractionSet, echo=FALSE)
cbind(iset, iset)
rbind(iset, iset)

new.iset <- iset
regions(new.iset) <- resize(regions(new.iset), width=20, fix="start")
rbind(iset, new.iset)

Interaction compare Interaction comparisons

Description

Methods to order, compare and de-duplicate GInteractions or InteractionSet objects, based on the
anchor indices.

Usage

S4 method for signature 'GInteractions'
order(..., na.last=TRUE, decreasing=FALSE)

S4 method for signature 'GInteractions'
sort(x, decreasing=FALSE, ...)

S4 method for signature 'GInteractions'
duplicated(x, incomparables=FALSE, fromLast=FALSE, ...)

Interaction compare 31

S4 method for signature 'GInteractions'
unique(x, incomparables=FALSE, fromLast=FALSE, ...)

S4 method for signature 'GInteractions'
swapAnchors(x, mode=c("order", "reverse", "all"))

Each of the above methods has an identical equivalent for
InteractionSet objects (not shown for brevity).

S4 method for signature 'GInteractions,GInteractions'
match(x, table, nomatch=NA_integer_, incomparables=NULL, ...)

S4 method for signature 'GInteractions,InteractionSet'
match(x, table, nomatch=NA_integer_, incomparables=NULL, ...)

S4 method for signature 'InteractionSet,GInteractions'
match(x, table, nomatch=NA_integer_, incomparables=NULL, ...)

S4 method for signature 'InteractionSet,InteractionSet'
match(x, table, nomatch=NA_integer_, incomparables=NULL, ...)

S4 method for signature 'GInteractions,GInteractions'
pcompare(x, y)

Arguments

... For order, one or more InteractionSet or GInteractions objects with the same
number of rows. Otherwise, ignored in all other methods.

x An InteractionSet or GInteractions object. For pcompare, a GInteractions object
only.

na.last A logical scalar indicating whether NA values should be ordered last. This should
not be relevant as anchor indices should be finite.

decreasing A logical scalar indicating whether rows should be sorted in decreasing order.

incomparables A logical scalar. See ?match for a description of this in match. Otherwise, it is
ignored.

fromLast A logical scalar indicating whether the last entry of a repeated set in x should be
considered as a non-duplicate.

mode A string indicating what type of swapping should be performed in swapAnchors.

table A GInteractions or InteractionSet object.

nomatch An integer scalar indicating the value to use for unmatched entries.

y A GInteractions object, of the same length as x.

Value

For sort and unique, a GInteractions or InteractionSet object is returned, depending on the class
of x.

For order and duplicated, an integer vector of permutations or a logical vector of duplicate spec-
ifications is returned, respectively.

32 Interaction compare

Sorting and ordering

Sorting is performed based on the anchor indices of the GInteraction object. Rows are ordered for
increasing values of the anchor1 slot - if these are equal, ordering is performed with values of the
anchor2 slot. This equates to ordering by the coordinates directly, as the GRanges in the regions
slot is always sorted. Based on this, sort will return a sorted copy of x with permuted rows in
increasing order.

The order method returns an integer vector indicating the permutation to rearrange x in increasing
order. If multiple objects are supplied to order, ordering will be computed using anchor indices
from successive objects. For example, ordering is first performed using anchor indices from the first
object; any rows with the same anchor1 and anchor2 will be split using the second object; and so
on.

For both of these methods, the sorting can be reversed by setting decreasing=TRUE. This will sort
or order for decreasing values of anchor1 and anchor2, rather than for increasing values.

Removing duplicates

The duplicated method returns a logical vector indicating whether the rows of x are duplicated.
Duplicated rows are identified on the basis of identical entries in the anchor1 and anchor2 slots.
Values in other slots (e.g., in mcols) are ignored. For a set of duplicated rows, the first occurrence
in x is marked as the non-duplicate if fromLast=FALSE, and the last entry otherwise.

unique returns a GInteractions object where all duplicate rows have been removed from x. This
is equivalent to x[!duplicated(x),], with any additional arguments passed to duplicated as
specified.

Matching and comparing

The match function will return an integer vector of length equal to that of x. Each entry of the
vector corresponds to an interaction in x and contains the index of the first interaction table with
the same anchor regions. Interactions in x without any matches are assigned NA values by default.
If the regions slot is not the same between x and table, match will call findOverlaps to identify
exact two-dimensional overlaps.

The pcompare function will return an integer vector of length equal to x and y. This performs par-
allel comparisons between corresponding entries in two GInteractions objects, based on the values
of the anchor indices (anchor1 first, and then anchor2 if anchor1 is tied). Negative, zero and
positive values indicate that the corresponding interaction in x is “lesser”, equal or “greater” than
the corresponding interaction in y. If the regions slot is not the same between the two objects, the
union of regions for both objects will be used to obtain comparable indices.

Swapping anchors

For GInteractions objects, swapAnchors returns a GInteractions object where anchor1 and anchor2
values are swapped. If mode="order", this is done so that all values in the anchor2 slot are not
less than values in anchor1 in the returned object. If mode="reverse", all values in anchor1 are
not less than all values in anchor2. If mode="all", the anchor indices in x are directly swapped
without consideration of ordering.

It is recommended to apply this method before running methods like order or duplicated. This
ensures that redundant permutations are coerced into the same format for a valid comparison. In
many applications, permutations of pairwise interactions are not of interest, i.e., an interaction
between regions 1 and 2 is the same as that between 2 and 1. Application of swapAnchors with
mode="order" ensures that all indices are arranged in a comparable manner. Alternatively, users

Interaction compare 33

can use a (Reverse)StrictGInteractions object which enforces a consistent arrangement of indices
across interactions.

Methods for InteractionSet objects

For all InteractionSet methods, the corresponding method is called on the GInteractions object in
the interactions slot of the InteractionSet object. Return values for each InteractionSet method is
the same as those for the corresponding GInteractions method - except for sort and unique, which
return a row-permuted or row-subsetted InteractionSet, respectively, instead of a GInteractions ob-
ject; and swapAnchors, which returns an InteractionSet object where the internal GInteractions has
its anchor indices swapped around.

