
Package ‘HIBAG’
January 20, 2026

Type Package

Title HLA Genotype Imputation with Attribute Bagging

Version 1.46.0

Date 2024-11-19

Depends R (>= 3.2.0)

Imports methods, RcppParallel

Suggests parallel, ggplot2, reshape2, gdsfmt, SNPRelate, SeqArray,
knitr, markdown, rmarkdown, Rsamtools

LinkingTo RcppParallel (>= 5.0.0)

Description Imputes HLA classical alleles using GWAS SNP data, and it relies
on a training set of HLA and SNP genotypes. HIBAG can be used by
researchers with published parameter estimates instead of requiring
access to large training sample datasets. It combines the concepts of
attribute bagging, an ensemble classifier method, with haplotype inference
for SNPs and HLA types. Attribute bagging is a technique which improves
the accuracy and stability of classifier ensembles using bootstrap
aggregating and random variable selection.

License GPL-3

LazyData yes

VignetteBuilder knitr

SystemRequirements C++11, GNU make

ByteCompile TRUE

biocViews Genetics, StatisticalMethod

URL https://github.com/zhengxwen/HIBAG,

https://hibag.s3.amazonaws.com/index.html

git_url https://git.bioconductor.org/packages/HIBAG

git_branch RELEASE_3_22

git_last_commit 2750cec

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

1

https://github.com/zhengxwen/HIBAG
https://hibag.s3.amazonaws.com/index.html

2 Contents

Author Xiuwen Zheng [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-1390-0708>),

Bruce Weir [ctb, ths] (ORCID: <https://orcid.org/0000-0002-4883-1247>)

Maintainer Xiuwen Zheng <zhengx@u.washington.edu>

Contents
HIBAG-package . 3
HapMap_CEU_Geno . 6
hlaAASeqClass . 6
hlaAllele . 7
hlaAlleleClass . 8
hlaAlleleDigit . 9
hlaAlleleSubset . 10
hlaAlleleToVCF . 11
hlaAssocTest . 12
hlaAttrBagClass . 15
hlaAttrBagging . 16
hlaAttrBagObj . 19
hlaBED2Geno . 20
hlaCheckAllele . 21
hlaCheckSNPs . 22
hlaClose . 23
hlaCombineAllele . 24
hlaCombineModelObj . 25
hlaCompareAllele . 26
hlaConvSequence . 28
hlaDistance . 31
hlaFlankingSNP . 32
hlaGDS2Geno . 33
hlaGeno2PED . 34
hlaGenoAFreq . 35
hlaGenoCombine . 36
hlaGenoLD . 37
hlaGenoMFreq . 38
hlaGenoMRate . 39
hlaGenoMRate_Samp . 39
hlaGenoSubset . 40
hlaGenoSwitchStrand . 41
hlaLDMatrix . 42
hlaLociInfo . 43
hlaMakeSNPGeno . 44
hlaModelFiles . 45
hlaModelFromObj . 46
hlaOutOfBag . 47
hlaParallelAttrBagging . 49
hlaPredict . 51
hlaPredMerge . 54
hlaPublish . 56
hlaReport . 57
hlaReportPlot . 59

https://orcid.org/0000-0002-1390-0708
https://orcid.org/0000-0002-4883-1247

HIBAG-package 3

hlaSampleAllele . 61
hlaSetKernelTarget . 62
hlaSNPGenoClass . 63
hlaSNPID . 63
hlaSplitAllele . 64
hlaSubModelObj . 65
hlaUniqueAllele . 66
HLA_Type_Table . 67
plot.hlaAttrBagObj . 68
print.hlaAttrBagClass . 69
summary.hlaAlleleClass . 70
summary.hlaSNPGenoClass . 71

Index 73

HIBAG-package HLA Genotype Imputation with Attribute Bagging

Description

To impute HLA types from unphased SNP data using an attribute bagging method.

Details

Package: HIBAG
Type: R/Bioconductor Package
License: GPL version 3
Kernel Version: v1.5

HIBAG is a state of the art software package for imputing HLA types using SNP data, and it uses
the R statistical programming language. HIBAG is highly accurate, computationally tractable, and
can be used by researchers with published parameter estimates instead of requiring access to large
training sample datasets. It combines the concepts of attribute bagging, an ensemble classifier
method, with haplotype inference for SNPs and HLA types. Attribute bagging is a technique which
improves the accuracy and stability of classifier ensembles using bootstrap aggregating and random
variable selection.

Features:
1) HIBAG can be used by researchers with published parameter estimates (https://hibag.s3.
amazonaws.com/hlares_index.html) instead of requiring access to large training sample datasets.
2) A typical HIBAG parameter file contains only haplotype frequencies at different SNP subsets
rather than individual training genotypes.
3) SNPs within the xMHC region (chromosome 6) are used for imputation.
4) HIBAG employs unphased genotypes of unrelated individuals as a training set.
5) HIBAG supports parallel computing with R.

Author(s)

Xiuwen Zheng [aut, cre, cph] <zhengx@u.washington.edu>, Bruce S. Weir [ctb, ths] <bsweir@u.washington.edu>

https://hibag.s3.amazonaws.com/hlares_index.html
https://hibag.s3.amazonaws.com/hlares_index.html

4 HIBAG-package

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype
Imputation with Attribute Bagging. The Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18.
https://www.nature.com/articles/tpj201318

Examples

HLA_Type_Table data
head(HLA_Type_Table)
dim(HLA_Type_Table) # 60 13

HapMap_CEU_Geno data
summary(HapMap_CEU_Geno)

##

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel=match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,

verbose.detail=TRUE)
summary(model)

validation
pred <- hlaPredict(model, test.geno)

https://www.nature.com/articles/tpj201318

HIBAG-package 5

summary(pred)

compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0.5))

save the parameter file
mobj <- hlaModelToObj(model)
save(mobj, file="HIBAG_model.RData")
save(test.geno, file="testgeno.RData")
save(hlatab, file="HLASplit.RData")

Clear Workspace
hlaClose(model) # release all resources of model
rm(list = ls())

##

NOW, load a HIBAG model from the parameter file
mobj <- get(load("HIBAG_model.RData"))
model <- hlaModelFromObj(mobj)

validation
test.geno <- get(load("testgeno.RData"))
hlatab <- get(load("HLASplit.RData"))

pred <- hlaPredict(model, test.geno)
compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0.5))

###
import a PLINK BED file
#
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")
hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")

###
predict
#
pred <- hlaPredict(model, hapmap.ceu, type="response")
head(pred$value)
sample.id allele1 allele2 prob
1 NA10859 01:01 03:01 0.9999992
2 NA11882 01:01 29:02 1.0000000
...

delete the temporary files

6 hlaAASeqClass

unlink(c("HIBAG_model.RData", "testgeno.RData", "HLASplit.RData"), force=TRUE)

HapMap_CEU_Geno SNP genotypes of a study simulated from HapMap CEU genotypic
data

Description

An object of hlaSNPGenoClass of 60 samples and 1564 SNPs.

Usage

HapMap_CEU_Geno

Value

A list

References

https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/

The International HapMap Consortium. A second generation human haplotype map of over 3.1
million SNPs. Nature 449, 851-861. 2007.

hlaAASeqClass Class of HLA Amino Acid Sequence Type

Description

The definition of a class for HLA protein amino acid sequences.

Value

There are following components:

locus HLA locus

pos.start the starting position in basepair

pos.end the end position in basepair

value a data frame

assembly the human genome reference, such like "hg19"

start.position the start position

reference reference sequence

The component value includes:

sample.id sample ID

allele1 amino acid or nucleotide sequence

allele2 amino acid or nucleotide sequence

P1, ..., Pn if applicable, a matrix of posterior probability, row – sample, column – position
of amino acid

https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/

hlaAllele 7

Author(s)

Xiuwen Zheng

See Also

hlaConvSequence

hlaAllele A list of HLA/KIR types

Description

Return an object of hlaAlleleClass, which contains HLA/KIR types.

Usage

hlaAllele(sample.id, H1, H2, max.resolution="", locus="any", assembly="auto",
locus.pos.start=NA_integer_, locus.pos.end=NA_integer_, prob=NULL,
na.rm=TRUE)

Arguments

sample.id sample IDs

H1 a vector of HLA/KIR alleles

H2 a vector of HLA/KIR alleles

max.resolution "2-digit", "1-field", "4-digit", "2-field", "6-digit", "3-field", "8-digit", "4-field",
"allele", "protein", "full", "none", or "": "allele" = "2-digit"; "protein" = "4-
digit"; "full", "none" or "" for no limit on resolution

locus the name of HLA locus: "A", "B", "C", "DRB1", "DRB5", "DQA1", "DQB1",
"DPB1", KIR locus, or "any", where "any" indicates any other multiallelic locus;
see hlaLociInfo for possible locus names

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

locus.pos.start

the starting position in basepair

locus.pos.end the end position in basepair

prob the probabilities assigned to the samples

na.rm if TRUE, remove the samples without valid HLA types

Details

The format of H1 and H2 is "allele group : different protein : synonymous mutations in exons :
synonymous mutations in introns"L, where the suffix L is express level (N, null; L, low; S, secreted;
A, aberrant; Q: questionable). For example, "44:02:01:02L". If max.resolution is specified, the
HLA alleles will be trimmed with a possible maximum resolution.

8 hlaAlleleClass

Value

Return a hlaAlleleClass object, and it is a list:

locus HLA locus

pos.start the starting position in basepair

pos.end the end position in basepair

value a data frame

assembly the human genome reference, such like "hg19"

The component value includes:

sample.id sample ID

allele1 HLA allele

allele2 HLA allele

prob the posterior probability

Author(s)

Xiuwen Zheng

See Also

hlaAlleleDigit, hlaAlleleSubset, hlaLociInfo, hlaAlleleToVCF

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table) # 60 13

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

summary(hla)

encode other loci
hlaAllele("HD0010", "1", "2", locus="NewLocus")

hlaAlleleClass Class of HLA/KIR Type

Description

The definition of a class for HLA/KIR types, returned from hlaAllele.

hlaAlleleDigit 9

Value

There are following components:

locus HLA/KIR locus

pos.start the starting position in basepair

pos.end the end position in basepair

value a data frame

assembly the human genome reference, such like "hg19"

postprob if applicable, a matrix of all posterior probabilities

~

The component value includes:

sample.id sample ID

allele1 HLA allele

allele2 HLA allele

prob if applicable, the posterior probability

Author(s)

Xiuwen Zheng

See Also

hlaAllele

hlaAlleleDigit Trim HLA alleles

Description

Trim HLA alleles to specified width.

Usage

hlaAlleleDigit(obj, max.resolution=NA_character_, rm.suffix=FALSE)

Arguments

obj should be a hlaAlleleClass object or characters

max.resolution "2-digit", "1-field", "4-digit", "2-field", "6-digit", "3-field", "8-digit", "4-field",
"allele", "protein", "full", "none", or "": "allele" = "2-digit"; "protein" = "4-
digit"; "full", "none" or "" for no limit on resolution

rm.suffix whether remove the non-digit suffix in the last field, e.g., for "01:22N", "N" is a
non-digit suffix

Details

If max.resolution is specified, the HLA alleles will be trimmed with the maximum resolution.
See https://hla.alleles.org/nomenclature/naming.html for the HLA nomenclature.

https://hla.alleles.org/nomenclature/naming.html

10 hlaAlleleSubset

Value

Return a hlaAlleleClass object if obj is hlaAlleleClass-type, or characters if obj is character-
type.

