
Package ‘HiCBricks’
January 20, 2026

Title Framework for Storing and Accessing Hi-C Data Through HDF Files

Version 1.28.0

Description HiCBricks is a library designed for handling large high-resolution Hi-
C datasets. Over the years, the Hi-C field has experienced a rapid increase in the size and com-
plexity of datasets. HiCBricks is meant to overcome the challenges related to the analy-
sis of such large datasets within the R environment. HiCBricks offers user-friendly and effi-
cient solutions for handling large high-resolution Hi-C datasets. The package pro-
vides an R/Bioconductor framework with the bricks to build more complex data analy-
sis pipelines and algorithms. HiCBricks already incorporates example algorithms for calling do-
main boundaries and functions for high quality data visualization.

Date 2025-07-22

Type Package

Author Koustav Pal [aut, cre], Carmen Livi [ctb], Ilario Tagliaferri [ctb]

Maintainer Koustav Pal <koustav.pal@ifom.eu>

License MIT + file LICENSE

Depends R (>= 3.6), utils, curl, rhdf5, R6, grid

Imports ggplot2, viridis, RColorBrewer, scales, reshape2, stringr,
data.table, Seqinfo, GenomicRanges, stats, IRanges, grDevices,
S4Vectors, digest, tibble, jsonlite, BiocParallel, R.utils,
readr, methods

Suggests BiocStyle, knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.0.1

biocViews DataImport, Infrastructure, Software, Technology,
Sequencing, HiC

git_url https://git.bioconductor.org/packages/HiCBricks

git_branch RELEASE_3_22

git_last_commit 3296656

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

1

2 Contents

Contents
BrickContainer_change_experiment_name . 3
BrickContainer_change_output_directory . 3
BrickContainer_get_path_to_file . 4
BrickContainer_list_chromosomes . 5
BrickContainer_list_experiment_name . 6
BrickContainer_list_files . 7
BrickContainer_list_output_directory . 8
BrickContainer_list_resolutions . 8
BrickContainer_unlink_resolution . 9
Brick_add_ranges . 10
Brick_call_compartments . 11
Brick_export_to_sparse . 12
Brick_fetch_range_index . 13
Brick_fetch_row_vector . 15
Brick_get_bintable . 16
Brick_get_chrominfo . 17
Brick_get_entire_matrix . 18
Brick_get_matrix . 19
Brick_get_matrix_mcols . 21
Brick_get_matrix_within_coords . 22
Brick_get_ranges . 24
Brick_get_values_by_distance . 25
Brick_get_vector_values . 26
Brick_list_matrices . 28
Brick_list_matrix_mcols . 29
Brick_list_mcool_normalisations . 30
Brick_list_mcool_resolutions . 30
Brick_list_rangekeys . 31
Brick_list_ranges_mcols . 32
Brick_load_cis_matrix_till_distance . 33
Brick_load_data_from_mcool . 34
Brick_load_data_from_sparse . 36
Brick_load_matrix . 37
Brick_local_score_differentiator . 39
Brick_make_ranges . 41
Brick_matrix_dimensions . 42
Brick_matrix_exists . 43
Brick_matrix_filename . 44
Brick_matrix_isdone . 45
Brick_matrix_issparse . 46
Brick_matrix_maxdist . 47
Brick_matrix_minmax . 48
Brick_mcool_normalisation_exists . 49
Brick_rangekey_exists . 50
Brick_return_region_position . 51
Brick_vizart_plot_heatmap . 52
Create_many_Bricks . 56
Create_many_Bricks_from_mcool . 58
HiCBricks . 60
load_BrickContainer . 62

BrickContainer_change_experiment_name 3

Index 63

BrickContainer_change_experiment_name

Change the location of HDF files in the BrickContainer object

Description

BrickContainer_change_experiment_name changes the location of name of the experiment

Usage

BrickContainer_change_experiment_name(Brick = NULL, experiment_name = NULL)

Arguments

Brick Required. A string specifying the path to the BrickContainer created using
Create_many_Bricks or Load_BrickContainer

experiment_name

Required. Default NULL A string specifying the new experiment name

Value

An object of class BrickContainer where the experiment_name has been changed

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_expt_name_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_change_experiment_name(Brick = My_BrickContainer,
experiment_name = "I change my mind")

BrickContainer_change_output_directory

Change the location of HDF files in the BrickContainer object

Description

BrickContainer_change_output_directory changes the location of associated HDF files

4 BrickContainer_get_path_to_file

Usage

BrickContainer_change_output_directory(Brick = NULL, output_directory = NULL)

Arguments

Brick Required. A string specifying the path to the Brick store created with Create-
Brick.

output_directory

Required. Default NULL A string specifying new location of the output_directory.
Please note, that the location of the HDF files will not be changed.

Value

An object of class BrickContainer where the output_directory has been changed

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_out_dir_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_change_output_directory(Brick = My_BrickContainer,
output_directory = tempdir())

BrickContainer_get_path_to_file

Get the path to HDF files present in the Brick container.

Description

BrickContainer_get_path_to_file fetches the list of HDF file paths associated to a particular
BrickContainer

Usage

BrickContainer_get_path_to_file(
Brick = NULL,
chr1 = NA,
chr2 = NA,
type = NA,
resolution = NA

)

BrickContainer_list_chromosomes 5

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Bricks.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

type A value from one of cis, trans specifying the type of files to list cis will list
intra-choromosomal file paths and trans will list inter-chromosomal file paths.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

A vector containing filepaths

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_list_filepath_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_get_path_to_file(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

BrickContainer_list_chromosomes

Return the descriptive name of the BrickContainer

Description

BrickContainer_list_chromosomes returns the chromosomes available in the BrickContainer

Usage

BrickContainer_list_chromosomes(Brick = NULL, lengths = FALSE)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Bricks.

lengths Default FALSE If TRUE, will also return the chromosomal lengths

6 BrickContainer_list_experiment_name

Value

If lengths is FALSE, only the chromosome names are returned. If lengths is TRUE, a data.frame
containing the chromosome names and their lengths is provided.

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_list_chromosome_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_list_chromosomes(My_BrickContainer)

BrickContainer_list_experiment_name

Return the descriptive name of the BrickContainer

Description

BrickContainer_list_experiment_name returns the descriptive name of a BrickContainer

Usage

BrickContainer_list_experiment_name(Brick = NULL)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Bricks.

Value

A character string specifying the descriptive name of the BrickContainer

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_list_expt_name_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_list_experiment_name(My_BrickContainer)

BrickContainer_list_files 7

BrickContainer_list_files

Get the list of HDF files present in the Brick container.

Description

BrickContainer_list_files fetches the list of HDF files associated to a particular BrickCon-
tainer

Usage

BrickContainer_list_files(
Brick = NULL,
chr1 = NA,
chr2 = NA,
type = NA,
resolution = NA

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Bricks.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

type A value from one of cis, trans specifying the type of files to list cis will list
intra-choromosomal file paths and trans will list inter-chromosomal file paths.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

A 5 column tibble containing chromosome pairs, Hi-C resolution, the type of Hi-C matrix and the
path to a particular Hi-C matrix file.

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")
out_dir <- file.path(tempdir(), "BrickContainer_list_file_test")
dir.create(out_dir)
My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,

bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_list_files(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = NA)

8 BrickContainer_list_resolutions

BrickContainer_list_output_directory

Return the output directory of the BrickContainer

Description

BrickContainer_list_output_directory returns the location of the associated HDF files

Usage

BrickContainer_list_output_directory(Brick = NULL)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Bricks.

Value

A character string specifying the descriptive name of the BrickContainer

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_list_out_dir_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_list_output_directory(My_BrickContainer)

BrickContainer_list_resolutions

Return the descriptive name of the BrickContainer

Description

BrickContainer_list_resolutions returns the resolutions available in the BrickContainer

Usage

BrickContainer_list_resolutions(Brick = NULL)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Bricks.

BrickContainer_unlink_resolution 9

Value

A character string specifying the descriptive name of the BrickContainer

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_list_resolution_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

BrickContainer_list_resolutions(My_BrickContainer)

BrickContainer_unlink_resolution

Remove links to all Hi-C matrices for a given resolution.

Description

BrickContainer_unlink_resolution removes links to all files associated to a given resolution

Usage

BrickContainer_unlink_resolution(Brick = NULL, resolution = NULL)

Arguments

Brick Required. A string specifying the path to the Brick store created with Create-
Brick.

resolution Required A string specifying the resolution to remove. This string must match
the resolution values listed by BrickContainer_list_resolutions

Value

An object of class BrickContainer where the resolution and links to its associated files have been
removed

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")

out_dir <- file.path(tempdir(), "BrickContainer_unlink_res_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,

10 Brick_add_ranges

remove_existing = TRUE)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 40000,
remove_existing = TRUE)

BrickContainer_unlink_resolution(Brick = My_BrickContainer,
resolution = 40000)

Brick_add_ranges Store a ranges object in the Brick store.

Description

Brick_add_ranges loads a GRanges object into the Brick store.

Usage

Brick_add_ranges(
Brick,
ranges,
rangekey,
resolution = NA,
all_resolutions = FALSE,
num_cpus = 1

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

ranges Required. An object of class ranges specifying the ranges to store in the Brick.

rangekey Required. The name to use for the ranges within the Brick store.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

all_resolutions

Optional. Default FALSE If resolution is not defined and all_resolutions is
TRUE, the resolution parameter will be ignored and the function is executed on
all files listed in the Brick container

num_cpus Optional. Default 1 When an object of class BrickContainer is provided, num_cpus
defines the maximum number of parallel jobs that will be run.