Note that no additional information from the InteractionSet (beyond that in interactions) is used
for sorting or duplicate marking, i.e., the assay or metadata values for each interaction are not
used in distinguishing rows with the same interaction. For this reason, the pcompare method is
not implemented for InteractionSet objects. It makes little sense to do a parallel comparison in an
InteractionSet without examining the data.

Author(s)

Aaron Lun

See Also

match, pcompare

Examples

example(GInteractions, echo=FALSE)

anchors(gi, id=TRUE)
anchors(swapAnchors(gi, mode="all"), id=TRUE)
gi <- swapAnchors(gi)

anchors(gi)
gi2 <- sort(gi)
gi2
anchors(gi2)

Can also order them.
o <- order(gi)
o
stopifnot(all.equal(gi[o], gi2))

Checking duplication.
summary(duplicated(gi))
summary(duplicated(c(gi, gi)))
stopifnot(all.equal(unique(gi), unique(c(gi, gi))))

Matching and comparing.
another.gi <- gi[sample(length(gi))]
match(gi, another.gi)
match(gi, another.gi[1:5])

pcompare(gi, another.gi)

34 Interaction distances

#################
Same can be done for an InteractionSet object:

example(InteractionSet, echo=FALSE)
iset <- swapAnchors(iset)

anchors(iset)
anchors(sort(iset))
order(iset)
summary(duplicated(iset))
unique(iset)

Interaction distances Get the linear distance for each interaction

Description

Compute the distance between interacting regions on the linear genome, for each pairwise interac-
tion contained in a GInteractions or InteractionSet object.

Usage

S4 method for signature 'GInteractions'
pairdist(x, type="mid")
S4 method for signature 'InteractionSet'
pairdist(x, type="mid")

S4 method for signature 'GInteractions'
intrachr(x)
S4 method for signature 'InteractionSet'
intrachr(x)

Arguments

x A GInteractions or InteractionSet object.

type A character string specifying the type of distance to compute. Can take values
of "mid", "gap", "span", "diag" or "intra".

Details

For each interaction in x, the pairdist method computes the distance between the two interacting
regions. An integer vector is returned, with values computed according to the specified value of
type:

"mid": The distance between the midpoints of the two regions (rounded down to the nearest inte-
ger) is returned.

"gap": The length of the gap between the closest points of the two regions is computed - negative
lengths are returned for overlapping regions, indicating the length of the overlap.

"span": The distance between the furthermost points of the two regions is computed.

"diag": The difference between the anchor indices is returned. This corresponds to a diagonal on
the interaction space when bins are used in the regions slot of x.

Interaction overlaps 35

Interchromosomal interactions are marked with NA. Alternatively, if type="intra", a logical vector
is returned indicating whether the interaction occurs between two regions on the same chromosome.
intrachr(x) is an alias for pairdist(x, type="intra").

The return values of the assorted methods are the same for both GInteractions and InteractionSet
objects. Methods for the latter operate on the GInteractions object in the interactions slot.

Value

An integer or logical vector of distances.

Author(s)

Aaron Lun

Examples

example(GInteractions, echo=FALSE)

pairdist(gi)
pairdist(gi, type="gap")
pairdist(gi, type="span")
pairdist(gi, type="diag")
intrachr(gi)

example(InteractionSet, echo=FALSE)

pairdist(iset)
pairdist(iset, type="gap")
pairdist(iset, type="span")
pairdist(iset, type="diag")
intrachr(iset)

Interaction overlaps Find overlaps between interactions in one or two dimensions

Description

Find overlaps between interactions and linear intervals, between interactions and pairs of intervals,
and between interactions and other interactions in a GInteractions or InteractionSet object.

Usage

S4 method for signature 'GInteractions,GInteractions'
findOverlaps(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
ignore.strand=TRUE, ..., use.region="both")

S4 method for signature 'GInteractions,GInteractions'
overlapsAny(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
ignore.strand=TRUE, ..., use.region="both")

36 Interaction overlaps

S4 method for signature 'GInteractions,GInteractions'
countOverlaps(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
ignore.strand=TRUE, ..., use.region="both")

S4 method for signature 'GInteractions,GInteractions'
subsetByOverlaps(query, subject, maxgap=-1L, minoverlap=0L,

type=c("any", "start", "end", "within", "equal"),
ignore.strand=TRUE, ..., use.region="both")

Arguments

query, subject A Vector, GInteractions or InteractionSet object, depending on the specified
method. At least one of these must be a GInteractions or InteractionSet ob-
ject. Also, subject can be missing if query is a GInteractions or InteractionSet
object.

maxgap, minoverlap, type, select
See ?findOverlaps in the GenomicRanges package.

ignore.strand A logical scalar indicating whether strand information in query or subject
should be ignored. Note that the default setting here is different to that in
findOverlaps as genomic interactions are usually unstranded.

... Further arguments to pass to findOverlaps. This includes drop.self and
drop.redundant when subject is missing.

use.region A string specifying the regions to be used to identify overlaps.

Value

For findOverlaps, a Hits object is returned if select="all", and an integer vector of subject
indices otherwise.

For countOverlaps and overlapsAny, an integer or logical vector is returned, respectively.

For subsetByOverlaps, a subsetted object of the same class as query is returned.

Overview of overlaps for GInteractions

All methods can be applied using a GInteractions as either the query or subject, and a Vector as
the other argument. In such cases, the Vector is assumed to represent some region on the linear
genome (e.g., GRanges) or set of such regions (GRangesList). An overlap will be defined between
the interval and an GInteractions interaction if either anchor region of the latter overlaps the former.
This is considered to be a one-dimensional overlap, i.e., on the linear genome.

The same methods can be applied using two GInteractions objects as the query and subject. In
such cases, a two-dimensional overlap will be computed between the anchor regions of the two
objects. An overlap is defined if each anchor region of the first object overlaps at least one anchor
region of the second object, and each anchor region of the second object overlaps at least one anchor
region of the first object, i.e., there are overlapping areas in the two-dimensional interaction space.
If subject is missing, overlaps will be computed between interactions in query.

Description of overlap methods

When select="all", findOverlaps returns a Hits object containing overlapping pairs of queries
and subjects (or more specifically, their indices in the supplied objects - see ?findOverlaps for

Interaction overlaps 37

more details). For other values of select, an integer vector is returned with one entry for each
element of query, which specifies the index of the chosen (first, last or arbitrary) overlapping feature
in subject for that query. Queries with no overlaps at all are assigned NA values.