Author(s)

Xiuwen Zheng

See Also

hlaAllele

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table) # 60 13

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus = hla.id, assembly="hg19")

summary(hla)

hla2 <- hlaAlleleDigit(hla, "2-digit")
summary(hla2)

hlaAlleleSubset Get a subset of HLA/KIR types

Description

Get a subset of HLA/KIR types from an object of hlaAlleleClass.

Usage

hlaAlleleSubset(hla, samp.sel=NULL)

Arguments

hla an object of hlaAlleleClass

samp.sel a logical vector, or an integer vector of indices

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

hlaAlleleToVCF 11

See Also

hlaAllele, hlaAlleleDigit

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table) # 60 13

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

summary(hla)

subhla <- hlaAlleleSubset(hla, 1:100)
summary(subhla)

hlaAlleleToVCF Convert HLA alleles to VCF

Description

To convert the HLA allele data to a VCF file.

Usage

hlaAlleleToVCF(hla, outfn, DS=TRUE, allele.list=FALSE, prob.cutoff=NaN,
verbose=TRUE)

Arguments

hla an object of hlaAlleleClass for HLA alleles, or a list of hlaAlleleClass
objects

outfn a VCF file name or a connection; if outfn ends with ".gz" or ".xz", gzfile or
xzfile will be used to compress the output file

DS if TRUE, output dosages in the DS field

allele.list a logical value or a character vector for a list of alleles; when it is a logical value,
if TRUE and dosage is available, use all possible alleles in the dosages; otherwise,
use the alleles predicted at least once

prob.cutoff a probability threshold for setting the output alleles and dosages to missing; the
output VCF file contains all samples in hla ignoring prob.cutoff

verbose if TRUE, show information

Value

Return outfn.

Author(s)

Xiuwen Zheng

12 hlaAssocTest

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype
Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https:
//www.nature.com/articles/tpj201318

See Also

hlaAttrBagging, hlaAllele

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

train a HIBAG model
set.seed(100)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, HapMap_CEU_Geno, nclassifier=2)
summary(model)

validation
pred <- hlaPredict(model, HapMap_CEU_Geno)
summary(pred)

output to standard output with dosages
hlaAlleleToVCF(hlaAlleleSubset(pred, 1:4), stdout())

hlaAssocTest Statistical Association Tests

Description

Perform statistical association tests via Pearson’s Chi-squared test, Fisher’s exact test and logistic
regressions.

Usage

S3 method for class 'hlaAlleleClass'
hlaAssocTest(hla, formula, data,

model=c("dominant", "additive", "recessive", "genotype"),
model.fit=c("glm"), prob.threshold=NaN, use.prob=FALSE, showOR=FALSE,
verbose=TRUE, ...)

https://www.nature.com/articles/tpj201318
https://www.nature.com/articles/tpj201318

hlaAssocTest 13

S3 method for class 'hlaAASeqClass'
hlaAssocTest(hla, formula, data,

model=c("dominant", "additive", "recessive", "genotype"),
model.fit=c("glm"), prob.threshold=NaN, use.prob=FALSE, showOR=FALSE,
show.all=FALSE, verbose=TRUE, ...)

Arguments

hla an object of hlaAlleleClass

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted, e.g., y ~ 1, y ~ h + a

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula)

model dominant, additive, recessive or genotype models: "dominant" is default

model.fit "glm" – generalized linear regression

prob.threshold the probability threshold to exclude individuals with low confidence scores

use.prob if TRUE, use the posterior probabilities as weights in glm models

showOR show odd ratio (OR) instead of log OR if TRUE

show.all if TRUE, show both significant and non-significant results; if FALSE, only show
significant results

verbose if TRUE, show information

... optional arguments to glm or nlme call

Details

model description (given a specific HLA allele h)
dominant [-/-] vs. [-/h,h/h] (0 vs. 1 in design matrix)
additive [-] vs. [h] in Chi-squared and Fisher’s exact test, the allele dosage in regressions (0: -/-, 1: -/h, 2: h/h)
recessive [-/-,-/h] vs. [h/h] (0 vs. 1 in design matrix)
genotype [-/-], [-/h], [h/h] (0 vs. 1 in design matrix)

In allelic associations, Chi-squared and Fisher exact tests are preformed on the cross tabulation,
which is constructed according to the specified model (dominant, additive, recessive and gneotype).

In amino acid associations, Fisher exact test is performed on a cross tabulation with the numbers of
each amino acid stratified by response variable (e.g., disease status).

In linear and logistic regressions, 95% confidence intervals are calculated based on asymptotic
normality. The option use.prob=TRUE might be useful in the sensitivity analysis.

Value

Return a data.frame with

[-] the number of haplotypes not carrying the specified HLA allele

[h] the number of haplotype carrying the specified HLA allele

%.[-], ... case/disease proportion in the group [-], ...

[-/-] the number of individuals or haplotypes not carrying the specified HLA allele

[-/h] the number of individuals or haplotypes carrying one specified HLA allele

14 hlaAssocTest

[-/h] the number of individuals or haplotypes carrying two specified HLA alleles
[-/h, h/h] the number of individuals or haplotypes carrying one or two specified HLA

alleles
[-/-, -/h] the number of individuals or haplotypes carrying at most one specified HLA

allele
%.[-/-], ... case/disease proportion in the group [-/-], ...
avg.[-/-], ... outcome average in the group [-/-], ...
chisq.st the value the chi-squared test statistic
chisq.p the p-value for the Chi-squared test
fisher.p the p-value for the Fisher’s exact test
h.est the coefficient estimate of HLA allele
h.25%, h.75% the 95% confidence interval for HLA allele
h.pval p value for HLA allele

Author(s)

Xiuwen Zheng

See Also

hlaConvSequence, summary.hlaAASeqClass

Examples

hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

set.seed(1000)
n <- nrow(hla$value)
dat <- data.frame(case = c(rep(0, n/2), rep(1, n/2)), y = rnorm(n),

pc1 = rnorm(n))

hlaAssocTest(hla, case ~ 1, data=dat)
hlaAssocTest(hla, case ~ 1, data=dat, model="additive")
hlaAssocTest(hla, case ~ 1, data=dat, model="recessive")
hlaAssocTest(hla, case ~ 1, data=dat, model="genotype")

hlaAssocTest(hla, y ~ 1, data=dat)
hlaAssocTest(hla, y ~ 1, data=dat, model="genotype")

hlaAssocTest(hla, case ~ h, data=dat)
hlaAssocTest(hla, case ~ h + pc1, data=dat)
hlaAssocTest(hla, case ~ h + pc1, data=dat, showOR=TRUE)

hlaAssocTest(hla, y ~ h, data=dat)
hlaAssocTest(hla, y ~ h + pc1, data=dat)
hlaAssocTest(hla, y ~ h + pc1, data=dat, showOR=TRUE)

hlaAssocTest(hla, case ~ h, data=dat, model="additive")
hlaAssocTest(hla, case ~ h, data=dat, model="recessive")
hlaAssocTest(hla, case ~ h, data=dat, model="genotype")

hlaAttrBagClass 15

hlaAttrBagClass The class of HIBAG model

Description

The class of a HIBAG model, and its instance is returned from hlaAttrBagging.

Value

Return a list of:

n.samp the total number of training samples

n.snp the total number of candidate SNP predictors

sample.id the sample IDs

snp.id the SNP IDs

snp.position SNP position in basepair

snp.allele a vector of characters with the format of “A allele/B allele”

snp.allele.freq

the allele frequencies

hla.locus the name of HLA locus

hla.allele the HLA alleles used in the model

hla.freq the HLA allele frequencies

assembly the human genome reference, such like "hg19"

model internal use

appendix an optional list: platform – supported platform(s); information – other infor-
mation, like training sets, authors; warning – any warning message

matching matching proportion in the training set

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaParallelAttrBagging, hlaAttrBagObj

16 hlaAttrBagging

hlaAttrBagging Build a HIBAG model

Description

To build a HIBAG model for predicting HLA types with SNP markers.

Usage

hlaAttrBagging(hla, snp, nclassifier=100L, mtry=c("sqrt", "all", "one"),
prune=TRUE, na.rm=TRUE, mono.rm=TRUE, maf=NaN, nthread=1L, verbose=TRUE,
verbose.detail=FALSE)

Arguments

hla the training HLA types, an object of hlaAlleleClass

snp the training SNP genotypes, an object of hlaSNPGenoClass

nclassifier the total number of individual classifiers

mtry a character or a numeric value, the number of variables randomly sampled as
candidates for each selection. See details

prune if TRUE, to perform a parsimonious forward variable selection, otherwise, ex-
haustive forward variable selection. See details

na.rm if TRUE, remove the samples with missing HLA alleles

mono.rm if TRUE, remove monomorphic SNPs

maf MAF threshold for SNP filter, excluding any SNP with MAF < maf

nthread specify the number of threads used in the model building; if TRUE, use the num-
ber of threads returned from RcppParallel::defaultNumThreads() (by de-
fault using all threads)

verbose if TRUE, show information

verbose.detail if TRUE, show more information

Details

mtry (the number of variables randomly sampled as candidates for each selection, "sqrt" by default):
"sqrt", using the square root of the total number of candidate SNPs; "all", using all candidate
SNPs; "one", using one SNP; an integer, specifying the number of candidate SNPs; 0 < r < 1, the
number of candidate SNPs is "r * the total number of SNPs".

prune: there is no significant difference on accuracy between parsimonious and exhaustive for-
ward variable selections. If prune=TRUE, the searching algorithm performs a parsimonious forward
variable selection: if a new SNP predictor reduces the current out-of-bag accuracy, then it is re-
moved from the candidate SNP set for future searching. Parsimonious selection helps to improve
the computational efficiency by reducing the searching times on non-informative SNP markers.

hlaParallelAttrBagging extends hlaAttrBagging to allow parallel computing with multiple
compute nodes in a cluster. An autosave function is available in hlaParallelAttrBagging when
an new individual classifier is built internally without completing the ensemble.

hlaAttrBagging 17

Value

Return an object of hlaAttrBagClass:

n.samp the total number of training samples

n.snp the total number of candidate SNP predictors

sample.id the sample IDs

snp.id the SNP IDs

snp.position SNP position in basepair

snp.allele a vector of characters with the format of “A allele/B allele”
snp.allele.freq

the allele frequencies

hla.locus the name of HLA locus

hla.allele the HLA alleles used in the model

hla.freq the HLA allele frequencies

assembly the human genome reference, such like "hg19"

model internal use

matching matching proportion in the training set

Author(s)

Xiuwen Zheng

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype
Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https:
//www.nature.com/articles/tpj201318

See Also

hlaClose, hlaParallelAttrBagging, summary.hlaAttrBagClass, predict.hlaAttrBagClass,
hlaPredict, hlaSetKernelTarget

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side

https://www.nature.com/articles/tpj201318
https://www.nature.com/articles/tpj201318

18 hlaAttrBagging

region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel=match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,

verbose.detail=TRUE)
summary(model)

validation
pred <- hlaPredict(model, test.geno)
summary(pred)

compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0.5))

save the parameter file
mobj <- hlaModelToObj(model)
save(mobj, file="HIBAG_model.RData")
save(test.geno, file="testgeno.RData")
save(hlatab, file="HLASplit.RData")

Clear Workspace
hlaClose(model) # release all resources of model
rm(list = ls())

##

NOW, load a HIBAG model from the parameter file
mobj <- get(load("HIBAG_model.RData"))
model <- hlaModelFromObj(mobj)

validation
test.geno <- get(load("testgeno.RData"))
hlatab <- get(load("HLASplit.RData"))

pred <- hlaPredict(model, test.geno, type="response")
summary(pred)

compare

hlaAttrBagObj 19

(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
call.threshold=0))

(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
call.threshold=0.5))

delete the temporary files
unlink(c("HIBAG_model.RData", "testgeno.RData", "HLASplit.RData"), force=TRUE)

hlaAttrBagObj The class of HIBAG object

Description

The class of a HIBAG object, which can be saved in the .RData file.