Details

With this function it is possible to associate other ranges objects with the Brick store. If metadata
columns are present, the are also loaded into the Brick store. Although not explicitly asked for, the
metadata columns should not be of type list as this may create complications down the line. We
ask for ranges objects, so if the same ranges object is later retrieved two additional columns will be
present. These are the strand and width columns that are obtained when a ranges is converted into
a data.frame. Users can ignore these columns.

Brick_call_compartments 11

Value

Returns TRUE if completed successfully.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "add_ranges_test")

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Chrom <- c("chrS","chrS","chrS","chrS","chrS")
Start <- c(10000,20000,40000,50000,60000)
End <- c(10001,20001,40001,50001,60001)
Test_ranges <- Brick_make_ranges(chrom = Chrom, start = Start, end = End)
Brick_add_ranges(Brick = My_BrickContainer, ranges = Test_ranges,
rangekey = "test_ranges", all_resolutions = TRUE)

Brick_call_compartments

Identify compartments in the Hi-C data

Description

Brick_call_compartments identifies compartments in Hi-C data. Reference Lieberman-Aiden et
al. 2009.

Usage

Brick_call_compartments(Brick, chr, resolution)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr Required. A string specifying the chromosome for the cis Hi-C matrix from
which values will be retrieved at a certain distance.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

A dataframe containing the chromosome genomic coordinates and the first three principal compo-
nents.

12 Brick_export_to_sparse

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_vector_val_test")
if(!file.exists(out_dir)){

dir.create(out_dir)
}

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Compartments_df <- Brick_call_compartments(Brick = My_BrickContainer,
chr = "chr2L", resolution = 100000)

Brick_export_to_sparse

Export an entire resolution from a given BrickContainer as a upper
triangle sparse matrix

Description

Brick_export_to_sparse will accept as input an object of class BrickContainer, a string of length
1 as resolution and a path specifying the output file to write. It writes the content of the all loaded
Brick objects as a upper triangle sparse matrix (col > row) containing non-zero values.

Usage

Brick_export_to_sparse(
Brick,
out_file,
remove_file = FALSE,
resolution,
sep = " "

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

out_file Path to the output file to write.

Brick_fetch_range_index 13

remove_file Default FALSE. If a file by the same name is present that file will be removed.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

sep column delimiter in output file. Default single space.

Value

Returns a data.frame corresponding to the head of the output file

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "write_file")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_export_to_sparse(Brick = My_BrickContainer,
out_file = file.path(out_dir, "example_out.txt"),
resolution = 100000)

Brick_fetch_range_index

Returns the position of the supplied ranges in the binning table asso-
ciated to the Hi-C experiment.

Description

Brick_fetch_range_index constructs a ranges object using Brick_make_ranges, creates an over-
lap operation using GenomicRanges::findOverlaps, where the constructed ranges is the subject
and the Hi-C experiment associated binning table is the query. The return of this object is a list of
ranges with their corresponding indices in the binning table.

Usage

Brick_fetch_range_index(
Brick = NA,
chr = NA,
start = NA,

14 Brick_fetch_range_index

end = NA,
names = NA,
resolution = NA,
type = "any"

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr Required. A character vector of length N specifying the chromosomes to select
from the ranges.

start Required. A numeric vector of length N specifying the start positions in the
chromosome

end Required. A numeric vector of length N specifying the end positions in the
chromosome

names Optional. A character vector of length N specifying the names of the chromo-
somes. If absent, names will take the form chr:start:end.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

type Optional. Default any Type of overlap operation to do. It should be one of two,
any or within. any considers any overlap (atleast 1 bp) between the provided
ranges and the binning table.

Value

Returns a GenomicRanges object of same length as the chr, start, end vectors provided. The object is
returned with an additional column, Indexes. Indexes is a column of class IRanges::IntegerList,
which is part of the larger IRanges::AtomicList superset. This "Indexes" column can be accessed
like a normal GRanges column with the additional list accessor [[]] in place of the normal vector
accessor [].

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "fetch_range_index_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Chrom <- c("chr2L","chr2L")
Start <- c(1,40000)
End <- c(1000000,2000000)

Test_Run <- Brick_fetch_range_index(Brick = My_BrickContainer,
chr = Chrom, start = Start, end = End, resolution = 100000)
Test_Run$Indexes[[1]]

Brick_fetch_row_vector 15

Brick_fetch_row_vector

Return row or col vectors.

Description

Brick_fetch_row_vector will fetch any given rows from a matrix. If required, the rows can be
subsetted on the columns and transformations applied. Vice versa is also true, wherein columns can
be retrieved and rows subsetted.

Usage

Brick_fetch_row_vector(
Brick,
chr1,
chr2,
resolution,
by = c("position", "ranges"),
vector,
regions = NULL,
force = FALSE,
flip = FALSE,
FUN = NULL

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

by Required. One of two possible values, "position" or "ranges". A one-dimensional
numeric vector of length 1 specifying one of either position or ranges.

vector Required. If by is position, a 1 dimensional numeric vector containing the rows
to be extracted is expected. If by is ranges, a 1 dimensional character vector
containing the names of the bintable is expected. This function does not do
overlaps. Rather it returns any given row or column based on their position or
names in the bintable.

regions Optional. Default NULL A character vector of length vector is expected. Each
element must be of the form chr:start:end. These regions will be converted back
to their original positions and the corresponding rows will be subsetted by the
corresponding region element. If the length of regions does not match, the subset
operation will not be done and all elements from the rows will be returned.

force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.

16 Brick_get_bintable

flip Optional. Default FALSE If present, will flip everything. This is equivalent to
selecting columns, and subsetting on the rows.

FUN Optional. Default NULL If provided a data transformation with FUN will be
applied before the matrix is returned.

Value

Returns a list of length vector. Each list element will be of length chr2 binned length or if regions
is present the corresponding region length. This may differ based on the operations with FUN.

See Also

Brick_get_matrix_within_coords to get matrix by using matrix genomic coordinates, Brick_get_values_by_distance
to get values separated at a certain distance, Brick_fetch_row_vector to get values in a certain
row/col and subset them, Brick_get_matrix to get matrix by using matrix coordinates.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_row_vector_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Coordinate <- c("chr2L:1:100000","chr2L:100001:200000")
Test_Run <- Brick_fetch_row_vector(Brick = My_BrickContainer,
chr1 = "chr2L", chr2 = "chr2L", resolution = 100000,
by = "ranges", vector = Coordinate,
regions = c("chr2L:1:1000000", "chr2L:40001:2000000"))

Brick_get_bintable Returns the binning table associated to the Hi-C experiment.

Description

Brick_get_bintable makes a call to Brick_get_ranges to retrieve the binning table of the asso-
ciated Brick store. This is equivalent to passing the argument rangekey = "bintable" in Brick_get_ranges

Brick_get_chrominfo 17

Usage

Brick_get_bintable(Brick, chr = NA, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr Optional. A chr string specifying the chromosome to select from the ranges.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns a GRanges object containing the binning table associated to the Brick store.

See Also

Brick_get_ranges

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_get_bintable_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_get_bintable(Brick = My_BrickContainer, resolution = 100000)

Brick_get_chrominfo Get the chrominfo for the Hi-C experiment.

Description

Brick_get_chrominfo fetches the associated chrominfo table for the Brick it is associated to.

Usage

Brick_get_chrominfo(Brick, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

18 Brick_get_entire_matrix

Value

A three column data.frame containing chromosomes, nrows and length.

chromosomes corresponds to all chromosomes in the provided bintable.

nrows corresponds to the number of entries in the bintable or dimension for that chromosome in a
Hi-C matrix.

Length is the total bp length of the same chromosome (max value for that chromosome in the
bintable).

Examples

Bintable_path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "HiCBricks_chrominfo_test")

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable_path,
bin_delim=" ", remove_existing=TRUE, output_directory = out_dir,
file_prefix = "HiCBricks_vignette_test", resolution = 100000,
experiment_name = "HiCBricks vignette test")

Brick_get_chrominfo(Brick = My_BrickContainer, resolution = 100000)

Brick_get_entire_matrix

Return an entire matrix for provided chromosome pair for a resolution.

Description

Brick_get_entire_matrix will return the entire matrix for the entire chromosome pair provided
an object of class BrickContainer, and values for chr1, chr2 and resolution values.

Usage

Brick_get_entire_matrix(Brick, chr1, chr2, resolution)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Brick_get_matrix 19

Value

Returns an object of class matrix with dimensions corresponding to chr1 binned length by chr2
binned length.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_vector_val_test")
if(!file.exists(out_dir)){

dir.create(out_dir)
}

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Entire_matrix <- Brick_get_entire_matrix(Brick = My_BrickContainer,
chr1 = "chr2L", chr2 = "chr2L", resolution = 100000)

Brick_get_matrix Return a matrix subset.

Description

Brick_get_matrix will fetch a matrix subset between row values ranging from min(x_coords) to
max(x_coords) and column values ranging from min(x_coords) to max(x_coords)

Usage

Brick_get_matrix(
Brick,
chr1,
chr2,
x_coords,
y_coords,
resolution,
force = FALSE,
FUN = NULL

)

20 Brick_get_matrix

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

x_coords Required. A one-dimensional numeric vector specifying the rows to subset.

y_coords Required. A one-dimensional numeric vector specifying the columns to subset.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.