For the other methods, countOverlaps returns an integer vector indicating the number of ele-
ments in subject that were overlapped by each element in query. overlapsAny returns a logical
vector indicating which elements in query were overlapped by at least one element in subject.
subsetByOverlaps returns a subsetted query containing only those elements overlapped by at
least one element in subject.

Choice of regions to define overlaps

For one-dimensional overlaps, use.region="both" by default such that overlaps with either anchor
region are considered. If use.region="first", overlaps are only considered between the interval
and the first anchor region. Similarly, if use.region="second", only the second anchor region is
used.

Equivalent choices are available for two-dimensional overlaps:

• By default, use.region="both" such that the order of first/second anchor regions in the query
and subject is ignored. This means that the first anchor region in the query can overlap both
the first or second anchor regions in the subject. Similarly, the second anchor region in the
query can overlap both the first or ssecond anchor regions in the subject.

• If use.region="same", overlaps are only considered between the first anchor regions for
the query and the subject, or between the second anchor regions for the query and subject.
Overlaps between the first query region and the second subject region, or the second query
region and the first subject region, are ignored.

• If use.region="reverse", overlaps are only considered between the first anchor regions for
the query and the second anchor regions for the subject, and vice versa. Overlaps between the
first query/subject regions or between the second query/subject regions are ignored.

The latter two options tend only to be useful if the order of first/second regions is informative.

Details for InteractionSet

Each method can also be applied with InteractionSet objects, and the behaviour is largely the same
as that described for GInteractions objects. For a given InteractionSet object x, the corresponding
method is called on the GInteractions object in the interactions slot of x. The return value
is identical to that from calling the method on interactions(x), except for subsetByOverlaps
for InteractionSet queries (which returns a subsetted InteractionSet object, containing only those
rows/interactions overlapping the subject).

Author(s)

Aaron Lun

See Also

findOverlaps, linkOverlaps

Examples

example(GInteractions, echo=FALSE)

Making a larger object, for more overlaps.

38 Interaction overlaps

Np <- 100
N <- length(regions(gi))
all.anchor1 <- sample(N, Np, replace=TRUE)
all.anchor2 <- sample(N, Np, replace=TRUE)
gi <- GInteractions(all.anchor1, all.anchor2, regions(gi))

GRanges overlaps:
of.interest <- resize(sample(regions(gi), 2), width=1, fix="center")
findOverlaps(of.interest, gi)
findOverlaps(gi, of.interest)
findOverlaps(gi, of.interest, select="first")
overlapsAny(gi, of.interest)
overlapsAny(of.interest, gi)
countOverlaps(gi, of.interest)
countOverlaps(of.interest, gi)
subsetByOverlaps(gi, of.interest)
subsetByOverlaps(of.interest, gi)

GRangesList overlaps:
pairing <- GRangesList(first=regions(gi)[1:3], second=regions(gi)[4:6],

third=regions(gi)[7:10], fourth=regions(gi)[15:17])
findOverlaps(pairing, gi)
findOverlaps(gi, pairing)
findOverlaps(gi, pairing, select="last")
overlapsAny(gi, pairing)
overlapsAny(pairing, gi)
countOverlaps(gi, pairing)
countOverlaps(pairing, gi)
subsetByOverlaps(gi, pairing)
subsetByOverlaps(pairing, gi)

GInteractions overlaps (split into two):
first.half <- gi[1:(Np/2)]
second.half <- gi[Np/2+1:(Np/2)]
findOverlaps(first.half, second.half)
findOverlaps(first.half, second.half, select="arbitrary")
overlapsAny(first.half, second.half)
countOverlaps(first.half, second.half)
subsetByOverlaps(first.half, second.half)

findOverlaps(gi)
countOverlaps(gi)
overlapsAny(gi) # trivial result

#################
Same can be done for an InteractionSet object:

Nlibs <- 4
counts <- matrix(rpois(Nlibs*Np, lambda=10), ncol=Nlibs)
colnames(counts) <- seq_len(Nlibs)
iset <- InteractionSet(counts, gi)

findOverlaps(of.interest, iset)
findOverlaps(iset, pairing)
findOverlaps(iset[1:(Np/2),], iset[Np/2+1:(Np/2),])

Obviously returns InteractionSet objects instead

Interaction subsetting 39

subsetByOverlaps(of.interest, iset)
subsetByOverlaps(iset, pairing)
subsetByOverlaps(iset[1:(Np/2),], iset[Np/2+1:(Np/2),])

Self-overlaps
findOverlaps(iset)
countOverlaps(iset)
overlapsAny(iset) # trivial result

Interaction subsetting

Interaction subsetting and combining

Description

Methods to subset or combine InteractionSet or GInteractions objects.

Usage

S4 method for signature 'InteractionSet,ANY,ANY'
x[i, j, ..., drop=TRUE]

S4 replacement method for signature 'InteractionSet,ANY,ANY,InteractionSet'
x[i, j] <- value

S4 method for signature 'InteractionSet'
subset(x, i, j)

S4 replacement method for signature 'GInteractions,ANY,GInteractions'
x[i] <- value

Arguments

x A GInteractions or InteractionSet object.

i, j A vector of logical or integer subscripts. For InteractionSet objects, these in-
dicate the rows and columns to be subsetted for i and j, respectively. Rows
correspond to pairwise interactions while columns correspond to samples. For
GInteractions objects, i indicates the genomic interactions to be retained. j is
ignored as there is no concept of samples in this class.

..., drop Additional arguments that are ignored.

value A GInteractions or InteractionSet object with length or number of rows equal to
length of i (or that of x, if i is not specified). For InteractionSet objects, the
number of columns must be equal to the length of j (or number of columns in
x, if j is not specified).

Value

A subsetted object of the same class as x.

40 Interaction subsetting

Details for GInteractions

Subsetting operations are not explicitly listed above as they inherit from the Vector class. They
will return a GInteractions object containing the specified interactions. Values of the anchor1 and
anchor2 slots will be appropriately subsetted in the returned object, along with any metadata in
mcols. However, note that the value of regions will not be modified by subsetting.