Value

A list of:

n.samp the total number of training samples

n.snp the total number of candidate SNP predictors

sample.id the sample IDs

snp.id the SNP IDs

snp.position SNP position in basepair

snp.allele a vector of characters with the format of “A allele/B allele”
snp.allele.freq

the allele frequencies

hla.locus the name of HLA locus

hla.allele the HLA alleles used in the model

hla.freq the HLA allele frequencies

assembly the human genome reference, such like "hg19"

classifiers a list of all classifiers (described as follows)

matching matching proportion in the training set

appendix platform – supported platform(s); information – other information, like train-
ing sets, authors; warning – any warning message

classifiers has the following components:

samp.num the number of copies of samples in a bootstrap sample

haplos a data.frame of haplotype frequencies

. freq – haplotype frequency

. hla – a HLA allele

. haplo – a SNP haplotype, with an entry value 0 standing for B (ZERO A allele),
1 for A (ONE A allele)

snpidx the SNP indices used in this classifier

outofbag.acc the out-of-bag accuracy of this classifier

20 hlaBED2Geno

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaParallelAttrBagging, hlaModelToObj, hlaModelFiles, hlaAttrBagClass

hlaBED2Geno Convert from PLINK BED format

Description

To convert a PLINK BED file to an object of hlaSNPGenoClass.

Usage

hlaBED2Geno(bed.fn, fam.fn, bim.fn, rm.invalid.allele=FALSE,
import.chr="xMHC", assembly="auto", verbose=TRUE)

Arguments

bed.fn binary file, genotype information

fam.fn family, individual information, etc

bim.fn extended MAP file: two extra cols = allele names
rm.invalid.allele

if TRUE, remove SNPs with non-standard alleles (except A,G,C,T)

import.chr the chromosome, "1" .. "22", "X", "Y", "XY", "MT", "xMHC", or "", where
"xMHC" implies the extended MHC on chromosome 6, and "" for all SNPs; "6"
for all SNPs on chromosome 6 for HLA; "19" for all SNPs on chromosome 19
for KIR

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

verbose if TRUE, show information

Value

Return an object of hlaSNPGenoClass.

Author(s)

Xiuwen Zheng

See Also

hlaGeno2PED, hlaGDS2Geno

hlaCheckAllele 21

Examples

Import a PLINK BED file
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")

hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")
summary(hapmap.ceu)

Or

hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19",
rm.invalid.allele=TRUE, import.chr="6")

summary(hapmap.ceu)

hlaCheckAllele Check SNP alleles

Description

Check SNP reference and non-reference alleles.

Usage

hlaCheckAllele(allele1, allele2)

Arguments

allele1 two alleles for the first individual, like c("A/G", "C/G")

allele2 two alleles for the second individual, like c("A/G", "C/G")

Value

Return a logical vector, where TRUE indicates the alleles are matching at that locus.

Author(s)

Xiuwen Zheng

See Also

hlaCheckSNPs

Examples

hlaCheckAllele(c("A/G", "T/G", "0/A"), c("G/A", "C/A", "G/0"))

22 hlaCheckSNPs

hlaCheckSNPs Check the SNP predictors in a HIBAG model

Description

Check the SNP predictors in a HIBAG model, by calculating the overlapping between the model
and SNP genotypes.

Usage

hlaCheckSNPs(model, object,
match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"), verbose=TRUE)

Arguments

model an object of hlaAttrBagClass, or an object of hlaAttrBagObj

object a genotype object of hlaSNPGenoClass, or a character vector like c("rs2523442",
"rs9257863", ...)

match.type "RefSNP+Position" (by default) – using both of RefSNP IDs and positions;
"RefSNP" – using RefSNP IDs only; "Position" – using positions only

verbose if TRUE, show information

Value

Return a data.frame for individual classifiers:

NumOfValidSNP the number of non-missing SNPs in an individual classifier

NumOfSNP the number of SNP predictors in an individual classifier

fraction NumOfValidSNP / NumOfSNP

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, predict.hlaAttrBagClass

Examples

make a "hlaAlleleClass" object
hla.id <- "DQB1"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 100 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

hlaClose 23

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

train a HIBAG model
set.seed(1000)
model <- hlaAttrBagging(hla, train.geno, nclassifier=2)
print(model)

hlaCheckSNPs(model, train.geno)

close the HIBAG model explicitly
hlaClose(model)

hlaClose Dispose a model object

Description

Release all resources stored in the hlaAttrBagClass object. The HIBAG package allows up to 256
hlaAttrBagClass objects stored in memory.

Usage

hlaClose(model)

Arguments

model an object of hlaAttrBagClass

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, summary.hlaAttrBagClass

24 hlaCombineAllele

hlaCombineAllele Combine two datasets of HLA types

Description

Combine two objects of hlaAlleleClass.

Usage

hlaCombineAllele(H1, H2)

Arguments

H1 the first hlaAlleleClass object

H2 the second hlaAlleleClass object

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaAlleleSubset

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table) # 60 13

make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,

HLA_Type_Table[, paste(hla.id, ".1", sep="")],
HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

summary(hla)

subhla1 <- hlaAlleleSubset(hla, 1:100)
summary(subhla1)
subhla2 <- hlaAlleleSubset(hla, 201:300)
summary(subhla2)

H <- hlaCombineAllele(subhla1, subhla2)
summary(H)

hlaCombineModelObj 25

hlaCombineModelObj Combine two HIBAG models together

Description

Merge two objects of hlaAttrBagObj together, which is useful for building an ensemble model in
parallel.

Usage

hlaCombineModelObj(obj1, obj2)

Arguments

obj1 an object of hlaAttrBagObj

obj2 an object of hlaAttrBagObj

Value

Return an object of hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaModelFiles

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

train a HIBAG model
set.seed(100)
m1 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
m2 <- hlaAttrBagging(hla, train.geno, nclassifier=1)

26 hlaCompareAllele

m1.obj <- hlaModelToObj(m1)
m2.obj <- hlaModelToObj(m2)

m.obj <- hlaCombineModelObj(m1.obj, m2.obj)
summary(m.obj)

hlaCompareAllele Evaluate prediction accuracies

Description

To evaluate the overall accuracy, sensitivity, specificity, positive predictive value, negative predictive
value.

Usage

hlaCompareAllele(TrueHLA, PredHLA, allele.limit=NULL, call.threshold=NaN,
match.threshold=NaN, max.resolution="", output.individual=FALSE,
verbose=TRUE)

Arguments

TrueHLA an object of hlaAlleleClass, the true HLA types

PredHLA an object of hlaAlleleClass, the predicted HLA types

allele.limit a list of HLA alleles, the validation samples are limited to those having HLA al-
leles in allele.limit, or NULL for no limit. allele.limit could be character-
type, hlaAttrBagClass or hlaAttrBagObj

call.threshold the call threshold for posterior probability, i.e., call or no call is determined by
whether prob >= call.threshold or not

match.threshold

the matching threshold for SNP haplotype similiarity, e.g., use 1% quantile of
matching statistics of a training model

max.resolution "2-digit", "4-digit", "6-digit", "8-digit", "allele", "protein", "2", "4", "6", "8",
"full" or "": "allele" = "2-digit", "protein" = "4-digit", "full" and "" indicating
no limit on resolution

output.individual

if TRUE, output accuracy for each individual

verbose if TRUE, show information

Value

Return a list(overall, confusion, detail), or list(overall, confusion, detail, individual)
if output.individual=TRUE.

overall (data.frame):

total.num.ind the total number of individuals

crt.num.ind the number of individuals with correct HLA types

crt.num.haplo the number of chromosomes with correct HLA alleles

hlaCompareAllele 27

acc.ind the proportion of individuals with correctly predicted HLA types (i.e., both of
alleles are correct, the accuracy of an individual is 0 or 1.)

acc.haplo the proportion of chromosomes with correctly predicted HLA alleles (i.e., the
accuracy of an individual is 0, 0.5 or 1, since an individual has two alleles.)

call.threshold call threshold, if it is NaN, no call threshold is executed

n.call the number of individuals with call

call.rate overall call rate

confusion (matrix): a confusion matrix.

detail (data.frame):

allele HLA alleles

train.num the number of training haplotypes

train.freq the training haplotype frequencies

valid.num the number of validation haplotypes

valid.freq the validation haplotype frequencies

call.rate the call rates for HLA alleles

accuracy allele accuracy

sensitivity sensitivity

specificity specificity

ppv positive predictive value

npv negative predictive value

miscall the most likely miss-called alleles

miscall.prop the proportions of the most likely miss-called allele in all miss-called alleles

individual (data.frame):

sample.id sample id

true.hla the true HLA type

pred.hla the prediction of HLA type

accuracy accuracy, 0, 0.5, or 1

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, predict.hlaAttrBagClass, hlaReport

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

28 hlaConvSequence

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel=match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,

verbose.detail=TRUE)
summary(model)

validation
pred <- hlaPredict(model, test.geno)
compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0.5))

hlaConvSequence Conversion From HLA Alleles to Amino Acid Sequences

Description

Convert (P-coded or G-coded) HLA alleles to amino acid sequences.

Usage

hlaConvSequence(hla=character(), locus=NULL,
method=c("protein", "protein_reference"),
code=c("exact", "P.code", "G.code", "P.code.merge", "G.code.merge"),
region=c("auto", "all", "P.code", "G.code"), release=c("v3.22.0"),
replace=NULL)

hlaConvSequence 29

Arguments

hla characters, or an object of hlaAlleleClass, at least 4-digit or 2-field (P-coded)
HLA alleles

locus "A", "B", "C", "DRB1", "DQA1", "DQB1", "DPB1" or "DPA1"

method "protein": returns protein sequence alignments, "protein_reference": returns the
protein sequence alignment reference

code "exact": requires full resolution; "P.code": allows ambiguous alleles according
to P code; "G.code": allows ambiguous alleles according to G code; "P.code.merge"
and "G.code.merge" merge multiple ambiguous allele sequences by masking un-
known or ambiguous amino acid an asterisk

region "all": returns all amino acid or nucleotide sequences; "P.code", "G.code": re-
turns the exon 2 and 3 for HLA class I, and the exon 2 for HLA class II alleles;
"auto": region="all" if code=="exact", region="P.code" if code=="P.code"|"P.code.merge",
region="G.code" if code=="G.code"|"G.code.merge"

release "v3.22.0" – IPD-IMGT/HLA 3.22.0 database (2015-10-07)

replace NULL, or a character vector, e.g., c("09:02"="107:01"), any "09:02" will be
replaced by "107:01". Due to the change of HLA nomenclature from 2010,
HLA-DPB1*09:02 is replaced by DPB1*107:01

Details

The P or G codes for reporting of ambiguous allele typings can be found: http://hla.alleles.
org/alleles/p_groups.html or http://hla.alleles.org/alleles/g_groups.html. The pro-
tein sequences for each HLA alleles could be found: http://hla.alleles.org/alleles/text_
index.html.