FUN Optional. If provided a data transformation with FUN will be applied before
the matrix is returned.

Value

Returns a matrix of dimension x_coords length by y_coords length. This may differ based on the
operations with FUN.

See Also

Brick_get_matrix_within_coords to get matrix by using matrix genomic coordinates, Brick_get_values_by_distance
to get values separated at a certain distance, Brick_fetch_row_vector to getvalues in a certain
row/col and subset them, Brick_get_vector_values to get values using matrix coordinates.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_matrix_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_get_matrix(Brick = My_BrickContainer, chr1 = "chr2L", chr2 = "chr2L",
x_coords = c(1:10), y_coords = c(1:10), resolution = 100000)

Brick_get_matrix_mcols 21

Brick_get_matrix_mcols

Get the matrix metadata columns in the Brick store.

Description

Brick_get_matrix_mcols will get the specified matrix metadata column for a chr1 vs chr2 Hi-C
data matrix. Here, chr1 represents the rows and chr2 represents the columns of the matrix. For cis
Hi-C matrices, where chr1 == chr2, chr2_bin_coverage and chr2_col_sums equals chr1_bin_coverage
and chr1_row_sums respectively.

Usage

Brick_get_matrix_mcols(
Brick,
chr1,
chr2,
resolution,

what = c("chr1_bin_coverage", "chr2_bin_coverage", "chr1_row_sums", "chr2_col_sums")
)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

what Required A character vector of length 1 specifying the matrix metric to retrieve

Details

These metadata columns are:

• chr1_bin_coverage: Percentage of rows containing non-zero values

• chr2_bin_coverage: Percentage of columns containing non-zero values

• chr1_row_sums: Total signal (if normalised) or number of reads (if counts) in each row.

• chr2_col_sums: Total signal (if normalised) or number of reads (if counts) in each column.

Value

Returns a 1xN dimensional vector containing the specified matrix metric

22 Brick_get_matrix_within_coords

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_matrix_mcols_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_get_matrix_mcols(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000, what = "chr1_bin_coverage")

Brick_get_matrix_within_coords

Return a matrix subset between two regions.

Description

Brick_get_matrix_within_coords will fetch a matrix subset after creating an overlap opera-
tion between both regions and the bintable associated to the Brick store. This function calls
Brick_get_matrix.

Usage

Brick_get_matrix_within_coords(
Brick,
x_coords,
y_coords,
resolution,
force = FALSE,
FUN = NULL

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

x_coords Required. A string specifying the region to subset on the rows. It takes the form
chr:start:end. An overlap operation with the associated bintable will be done to
identify the bins to subset on the row

Brick_get_matrix_within_coords 23

y_coords Required. A string specifying the region to subset on the rows. It takes the form
chr:start:end. An overlap operation with the associated bintable will be done to
identify the bins to subset on the column

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.

FUN Optional. If provided a data transformation with FUN will be applied before
the matrix is returned.

Value

Returns a matrix of dimension x_coords binned length by y_coords binned length. This may differ
based on FUN.

See Also

Brick_get_matrix to get matrix by using matrix coordinates, Brick_get_values_by_distance
to get values separated at a certain distance, Brick_fetch_row_vector to get values in a certain
row/col and subset them, Brick_get_vector_values to get values using matrix coordinates.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_matrix_coords_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_get_matrix_within_coords(Brick = My_BrickContainer,
x_coords = "chr2L:1:1000000",
y_coords = "chr2L:1:1000000",
resolution = 100000)

Brick_get_matrix_within_coords(Brick = My_BrickContainer,
x_coords = "chr2L:1:1000000",
y_coords = "chr2L:1:1000000",
resolution = 100000,
FUN = mean)

24 Brick_get_ranges

Brick_get_ranges Fetch the ranges associated to a rangekey or chromosome.

Description

Brick_get_ranges will get a ranges object if present in the Brick store and return a GRanges
object.

Usage

Brick_get_ranges(Brick = NA, chr = NA, rangekey = NA, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr Optional. A chr string specifying the chromosome to select from the ranges.

rangekey Required. A string specifying the name of the ranges.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Details

If a rangekey is present, the ranges will be retrieve and a GRanges constructed. Metadata columns
will also be added. If these are rangekeys other than "Bintable", and had been added using Brick_add_ranges
the width and Strand columns may appear as metadata columns. These will most likely be artifacts
from converting the original ranges object to a data.frame.

Value

Returns a GRanges object with the associated metadata columns that may have been present in the
Ranges object.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_get_ranges_test")

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_get_ranges(Brick = My_BrickContainer, chr = "chr2L",
rangekey = "Bintable", resolution = 100000)

Brick_get_values_by_distance 25

Brick_get_values_by_distance

Return values separated by a certain distance.

Description

Brick_get_values_by_distance can fetch values with or without transformation or subsetted by
a certain distance. Please note, this module is not an iterable module.

Usage

Brick_get_values_by_distance(
Brick,
chr,
distance,
resolution,
constrain_region = NULL,
batch_size = 500,
FUN = NULL

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr Required. A string specifying the chromosome for the cis Hi-C matrix from
which values will be retrieved at a certain distance.

distance Required. 0 based. Fetch values separated by distance.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

constrain_region

Optional. A character vector of length 1 with the form chr:start:end specifying
the region for which the distance values must be retrieved.

batch_size Optional. Default 500 A numeric vector of length 1 specifying the size of the
chunk to retrieve for diagonal selection.

FUN Optional. If provided a data transformation with FUN will be applied before
values are returned.

Value

Returns a numeric vector of length N depending on the presence of constrain_region, FUN and
distance from the main diagonal.

See Also

Brick_get_matrix_within_coords to get matrix by using matrix coordinates, Brick_fetch_row_vector
to get values in a certain row/col and subset them, Brick_get_vector_values to get values using
matrix coordinates, Brick_get_matrix to get matrix by using matrix coordinates.

26 Brick_get_vector_values

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "val_by_dist_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_get_values_by_distance(Brick = My_BrickContainer, chr = "chr2L",
distance = 0, resolution = 100000)

Failsafe_median <- function(x){
x[is.nan(x) | is.infinite(x) | is.na(x)] <- 0
return(median(x))

}

Brick_get_values_by_distance(Brick = My_BrickContainer, chr = "chr2L",
resolution = 100000, distance = 4, FUN = Failsafe_median)

Brick_get_vector_values

Return a N dimensional vector selection.

Description

Brick_get_vector_values is the base function being used by all other matrix retrieval functions.

Usage

Brick_get_vector_values(
Brick,
chr1,
chr2,
resolution,
xaxis,
yaxis,
FUN = NULL,
force = FALSE

)

Brick_get_vector_values 27

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

xaxis Required. A 1 dimensional vector containing the rows to retrieve. Gaps in this
vector may result in unexpected behaviour as the values which are considered
are min(xaxis) and max(xaxis) for retrieval.

yaxis Required. A 1 dimensional vector containing the columns to retrieve. Gaps in
this vector may result in unexpected behaviour as the values which are consid-
ered are min(yaxis) and max(yaxis) for retrieval.

FUN Optional. Default NULL If provided a data transformation with FUN will be
applied before the vector is returned.

force Optional. Default FALSE If true, will force the retrieval operation when matrix
contains loaded data until a certain distance.

Value

Returns a vector of length yaxis if length of xaxis is 1. Else returns a matrix of dimension xaxis
length by yaxis length.

Note

Whatever the length of xaxis or yaxis may be, the coordinates under consideration will range from
min(xaxis) to max(xaxis) on the rows or min(yaxis) to max(yaxis) on the columns.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_vector_val_test")

if(!file.exists(out_dir)){
dir.create(out_dir)

}

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",

28 Brick_list_matrices

remove_prior = TRUE, resolution = 100000)

Brick_get_vector_values(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000, xaxis = c(1:10), yaxis = c(1:10))

Brick_list_matrices List the matrix pairs present in the Brick store.

Description

Brick_list_matrices will list all chromosomal pair matrices from the Brick store, with their
associated filename, value range, done status and sparse

Usage

Brick_list_matrices(
Brick,
chr1 = NA,
chr2 = NA,
resolution = NA,
all_resolutions = FALSE

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

all_resolutions

Optional. Default FALSE If resolution is not defined and all_resolutions is
TRUE, the resolution parameter will be ignored and the function is executed on
all files listed in the Brick container

Value

Returns a data.frame object with columns chr1, chr2 corresponding to chromosome pairs, and the
associated attributes. filename corresponds to the name of the file that was loaded for the pair. min
and max specify the minimum and maximum values in the matrix, done is a logical value specifying
if a matrix has been loaded and sparsity specifies if a matrix is defined as a sparse matrix.

Brick_list_matrix_mcols 29

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_matrices_test")

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_list_matrices(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_list_matrix_mcols

List the matrix metadata columns in the Brick store.

Description

Brick_get_matrix_mcols will list the names of all matrix metadata columns.

Usage

Brick_list_matrix_mcols()

Value

Returns a vector containing the names of all matrix metadata columns

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_matrix_mcols_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_list_matrix_mcols()

30 Brick_list_mcool_resolutions

Brick_list_mcool_normalisations

Get all available normalisations in an mcool file.