For short index vectors, subsetting a GInteractions object prior to calling anchors may be much
faster than the reverse procedure. This is because the anchors getter will construct a GRanges(List)
containing the genomic loci for all pairwise interactions. Subsetting beforehand ensures that only
loci for the desired interactions are included. This avoids constructing the entire object just to subset
it later.

Subset assignment will check if the regions are identical between x and value. If not, the regions
slot in the output object will be set to a sorted union of all regions from x and value. Indices are
refactored appropriately to point to the entries in the new regions.

Details for InteractionSet

Subsetting behaves in much the same way as that for the SummarizedExperiment class. Interactions
are treated as rows and will be subsetted as such. All subsetting operations will return an Interac-
tionSet with the specified interactions (rows) or samples (columns). Again, note that the value of
regions will not be modified by subsetting.

Author(s)

Aaron Lun

Examples

example(GInteractions, echo=FALSE)

Subsetting:
gi[1,]
gi[1:2,]
gi[3]
gi[3:4]

temp.gi <- gi
temp.gi[3:4] <- gi[1:2]

Splitting:
f <- sample(4, length(gi), replace=TRUE)
out <- split(gi, f)
out[[1]]

#################
Same can be done for an InteractionSet object:

example(InteractionSet, echo=FALSE)

Subsetting:
iset[1,]
iset[1:2,]
iset[,1]
iset[,1:2]
iset[3,3]

InteractionSet class 41

iset[3:4,3:4]

Splitting:
out <- split(iset, f)
out[[1]]

InteractionSet class InteractionSet class and constructors

Description

The InteractionSet class stores information about pairwise genomic interactions, and is intended
for use in data analysis from Hi-C or ChIA-PET experiments. Each row of the InteractionSet
corresponds to a pairwise interaction between two loci, as defined in the GInteractions object. Each
column corresponds to a library or sample. Each InteractionSet also contains one or more assays,
intended to hold experimental data about interaction frequencies for each interaction in each sample.

Usage

S4 method for signature 'ANY,GInteractions'
InteractionSet(assays, interactions, ...)

S4 method for signature 'missing,missing'
InteractionSet(assays, interactions, ...)

Arguments

assays A numeric matrix or a list or SimpleList of matrices, containing data for each
interaction.

interactions A GInteractions object of length equal to the number of rows in assays.

... Other arguments to be passed to the SummarizedExperiment constructor.

Details

The InteractionSet class inherits from the SummarizedExperiment class and has access to all of
its data members and methods. It also contains an additional interactions slot which holds a
GInteractions object (or an object from any derived classes, e.g., StrictGInteractions). Each row
of the InteractionSet object corresponds to a pairwise interaction between two genomic loci in
interactions.

The constructor will return an InteractionSet object containing all of the specified information -
for InteractionSet,missing,missing-method, an empty InteractionSet object is returned. Note
that any metadata arguments will be placed in the metadata of the internal SummarizedExperiment
object, not the metadata of the internal GInteractions object. This is consistent with the behaviour
of similar classes like RangedSummarizedExperiment.

Value

For the constructors, an InteractionSet object is returned.

Author(s)

Aaron Lun

42 Linearize interactions

See Also

?"interaction-access", ?"interaction-subset", ?"interaction-compare"

Examples

example(GInteractions, echo=FALSE)
Nlibs <- 4
counts <- matrix(rpois(Np*Nlibs, lambda=10), ncol=Nlibs)
colnames(counts) <- seq_len(Nlibs)

iset <- InteractionSet(counts, gi)
iset <- InteractionSet(counts, gi, colData=DataFrame(lib.size=1:Nlibs*1000))
iset <- InteractionSet(counts, gi, metadata=list(name="My Hi-C data"))

Note differences in metadata storage:
metadata(iset)
metadata(interactions(iset))

Linearize interactions

Linearize 2D interactions into 1D ranges

Description

Convert interactions in two-dimensional space to one-dimensional ranges on the linear genome.

Usage

S4 method for signature 'GInteractions,numeric'
linearize(x, ref, internal=TRUE)

S4 method for signature 'GInteractions,GRanges'
linearize(x, ref, ..., internal=TRUE)

S4 method for signature 'InteractionSet,numeric'
linearize(x, ref, internal=TRUE)

S4 method for signature 'InteractionSet,GRanges'
linearize(x, ref, ..., internal=TRUE)

Arguments

x A GInteractions or InteractionSet object.

ref A numeric vector or a GRanges object, specifying the reference region(s) to use
for linearization. If numeric, the entries should be indices pointing to a genomic
interval in regions(x).

internal A logical scalar specifying whether interactions within ref should be reported.

... Other arguments, passed to overlapsAny in the GRanges methods.

linkOverlaps 43

Details

This method identifies all interactions with at least one anchor region overlapping the specified
region(s) in ref. When x is a GInteractions object, the method returns a GRanges object with one
entry per identified interaction, where the coordinates are defined as the other anchor region, i.e.,
the one that does not overlap the reference region.

If both of the anchor regions for an interaction overlap the reference regions, the genomic interval
spanned by both anchor regions is returned. This is because it is not clear which region should be
defined as the "other" anchor in such circumstances. Note that this will fail if the reference regions
occur across multiple chromosomes. If internal=FALSE, interactions with both overlapping anchor
regions are removed from the output.

When x is an InteractionSet object, a RangedSummarizedExperiment object is returned. Each en-
try corresponds to an identified interaction with the non-overlapping anchor region stored in the
rowRanges. Experimental data associated with each identified interaction is stored in the various
assays.

This method effectively converts two-dimesional interaction data into one-dimensional coverage
across the linear genome. It is useful when a particular genomic region is of interest - this can be
used as ref, to examine the behaviour of all other regions relative to it. For example, Hi-C data in
x can be converted into pseudo-4C contact frequencies after linearization.

Disjoint ranges across multiple chromosomes are supported when ref is a GRanges object. How-
ever, it usually only makes sense to use continguous ranges as a single bait region. Similarly, if ref
is numeric, it should refer to consecutive entries in regions(x) to specify the bait region.

Value

A GRanges when x is a GInteractions object, and a RangedSummarizedExperiment when x is an
InteractionSet object.