Due to allelic ambiguity, multiple alleles are assigned to a 2-field P-coded allele or 3-field G-coded
allele. For HLA Class I alleles, identity in the ’antigen binding domains’ is based on identical
protein sequences as encoded by exons 2 and 3. For HLA Class II alleles this is based on identical
protein sequences as encoded by exon 2. P codes and G codes encode the same protein sequence
for the peptide binding domains (exon 2 and 3 for HLA class I and exon 2 only for HLA class II
alleles).

1. the sequence is displayed as a hyphen "-" where it is identical to the reference.

2. an insertion or deletion is represented by a period ".".

3. an unknown or ambiguous position in the alignment is represented by an asterisk "*".

4. a capital X is used for the ’stop’ codons in protein alignments.

http://hla.alleles.org/alleles/formats.html

HLA class I and II sequence alignments (Text Index): http://hla.alleles.org/alleles/text_
index.html

WARNING: if you are not familiar with HLA nomenclature, you might consult with the package
author or anyone who is familiar with HLA sequence alignments.

Value

Return an object of hlaAASeqClass or a list of characters. NULL or NA in the list indicates no
matching.

Author(s)

Xiuwen Zheng

http://hla.alleles.org/alleles/p_groups.html
http://hla.alleles.org/alleles/p_groups.html
http://hla.alleles.org/alleles/g_groups.html
http://hla.alleles.org/alleles/text_index.html
http://hla.alleles.org/alleles/text_index.html
http://hla.alleles.org/alleles/formats.html
http://hla.alleles.org/alleles/text_index.html
http://hla.alleles.org/alleles/text_index.html

30 hlaConvSequence

References

The licence and disclaimer of distributed HLA data: Creative Commons Attribution-NoDerivs Li-
cence (http://hla.alleles.org/terms.html).

Robinson J, Halliwell JA, Hayhurst JH, Flicek P, Parham P, Marsh SGE: The IPD and IMGT/HLA
database: allele variant databases. Nucleic Acids Research. 2015 43:D423-431

Robinson J, Malik A, Parham P, Bodmer JG, Marsh SGE: IMGT/HLA - a sequence database for
the human major histocompatibility complex. Tissue Antigens. 2000 55:280-7

See Also

hlaAlleleSubset

Examples

hlaConvSequence(locus="A", method="protein_reference")

exact match
hlaConvSequence(c("01:01", "02:02", "01:01:01G", "01:01:01:01", "07"),

locus="A")

allow ambiguity
hlaConvSequence(c("01:01", "02:02", "01:01:01G", "01:01:01:01", "07"),

locus="A", code="P.code")
hlaConvSequence(c("01:01", "02:02", "01:01:01G", "01:01:01:01", "07"),

locus="A", code="P.code.merge")

hlaConvSequence(locus="DPB1", method="protein_reference")
hlaConvSequence(c("09:01", "09:02"), locus="DPB1", replace=c("09:02"="107:01"))
hlaConvSequence(c("09:01", "09:02"), locus="DPB1", code="P.code",

replace=c("09:02"="107:01"))
hlaConvSequence(c("09:01", "09:02"), locus="DPB1", code="P.code.merge",

replace=c("09:02"="107:01"))

hlaConvSequence(locus="DQB1", method="protein_reference")
hlaConvSequence(c("05:01:01:01", "06:01:01"), locus="DQB1")
hlaConvSequence(c("05:01", "06:01"), locus="DQB1", code="P.code")
hlaConvSequence(c("05:01", "06:01"), locus="DQB1", code="P.code.merge")

hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

(v <- hlaConvSequence(hla, code="P.code.merge"))
summary(v)

v <- hlaConvSequence(hla, code="P.code.merge", region="all")
summary(v)

http://hla.alleles.org/terms.html

hlaDistance 31

hla.id <- "DQB1"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

(v <- hlaConvSequence(hla, code="P.code.merge"))
summary(v)

v <- hlaConvSequence(hla, code="P.code.merge", region="all")
summary(v)

hlaDistance Distance matrix of HLA alleles

Description

To calculate the distance matrix of HLA alleles from a HIBAG model.

Usage

hlaDistance(model)

Arguments

model a model of hlaAttrBagClass or hlaAttrBagObj

Value

Return a distance matrix with row and column names for HLA alleles.

Author(s)

Xiuwen Zheng

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

flanking genotypes
train.geno <- hlaGenoSubsetFlank(HapMap_CEU_Geno, hla.id, 500000)
summary(train.geno)

train a HIBAG model
set.seed(100)
model <- hlaAttrBagging(hla, train.geno, nclassifier=10)
summary(model)

32 hlaFlankingSNP

distance matrix
d <- hlaDistance(model)

draw
p <- hclust(as.dist(d))
plot(p, xlab="HLA alleles")

hlaFlankingSNP SNP IDs or SNP genotypes in Flanking Region

Description

To get SNPs in the flanking region of a specified HLA/KIR locus.

Usage

hlaFlankingSNP(snp.id, position, locus, flank.bp=500000L, assembly="auto",
pos.mid=NA_integer_)

hlaGenoSubsetFlank(genoobj, locus="any", flank.bp=500000L, assembly="auto",
pos.mid=NA_integer_)

Arguments

snp.id a vector of SNP IDs

genoobj a genotype object of hlaSNPGenoClass

position a vector of positions

locus the name of HLA locus, or "any" for other genes and using pos.mid

flank.bp the size of flanking region on each side in basepair

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

pos.mid the middle position of the flanking region

Details

hla.id is "A", "B", "C", "DRB1", "DRB5", "DQA1", "DQB1", "DPB1" or "any".

Value

Return selected SNP IDs from snp.id.

Author(s)

Xiuwen Zheng

See Also

hlaGenoSubset, hlaLociInfo

hlaGDS2Geno 33

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))
summary(train.geno)

or using hlaGenoSubsetFlank
train.geno <- hlaGenoSubsetFlank(HapMap_CEU_Geno, hla.id, region*1000)
summary(train.geno)

customize positions
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

"any", 500*1000, pos.mid=29954010)

hlaGDS2Geno Import genotypes from a GDS file

Description

To convert a SNPRelate or SeqArray GDS file to an object of hlaSNPGenoClass.

Usage

hlaGDS2Geno(gds.fn, rm.invalid.allele=FALSE, import.chr="xMHC", assembly="auto",
verbose=TRUE)

Arguments

gds.fn a file name for the GDS file defined in the SNPRelate or SeqArray package
rm.invalid.allele

if TRUE, remove SNPs with non-standard alleles (except A,G,C,T)

import.chr the chromosome, "1" .. "22", "X", "Y", "XY", "MT", "xMHC", or "", where
"xMHC" implies the extended MHC on chromosome 6, and "" for all SNPs

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

verbose if TRUE, show information

Value

Return an object of hlaSNPGenoClass.

34 hlaGeno2PED

Author(s)

Xiuwen Zheng

See Also

hlaGeno2PED, hlaBED2Geno

Examples

Import a SNP GDS file
fn <- system.file("extdata", "HapMap_CEU_Chr6.gds", package="HIBAG")

geno <- hlaGDS2Geno(fn, assembly="hg18", rm.invalid.allele=TRUE)

summary(geno)

hlaGeno2PED Convert to PLINK PED format

Description

Convert an object of hlaSNPGenoClass to a file of PLINK PED format.

Usage

hlaGeno2PED(geno, out.fn)

Arguments

geno a genotype object of hlaSNPGenoClass

out.fn the file name of output ped file

Details

Two files ".map" and ".ped" are created.

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaBED2Geno

hlaGenoAFreq 35

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
max.resolution="4-digit", locus=hla.id, assembly="hg19")

training genotypes
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")

train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

hlaGeno2PED(train.geno, "test")

delete the temporary files
unlink(c("test.map", "test.ped"), force=TRUE)

hlaGenoAFreq Allele Frequency

Description

To calculate the allele frequencies from genotypes or haplotypes.

Usage

hlaGenoAFreq(obj)

Arguments

obj an object of hlaSNPGenoClass

Value

Return allele frequecies.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoAFreq(HapMap_CEU_Geno))

36 hlaGenoCombine

hlaGenoCombine Combine two genotypic data sets into one

Description

To combine two genotypic data sets into one dataset.

Usage

hlaGenoCombine(geno1, geno2,
match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
allele.check=TRUE, same.strand=FALSE, verbose=TRUE)

Arguments

geno1 the first genotype object of hlaSNPGenoClass

geno2 the second genotype object of hlaSNPGenoClass

match.type "RefSNP+Position" (by default) – using both of RefSNP IDs and positions;
"RefSNP" – using RefSNP IDs only; "Position" – using positions only

allele.check if TRUE, call hlaGenoSwitchStrand to check and then switch allele pairs if
needed

same.strand TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise,
FALSE not assuming whether on the same strand or not

verbose show information, if TRUE

Details

The function merges two SNP dataset geno1 and geno2, and returns a SNP dataset consisting of
the SNP intersect between geno1 and geno2, and having the same SNP information (allele and
position) as geno1.

Value

An object of hlaSNPGenoClass.

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoSubset

Examples

import a PLINK BED file
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")
hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")

hlaGenoLD 37

combine two datasets together
geno <- hlaGenoCombine(HapMap_CEU_Geno, hapmap.ceu)
summary(geno)

hlaGenoLD Composite Linkage Disequilibrium

Description

To calculate composite linkage disequilibrium (r2) between HLA locus and SNP markers.

Usage

hlaGenoLD(hla, geno)

Arguments

hla an object of hlaAlleleClass

geno an object of hlaSNPGenoClass, or a vector or matrix for SNP data

Value

Return a vector of linkage disequilibrium (r2) for each SNP marker.

Author(s)

Xiuwen Zheng

References

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

Zaykin, D. V., Pudovkin, A., and Weir, B. S. (2008). Correlation-based inference for linkage dise-
quilibrium with multiple alleles. Genetics 180, 533-545.

Examples

plot linkage disequilibrium
ymax <- 0.16
plot(NaN, NaN, xlab="SNP Position (in KB)",

ylab="Composite Linkage Disequilibrium (r2)",
xlim=range(HapMap_CEU_Geno$snp.position)/1000, ylim=c(0, ymax),
main="Major Histocompatibility Complex")

hla.list <- c("A", "C", "DQA1")
col.list <- 1:3

for-loop
for (i in 1:3)
{

hla.id <- hla.list[i]

make a "hlaAlleleClass" object

38 hlaGenoMFreq

hla <- hlaAllele(HLA_Type_Table$sample.id,
H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

linkage disequilibrium between HLA locus and SNP markers
ld <- hlaGenoLD(hla, HapMap_CEU_Geno)

draw
points(HapMap_CEU_Geno$snp.position/1000, ld, pch="*", col=i)
x <- (hla$pos.start/1000 + hla$pos.end/1000)/2
abline(v=x, col=col.list[i], lty=3, lwd=2.5)
points(x, ymax, pch=25, col=7, bg=col.list[i], cex=1.5)

}
legend("topleft", col=col.list, pt.bg=col.list, text.col=col.list, pch=25,

legend=paste("HLA -", hla.list))

hlaGenoMFreq Minor Allele Frequency

Description

To calculate the minor allele frequencies from genotypes or haplotypes.