Description

Brick_list_mcool_normalisations lists the names available for accessing the various normal-
isation factors in an mcool file. Please note, this only lists the mapping of the columns to their
respective names. It does not check for the availability of that particular column in the mcool file

Usage

Brick_list_mcool_normalisations(names.only = FALSE)

Arguments

names.only Optional. Default FALSE A parameter specifying whether to list only the hu-
man readable names without their respective column names in the mcool file.

Value

A named vector listing all possible normalisation factors.

Examples

Brick_list_mcool_normalisations()

Brick_list_mcool_resolutions

Get all available normalisations in an mcool file.

Description

Brick_list_mcool_resolutions lists all available resolutions in the mcool file.

Usage

Brick_list_mcool_resolutions(mcool)

Arguments

mcool Required. A parameter specifying the name of an mcool file

Value

A named vector listing all possible resolutions in the file.

Brick_list_rangekeys 31

Examples

Not run:
require(curl)
out_dir <- file.path(tempdir(),"mcool_test_dir")
dir.create(path = out_dir)

curl_download(url = paste("https://data.4dnucleome.org/",
"files-processed/4DNFI7JNCNFB/",
"@download/4DNFI7JNCNFB.mcool", sep = ""),
destfile = file.path(out_dir,"H1-hESC-HiC-4DNFI7JNCNFB.mcool"))

mcool <- file.path(out_dir,"H1-hESC-HiC-4DNFI7JNCNFB.mcool")

Brick_list_mcool_resolutions(mcool)

End(Not run)

Brick_list_rangekeys List the ranges tables stored within the Brick.

Description

Brick_list_rangekeys lists the names of all ranges associated to a Brick.

Usage

Brick_list_rangekeys(Brick, resolution = NA, all_resolutions = FALSE)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

all_resolutions

Optional. Default FALSE If resolution is not defined and all_resolutions is
TRUE, the resolution parameter will be ignored and the function is executed on
all files listed in the Brick container

Value

A one dimensional character vector of length x specifying the names of all ranges currently present
in the file.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_rangekeys_test")

32 Brick_list_ranges_mcols

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_list_rangekeys(Brick = My_BrickContainer, resolution = 100000)

Brick_list_ranges_mcols

Find out what metadata columns are associated to a ranges with a
certain name

Description

Brick_list_ranges_mcols will list the metadata columns of the specified ranges if it is present in
the Brick store.

Usage

Brick_list_ranges_mcols(Brick, rangekey = NULL, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

rangekey Optional. A string specifying the name of the ranges. If not present, the meta-
data columns of all ranges will be listed.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

if no metadata columns are present, NA. If metadata columns are present, a data.frame object con-
taining the name of the ranges and the associated metadata column name.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_ranges_mcols_test")

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_list_ranges_mcols(Brick = My_BrickContainer, rangekey = "Bintable",

Brick_load_cis_matrix_till_distance 33

resolution = 100000)

Brick_load_cis_matrix_till_distance

Load a NxN dimensional sub-distance cis matrix into the Brick store.

Description

Load a NxN dimensional sub-distance cis matrix into the Brick store.

Usage

Brick_load_cis_matrix_till_distance(
Brick = NA,
chr = NA,
resolution = NA,
matrix_file,
delim = " ",
distance,
remove_prior = FALSE,
num_rows = 2000,
is_sparse = FALSE,
sparsity_bins = 100

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows and cols of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

matrix_file Required. A character vector of length 1 specifying the name of the file to load
as a matrix into the Brick store.

delim Optional. Default " " The delimiter of the matrix file.

distance Required. Default NULL. For very high-resolution matrices, read times can
become extremely slow and it does not make sense to load the entire matrix into
the data structure, as after a certain distance, the matrix will become extremely
sparse. This ensures that only interactions upto a certain distance from the main
diagonal will be loaded into the data structure.

remove_prior Optional. Default FALSE If a matrix was loaded before, it will not be replaced.
Use remove_prior to override and replace the existing matrix.

num_rows Optional. Default 2000 Number of rows to insert per write operation in the
HDF file.

is_sparse Optional. Default FALSE If true, designates the matrix as being a sparse matrix,
and computes the sparsity.index. The sparsity index measures the proportion of
non-zero rows or columns at a certain distance from the diagonal (100) in cis
interaction matrices.

34 Brick_load_data_from_mcool

sparsity_bins Optional. Default 100 With regards to computing the sparsity.index, this pa-
rameter decides the number of bins to scan from the diagonal.

Value

Returns TRUE if all went well.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_load_dist_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_cis_matrix_till_distance(Brick = My_BrickContainer,
chr = "chr2L", resolution = 100000, matrix_file = Matrix_file,
delim = " ", distance = 30, remove_prior = TRUE)

Brick_load_data_from_mcool

Load a NxN dimensional matrix into the Brick store from an mcool
file.

Description

Read an mcool contact matrix coming out of 4D nucleome projects into a Brick store.

Usage

Brick_load_data_from_mcool(
Brick,
mcool,
resolution = NULL,
matrix_chunk = 2000,
cooler_read_limit = 1e+07,
remove_prior = FALSE,
norm_factor = "Iterative-Correction"

)

Brick_load_data_from_mcool 35

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

mcool Required. Path to an mcool file.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

matrix_chunk Optional. Default 2000. The nxn matrix square to fill per iteration in a mcool
file.

cooler_read_limit

Optional. Default 10000000. cooler_read_limit sets the upper limit for the
number of records per matrix chunk. If the number of records per chunk is
higher than this value, the matrix_chunk value will be re-evaluated dynamically.

remove_prior Optional. Default FALSE If a matrix was loaded before, it will not be replaced.
Use remove_prior to override and replace the existing matrix.

norm_factor Optional. Default "Iterative-Correction". The normalization factor to use for
normalization from an mcool file. norm_factor currently accepts one of "Iterative-
Correction", "Knight-Ruitz", "Vanilla-coverage", "Vanilla-coverage-square-root"
and NULL. If NULL, the function will load only counts from the mcool file.

Value

Returns TRUE if all went well.

See Also

Create_many_Bricks_from_mcool to create matrix from an mcool file, Brick_list_mcool_resolutions
to list available resolutions in an mcool file, Brick_list_mcool_normalisations to list available
normalisation factors in the mcool file.

Examples

Not run:

require(curl)
out_dir <- file.path(tempdir(),"mcool_load_test")
dir.create(path = out_dir)
curl_download(url = paste("https://data.4dnucleome.org/",
"files-processed/4DNFI7JNCNFB/",
"@download/4DNFI7JNCNFB.mcool", sep = ""),
destfile = file.path(out_dir,"H1-hESC-HiC-4DNFI7JNCNFB.mcool"))

mcool <- file.path(out_dir,"H1-hESC-HiC-4DNFI7JNCNFB.mcool")

My_BrickContainer <- Create_many_Bricks_from_mcool(
output_directory = out_dir,
file_prefix = "Test",
mcool = mcool,
resolution = 50000,
experiment_name = "A random 4DN dataset")

Brick_load_data_from_mcool(Brick = My_BrickContainer, mcool = mcool,
resolution = 50000, matrix_chunk = 2000, remove_prior = TRUE,
norm_factor = "Iterative-Correction")

36 Brick_load_data_from_sparse

End(Not run)

Brick_load_data_from_sparse

Identify compartments in the Hi-C data

Description

Brick_load_data_from_sparse loads data from a table like file, such as sparse matrices.

Usage

Brick_load_data_from_sparse(
Brick,
table_file,
delim = " ",
resolution = NULL,
batch_size = 1e+06,
matrix_chunk = 2000,
col_index = c(1, 2, 3),
remove_prior = FALSE

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

table_file Path to the file that will be loaded

delim Optional. Default " " The delimiter of the matrix file.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

batch_size Optional Default 1000000 Number of rows to read with each iteration from a
sparse matrix.

matrix_chunk Optional Default 2000 The nxn matrix square to fill per iteration to a Brick
object.

col_index Optional. Default "c(1,2,3)". A character vector of length 3 containing the
indexes of the required columns in the table file. the first index, corresponds to
bin1, the second to bin2 and the third to the signal value.

remove_prior Optional. Default FALSE If a matrix was loaded before, it will not be replaced.
Use remove_prior to override and replace the existing matrix.

Value

A dataframe containing the chromosome genomic coordinates and the first three principal compo-
nents.

Brick_load_matrix 37

Examples

Not run:
Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "get_vector_val_test")
if(!file.exists(out_dir)){

dir.create(out_dir)
}

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_export_to_sparse(Brick = My_BrickContainer,
out_file = file.path(out_dir, "example_out.txt"),
remove_file = TRUE, sep = " ",
resolution = 100000)

Brick_load_data_from_sparse(Brick = My_BrickContainer,
table_file = file.path(out_dir, "example_out.txt"),
delim = " ", resolution = 100000, col_index = c(3,4,5))

End(Not run)

Brick_load_matrix Load a NxM dimensional matrix into the Brick store.

Description

Load a NxM dimensional matrix into the Brick store.

Usage

Brick_load_matrix(
Brick = NA,
chr1 = NA,
chr2 = NA,
resolution = NA,
matrix_file = NA,
delim = " ",
remove_prior = FALSE,

38 Brick_load_matrix

num_rows = 2000,
is_sparse = FALSE,
sparsity_bins = 100

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

matrix_file Required. A character vector of length 1 specifying the name of the file to load
as a matrix into the Brick store.

delim Optional. Default " " The delimiter of the matrix file.
remove_prior Optional. Default FALSE If a matrix was loaded before, it will not be replaced.