Examples

example(InteractionSet, echo=FALSE)

With integers
out <- linearize(iset, 1)
linearize(iset, 10)
linearize(iset, 20)

With ranges
linearize(iset, regions(iset)[1], type="equal")
linearize(iset, regions(iset)[10], type="equal")
linearize(iset, regions(iset)[20], type="equal")

linkOverlaps Link overlapping regions

Description

Identify interactions that link two sets of regions by having anchor regions overlapping one entry in
each set.

44 linkOverlaps

Usage

S4 method for signature 'GInteractions,Vector,Vector'
linkOverlaps(query, subject1, subject2, ...,

ignore.strand=TRUE, use.region="both")

S4 method for signature 'InteractionSet,Vector,Vector'
linkOverlaps(query, subject1, subject2, ...,

ignore.strand=TRUE, use.region="both")

Arguments

query A GInteractions or InteractionSet object.

subject1, subject2
A Vector object defining a set of genomic intervals, such as a GRanges or
GRangesList. subject2 may be missing. Alternatively, both subject1 and
subject2 may be Hits objects, see below.

..., ignore.strand
Additional arguments to be passed to findOverlaps. Note that ignore.strand=TRUE
by default, as genomic interactions are usually unstranded.

use.region A string specifying which query regions should be used to overlap which subject.
Ignored if subject2 is missing.

Details

This function identifies all interactions in query where one anchor overlaps an entry in subject1
and the other anchor overlaps an entry in subject2. It is designed to be used to identify regions
that are linked by interactions in query. For example, one might specify genes as subject1 and
enhancers as subject2, to identify all gene-enhancer contacts present in query. This is useful when
the exact pairings between subject1 and subject2 are undefined.

The function returns a DataFrame specifying the index of the interaction in query; the index of the
overlapped region in subject1; and the index of the overlapped region in subject2. If multiple
regions in subject1 and/or subject2 are overlapping the anchor regions of a particular interaction,
all combinations of two overlapping regions (one from each subject* set) are reported for that
interaction.

By default, use.region="both" such that overlaps will be considered between any first/second in-
teracting region in query and either subject1 or subject2. If use.region="same", overlaps will
only be considered between the first interacting region in query and entries in subject1, and be-
tween the second interacting region and subject2. The opposite applies with use.region="reverse",
where the first and second interacting regions are overlapped with subject2 and subject1 respec-
tively.

If subject2 is not specified, links within subject1 are identified instead, i.e., subject2 is set
to subject1. In such cases, the returned DataFrame is such that the first subject index is always
greater than the second subject index, to avoid redundant permutations.

Value

A DataFrame of integer indices indicating which elements of query link which elements of subject1
and subject2.

linkOverlaps 45

Using Hits as input

Hits objects can be used for the subject1 and subject2 arguments. These should be constructed
using findOverlaps with regions(query) as the query and the genomic regions of interest as the
subject. For example, the calls below:

> linkOverlaps(query, subject1) # 1
> linkOverlaps(query, subject1, subject2) # 2

will yield exactly the same output as:

> olap1 <- findOverlaps(regions(query), subject1)
> linkOverlaps(query, olap1) # 1
> olap2 <- findOverlaps(regions(query), subject2)
> linkOverlaps(query, olap1, olap2) # 2

This is useful in situations where regions(query) and the genomic regions in subject1 and
subject2 are constant across multiple calls to linkOverlaps. In such cases, the overlaps only
need to be calculated once, avoiding redundant work within linkOverlaps.

Author(s)

Aaron Lun

See Also

findOverlaps,GInteractions,Vector-method

Examples

example(GInteractions, echo=FALSE)

all.genes <- GRanges("chrA", IRanges(0:9*10, 1:10*10))
all.enhancers <- GRanges("chrB", IRanges(0:9*10, 1:10*10))

out <- linkOverlaps(gi, all.genes, all.enhancers)
head(out)

out <- linkOverlaps(gi, all.genes)
head(out)

Same methods apply for InteractionSet objects.

example(InteractionSet, echo=FALSE)
out <- linkOverlaps(iset, all.genes, all.enhancers)
out <- linkOverlaps(iset, all.genes)

46 pairs

pairs Extract paired ranges

Description

Represent interactions in a GInteractions or Interaction object as a Pairs, SelfHits or GRangesList
object.

Usage

S4 method for signature 'GInteractions'
pairs(x, id=FALSE, as.grlist=FALSE)

S4 method for signature 'InteractionSet'
pairs(x, id=FALSE, as.grlist=FALSE)

makeGInteractionsFromGRangesPairs(x)

Arguments

x For pairs, a GInteractions or InteractionSet object. For makeGInteractionsFromGRangesPairs,
a Pairs object containing two parallel GRanges.

id A logical scalar specifying whether indices should be returned instead of re-
gions.

as.grlist A logical scalar specifying whether a GRangesList should be returned.

Details

Recall that the GInteractions object stores anchor regions for each interaction in two parallel GRanges,
where corresponding entries between the two GRanges constitute the pair of regions for one inter-
action. These parallel ranges can be extracted and stored as a Pairs object for further manipulation.
This is similar to the GRangesList reported by anchors with type="both" and id=FALSE. The
reverse conversion is performed using makeGInteractionsFromGRangesPairs.

An alternative representation involves storing the two anchors for each interaction in a single
GRanges of length 2. Multiple interactions are then stored as a GRangesList, along with any meta-
data and sequence information. This is returned if as.grlist=FALSE, may be more useful in some
applications where the two interacting regions must be in the same GRanges. Finally, if id=TRUE,
the anchor indices are extracted and returned as a SelfHits object. This may be useful for graph
construction.

Value

For pairs, if id=TRUE, a SelfHits object is returned. Otherwise, if as.grlist=TRUE, a GRangesList
object is returned. Otherwise, a Pairs object is returned.

For makeGInteractionsFromGRangesPairs, a GInteractions object is returned.

Author(s)

Aaron Lun

updateObject 47

Examples

example(GInteractions, echo=FALSE)
y <- pairs(gi)
y
makeGInteractionsFromGRangesPairs(y)

pairs(gi, id=TRUE)
pairs(gi, as.grlist=TRUE)

example(InteractionSet, echo=FALSE)
pairs(iset)
pairs(iset, id=TRUE)
pairs(iset, as.grlist=TRUE)

updateObject Update a GInteractions object

Description

Update an old GInteractions object to the latest format.