Usage

hlaGenoMFreq(obj)

Arguments

obj an object of hlaSNPGenoClass

Value

Return minor allele frequecies.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoMFreq(HapMap_CEU_Geno))

hlaGenoMRate 39

hlaGenoMRate Missing Rates Per SNP

Description

To calculate the missing rates from genotypes or haplotypes per SNP.

Usage

hlaGenoMRate(obj)

Arguments

obj an object of hlaSNPGenoClass

Value

Return missing rates per SNP.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoMRate(HapMap_CEU_Geno))

hlaGenoMRate_Samp Missing Rates Per Sample

Description

To calculate the missing rates from genotypes or haplotypes per sample.

Usage

hlaGenoMRate_Samp(obj)

Arguments

obj an object of hlaSNPGenoClass

Value

Return missing rates per sample.

40 hlaGenoSubset

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoMRate_Samp(HapMap_CEU_Geno))

hlaGenoSubset Get a subset of genotypes

Description

To get a subset of genotypes from a hlaSNPGenoClass object.

Usage

hlaGenoSubset(genoobj, samp.sel=NULL, snp.sel=NULL, snp.id=NULL)

Arguments

genoobj a genotype object of hlaSNPGenoClass

samp.sel a logical vector, or an integer vector of indices

snp.sel a logical vector, or an integer vector of indices

snp.id SNP IDs to be selected, or NULL

Details

genoobj$genotype is a numeric matrix, with an entry value 0 standing for BB (ZERO A allele), 1
for AB (ONE A allele), 2 for AA (TWO A alleles) and others for missing values (missing genotypes
are usually set to be NA).

Value

Return a hlaSNPGenoClass object, and it is a list:

genotype a genotype matrix, “# of SNPs” - by - “# of individuals”

sample.id a vector of sample IDs

snp.id a vector of SNP IDs

snp.position a vector of SNP positions in basepair

snp.allele a vector of characters with the format of “A allele/B allele”

assembly optional, human genome information

hlaGenoSwitchStrand 41

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoCombine

Examples

summary(HapMap_CEU_Geno)

geno <- hlaGenoSubset(HapMap_CEU_Geno,
snp.sel = (hlaGenoMFreq(HapMap_CEU_Geno)>0.10))

summary(geno)

hlaGenoSwitchStrand Allele flipping if needed

Description

Determine the ordered pair of A and B alleles, using the allele information provided by template.

Usage

hlaGenoSwitchStrand(target, template,
match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
same.strand=FALSE, verbose=TRUE)

Arguments

target an object of hlaSNPGenoClass

template a genotypic object of hlaSNPGenoClass, a model object of hlaAttrBagClass
or a model object of hlaAttrBagObj

match.type "RefSNP+Position" (by default) – using both of RefSNP IDs and positions;
"RefSNP" – using RefSNP IDs only; "Position" – using positions only

same.strand TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise,
FALSE not assuming whether on the same strand or not

verbose show information, if TRUE

Details

The A/B pairs of target are determined using the information from template.

Value

Return a hlaSNPGenoClass object consisting of the SNP intersect between target and template.

Author(s)

Xiuwen Zheng

42 hlaLDMatrix

See Also

hlaMakeSNPGeno, hlaGenoSubset

Examples

summary(HapMap_CEU_Geno)
A/C A/G C/T G/T
136 655 632 141

import a PLINK BED file
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")
hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")
summary(hapmap.ceu)
A/C A/G A/T C/G C/T G/T
332 1567 64 111 1510 348

combine two datasets together
geno <- hlaGenoSwitchStrand(HapMap_CEU_Geno, hapmap.ceu)
summary(geno)
There are 1564 SNPs in common.
The allele pairs of 763 SNPs need to be switched.
A/C A/G C/T G/T
104 505 496 109

hlaLDMatrix Composite Linkage Disequilibrium in a Region

Description

To calculate composite linkage disequilibrium (r2) among SNPs within a region.

Usage

hlaLDMatrix(geno, loci=NULL, maf=0.01, assembly="auto", draw=TRUE,
verbose=TRUE)

Arguments

geno an object of hlaSNPGenoClass

maf MAF filter >= maf

loci NULL or a character vector, e.g., "A", "B"

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

draw if TRUE, return a ggplot2 object

verbose if TRUE, show information

Value

Return a ggplot2 object if draw=TRUE or a matrix correlation.

hlaLociInfo 43

Author(s)

Xiuwen Zheng

References

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

Examples

region <- 500*1000 # basepair
geno <- hlaGenoSubsetFlank(HapMap_CEU_Geno, "A", region)
summary(geno)

hlaLDMatrix(geno, "A")

hlaLociInfo HLA/KIR Locus Information

Description

To get the starting and ending positions in basepair of HLA/KIR loci.

Usage

hlaLociInfo(assembly=c("auto", "auto-silent", "hg18", "hg19", "hg38",
"unknown"))

Arguments

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

Value

Return a data frame include the genomic locations.

Author(s)

Xiuwen Zheng

References

NCBI Resources: https://www.ncbi.nlm.nih.gov/gene, HLA Nomenclature: http://hla.
alleles.org/genes/index.html

Examples

hlaLociInfo()

https://www.ncbi.nlm.nih.gov/gene
http://hla.alleles.org/genes/index.html
http://hla.alleles.org/genes/index.html

44 hlaMakeSNPGeno

hlaMakeSNPGeno Make a SNP genotype object

Description

To create a hlaSNPGenoClass object (SNP genotypic object).

Usage

hlaMakeSNPGeno(genotype, sample.id, snp.id, snp.position,
A.allele, B.allele, assembly="auto")

Arguments

genotype a genotype matrix, “# of SNPs” - by - “# of individuals”

sample.id a vector of sample IDs

snp.id a vector of SNP IDs

snp.position a vector of SNP positions

A.allele a vector of A alleles, A is usually defined as a minor or alternative allele

B.allele a vector of B alleles, B is usually defined as a major or reference allele

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

Details

genotype is a numeric matrix, with an entry value 0 standing for BB (ZERO A allele), 1 for AB
(ONE A allele), 2 for AA (TWO A alleles) and others for missing values (missing genotypes are
usually set to be NA).

Value

Return a hlaSNPGenoClass object, and it is a list:

genotype a genotype matrix, “# of SNPs” - by - “# of individuals”

sample.id a vector of sample IDs

snp.id a vector of SNP IDs

snp.position a vector of SNP positions in basepair

snp.allele a vector of characters with the format of “A allele/B allele”

assembly the human genome reference

Author(s)

Xiuwen Zheng

See Also

hlaGenoSubset, hlaGenoCombine

hlaModelFiles 45

Examples

summary(HapMap_CEU_Geno)

allele <- strsplit(HapMap_CEU_Geno$snp.allele, "/")
A.allele <- sapply(allele, function(x) { x[1] })
B.allele <- sapply(allele, function(x) { x[2] })

geno <- hlaMakeSNPGeno(HapMap_CEU_Geno$genotype, HapMap_CEU_Geno$sample.id,
HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position, A.allele, B.allele,
assembly="hg19")

summary(geno)

hlaModelFiles Load a model object from files

Description

To load HIBAG models from a list of files, and merge all together.

Usage

hlaModelFiles(fn.list, action.missingfile=c("ignore", "stop"), verbose=TRUE)

Arguments

fn.list a vector of file names
action.missingfile

"ignore", ignore the missing files, by default; "stop", stop if missing

verbose if TRUE, show information

Value

Return hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaModelToObj

Examples

make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes

46 hlaModelFromObj

region <- 100 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

#
train HIBAG models
#
set.seed(1000)

model1 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
mobj1 <- hlaModelToObj(model1)
save(mobj1, file="tm1.RData")

model2 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
mobj2 <- hlaModelToObj(model2)
save(mobj2, file="tm2.RData")

model3 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
mobj3 <- hlaModelToObj(model3)
save(mobj3, file="tm3.RData")

load all of mobj1, mobj2 and mobj3
mobj <- hlaModelFiles(c("tm1.RData", "tm2.RData", "tm3.RData"))
summary(mobj)

delete the temporary files
unlink(c("tm1.RData", "tm2.RData", "tm3.RData"), force=TRUE)

hlaModelFromObj Conversion between the in-memory model and the object that can be
saved in a file

Description

Build a model hlaAttrBagClass from an object of hlaAttrBagObj which is stored in an R object
file, or convert hlaAttrBagClass to hlaAttrBagObj.

Usage

hlaModelFromObj(obj)
hlaModelToObj(model)

Arguments

obj an object of hlaAttrBagObj

model an object of hlaAttrBagClass

Value

hlaModelFromObj returns hlaAttrBagClass, and hlaModelToObj returns hlaAttrBagObj.

hlaOutOfBag 47

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging

Examples

make a "hlaAlleleClass" object
hla.id <- "DQB1"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 100 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

train a HIBAG model
set.seed(1000)
model <- hlaAttrBagging(hla, train.geno, nclassifier=2)
print(model)

mobj <- hlaModelToObj(model)

is(model)
is(mobj)

close the HIBAG model explicitly
hlaClose(model)

hlaOutOfBag Out-of-bag estimation of overall accuracy, per-allele sensitivity, etc

Description

Out-of-bag estimation of overall accuracy, per-allele sensitivity, specificity, positive predictive value,
negative predictive value and call rate.

Usage

hlaOutOfBag(model, hla, snp, call.threshold=NaN, verbose=TRUE)

48 hlaOutOfBag

Arguments

model an object of hlaAttrBagClass or hlaAttrBagObj

hla the training HLA types, an object of hlaAlleleClass

snp the training SNP genotypes, an object of hlaSNPGenoClass

call.threshold the specified call threshold; if NaN, no threshold is used

verbose if TRUE, show information

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele, hlaReport

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, geno, nclassifier=4)
summary(model)

out-of-bag estimation
(comp <- hlaOutOfBag(model, hla, geno, call.threshold=NaN, verbose=TRUE))

report
hlaReport(comp, type="txt")

hlaReport(comp, type="tex")

hlaReport(comp, type="html")

hlaParallelAttrBagging 49

hlaParallelAttrBagging

Build a HIBAG model via parallel computation

Description

To build a HIBAG model for predicting HLA types via parallel computation.

Usage

hlaParallelAttrBagging(cl, hla, snp, auto.save="",
nclassifier=100L, mtry=c("sqrt", "all", "one"), prune=TRUE, na.rm=TRUE,
mono.rm=TRUE, maf=NaN, stop.cluster=FALSE, verbose=TRUE,
verbose.detail=FALSE)

Arguments

cl NULL, FALSE, TRUE, an integer, or a cluster object created by the parallel-package;
if NULL or FALSE, use the serial implementation; if TRUE, use the number of
threads returned from RcppParallel::defaultNumThreads() (by default us-
ing all threads); if an integer, specify the number of threads; When cl is TRUE or
an integer, the multithreading implementation will be used; when cl is a cluster,
the multi-processing implementation will be used where each individual classi-
fier is built within a child process

hla training HLA types, an object of hlaAlleleClass

snp training SNP genotypes, an object of hlaSNPGenoClass

auto.save specify a autosaved file name for an R object (.rda, .RData or .rds); "", no file
saving; see details

nclassifier the total number of individual classifiers

mtry a character or a numeric value, the number of variables randomly sampled as
candidates for each selection. See details

prune if TRUE, to perform a parsimonious forward variable selection, otherwise, ex-
haustive forward variable selection. See details

na.rm if TRUE, remove the samples with missing HLA types

mono.rm if TRUE, remove monomorphic SNPs

maf MAF threshold for SNP filter, excluding any SNP with MAF < maf

stop.cluster TRUE: stop cluster nodes after completing the calculation

verbose if TRUE, show information

verbose.detail if TRUE, show more information

Details

mtry (the number of variables randomly sampled as candidates for each selection): "sqrt", using
the square root of the total number of candidate SNPs; "all", using all candidate SNPs; "one",
using one SNP; an integer, specifying the number of candidate SNPs; 0 < r < 1, the number of
candidate SNPs is "r * the total number of SNPs".