Use remove_prior to override and replace the existing matrix.
num_rows Optional. Default 2000 Number of rows to read, in each chunk.
is_sparse Optional. Default FALSE If true, designates the matrix as being a sparse matrix,

and computes the sparsity.index. The sparsity index measures the proportion of
non-zero rows or columns at a certain distance from the diagonal (100) in cis
interaction matrices.

sparsity_bins Optional. Default 100 With regards to computing the sparsity.index, this pa-
rameter decides the number of bins to scan from the diagonal.

Value

Returns TRUE if all went well.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_load_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_local_score_differentiator 39

Brick_local_score_differentiator

Do TAD Calls with Local Score Differentiator on a Hi-C matrix

Description

Local_score_differentiator calls topologically associated domains on Hi-C matrices. Local
score differentiator at the most fundamental level is a change point detector, which detects change
points in the directionality index using various thresholds defined on a local directionality index dis-
tributions. The directionality index (DI) is calculated as defined by Dixon et al., 2012 Nature. Next,
the difference of DI is calculated between neighbouring bins to get the change in DI distribution in
each bin. When a DI value goes from a highly negative value to a highly positive one as expected to
occur at domain boundaries, the ensuing DI difference distribution becomes a very flat distribution
interjected by very large peaks signifying regions where such a change may take place. We use two
difference vectors, one is the difference vector between a bin and its adjacent downstream bin and
another is the difference between a bin and its adjacent upstream bin. Using these vectors, and the
original directionality index, we define domain borders as outliers.

Usage

Brick_local_score_differentiator(
Brick,
chrs = NULL,
resolution = NA,
all_resolutions = FALSE,
min_sum = -1,
di_window = 200L,
lookup_window = 200L,
tukeys_constant = 1.5,
strict = TRUE,
fill_gaps = TRUE,
ignore_sparse = TRUE,
sparsity_threshold = 0.8,
remove_empty = NULL,
chunk_size = 500,
force_retrieve = TRUE

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chrs Optional. Default NULL If present, only TAD calls for elements in chrs will be
done.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

all_resolutions

Optional. Default FALSE If resolution is not defined and all_resolutions is
TRUE, the resolution parameter will be ignored and the function is executed on
all files listed in the Brick container

40 Brick_local_score_differentiator

min_sum Optional. Default -1 Process bins in the matrix with row.sums greater than
min_sum.

di_window Optional. Default 200 Use di_window to define the directionality index.

lookup_window Optional. Default 200 Use lookup_window local window to call borders. At
smaller di_window values we recommend setting this to 2*di_window

tukeys_constant

Optional. Default 1.5 tukeys_constant*IQR (inter-quartile range) defines the
lower and upper fence values.

strict Optional. Default TRUE If TRUE, strict creates an additional filter on the di-
rectionality index requiring it to be either greater than or less than 0 on the right
tail or left tail respectively.

fill_gaps Optional. Default TRUE If TRUE, this will affect the TAD stiching process.
All Border starts are stiched to the next downstream border ends. Therefore, at
times border ends remain unassociated to a border start. These border ends are
stiched to the adjacent downstream bin from their upstream border end when
fill_gaps is true.
TADs inferred in this way will be annotated with two metadata columns in the
GRanges object. gap.fill will hold a value of 1 and level will hold a value 1.
TADs which were not filled in will hold a gap.fill value of 0 and a level value of
2.

ignore_sparse Optional. Default TRUE If TRUE, a matrix which has been defined as sparse
during the matrix loading process will be treated as a dense matrix. The spar-
sity_threshold filter will not be applied. Please note, that if a matrix is defined
as sparse and fill_gaps is TRUE, fill_gaps will be turned off.

sparsity_threshold

Optional. Default 0.8 Sparsity threshold relates to the sparsity index, which is
computed as the number of non-zero bins at a certain distance from the diagonal.
If a matrix is sparse and ignore_sparse is FALSE, bins which have a sparsity
index value below this threshold will be discarded from DI computation.

remove_empty Not implemented. After implementation, this will ensure that the presence of
centromeric regions is accounted for.

chunk_size Optional. Default 500 The size of the matrix chunk to process. This value
should be larger than 2x di_window.

force_retrieve Optional. Default TRUE If TRUE, this will force the retrieval of a matrix chunk
even when the retrieval includes interaction points which were not loaded into
a Brick store (larger chunks). Please note, that this does not mean that DI can
be computed at distances larger than max distance. Rather, this is meant to aid
faster computation.

Details

To define an outlier, fences are first defined. The fences are defined using tukeys_constant x inter-
quartile range of the directionality index. The upper fence used for detecting domain starts is
the 75th quartile + (IQR x tukeys_constant), while the lower fence is the 25th quartile - (IQR x
tukeys_constant). For domain starts the DI difference must be greater than or equal to the upper
fence, it must be greater than the DI and the DI must be a finite real value. If strict is TRUE, DI will
also be required to be greater than 0. Similarly, for domain ends the DI difference must be lower
than or equal to the lower fence, it must be lower than the DI and the DI must be a finite real value.
If strict is TRUE, DI will also be required to be lower than 0.

Brick_make_ranges 41

After defining outliers, each domain start will be associated to its nearest downstream domain end.
If fill_gaps is defined as TRUE and there are domain ends which remain unassociated to a domain
start, These domain ends will be associated to the bin adjacent to their nearest upstream domain
end. This associations will be marked by metadata columns, gap.fill= 1 and level = 1.

This function provides the capability to call very accurante TAD definitions in a very fast way.

Value

A ranges object containing domain definitions. The starts and ends of the ranges coincide with the
starts and ends of their contained bins from the bintable.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "lsd_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr3R.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr3R",
chr2 = "chr3R", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

TAD_ranges <- Brick_local_score_differentiator(Brick = My_BrickContainer,
chrs = "chr3R", resolution = 100000, di_window = 10, lookup_window = 30,
strict = TRUE, fill_gaps = TRUE, chunk_size = 500)

Brick_make_ranges Creates a ranges object from provided vectors.

Description

Brick_make_ranges creates a GRanges object from the provided arguments

Usage

Brick_make_ranges(chrom, start, end, strand = NA, names = NA)

Arguments

chrom Required. A 1 dimensional character vector of size N specifying the chromo-
somes in the ranges.

start Required. A 1 dimensional numeric vector of size N specifying the start posi-
tions in the ranges.

42 Brick_matrix_dimensions

end Required. A 1 dimensional numeric vector of size N specifying the end posi-
tions in the ranges. Must be less than Start.

strand Optional. A 1 dimensional character vector of size N specifying the strand of
the ranges. If not provided, this will be set to the default *.

names Optional. A 1 dimensional character vector of size N specifying the names of
the ranges. If not provided, this will be set to the default chr:start:end.

Value

A GenomicRanges object with the previous sort order being preserved

Examples

Chrom <- c("chrS","chrS","chrS","chrS","chrS")
Start <- c(10000,20000,40000,50000,60000)
End <- c(10001,20001,40001,50001,60001)
Test_ranges <- Brick_make_ranges(chrom = Chrom, start = Start, end = End)

Brick_matrix_dimensions

Return the dimensions of a matrix

Description

Return the dimensions of a matrix

Usage

Brick_matrix_dimensions(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns the dimensions of a Hi-C matrix for any given chromosome pair.

Brick_matrix_exists 43

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_dimension_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_dimensions(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_matrix_exists Check if a chromosome pair exists.

Description

Matrices are created when the bintable is loaded and the chromosome names are provided. If a user
is in doubt regarding whether a matrix is present or not it is useful to check this function. If the
Bintable did not contain a particular chromosome, any matrices for that chromosome would not be
present in the file

Usage

Brick_matrix_exists(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns a logical vector of length 1, specifying if the matrix exists or not.

44 Brick_matrix_filename

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_exists_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_exists(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_matrix_filename Return the filename of the loaded matrix

Description

Return the filename of the loaded matrix

Usage

Brick_matrix_filename(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns a character vector of length 1 specifying the filename of the currently loaded matrix.

Brick_matrix_isdone 45

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_filename_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_filename(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_matrix_isdone Check if a matrix has been loaded for a chromosome pair.

Description

Check if a matrix has been loaded for a chromosome pair.

Usage

Brick_matrix_isdone(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns a logical vector of length 1, specifying if a matrix has been loaded or not.

46 Brick_matrix_issparse

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_isdone_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_isdone(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_matrix_issparse Check if a matrix for a chromosome pair is sparse.

Description

Check if a matrix for a chromosome pair is sparse.

Usage

Brick_matrix_issparse(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns a logical vector of length 1, specifying if a matrix was loaded as a sparse matrix.

Brick_matrix_maxdist 47

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_issparse_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_issparse(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_matrix_maxdist Get the maximum loaded distance from the diagonal of any matrix.

Description

If values beyond a certain distance were not loaded in the matrix, this distance parameter is useful.
This package by default will check this param to make sure that it is not returning non-existent data.

Usage

Brick_matrix_maxdist(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Details

Brick_matrix_maxdist will return this parameter.