Usage

S4 method for signature 'GInteractions'
updateObject(object, ..., verbose = FALSE)

Arguments

object A old GInteractions object.

... Additional arguments that are ignored.

verbose Logical scalar indicating whether a message should be emitted as the object is
updated.

Value

An updated version of object.

Index

[,ContactMatrix,ANY,ANY,ANY-method
(ContactMatrix subsetting), 14

[,ContactMatrix,ANY,ANY-method
(ContactMatrix subsetting), 14

[,ContactMatrix,ANY-method
(ContactMatrix subsetting), 14

[,InteractionSet,ANY,ANY,ANY-method
(Interaction subsetting), 39

[,InteractionSet,ANY,ANY-method
(Interaction subsetting), 39

[,InteractionSet,ANY-method
(Interaction subsetting), 39

[<-,ContactMatrix,ANY,ANY,ContactMatrix-method
(ContactMatrix subsetting), 14

[<-,GInteractions,ANY,GInteractions-method
(Interaction subsetting), 39

[<-,InteractionSet,ANY,ANY,InteractionSet-method
(Interaction subsetting), 39

$,GInteractions-method (Interaction
accessors), 23

$<-,GInteractions-method (Interaction
accessors), 23

anchorIds (Interaction accessors), 23
anchorIds,ContactMatrix-method

(ContactMatrix accessors), 4
anchorIds,GInteractions-method

(Interaction accessors), 23
anchorIds,InteractionSet-method

(Interaction accessors), 23
anchorIds<- (Interaction accessors), 23
anchorIds<-,ContactMatrix-method

(ContactMatrix accessors), 4
anchorIds<-,GInteractions-method

(Interaction accessors), 23
anchorIds<-,InteractionSet-method

(Interaction accessors), 23
anchorIds<-,ReverseStrictGInteractions-method

(Interaction accessors), 23
anchorIds<-,StrictGInteractions-method

(Interaction accessors), 23
anchors, 15, 40, 46
anchors (Interaction accessors), 23

anchors,ContactMatrix-method
(ContactMatrix accessors), 4

anchors,GInteractions-method
(Interaction accessors), 23

anchors,InteractionSet-method
(Interaction accessors), 23

anchors<- (Interaction accessors), 23
anchors<-,ContactMatrix-method

(ContactMatrix accessors), 4
anchors<-,GInteractions-method

(Interaction accessors), 23
anchors<-,InteractionSet-method

(Interaction accessors), 23
anchors<-,ReverseStrictGInteractions-method

(Interaction accessors), 23
anchors<-,StrictGInteractions-method

(Interaction accessors), 23
Annotated, 6, 7
appendRegions<- (Interaction

accessors), 23
appendRegions<-,ContactMatrix-method

(ContactMatrix accessors), 4
appendRegions<-,GInteractions-method

(Interaction accessors), 23
appendRegions<-,InteractionSet-method

(Interaction accessors), 23
as.data.frame, 25
as.data.frame,GInteractions-method

(Interaction accessors), 23
as.matrix,ContactMatrix-method

(ContactMatrix accessors), 4
as.matrix<- (ContactMatrix accessors), 4
as.matrix<-,ContactMatrix-method

(ContactMatrix accessors), 4

boundingBox, 2
boundingBox,GInteractions-method

(boundingBox), 2
boundingBox,InteractionSet-method

(boundingBox), 2

c,GInteractions-method (Interaction
binding), 29

cbind, 14, 29

48

INDEX 49

cbind,ContactMatrix-method
(ContactMatrix subsetting), 14

cbind,InteractionSet-method
(Interaction binding), 29

ContactMatrix, 5, 9, 11, 12, 14, 15, 22
ContactMatrix (ContactMatrix class), 7
ContactMatrix accessors, 4
ContactMatrix class, 7
ContactMatrix distances, 9
ContactMatrix overlaps, 10
ContactMatrix sorting, 12
ContactMatrix subsetting, 14
ContactMatrix,ANY,GRanges,GRanges,GenomicRanges_OR_missing-method

(ContactMatrix class), 7
ContactMatrix,ANY,numeric,numeric,GRanges-method

(ContactMatrix class), 7
ContactMatrix,missing,missing,missing,GenomicRanges_OR_missing-method

(ContactMatrix class), 7
ContactMatrix-access (ContactMatrix

accessors), 4
ContactMatrix-class (ContactMatrix

class), 7
ContactMatrix-dist (ContactMatrix

distances), 9
ContactMatrix-sort (ContactMatrix

sorting), 12
ContactMatrix-subset (ContactMatrix

subsetting), 14
Convert classes, 15
countOverlaps (Interaction overlaps), 35
countOverlaps,GInteractions,GInteractions-method

(Interaction overlaps), 35
countOverlaps,GInteractions,InteractionSet-method

(Interaction overlaps), 35
countOverlaps,GInteractions,missing-method

(Interaction overlaps), 35
countOverlaps,GInteractions,Vector-method

(Interaction overlaps), 35
countOverlaps,InteractionSet,GInteractions-method

(Interaction overlaps), 35
countOverlaps,InteractionSet,InteractionSet-method

(Interaction overlaps), 35
countOverlaps,InteractionSet,missing-method

(Interaction overlaps), 35
countOverlaps,InteractionSet,Vector-method

(Interaction overlaps), 35
countOverlaps,Vector,GInteractions-method

(Interaction overlaps), 35
countOverlaps,Vector,InteractionSet-method

(Interaction overlaps), 35

deflate (Convert classes), 15

deflate,ContactMatrix-method (Convert
classes), 15

dim,ContactMatrix-method
(ContactMatrix accessors), 4

dimnames,ContactMatrix-method
(ContactMatrix accessors), 4

dimnames<-,ContactMatrix,ANY-method
(ContactMatrix accessors), 4

dimnames<-,ContactMatrix-method
(ContactMatrix accessors), 4

duplicated,ContactMatrix-method
(ContactMatrix sorting), 12

duplicated,GInteractions-method
(Interaction compare), 30

duplicated,InteractionSet-method
(Interaction compare), 30

findOverlaps, 11, 32, 36, 37, 44, 45
findOverlaps (Interaction overlaps), 35
findOverlaps,GInteractions,GInteractions-method