50 hlaParallelAttrBagging

prune: there is no significant difference on accuracy between parsimonious and exhaustive forward
variable selections. If prune = TRUE, the searching algorithm performs a parsimonious forward
variable selection: if a new SNP predictor reduces the current out-of-bag accuracy, then it is re-
moved from the candidate SNP set for future searching. Parsimonious selection helps to improve
the computational efficiency by reducing the searching times of non-informative SNP markers.

An autosave function is available in hlaParallelAttrBagging when an new individual classifier
is built internally without completing the ensemble.

Value

Return an object of hlaAttrBagClass if auto.save="", and NULL otherwise.

Author(s)

Xiuwen Zheng

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype
Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https:
//www.nature.com/articles/tpj201318

See Also

hlaAttrBagging, hlaClose, hlaSetKernelTarget

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,

https://www.nature.com/articles/tpj201318
https://www.nature.com/articles/tpj201318

hlaPredict 51

HapMap_CEU_Geno$sample.id))

###
Multithreading

set.seed(100)

train a HIBAG model in parallel with 2 cores
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaParallelAttrBagging(2, hlatab$training, train.geno, nclassifier=4)

###
Multicore & autosave

library(parallel)

choose an appropriate cluster size, e.g., 2
cl <- makeCluster(2)
set.seed(100)

train a HIBAG model in parallel
please use "nclassifier=100" when you use HIBAG for real data
hlaParallelAttrBagging(cl, hlatab$training, train.geno, nclassifier=4,

auto.save="tmp_model.RData", stop.cluster=TRUE)

mobj <- get(load("tmp_model.RData"))
summary(mobj)
model <- hlaModelFromObj(mobj)

validation
pred <- hlaPredict(model, test.geno)
summary(pred)

compare
hlaCompareAllele(hlatab$validation, pred, allele.limit=model)$overall

since 'stop.cluster=TRUE' used in 'hlaParallelAttrBagging'
need a new cluster
cl <- makeCluster(2)

pred <- hlaPredict(model, test.geno, cl=cl)
summary(pred)

stop parallel nodes
stopCluster(cl)

delete the temporary file
unlink(c("tmp_model.RData"), force=TRUE)

hlaPredict HIBAG model prediction (in parallel)

52 hlaPredict

Description

To predict HLA type based on a HIBAG model (in parallel).

Usage

hlaPredict(object, snp, cl=FALSE,
type=c("response+dosage", "response", "prob", "response+prob"),
vote=c("prob", "majority"), allele.check=TRUE,
match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
same.strand=FALSE, verbose=TRUE, verbose.match=TRUE)

S3 method for class 'hlaAttrBagClass'
predict(object, snp, cl=FALSE,

type=c("response+dosage", "response", "prob", "response+prob"),
vote=c("prob", "majority"), allele.check=TRUE,
match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
same.strand=FALSE, verbose=TRUE, verbose.match=TRUE, ...)

Arguments

object a model of hlaAttrBagClass

snp a genotypic object of hlaSNPGenoClass

cl FALSE, TRUE, an integer, or a cluster object created by the parallel-package; if
FALSE, use the serial implementation; if TRUE, use the number of threads re-
turned from RcppParallel::defaultNumThreads() (by default using all threads);
if an integer, specify the number of threads

type "response+dosage": return the best-guess types and dosages for each allele (by
default); "response": return the best-guess types with its posterior probability;
"prob": return a matrix for all posterior probabilities; "response+prob": return
the best-guess, dosages and all posterior probabilities

vote "prob" (default behavior) – make a prediction based on the averaged posterior
probabilities from all individual classifiers; "majority" – majority voting from
all individual classifiers, where each classifier votes for an HLA type

allele.check if TRUE, check and then switch allele pairs if needed

match.type "Position" – use positions only (by default); "RefSNP+Position" – use both
of SNP IDs and positions; "RefSNP" – using SNP IDs only

same.strand TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise,
FALSE not assuming whether on the same strand or not

verbose if TRUE, show information

verbose.match if TRUE, show missing SNP proportions for different match.type

... unused

Details

If more than 50% of SNP predictors are missing, a warning will be given.

When match.type="RefSNP+Position", the matching of SNPs requires both SNP IDs and po-
sitions. A lower missing fraction maybe gained by matching SNP IDs or positions only. Call
hlaPredict(..., match.type="RefSNP") or hlaPredict(..., match.type="Position") for
this purpose. It could be safe to assume that the SNPs with the same positions on the same genome
reference (e.g., hg19) are the same variant albeit the different SNP IDs. Any concern about SNP
mismatching should be emailed to the genotyping platform provider.

hlaPredict 53

Value

Return a hlaAlleleClass object with posterior probabilities of predicted HLA types, or a matrix
of pairwise possible HLA types with all posterior probabilities. If type = "response+prob", return
a hlaAlleleClass object with a matrix of postprob for the probabilities of all pairs of alleles. If a
probability matrix is returned, colnames is sample.id and rownames is an unordered pair of HLA
alleles.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaAllele, hlaCompareAllele, hlaParallelAttrBagging, hlaSetKernelTarget,
hlaAlleleToVCF

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel=match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,

verbose.detail=TRUE)
summary(model)

validation
pred <- hlaPredict(model, test.geno, type="response+dosage")

54 hlaPredMerge

pred

head(pred$value)
pred$dosage[, 1:4] # a dosage matrix

compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0.5))

hlaPredMerge Merge prediction results from multiple HIBAG models

Description

Return an object of hlaAlleleClass, which contains predicted HLA types.

Usage

hlaPredMerge(..., weight=NULL, equivalence=NULL, use.matching=TRUE,
ret.dosage=TRUE, ret.postprob=FALSE, max.resolution="", rm.suffix=FALSE,
verbose=TRUE)

Arguments

... The object(s) of hlaAlleleClass, having a field of ’postprob’, and returned by
hlaPredict(..., type="response+prob")

weight the weight used for each prediction; if NULL, equal weights to be used; or set the
weight vector to be the training sample sizes

equivalence a data.frame with two columns, the first column for new equivalent alleles, and
the second for the alleles possibly exist in the object(s) passed to this function;
there is no replace if the allele is not found in the second column

use.matching if TRUE, use actual probabilities (i.e., poster prob. * matching) for merging;
otherwise, use poster prob. instead. use.matching=TRUE is recommended.

ret.dosage if TRUE, return dosages

ret.postprob if TRUE, return average posterior probabilities

max.resolution "2-digit", "1-field", "4-digit", "2-field", "6-digit", "3-field", "8-digit", "4-field",
"allele", "protein", "full", "none", or "": "allele" = "2-digit"; "protein" = "4-
digit"; "full", "none" or "" for no limit on resolution

rm.suffix whether remove the non-digit suffix in the last field, e.g., for "01:22N", "N" is a
non-digit suffix

verbose if TRUE, show information

Details

Calculate a new probability matrix for each pair of HLA alleles, by averaging (posterior) probabil-
ities from all models with specified weights. If equivalence is specified, multiple alleles might be
collapsed into one class.

hlaPredMerge 55

Value

Return a hlaAlleleClass object.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaAllele, predict.hlaAttrBagClass

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel=match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train HIBAG models
set.seed(100)

please use "nclassifier=100" when you use HIBAG for real data
m1 <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=2,

verbose.detail=TRUE)
m2 <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=2,

verbose.detail=TRUE)

validation
pd1 <- hlaPredict(m1, test.geno, type="response+prob")
pd2 <- hlaPredict(m2, test.geno, type="response+prob")

56 hlaPublish

hlaCompareAllele(hlatab$validation, pd1)$overall
hlaCompareAllele(hlatab$validation, pd2)$overall

merge predictions from multiple models, by voting from all classifiers
pd <- hlaPredMerge(pd1, pd2)
pd

hlaCompareAllele(hlatab$validation, pd)$overall

collapse to 2-digit
pd <- hlaPredMerge(pd1, pd2, max.resolution="2-digit", ret.postprob=FALSE)
pd

hlaPublish Finalize a HIBAG model

Description

Finalize a HIBAG model by removing unused SNP predictors and adding appendix information
(platform, training set, authors, warning, etc)

Usage

hlaPublish(mobj, platform=NULL, information=NULL, warning=NULL,
rm.unused.snp=TRUE, anonymize=TRUE, verbose=TRUE)

Arguments

mobj an object of hlaAttrBagObj or hlaAttrBagClass

platform the text of platform information

information the other information, like authors

warning any warning message

rm.unused.snp if TRUE, remove unused SNPs from the model

anonymize if TRUE, remove sample IDs

verbose if TRUE, show information

Value

Returns a new object of hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaModelFromObj, hlaModelToObj

hlaReport 57

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 250 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

#
train a HIBAG model
#
set.seed(1000)

please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
summary(model)
length(model$snp.id)

mobj <- hlaPublish(model,
platform = "Illumina 1M Duo",
information = "Training set -- HapMap Phase II")

model2 <- hlaModelFromObj(mobj)
length(mobj$snp.id)
mobj$appendix
summary(mobj)

p1 <- hlaPredict(model, train.geno)
p2 <- hlaPredict(model2, train.geno)

check
cbind(p1$value, p2$value)

hlaReport Format a report

Description

Create a report for evaluating prediction accuracies.

Usage

hlaReport(object, export.fn="", type=c("txt", "tex", "html", "markdown"),
header=TRUE)

58 hlaReport

Arguments

object an object returned by hlaCompareAllele

export.fn a file name for output, or "" for stdout

type "txt" – tab-delimited text format; "tex" – tex format using the ’longtable’
package; "html" – html file

header if TRUE, output the header of text file associated corresponding format

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,

hlaReportPlot 59

verbose.detail=TRUE)
summary(model)

validation
pred <- hlaPredict(model, test.geno)
compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,

call.threshold=0))

report
hlaReport(comp, type="txt")

hlaReport(comp, type="tex")

hlaReport(comp, type="html")

hlaReport(comp, type="markdown")

hlaReportPlot Format a report with figures

Description

Create figures for evaluating prediction accuracies.

Usage

hlaReportPlot(PredHLA=NULL, TrueHLA=NULL, model=NULL,
fig=c("matching", "call.rate", "call.threshold"), match.threshold=NaN,
log_scale=TRUE)

Arguments

PredHLA NULL, an object of hlaAlleleClass, the predicted HLA types

TrueHLA NULL, an object of hlaAlleleClass, the true HLA types

model NULL, or a model of hlaAttrBagClass

fig "matching": violin plot for matching measurements; "call.rate": relationship
between accuracy and call rate; "call.threshold": relationship between accuracy
and call threshold

match.threshold

the threshold for matching proportion

log_scale if TRUE, use log scale for matching violin plot

Value

Return a ggplot2 object.