48 Brick_matrix_minmax

Value

Returns an integer vector of length 1, specifying the maximum distance loaded for that matrix

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_maxdist_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_maxdist(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_matrix_minmax Return the value range of the matrix

Description

Return the value range of the matrix

Usage

Brick_matrix_minmax(Brick, chr1, chr2, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

chr1 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the rows of the matrix

chr2 Required. A character vector of length 1 specifying the chromosome corre-
sponding to the columns of the matrix

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Brick_mcool_normalisation_exists 49

Value

Returns a numeric vector of length 2, specifying the minimum and maximum finite real values in
the matrix.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "matrix_minmax_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr2L.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_matrix_minmax(Brick = My_BrickContainer, chr1 = "chr2L",
chr2 = "chr2L", resolution = 100000)

Brick_mcool_normalisation_exists

Check if a normalisation exists in an mcool file.

Description

Brick_mcool_normalisation_exists checks if a particular normalisation exists in an mcool file.

Usage

Brick_mcool_normalisation_exists(mcool, norm_factor = NULL, resolution = NULL)

Arguments

mcool Required. Path to an mcool file.

norm_factor Required. The normalization factor to use for normalization from an mcool file.
norm_factor currently accepts one of "Iterative-Correction", "Knight-Ruitz", "Vanilla-
coverage", "Vanilla-coverage-square-root".

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

A boolean vector of length 1

50 Brick_rangekey_exists

Examples

Not run:

require(curl)
out_dir <- file.path(tempdir(), "mcool_test_dir")
dir.create(path = out_dir)
curl_download(url = paste("https://data.4dnucleome.org/",
"files-processed/4DNFI7JNCNFB/",
"@download/4DNFI7JNCNFB.mcool", sep = ""),
destfile = file.path(out_dir, "H1-hESC-HiC-4DNFI7JNCNFB.mcool"))

mcool <- file.path(out_dir, "H1-hESC-HiC-4DNFI7JNCNFB.mcool")
Brick_mcool_normalisation_exists(mcool = mcool,
norm_factor = "Iterative-Correction",
resolution = 50000)

End(Not run)

Brick_rangekey_exists Check to see if the Brick contains a ranges with a certain name.

Description

Brick_rangekey_exists checks for the presence of a particular ranges with a certain name.

Usage

Brick_rangekey_exists(
Brick,
rangekey,
resolution = NA,
all_resolutions = FALSE

)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

rangekey Required. A string specifying the name of the ranges to check for.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

all_resolutions

Optional. Default FALSE If resolution is not defined and all_resolutions is
TRUE, the resolution parameter will be ignored and the function is executed on
all files listed in the Brick container

Value

A logical vector of length 1 with either TRUE or FALSE values.

Brick_return_region_position 51

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "list_rangekeys_exists_test")

dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Brick_rangekey_exists(Brick = My_BrickContainer, rangekey = "Bintable",
resolution = 100000)

Brick_return_region_position

Provides the overlapping position (within) from the bintable.

Description

Brick_return_region_position takes as input a human-readable coordinate format of the form
chr:start:end and outputs the overlapping bintable positions. This module does a "within" operation.
So only bins which overlap completely with the region will be returned. This is not an iterable
module, so the user has to make iterative calls to the module itself.

Usage

Brick_return_region_position(Brick, region, resolution = NA)

Arguments

Brick Required. A string specifying the path to the Brick store created with Cre-
ate_many_Brick.

region Required. A character vector of length 1 specifying the region to overlap. It
must take the form chr:start:end.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

Value

Returns a 1 dimensional vector containing the position of the overlapping regions in the bintable
associated the Brick store.

Design choice

This may seem to be a poor design choice at first glance, but I do not think this to be the case. By
not being iterable, this function circumvents the problem of how to structure the data for the user.
If one more element was accepted, the return object would have become a list, which increases
the data structure complexity significantly for users who are just starting out with R. Therefore this
problem is left for the users themselves to deal with.

52 Brick_vizart_plot_heatmap

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "region_position_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Coordinate <- "chr2L:1:1000000"

Test_Run <- Brick_return_region_position(Brick = My_BrickContainer,
region = Coordinate, resolution = 100000)

Brick_vizart_plot_heatmap

Create the entire HDF5 structure and load the bintable

Description

Brick_vizart_plot_heatmap creates various heatmaps and plots TADs.

Usage

Brick_vizart_plot_heatmap(
File,
Bricks,
resolution,
x_coords,
y_coords,
FUN = NULL,
value_cap = NULL,
distance = NULL,
rotate = FALSE,
x_axis = TRUE,
x_axis_title = NULL,
y_axis = TRUE,
y_axis_title = NULL,
title = NULL,
legend_title = NULL,
return_object = FALSE,
x_axis_num_breaks = 5,
y_axis_num_breaks = 5,
palette,
col_direction = 1,
extrapolate_on = NULL,
x_axis_text_size = 10,
y_axis_text_size = 10,

Brick_vizart_plot_heatmap 53

text_size = 10,
legend_title_text_size = 8,
legend_text_size = 8,
title_size = 10,
tad_ranges = NULL,
group_col = NULL,
tad_colour_col = NULL,
colours = NULL,
colours_names = NULL,
cut_corners = FALSE,
highlight_points = NULL,
width = 10,
height = 6,
line_width = 0.5,
units = "cm",
legend_key_width = unit(3, "cm"),
legend_key_height = unit(0.5, "cm")

)

Arguments

File Required A character vector containing the output filename to write.

Bricks Required A list of length 1 (in case of one sample heatmaps) or 2 (in case of
two sample heatmaps) specifying the BrickContainers from where to fetch the
data.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

x_coords Required A character vector of length 1 specifying the coordinates from where
to fetch the data.

y_coords Required A character vector of length 1 specifying the coordinates from where
to fetch the data.

FUN Optional. Default NULL If any sort of transformations should be applied to the
data before plotting. Such as, log10 or log2 transformations.

value_cap Optional. Default NULL If present, values beyond a certain quantile will be
capped to that quantile. In Hi-C this helps to emphasize structural information.
Please note, if this parameter is present the greatest value will have a greater
than sign append- -ed to them.

distance Optional. Default NULL If present, values beyond this distance will be filtered
out. Please note, that if a Brick store matrix was loaded until a certain distance,
this parameter will result in an error if it is greater than the loaded distance.

rotate Optional. Default FALSE If TRUE, will rotate the heatmap by 90 degrees.

x_axis Optional. Default TRUE If FALSE, the x-axis will be removed (ticks, x-axis
labels and title).

x_axis_title Optional. Default NULL If present, will be the x-axis title. Else defaults to the
provided x_coords

y_axis Optional. Default TRUE If FALSE, the y-axis will be removed (ticks, y-axis
labels and title).

y_axis_title Optional. Default NULL If present, will be the y-axis title. Else defaults to the
provided y_coords

54 Brick_vizart_plot_heatmap

title Optional. Default NULL If present, will be the plot title. Else defaults to the
provided x_coords vs y_coords

legend_title Optional. Default NULL If present will be the title of the legend. Else defaults
to "Signal".

return_object Optional. Default FALSE If present the ggplot object will be returned
x_axis_num_breaks

Optional. Default 5 Number of ticks on the x axis
y_axis_num_breaks

Optional. Default 5 Number of ticks on the y axis

palette Required. Default NULL One of the RColorbrewer or viridis colour palettes

col_direction Optional. Default 1 If -1, the colour scale will be reversed.

extrapolate_on Optional. Default NULL If present, colours from the palette will be extrapo-
lated between lightest and darkest to create the gradient. This value cannot be
more than 100.

x_axis_text_size

Optional. Default 10 x-axis text size
y_axis_text_size

Optional. Default 10 y-axis text size

text_size Optional. Default 10 text size of text elements in the plot.
legend_title_text_size

Optional. Default 8 text size of the legend title
legend_text_size

Optional. Default 8 text size of the legend text

title_size Optional. Default 10 text size of the title

tad_ranges Optional. Default NULL A GenomicRanges object specifying the start and end
coordinates of TADs to be plotted on the heatmap.

group_col Optional. Default NULL Name of the column which will be used to categorize
TADs as belonging to either the first or the second Brick stores. This must be
a numeric value ranging from 1 to 2. If NULL, TADs will be plotted on both
Hi-C maps.

tad_colour_col Optional. Default NULL tad_colour_col takes as value the column name in the
tad_ranges object corresponding to the column which should be used to define
different TAD categories.

colours Optional. Default NULL If tad_ranges is present, colours expects a hexcode
value of length 1. But, if tad_colour_col is specified, it expects colours of the
same length as unique tad_ranges$tad_colour_col.

colours_names Optional. Default NULL If present, will be assigned to colours. Else, will
inherit unique tad_colour_col. If tad_colour_col is also absent, will revert to a
placehold column name.

cut_corners Optional. Default FALSE if cut_corners is TRUE, TAD borders will not be
truncated, and they will span until the end of visible heatmap.

highlight_points

Optional. Not yet implemented.

width Optional. Default 10cm Width of the output file units.

height Optional. Default 6cm Height of the output file in units.

line_width Optional. Default 0.5 When plotting TADs set the width of the plotted lines

Brick_vizart_plot_heatmap 55

units Optional. Default cm Defines the units of the output file width and height.
legend_key_width

Optional. Default unit(3,"cm") Defines the legend key width.
legend_key_height

Optional. Default unit(0.5,"cm") Defines the legend key height.

Details

This function provides the capability to plot various types of heatmaps from Hi-C data.

• One sample heatmap.

• Two sample heatmap (One sample on upper and other on lower).

• All of the above with 90 degree rotation.

• All of the above but with signal capped at a certain value.