(Interaction overlaps), 35
findOverlaps,GInteractions,InteractionSet-method

(Interaction overlaps), 35
findOverlaps,GInteractions,missing-method

(Interaction overlaps), 35
findOverlaps,GInteractions,Vector-method

(Interaction overlaps), 35
findOverlaps,InteractionSet,GInteractions-method

(Interaction overlaps), 35
findOverlaps,InteractionSet,InteractionSet-method

(Interaction overlaps), 35
findOverlaps,InteractionSet,missing-method

(Interaction overlaps), 35
findOverlaps,InteractionSet,Vector-method

(Interaction overlaps), 35
findOverlaps,Vector,GInteractions-method

(Interaction overlaps), 35
findOverlaps,Vector,InteractionSet-method

(Interaction overlaps), 35
first (Interaction accessors), 23
first,GInteractions-method

(Interaction accessors), 23
first,InteractionSet-method

(Interaction accessors), 23
flank,ContactMatrix-method (GRanges

methods), 21
flank,GInteractions-method (GRanges

methods), 21
flank,InteractionSet-method (GRanges

methods), 21

GInteractions, 2, 11, 15, 22, 25, 29, 31, 34,
36, 39, 42, 44, 46, 47

50 INDEX

GInteractions (GInteractions class), 18
GInteractions class, 18
GInteractions,GRanges,GRanges,GenomicRanges_OR_missing-method

(GInteractions class), 18
GInteractions,missing,missing,GenomicRanges_OR_missing-method

(GInteractions class), 18
GInteractions,numeric,numeric,GRanges-method

(GInteractions class), 18
GInteractions-class (GInteractions

class), 18
GRanges, 5, 6, 11, 25, 26, 42, 44, 46
GRanges methods, 21
GRangesList, 11, 44, 46

inflate, 8
inflate (Convert classes), 15
inflate,GInteractions-method (Convert

classes), 15
inflate,InteractionSet-method (Convert

classes), 15
Interaction accessors, 23
Interaction binding, 29
Interaction compare, 30
Interaction distances, 34
Interaction overlaps, 35
Interaction subsetting, 39
interaction-access (Interaction

accessors), 23
interaction-bind (Interaction binding),

29
interaction-compare (Interaction

compare), 30
Interaction-overlaps (Interaction

overlaps), 35
interaction-subset (Interaction

subsetting), 39
interactions (Interaction accessors), 23
interactions,InteractionSet-method

(Interaction accessors), 23
interactions<- (Interaction accessors),

23
interactions<-,InteractionSet-method

(Interaction accessors), 23
InteractionSet, 2, 11, 15, 22, 25, 29, 31, 34,

36, 39, 42, 44, 46
InteractionSet (InteractionSet class),

41
InteractionSet class, 41
InteractionSet,ANY,GInteractions-method

(InteractionSet class), 41
InteractionSet,missing,missing-method

(InteractionSet class), 41

InteractionSet-class (InteractionSet
class), 41

intrachr (Interaction distances), 34
intrachr,ContactMatrix-method

(ContactMatrix distances), 9
intrachr,GInteractions-method

(Interaction distances), 34
intrachr,InteractionSet-method

(Interaction distances), 34

length,ContactMatrix-method
(ContactMatrix accessors), 4

length,GInteractions-method
(Interaction accessors), 23

linearize (Linearize interactions), 42
Linearize interactions, 42
linearize,GInteractions,GRanges-method

(Linearize interactions), 42
linearize,GInteractions,numeric-method

(Linearize interactions), 42
linearize,InteractionSet,GRanges-method

(Linearize interactions), 42
linearize,InteractionSet,numeric-method

(Linearize interactions), 42
linkOverlaps, 37, 43
linkOverlaps,GInteractions,Hits,Hits-method

(linkOverlaps), 43
linkOverlaps,GInteractions,Hits,missing-method

(linkOverlaps), 43
linkOverlaps,GInteractions,Vector,missing-method

(linkOverlaps), 43
linkOverlaps,GInteractions,Vector,Vector-method

(linkOverlaps), 43
linkOverlaps,InteractionSet,Hits,Hits-method

(linkOverlaps), 43
linkOverlaps,InteractionSet,Hits,missing-method

(linkOverlaps), 43
linkOverlaps,InteractionSet,Vector,missing-method

(linkOverlaps), 43
linkOverlaps,InteractionSet,Vector,Vector-method

(linkOverlaps), 43

makeGInteractionsFromGRangesPairs
(pairs), 46

match, 31, 33
match,GInteractions,GInteractions-method

(Interaction compare), 30
match,GInteractions,InteractionSet-method

(Interaction compare), 30
match,InteractionSet,GInteractions-method

(Interaction compare), 30
match,InteractionSet,InteractionSet-method

(Interaction compare), 30

INDEX 51

mcols, 25
mcols,InteractionSet-method

(Interaction accessors), 23
mcols<-,InteractionSet-method

(Interaction accessors), 23

names,GInteractions-method
(Interaction accessors), 23

names,InteractionSet-method
(Interaction accessors), 23

names<-,GInteractions-method
(Interaction accessors), 23

names<-,InteractionSet-method
(Interaction accessors), 23

narrow,ContactMatrix-method (GRanges
methods), 21

narrow,GInteractions-method (GRanges
methods), 21

narrow,InteractionSet-method (GRanges
methods), 21

order,ContactMatrix-method
(ContactMatrix sorting), 12

order,GInteractions-method
(Interaction compare), 30

order,InteractionSet-method
(Interaction compare), 30

overlapsAny, 16, 42
overlapsAny (Interaction overlaps), 35
overlapsAny,ContactMatrix,GInteractions-method