Author(s)

Xiuwen Zheng

60 hlaReportPlot

See Also

hlaReport

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
length(snpid) # 275

training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))

test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))

train a HIBAG model
set.seed(100)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,

verbose.detail=TRUE)
summary(model)

validation
pred <- hlaPredict(model, test.geno)

visualize
hlaReportPlot(pred, fig="matching")

hlaReportPlot(model=model, fig="matching")

hlaReportPlot(pred, model=model, fig="matching")

hlaReportPlot(pred, hlatab$validation, fig="call.rate")

hlaReportPlot(pred, hlatab$validation, fig="call.threshold")

hlaSampleAllele 61

hlaSampleAllele Get sample IDs from HLA types with a filter

Description

Get sample IDs from HLA types limited to a set of HLA alleles.

Usage

hlaSampleAllele(TrueHLA, allele.limit=NULL, max.resolution="")

Arguments

TrueHLA an object of hlaAlleleClass

allele.limit a list of HLA alleles, the validation samples are limited to those having HLA al-
leles in allele.limit, or NULL for no limit. allele.limit could be character-
type, hlaAttrBagClass or hlaAttrBagObj

max.resolution "2-digit", "4-digit", "6-digit", "8-digit", "allele", "protein", "2", "4", "6", "8",
"full" or "": "allele" = "2-digit", "protein" = "4-digit", "full" and "" mean no
limit on resolution

Value

Return a list of sample IDs.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

HLA_Type_Table[, paste(hla.id, ".1", sep="")],
HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

summary(hla)

hlaSampleAllele(hla)

hlaSampleAllele(hla, allele.limit=c(
"01:01","02:01","02:06", "03:01", "11:01", "23:01"))

62 hlaSetKernelTarget

hlaSetKernelTarget Set the CPU target

Description

Set the CPU target that the HIBAG algorithm is built on.

Usage

hlaSetKernelTarget(cpu=c("max", "auto.avx2", "base",
"sse2", "sse4", "avx", "avx2", "avx512f", "avx512bw", "avx512vpopcnt"))

Arguments

cpu Specify the Intel/AMD CPU flag; "max" by default

Details

If cpu="max", the kernel target will be automatically determined according to the CPU capabil-
ities to maximize the algorithm efficiency. When cpu="auto.avx2", "avx2" is used instead of
"avx512f", "avx512bw", "avx512vpopcnt" even if the CPU supports the AVX512F, AVX512BW or
AVX512VPOPCNT intrinsics, since the CPU may reduce the frequency of the cores dynamically
to keep power usage of AVX512 within bounds; if AVX2 is not applicable, other target will be
automatically determined.

The HIBAG algorithm is optimized using different SIMD instruction sets to leverage the efficiency
of the target Intel/AMD platform. The higher version of the C++ compiler is needed to enable the
compilation of AVX2 and AVX512F intrinsics, e.g., GCC >= v6.0. If the compiler does not support
the CPU target, the implementation on that target will be disabled.

Value

Return a character vector for describing the CPU capabilities, the compiler information and the
supported implementation.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaParallelAttrBagging, predict.hlaAttrBagClass, hlaPredict

Examples

hlaSetKernelTarget("auto")

hlaSNPGenoClass 63

hlaSNPGenoClass The class of SNP genotypes

Description

The class of SNP genotypes, and its instance is returned from hlaMakeSNPGeno.

Value

There are five components:

genotype a genotype matrix, “# of SNPs”-by-“# of individuals”; 0 standing for BB (ZERO
A allele), 1 for AB (ONE A allele), 2 for AA (TWO A alleles) and NA for
missing values (other values have no meaning)

sample.id a vector of sample IDs

snp.id a vector of SNP IDs

snp.position a vector of SNP positions in basepair

snp.allele a vector of characters with a format of “A allele/B allele”; B is usually defined
as a major or reference allele, while A is defined as a minor or alternative allele

assembly the human genome reference, such like "hg19"

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno

hlaSNPID Get SNP IDs and positions

Description

Get the information of SNP ID with or without position.

Usage

hlaSNPID(obj, type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"))

Arguments

obj a genotypic object of hlaSNPGenoClass, a model object of hlaAttrBagClass
or a model object of hlaAttrBagObj

type "RefSNP+Position" (by default), "RefSNP" or "Position"

64 hlaSplitAllele

Value

If type = "RefSNP+Position", return paste(obj$snp.id, obj$snp.position, sep="-"); if type
= "RefSNP", return obj$snp.id; if type = "Position", return obj$snp.position; if type = "Pos+Allele",
return paste(obj$snp.position, obj$snp.allele, sep="-").

Author(s)

Xiuwen Zheng

See Also

hlaGenoSwitchStrand, hlaGenoCombine

Examples

x <- hlaSNPID(HapMap_CEU_Geno)
head(x)

x <- hlaSNPID(HapMap_CEU_Geno, "RefSNP")
head(x)

x <- hlaSNPID(HapMap_CEU_Geno, "Position")
head(x)

hlaSplitAllele Divide the samples randomly

Description

Divide the samples to the training and validation sets randomly.

Usage

hlaSplitAllele(HLA, train.prop=0.5)

Arguments

HLA an object of hlaAlleleClass

train.prop the proporion of training set

Details

The algorithm tries to divide each HLA alleles into training and validation sets randomly with a
training proportion train.prop.

Value

Return a list:

training an object of hlaAlleleClass

validation an object of hlaAlleleClass

hlaSubModelObj 65

Author(s)

Xiuwen Zheng

See Also

hlaAllele

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
"training" "validation"
summary(hlatab$training)
summary(hlatab$validation)

hlaSubModelObj Get a subset of individual classifiers

Description

Get the first n individual classifiers.

Usage

hlaSubModelObj(obj, n)

Arguments

obj an object of hlaAttrBagObj

n an integer, get the first n individual classifiers

Value

Return an object of hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging

66 hlaUniqueAllele

Examples

make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 50 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

train a HIBAG model
set.seed(1000)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
mobj <- hlaModelToObj(model)
summary(mobj)

newmobj <- hlaSubModelObj(mobj, 1)
summary(newmobj)

hlaUniqueAllele Get unique HLA alleles

Description

Get unique HLA alleles, which are in ascending order.

Usage

hlaUniqueAllele(hla, all=NA)

Arguments

hla character-type HLA alleles, a hlaAlleleClass object, a link{hlaAttrBagClass}
object, or a link{hlaAttrBagObj} object

all when hla is a hlaAlleleClass object and all=TRUE, return all HLA alleles
if hla$dosage or hla$postprob exists; otherwise, only return the alleles in
hla$value

Details

Each HLA allele name has a unique number corresponding to up to four sets of digits separated by
colons. The name designation depends on the sequence of the allele and that of its nearest relative.
The digits before the first colon describe the type, which often corresponds to the serological antigen
carried by an allotype. The next set of digits are used to list the subtypes, numbers being assigned
in the order in which DNA sequences have been determined. Alleles whose numbers differ in the
two sets of digits must differ in one or more nucleotide substitutions that change the amino acid

HLA_Type_Table 67

sequence of the encoded protein. Alleles that differ only by synonymous nucleotide substitutions
(also called silent or non-coding substitutions) within the coding sequence are distinguished by the
use of the third set of digits. Alleles that only differ by sequence polymorphisms in the introns or
in the 5’ or 3’ untranslated regions that flank the exons and introns are distinguished by the use of
the fourth set of digits.

In addition to the unique allele number there are additional optional suffixes that may be added to
an allele to indicate its expression status. Alleles that have been shown not to be expressed, ’Null’
alleles have been given the suffix ’N’. Those alleles which have been shown to be alternatively
expressed may have the suffix ’L’, ’S’, ’C’, ’A’ or ’Q’.

http://hla.alleles.org/nomenclature/index.html

Value

Return a character vector of HLA alleles

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaAlleleDigit

Examples

make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

summary(hla)
hlaUniqueAllele(hla)

hlaUniqueAllele(c("01", "01:03", "01:01", "03:05", "03:01G",
"03:05P", "03:104:01", "104:01"))

HLA_Type_Table Four-digit HLA types of a study simulated from HapMap CEU

Description

A data.frame object including HLA-A, B, C, DRB1, DQA1 and DQB1 loci of 60 samples.

Usage

HLA_Type_Table

Value

A data.frame

http://hla.alleles.org/nomenclature/index.html

68 plot.hlaAttrBagObj

References

A high-resolution HLA and SNP haplotype map for disease association studies in the extended hu-
man MHC. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X, Monsuur
AJ, Whittaker P, Delgado M, Morrison J, Richardson A, Walsh EC, Gao X, Galver L, Hart J, Hafler
DA, Pericak-Vance M, Todd JA, Daly MJ, Trowsdale J, Wijmenga C, Vyse TJ, Beck S, Murray SS,
Carrington M, Gregory S, Deloukas P, Rioux JD. Nat Genet. 2006 Oct;38(10):1166-72. Epub 2006
Sep 24.

plot.hlaAttrBagObj Plot a HIBAG model

Description

To show a scatterplot of the numbers of individual classifiers and SNP positions.

Usage

S3 method for class 'hlaAttrBagObj'
plot(x, snp.col="gray33", snp.pch=1, snp.sz=1,

locus.col="blue", locus.lty=1L, locus.lty2=2L, addplot=NULL,
assembly="auto", ...)

S3 method for class 'hlaAttrBagClass'
plot(x, ...)

Arguments

x an object of hlaAttrBagObj

snp.col the color of SNP uses

snp.pch the point type of SNP uses

snp.sz the point size of SNP uses

locus.col the color of text and line for HLA locus

locus.lty the type of line for the bounds of HLA locus

locus.lty2 the type of line for HLA locus

addplot NULL for creating a plot, or a ggplot object to be appended

assembly the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to
"hg19"; "auto-silent" refers to "hg19" without any warning

... further arguments passed to or from other methods

Value

None

Author(s)

Xiuwen Zheng

See Also

print.hlaAttrBagObj, summary.hlaAttrBagObj

print.hlaAttrBagClass 69

Examples

make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 100 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

train a HIBAG model
set.seed(1000)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
plot(model)

print.hlaAttrBagClass Summarize a “hlaAttrBagClass” or “hlaAttrBagObj” object.

Description

Summarize an object of hlaAttrBagClass or hlaAttrBagObj.

Usage

S3 method for class 'hlaAttrBagClass'
print(x, ...)
S3 method for class 'hlaAttrBagObj'
print(x, ...)
S3 method for class 'hlaAttrBagClass'
summary(object, show=TRUE, ...)
S3 method for class 'hlaAttrBagObj'
summary(object, show=TRUE, ...)

Arguments

x an object of hlaAttrBagClass or hlaAttrBagObj

object an object of hlaAttrBagClass or hlaAttrBagObj

show if TRUE, show information

... further arguments passed to or from other methods

Value

print returns NULL.

summary.hlaAttrBagClass and summary.hlaAttrBagObj return a list:

num.classifier the total number of classifiers

70 summary.hlaAlleleClass

num.snp the total number of SNPs

snp.id SNP IDs

snp.position SNP position in basepair

snp.hist the number of classifier for each SNP, and it could be used for SNP importance

info a data.frame for the average number of SNPs (num.snp), haplotypes (num.haplo),
out-of-bag accuracies (accuracy) among all classifiers: mean, standard devia-
tion, min, max

Author(s)

Xiuwen Zheng

See Also

plot.hlaAttrBagClass, plot.hlaAttrBagObj

Examples

make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,

H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")

training genotypes
region <- 100 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,

hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,

snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

train a HIBAG model
set.seed(1000)
please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
print(model)

summary.hlaAlleleClass

Summarize a “hlaAlleleClass” or “hlaAASeqClass” object

Description

Show the information of a hlaAlleleClass or hlaAASeqClass object.

summary.hlaSNPGenoClass 71

Usage

S3 method for class 'hlaAlleleClass'
summary(object, verbose=TRUE, ...)
S3 method for class 'hlaAASeqClass'
summary(object, poly.only=TRUE, head=0L,

verbose=TRUE, ...)
S3 method for class 'hlaAlleleClass'
print(x, ...)