• All of the above but filtered by distance.

• All of the above with TADs/TAD borders plotted on top.

Value

If return_object is set to TRUE, the constructed ggplot2 object will be returned. Else TRUE.

Examples

FailSafe_log10 <- function(x){
x[is.na(x) | is.nan(x) | is.infinite(x)] <- 0
return(log10(x+1))

}

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")

out_dir <- file.path(tempdir(), "vizart_test")
dir.create(out_dir)

My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,
bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Matrix_file <- system.file(file.path("extdata",
"Sexton2012_yaffetanay_CisTrans_100000_corrected_chr3R.txt.gz"),
package = "HiCBricks")

Brick_load_matrix(Brick = My_BrickContainer, chr1 = "chr3R",
chr2 = "chr3R", matrix_file = Matrix_file, delim = " ",
remove_prior = TRUE, resolution = 100000)

Brick_vizart_plot_heatmap(File = "./chr3R-1-10000000.pdf",
Bricks = list(My_BrickContainer), resolution = 100000,
x_coords = "chr3R:1:10000000", palette = "Reds",
y_coords = "chr3R:1:10000000", FUN = FailSafe_log10,
value_cap = 0.99, width = 10, height = 11, legend_key_width = unit(3,"mm"),
legend_key_height = unit(0.3,"cm"))

56 Create_many_Bricks

Create_many_Bricks Create the entire HDF5 structure and load the bintable

Description

Create_many_Bricks creates the HDF file and returns a BrickContainer

Usage

Create_many_Bricks(
BinTable,
bin_delim = "\t",
col_index = c(1, 2, 3),
impose_discontinuity = TRUE,
hdf_chunksize = NULL,
output_directory = NA,
file_prefix = NA,
remove_existing = FALSE,
link_existing = FALSE,
experiment_name = NA,
resolution = NA,
type = c("both", "cis", "trans")

)

Arguments

BinTable Required A string containing the path to the file to load as the binning table
for the Hi-C experiment. The number of entries per chromosome defines the di-
mension of the associated Hi-C data matrices. For example, if chr1 contains 250
entries in the binning table, the cis Hi-C data matrix for chr1 will be expected
to contain 250 rows and 250 cols. Similary, if the same binning table contained
150 entries for chr2, the trans Hi-C matrices for chr1,chr2 will be a matrix with
dimension 250 rows and 150 cols.
There are no constraints on the bintable format. As long as the table is in a
delimited format, the corresponding table columns can be outlined with the as-
sociated parameters. The columns of importance are chr, start and end.
It is recommended to always use binning tables where the end and start of con-
secutive ranges are not the same. If they are the same, this may lead to unex-
pected behaviour when using the GenomicRanges "any" overlap function.

bin_delim Optional. Defaults to tabs. A character vector of length 1 specifying the delim-
iter used in the file containing the binning table.

col_index Optional. Default "c(1,2,3)". A character vector of length 3 containing the
indexes of the required columns in the binning table. the first index, corresponds
to the chr column, the second to the start column and the third to the end column.

impose_discontinuity

Optional. Default TRUE. If TRUE, this parameter ensures a check to make
sure that required the end and start coordinates of consecutive entries are not the
same per chromosome.

Create_many_Bricks 57

hdf_chunksize Optional. A numeric vector of length 1. If provided, the HDF dataset will use
this value as the chunk size, for all matrices. By default, the ChunkSize is set to
matrix dimensions/100.

output_directory

Required A string specifying the location where the HDF files will be created.

file_prefix Required A string specifying the prefix that is concatenated to the hdf files
stored in the output_directory.

remove_existing

Optional. Default FALSE. If TRUE, will remove the HDF file with the same
name and create a new one. By default, it will not replace existing files.

link_existing Optional. Default FALSE. If TRUE, will re-add the HDF file with the same
name. By default, this parameter is set to FALSE.

experiment_name

Optional. If provided, this will be the experiment name for the BrickContainer.

resolution required. A value of length 1 of class character or numeric specifying the reso-
lution of the Hi-C data loaded.

type optional. Default any A value from one of any, cis, trans specifying the type of
matrices to load. Any will load both cis (intra-choromosomal, e.g. chr1 vs chr1)
and trans (inter-chromosomal, e.g. chr1 vs chr2) Hi-C matrices. Whereas cis
and trans will load either cis or trans Hi-C matrices.

Details

This function creates the complete HDF data structure, loads the binning table associated to the
Hi-C experiment, creates a 2D matrix layout for all specified chromosome pairs and creates a json
file for the project. At the end, this function will return a S4 object of class BrickContainer. Please
note, the binning table must be a discontinuous one (first range end != secode range start), as ranges
overlaps using the "any" form will routinely identify adjacent ranges with the same end and start to
be in the overlap. Therefore, this criteria is enforced as default behaviour.

The structure of the HDF file is as follows: The structure contains three major groups which are
then hierarchically nested with other groups to finally lead to the corresponding datasets.

• Base.matrices - group For storing Hi-C matrices

– chromosome - group
– chromosome - group

* attributes - attribute
· Filename - Name of the file
· Min - min value of Hi-C matrix
· Max - max value of Hi-C matrix
· sparsity - specifies if this is a sparse matrix
· distance - max distance of data from main diagonal
· Done - specifies if a matrix has been loaded

* matrix - dataset - contains the matrix

* chr1_bin_coverage - dataset - proportion of row cells with values greater than 0

* chr1_row_sums - dataset - total sum of all values in a row

* chr2_col_sums - dataset - total sum of all values in a col

* chr2_bin_coverage - dataset - proportion of col cells with values greater than 0

* sparsity - dataset - proportion of non-zero cells near the diagonal

58 Create_many_Bricks_from_mcool

• Base.ranges - group, Ranges tables for quick and easy access. Additional ranges tables are
added here under separate group names.

– Bintable - group - The main binning table associated to a Brick.

* ranges - dataset - Contains the three main columns chr, start and end.

* offsets - dataset - first occurence of any given chromosome in the ranges dataset.

* lengths - dataset - Number of occurences of that chromosome

* chr.names - dataset - What chromosomes are present in the given ranges table.

• Base.metadata - group, A place to store metadata info

– chromosomes - dataset - Metadata information specifying the chromosomes present in
this particular Brick file.

– other metadata tables.

Keep in mind that if the end coordinates and start coordinates of adjacent ranges are not separated
by at least a value of 1, then impose.discontinuity = TRUE will likely cause an error to occur. This
may seem obnoxious, but GenomicRanges by default will consider an overlap of 1 bp as an overlap.
Therefore, to be certain that ranges which should not be, are not being targeted during retrieval
operations, a check is initiated to make sure that adjacent ends and starts are not overlapping. To
load continuous ranges, use impose.discontinuity = FALSE.

Also note, that col.index determines which columns to use for chr, start and end. Therefore, the
original binning table may have 10 or 20 columns, but it only requires the first three in order of chr,
start and end.

Value

This function will generate the target Brick file. Upon completion, the function will return an object
of class BrickContainer.

Examples

Bintable.path <- system.file(file.path("extdata", "Bintable_100kb.bins"),
package = "HiCBricks")
out_dir <- file.path(tempdir(), "Creator_test")
dir.create(out_dir)
My_BrickContainer <- Create_many_Bricks(BinTable = Bintable.path,

bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

Create_many_Bricks_from_mcool

Create the entire HDF5 structure and load the bintable from a mcool
file

Description

Create_many_Bricks_from_mcool is a wrapper on Create_many_Bricks which creates the Brick
data structure from an mcool file.

Create_many_Bricks_from_mcool 59

Usage

Create_many_Bricks_from_mcool(
output_directory = NA,
file_prefix = NA,
mcool = NULL,
resolution = NULL,
experiment_name = NA,
remove_existing = FALSE

)

Arguments

output_directory

Required A string specifying the location where the HDF files will be created.

file_prefix Required A string specifying the prefix that is concatenated to the hdf files
stored in the output_directory.

mcool Required. Path to an mcool file.

resolution Optional. Default NA When an object of class BrickContainer is provided,
resolution defines the resolution on which the function is executed

experiment_name

Optional. If provided, this will be the experiment name for the BrickContainer.
remove_existing

Optional. Default FALSE. If TRUE, will remove the HDF file with the same
name and create a new one. By default, it will not replace existing files.

Details

mcool are a standard 4D nucleome data structure for Hi-C data. Read more about the 4D nucleome
project here.

Value

This function will generate the target Brick file. Upon completion, the function will provide the
path to the created/tracked HDF file.

See Also

Brick_load_data_from_mcool to load data from the mcool to a Brick store.

Examples

Not run:
require(curl)
out_dir <- file.path(tempdir(),"mcool_test_dir")
dir.create(path = out_dir)
curl_download(url = paste("https://data.4dnucleome.org/",
"files-processed/4DNFI7JNCNFB/",
"@download/4DNFI7JNCNFB.mcool", sep = ""),
destfile = file.path(out_dir,"H1-hESC-HiC-4DNFI7JNCNFB.mcool"))

mcool <- file.path(out_dir,"H1-hESC-HiC-4DNFI7JNCNFB.mcool")

Create_many_Bricks_from_mcool(output_directory = out_dir,

https://data.4dnucleome.org/

60 HiCBricks

file_prefix = "Test",
mcool = mcool,
resolution = 50000,
experiment_name = "A random 4DN dataset")

End(Not run)

HiCBricks A package for storing, accessing and plotting Hi-C data

Description

HiCBricks is a package allowing users to flexibly import and work with Hi-C data

Details

Using HiCBricks users are able to import Hi-C matrices stored in various formats into an HDF
structure. This is the Brick file. You can then access the Hi-C data using accessor functions. Since
the data is stored in an HDF file, if you have the Brick (HDF) file, you can keep on accessing the
same file an infinite number of times.