(ContactMatrix overlaps), 10
overlapsAny,ContactMatrix,InteractionSet-method

(ContactMatrix overlaps), 10
overlapsAny,ContactMatrix,Vector-method

(ContactMatrix overlaps), 10
overlapsAny,GInteractions,GInteractions-method

(Interaction overlaps), 35
overlapsAny,GInteractions,InteractionSet-method

(Interaction overlaps), 35
overlapsAny,GInteractions,missing-method

(Interaction overlaps), 35
overlapsAny,GInteractions,Vector-method

(Interaction overlaps), 35
overlapsAny,InteractionSet,GInteractions-method

(Interaction overlaps), 35
overlapsAny,InteractionSet,InteractionSet-method

(Interaction overlaps), 35
overlapsAny,InteractionSet,missing-method

(Interaction overlaps), 35
overlapsAny,InteractionSet,Vector-method

(Interaction overlaps), 35
overlapsAny,Vector,GInteractions-method

(Interaction overlaps), 35

overlapsAny,Vector,InteractionSet-method
(Interaction overlaps), 35

pairdist (Interaction distances), 34
pairdist,ContactMatrix-method

(ContactMatrix distances), 9
pairdist,GInteractions-method

(Interaction distances), 34
pairdist,InteractionSet-method

(Interaction distances), 34
Pairs, 46
pairs, 46
pairs,GInteractions-method (pairs), 46
pairs,InteractionSet-method (pairs), 46
pcompare, 33
pcompare,GInteractions,GInteractions-method

(Interaction compare), 30

rbind,ContactMatrix-method
(ContactMatrix subsetting), 14

rbind,InteractionSet-method
(Interaction binding), 29

reduceRegions (Interaction accessors),
23

reduceRegions,ContactMatrix-method
(ContactMatrix accessors), 4

reduceRegions,GInteractions-method
(Interaction accessors), 23

reduceRegions,InteractionSet-method
(Interaction accessors), 23

regions (Interaction accessors), 23
regions,ContactMatrix-method

(ContactMatrix accessors), 4
regions,GInteractions-method

(Interaction accessors), 23
regions,InteractionSet-method

(Interaction accessors), 23
regions<- (Interaction accessors), 23
regions<-,ContactMatrix-method

(ContactMatrix accessors), 4
regions<-,GInteractions-method

(Interaction accessors), 23
regions<-,InteractionSet-method

(Interaction accessors), 23
replaceRegions<- (Interaction

accessors), 23
replaceRegions<-,ContactMatrix-method

(ContactMatrix accessors), 4
replaceRegions<-,GInteractions-method

(Interaction accessors), 23
replaceRegions<-,InteractionSet-method

(Interaction accessors), 23

52 INDEX

resize,ContactMatrix-method (GRanges
methods), 21

resize,GInteractions-method (GRanges
methods), 21

resize,InteractionSet-method (GRanges
methods), 21

ReverseStrictGInteractions-class
(GInteractions class), 18

second (Interaction accessors), 23
second,GInteractions-method

(Interaction accessors), 23
second,InteractionSet-method

(Interaction accessors), 23
Seqinfo, 5
seqinfo, 25
seqinfo,ContactMatrix-method

(ContactMatrix accessors), 4
seqinfo,GInteractions-method

(Interaction accessors), 23
seqinfo,InteractionSet-method

(Interaction accessors), 23
seqinfo<-,ContactMatrix-method

(ContactMatrix accessors), 4
seqinfo<-,GInteractions-method

(Interaction accessors), 23
seqinfo<-,InteractionSet-method

(Interaction accessors), 23
shift,ContactMatrix-method (GRanges

methods), 21
shift,GInteractions-method (GRanges

methods), 21
shift,InteractionSet-method (GRanges

methods), 21
show,ContactMatrix-method

(ContactMatrix accessors), 4
show,GInteractions-method (Interaction

accessors), 23
show,InteractionSet-method

(Interaction accessors), 23
sort,ContactMatrix-method

(ContactMatrix sorting), 12
sort,GInteractions-method (Interaction

compare), 30
sort,InteractionSet-method

(Interaction compare), 30
sparseMatrix, 17
StrictGInteractions-class

(GInteractions class), 18
subset,ContactMatrix-method

(ContactMatrix subsetting), 14
subset,InteractionSet-method

(Interaction subsetting), 39

subsetByOverlaps (Interaction
overlaps), 35

subsetByOverlaps,GInteractions,GInteractions-method
(Interaction overlaps), 35

subsetByOverlaps,GInteractions,InteractionSet-method
(Interaction overlaps), 35

subsetByOverlaps,GInteractions,Vector-method
(Interaction overlaps), 35

subsetByOverlaps,InteractionSet,GInteractions-method
(Interaction overlaps), 35

subsetByOverlaps,InteractionSet,InteractionSet-method
(Interaction overlaps), 35

subsetByOverlaps,InteractionSet,Vector-method
(Interaction overlaps), 35

subsetByOverlaps,Vector,GInteractions-method
(Interaction overlaps), 35

subsetByOverlaps,Vector,InteractionSet-method
(Interaction overlaps), 35

SummarizedExperiment, 27, 41
swapAnchors, 3
swapAnchors (Interaction compare), 30
swapAnchors,GInteractions-method

(Interaction compare), 30
swapAnchors,InteractionSet-method

(Interaction compare), 30

t,ContactMatrix-method (ContactMatrix
accessors), 4

trim,ContactMatrix-method (GRanges
methods), 21

trim,GInteractions-method (GRanges
methods), 21

trim,InteractionSet-method (GRanges
methods), 21

unique,ContactMatrix-method
(ContactMatrix sorting), 12

unique,GInteractions-method
(Interaction compare), 30

unique,InteractionSet-method
(Interaction compare), 30

updateObject, 47
updateObject,GInteractions-method

(updateObject), 47

Vector, 19, 26, 36, 40, 44

width,ContactMatrix-method (GRanges
methods), 21

width,GInteractions-method (GRanges
methods), 21

width,InteractionSet-method (GRanges
methods), 21

	boundingBox
	ContactMatrix accessors
	ContactMatrix class
	ContactMatrix distances
	ContactMatrix overlaps
	ContactMatrix sorting
	ContactMatrix subsetting
	Convert classes
	GInteractions class
	GRanges methods
	Interaction accessors
	Interaction binding
	Interaction compare
	Interaction distances
	Interaction overlaps
	Interaction subsetting
	InteractionSet class
	Linearize interactions
	linkOverlaps
	pairs
	updateObject
	Index