Arguments

object an object of hlaAlleleClass or hlaAASeqClass

x an object of hlaAlleleClass or hlaAASeqClass

poly.only if TRUE, only show the amino acid positions with polymorphism; otherwise,
show all sequences

head show the first head rows of cross tabulation, or 0L for all rows

verbose if TRUE, show information

... further arguments passed to or from other methods

Value

Return a data.frame of count and frequency for each HLA allele, if object is hlaAlleleClass;
a matrix of cross tabulation of amino acids at each position, if object is hlaAASeqClass.

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaConvSequence

summary.hlaSNPGenoClass

Summarize a SNP dataset

Description

Summarize the genotypic dataset.

Usage

S3 method for class 'hlaSNPGenoClass'
summary(object, show=TRUE, ...)
S3 method for class 'hlaSNPGenoClass'
print(x, ...)

72 summary.hlaSNPGenoClass

Arguments

object a genotype object of hlaSNPGenoClass

x a genotype object of hlaSNPGenoClass

show if TRUE, print information

... further arguments passed to or from other methods

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoSubset

Examples

summary(HapMap_CEU_Geno)

Index

∗ CPU
hlaSetKernelTarget, 62

∗ HLA
HIBAG-package, 3
HLA_Type_Table, 67
hlaAASeqClass, 6
hlaAllele, 7
hlaAlleleClass, 8
hlaAlleleDigit, 9
hlaAlleleSubset, 10
hlaAlleleToVCF, 11
hlaAssocTest, 12
hlaAttrBagClass, 15
hlaAttrBagging, 16
hlaAttrBagObj, 19
hlaClose, 23
hlaCombineAllele, 24
hlaCombineModelObj, 25
hlaCompareAllele, 26
hlaConvSequence, 28
hlaDistance, 31
hlaLociInfo, 43
hlaModelFiles, 45
hlaModelFromObj, 46
hlaOutOfBag, 47
hlaParallelAttrBagging, 49
hlaPredict, 51
hlaPredMerge, 54
hlaSampleAllele, 61
hlaSetKernelTarget, 62
hlaSplitAllele, 64
hlaSubModelObj, 65
hlaUniqueAllele, 66
plot.hlaAttrBagObj, 68
print.hlaAttrBagClass, 69
summary.hlaAlleleClass, 70

∗ SNP
HapMap_CEU_Geno, 6
HIBAG-package, 3
hlaAlleleToVCF, 11
hlaAssocTest, 12
hlaAttrBagging, 16
hlaBED2Geno, 20

hlaCheckAllele, 21
hlaCheckSNPs, 22
hlaConvSequence, 28
hlaFlankingSNP, 32
hlaGDS2Geno, 33
hlaGeno2PED, 34
hlaGenoAFreq, 35
hlaGenoCombine, 36
hlaGenoLD, 37
hlaGenoMFreq, 38
hlaGenoMRate, 39
hlaGenoMRate_Samp, 39
hlaGenoSubset, 40
hlaGenoSwitchStrand, 41
hlaLDMatrix, 42
hlaMakeSNPGeno, 44
hlaPredict, 51
hlaSNPGenoClass, 63
hlaSNPID, 63
summary.hlaSNPGenoClass, 71

∗ datasets
HapMap_CEU_Geno, 6
HLA_Type_Table, 67

∗ genetics
HapMap_CEU_Geno, 6
HIBAG-package, 3
HLA_Type_Table, 67
hlaAASeqClass, 6
hlaAllele, 7
hlaAlleleClass, 8
hlaAlleleDigit, 9
hlaAlleleSubset, 10
hlaAlleleToVCF, 11
hlaAssocTest, 12
hlaAttrBagClass, 15
hlaAttrBagging, 16
hlaAttrBagObj, 19
hlaBED2Geno, 20
hlaCheckAllele, 21
hlaCheckSNPs, 22
hlaClose, 23
hlaCombineAllele, 24
hlaCombineModelObj, 25

73

74 INDEX

hlaCompareAllele, 26
hlaConvSequence, 28
hlaDistance, 31
hlaFlankingSNP, 32
hlaGDS2Geno, 33
hlaGeno2PED, 34
hlaGenoAFreq, 35
hlaGenoCombine, 36
hlaGenoLD, 37
hlaGenoMFreq, 38
hlaGenoMRate, 39
hlaGenoMRate_Samp, 39
hlaGenoSubset, 40
hlaGenoSwitchStrand, 41
hlaLDMatrix, 42
hlaLociInfo, 43
hlaMakeSNPGeno, 44
hlaModelFiles, 45
hlaModelFromObj, 46
hlaOutOfBag, 47
hlaParallelAttrBagging, 49
hlaPredict, 51
hlaPredMerge, 54
hlaPublish, 56
hlaReport, 57
hlaReportPlot, 59
hlaSampleAllele, 61
hlaSNPGenoClass, 63
hlaSNPID, 63
hlaSplitAllele, 64
hlaSubModelObj, 65
hlaUniqueAllele, 66
plot.hlaAttrBagObj, 68
print.hlaAttrBagClass, 69
summary.hlaAlleleClass, 70
summary.hlaSNPGenoClass, 71

glm, 13

HapMap_CEU_Geno, 6
HIBAG (HIBAG-package), 3
HIBAG-package, 3
HLA_Type_Table, 67
hlaAASeqClass, 6, 29, 70, 71
hlaAllele, 7, 8–12, 24, 53, 55, 65, 67, 71
hlaAlleleClass, 7, 8, 8, 9–11, 13, 16, 24, 26,

29, 37, 48, 49, 53–55, 59, 61, 64, 66,
70, 71

hlaAlleleDigit, 8, 9, 11, 67
hlaAlleleSubset, 8, 10, 24, 30
hlaAlleleToVCF, 8, 11, 53
hlaAssocTest, 12

hlaAttrBagClass, 15, 17, 20, 22, 23, 26, 31,
41, 46, 48, 50, 52, 56, 59, 61, 63, 69

hlaAttrBagging, 12, 15, 16, 20, 22, 23, 25,
27, 45, 47, 50, 53, 55, 62, 65

hlaAttrBagObj, 15, 19, 22, 25, 26, 31, 41, 45,
46, 48, 56, 61, 63, 65, 68, 69

hlaBED2Geno, 20, 34
hlaCheckAllele, 21
hlaCheckSNPs, 21, 22
hlaClose, 17, 23, 50
hlaCombineAllele, 24
hlaCombineModelObj, 25
hlaCompareAllele, 26, 48, 53, 58, 61
hlaConvSequence, 7, 14, 28, 71
hlaDistance, 31
hlaFlankingSNP, 32
hlaGDS2Geno, 20, 33
hlaGeno2PED, 20, 34, 34
hlaGenoAFreq, 35, 35, 38–40
hlaGenoCombine, 36, 41, 44, 64
hlaGenoLD, 37
hlaGenoMFreq, 35, 38, 38, 39, 40
hlaGenoMRate, 35, 38, 39, 39, 40
hlaGenoMRate_Samp, 35, 38, 39, 39, 40
hlaGenoSubset, 32, 36, 40, 42, 44, 72
hlaGenoSubsetFlank (hlaFlankingSNP), 32
hlaGenoSwitchStrand, 36, 41, 64
hlaLDMatrix, 42
hlaLociInfo, 7, 8, 32, 43
hlaMakeSNPGeno, 36, 41, 42, 44, 63, 72
hlaModelFiles, 20, 25, 45
hlaModelFromObj, 46, 56
hlaModelToObj, 20, 45, 56
hlaModelToObj (hlaModelFromObj), 46
hlaOutOfBag, 47
hlaParallelAttrBagging, 15–17, 20, 49, 53,

62
hlaPredict, 17, 51, 62
hlaPredMerge, 54
hlaPublish, 56
hlaReport, 27, 48, 57, 60
hlaReportPlot, 59
hlaSampleAllele, 61
hlaSetKernelTarget, 17, 50, 53, 62
hlaSNPGenoClass, 6, 16, 20, 22, 32–42, 44,

48, 49, 52, 63, 63, 72
hlaSNPID, 63
hlaSplitAllele, 64
hlaSubModelObj, 65
hlaUniqueAllele, 66

parallel-package, 49, 52
plot.hlaAttrBagClass, 70

INDEX 75

plot.hlaAttrBagClass
(plot.hlaAttrBagObj), 68

plot.hlaAttrBagObj, 68, 70
predict.hlaAttrBagClass, 17, 22, 27, 55,

62
predict.hlaAttrBagClass (hlaPredict), 51
print.hlaAlleleClass

(summary.hlaAlleleClass), 70
print.hlaAttrBagClass, 69
print.hlaAttrBagObj, 68
print.hlaAttrBagObj

(print.hlaAttrBagClass), 69
print.hlaSNPGenoClass

(summary.hlaSNPGenoClass), 71

summary.hlaAASeqClass, 14
summary.hlaAASeqClass

(summary.hlaAlleleClass), 70
summary.hlaAlleleClass, 70
summary.hlaAttrBagClass, 17, 23
summary.hlaAttrBagClass

(print.hlaAttrBagClass), 69
summary.hlaAttrBagObj, 68
summary.hlaAttrBagObj

(print.hlaAttrBagClass), 69
summary.hlaSNPGenoClass, 71

	HIBAG-package
	HapMap_CEU_Geno
	hlaAASeqClass
	hlaAllele
	hlaAlleleClass
	hlaAlleleDigit
	hlaAlleleSubset
	hlaAlleleToVCF
	hlaAssocTest
	hlaAttrBagClass
	hlaAttrBagging
	hlaAttrBagObj
	hlaBED2Geno
	hlaCheckAllele
	hlaCheckSNPs
	hlaClose
	hlaCombineAllele
	hlaCombineModelObj
	hlaCompareAllele
	hlaConvSequence
	hlaDistance
	hlaFlankingSNP
	hlaGDS2Geno
	hlaGeno2PED
	hlaGenoAFreq
	hlaGenoCombine
	hlaGenoLD
	hlaGenoMFreq
	hlaGenoMRate
	hlaGenoMRate_Samp
	hlaGenoSubset
	hlaGenoSwitchStrand
	hlaLDMatrix
	hlaLociInfo
	hlaMakeSNPGeno
	hlaModelFiles
	hlaModelFromObj
	hlaOutOfBag
	hlaParallelAttrBagging
	hlaPredict
	hlaPredMerge
	hlaPublish
	hlaReport
	hlaReportPlot
	hlaSampleAllele
	hlaSetKernelTarget
	hlaSNPGenoClass
	hlaSNPID
	hlaSplitAllele
	hlaSubModelObj
	hlaUniqueAllele
	HLA_Type_Table
	plot.hlaAttrBagObj
	print.hlaAttrBagClass
	summary.hlaAlleleClass
	summary.hlaSNPGenoClass
	Index