Users can also associate different ranges objects with the HDF file.

The HDF file must have the same structure as followed by HiCBricks

Users can then move forward and create analysis pipelines and statistical methods based on HiCBricks
HDF files without worrying about the underlying data structure. To showcase this, Local score dif-
ferentiator (LSD) our novel TAD calling procedure comes packaged with HiCBricks.

You are also able to plot Hi-C data using HiCBricks functions. There are a few types. You can
create,

• a square heatmap

• a rotated heatmap

• two group square/rotated heatmaps

• both heatmaps until a certain distance

• plot TADs on both heatmaps

Brick creation

• Create_many_Bricks - Create the HDF data structures. We refer to the HDF files as Bricks

• Create_many_Bricks_from_mcool - Create the complete Brick data structure from an mcool
file.

Matrix loaders

• Brick_load_matrix - Load a complete nxm dimensional matrix.

• Brick_load_cis_matrix_till_distance - Load a sam chromosome nxn dimensional ma-
trix until a certain distance.

• Brick_load_data_from_mcool - Load parts of the data from the 4DN consortium generated
mcool files.

HiCBricks 61

Matrix Accessors

• Brick_get_matrix_within_coords - Fetches a matrix within the provided genomic coordi-
nates.

• Brick_get_matrix - Fetches a matrix within the provided x and y coordinates.
• Brick_get_values_by_distance - Fetch all values corresponding to interactions between

genomic loci separated by the corresponding value.
• Brick_fetch_row_vector - Fetch all values at a given row or column.

All of the functions above can be subsetted and contain further value transformations.

Ranges operators

• Brick_get_bintable - All HiCBricks Brick files contain a binning table containing the co-
ordinate information of the matrix. This fetches the associated binning table.

• Brick_add_ranges - Add a ranges object to the Brick file.
• Brick_get_ranges - Get a ranges object associated to a Brick file.
• Brick_fetch_range_index - Provided a set of coordinate vectors, get the corresponding

rows/cols overlapping with those coordinates.
• Brick_make_ranges - Create a granges object from provided vectors.
• Brick_return_region_position - Get the row/col number corresponding to coordinates

spelled out in human readable format.

Other functions

• Brick_local_score_differentiator - Use the LSD TAD calling procedure to do some
TAD calls.

• Brick_vizart_plot_heatmap - Plot pretty heatmaps.

Utility functions

• Brick_get_chrominfo - Get the basic information regarding the Brick file. Which chromo-
somes are present, dimension of the matrix and the total length of the chromosome.

• Brick_get_matrix_mcols - Get the matrix metadata information. Such as, row sums, cover-
age information and how sparse regions near the diagonal are.

• Brick_list_matrices - List all the matrices present in the Brick file. Alongside, also provide
information such as if the matrix has been loaded or not, min max values, e.t.c

• Brick_list_rangekeys - List the names of the ranges present in the Brick file.
• Brick_rangekey_exists - Answers the question, is this rangekey present in the Brick file?
• Brick_list_ranges_mcols - List the names of metadata columns associated to a ranges

object in the Brick file.
• Brick_matrix_dimensions - Get the dimensions of a given matrix.
• Brick_matrix_exists - Answers the question, has a matrix been created for this Brick store?
• Brick_matrix_filename - Answers the question, what is the name of the file used to load

this particular matrix?
• Brick_matrix_isdone - Answers the question, has this matrix been loaded already?
• Brick_matrix_issparse - Answers the question, was this matrix defined as a sparse matrix

while loading?
• Brick_matrix_maxdist - If Brick_load_cis_matrix_till_distance was used for load-

ing data, then this function will tell you until what distance data was loaded.
• Brick_matrix_minmax - Outputs the value range of the matrix.

62 load_BrickContainer

mcool utility functions

• Brick_list_mcool_normalisations - List the names of normalisation vectors that can be
present in a mcool file.

• Brick_mcool_normalisation_exists - Check if a specific normalisation vector exists in an
mcool file.

• Brick_list_mcool_resolutions - List the resolutions present in an mcool file.

load_BrickContainer Create a BrickContainer object from a JSON file

Description

load_BrickContainer creates a BrickContainer object from a JSON file

Usage

load_BrickContainer(config_file = NULL, project_dir = NULL)

Arguments

config_file Default NULL A character string of length 1 specifying the path to the path to
the configuration json created using Create_many_bricks

project_dir Default NULL A character string of length 1 specifying the path to the path to
the configuration json created using Create_many_bricks

Value

An object of class BrickContainer

Examples

Bintable.path <- system.file("extdata",
"Bintable_100kb.bins", package = "HiCBricks")
out_dir <- file.path(tempdir(), "BrickContainer_load_test")
dir.create(out_dir)
Create_many_Bricks(BinTable = Bintable.path,

bin_delim = " ", output_directory = out_dir, file_prefix = "Test",
experiment_name = "Vignette Test", resolution = 100000,
remove_existing = TRUE)

My_BrickContainer <- load_BrickContainer(project_dir = out_dir)

Index

Brick_add_ranges, 10, 61
Brick_call_compartments, 11
Brick_export_to_sparse, 12
Brick_fetch_range_index, 13, 61
Brick_fetch_row_vector, 15, 16, 20, 23, 25,

61
Brick_get_bintable, 16, 61
Brick_get_chrominfo, 17, 61
Brick_get_entire_matrix, 18
Brick_get_matrix, 16, 19, 22, 23, 25, 61
Brick_get_matrix_mcols, 21, 61
Brick_get_matrix_within_coords, 16, 20,

22, 25, 61
Brick_get_ranges, 16, 24, 61
Brick_get_values_by_distance, 16, 20, 23,

25, 61
Brick_get_vector_values, 20, 23, 25, 26
Brick_list_matrices, 28, 61
Brick_list_matrix_mcols, 29
Brick_list_mcool_normalisations, 30, 35,

62
Brick_list_mcool_resolutions, 30, 35, 62
Brick_list_rangekeys, 31, 61
Brick_list_ranges_mcols, 32, 61
Brick_load_cis_matrix_till_distance,

33, 60, 61
Brick_load_data_from_mcool, 34, 59, 60
Brick_load_data_from_sparse, 36
Brick_load_matrix, 37, 60
Brick_local_score_differentiator, 39,

61
Brick_make_ranges, 13, 41, 61
Brick_matrix_dimensions, 42, 61
Brick_matrix_exists, 43, 61
Brick_matrix_filename, 44, 61
Brick_matrix_isdone, 45, 61
Brick_matrix_issparse, 46, 61
Brick_matrix_maxdist, 47, 61
Brick_matrix_minmax, 48, 61
Brick_mcool_normalisation_exists, 49,

62
Brick_rangekey_exists, 50, 61
Brick_return_region_position, 51, 61

Brick_vizart_plot_heatmap, 52, 61
BrickContainer_change_experiment_name,

3
BrickContainer_change_output_directory,

3
BrickContainer_get_path_to_file, 4
BrickContainer_list_chromosomes, 5
BrickContainer_list_experiment_name, 6
BrickContainer_list_files, 7
BrickContainer_list_output_directory,

8
BrickContainer_list_resolutions, 8
BrickContainer_unlink_resolution, 9

Create_many_Bricks, 56, 60
Create_many_Bricks_from_mcool, 35, 58,

60

HiCBricks, 60

load_BrickContainer, 62

63

	BrickContainer_change_experiment_name
	BrickContainer_change_output_directory
	BrickContainer_get_path_to_file
	BrickContainer_list_chromosomes
	BrickContainer_list_experiment_name
	BrickContainer_list_files
	BrickContainer_list_output_directory
	BrickContainer_list_resolutions
	BrickContainer_unlink_resolution
	Brick_add_ranges
	Brick_call_compartments
	Brick_export_to_sparse
	Brick_fetch_range_index
	Brick_fetch_row_vector
	Brick_get_bintable
	Brick_get_chrominfo
	Brick_get_entire_matrix
	Brick_get_matrix
	Brick_get_matrix_mcols
	Brick_get_matrix_within_coords
	Brick_get_ranges
	Brick_get_values_by_distance
	Brick_get_vector_values
	Brick_list_matrices
	Brick_list_matrix_mcols
	Brick_list_mcool_normalisations
	Brick_list_mcool_resolutions
	Brick_list_rangekeys
	Brick_list_ranges_mcols
	Brick_load_cis_matrix_till_distance
	Brick_load_data_from_mcool
	Brick_load_data_from_sparse
	Brick_load_matrix
	Brick_local_score_differentiator
	Brick_make_ranges
	Brick_matrix_dimensions
	Brick_matrix_exists
	Brick_matrix_filename
	Brick_matrix_isdone
	Brick_matrix_issparse
	Brick_matrix_maxdist
	Brick_matrix_minmax
	Brick_mcool_normalisation_exists
	Brick_rangekey_exists
	Brick_return_region_position
	Brick_vizart_plot_heatmap
	Create_many_Bricks
	Create_many_Bricks_from_mcool
	HiCBricks
	load_BrickContainer
	Index

