Package ‘GenomelnfoDb’

January 20, 2026

Title Utilities for manipulating chromosome names, including modifying
them to follow a particular naming style

Description Contains data and functions that
define and allow translation between different chromosome
sequence naming conventions (e.g., ~chrl" versus " 1"),
including a function that attempts to place sequence names in
their natural, rather than lexicographic, order.

biocViews Genetics, DataRepresentation, Annotation, GenomeAnnotation

URL https://bioconductor.org/packages/GenomeInfoDb
Video http://youtu.be/wdEjCYSXa7w

BugReports https://github.com/Bioconductor/GenomeInfoDb/issues
Version 1.46.2

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.0.0), methods, BiocGenerics (>= 0.53.2), S4Vectors (>=
0.47.6), IRanges (>=2.41.1), Seqinfo (>=0.99.2)

Imports stats, utils, UCSC.utils

Suggests GenomelnfoDbData, R.utils, data.table, GenomicRanges,
Rsamtools, GenomicAlignments, BSgenome, GenomicFeatures,
TxDb.Dmelanogaster. UCSC.dm3.ensGene,

BSgenome.Scerevisiae. UCSC.sacCer2, BSgenome.Celegans.UCSC.ce2,
BSgenome.Hsapiens. NCBI.GRCh38, RUnit, BiocStyle, knitr

VignetteBuilder knitr

Collate utils.R fetch_table_dump_from_Ensembl_FTP.R list_ftp_dir.R
NCBI-utils.R UCSC-utils.R Ensembl-utils.R
getChromInfoFromNCBI.R getChromInfoFromUCSC.R
getChromInfoFromEnsembl.R loadTaxonomyDb.R mapGenomeBuilds.R
seqlevelsStyle.R seqlevels-wrappers.R zzz.R

git_url https://git.bioconductor.org/packages/GenomelnfoDb
git_branch RELEASE_3_22

git_last_commit 149c9ca

git_last_commit_date 2025-12-03

Repository Bioconductor 3.22

Date/Publication 2026-01-19

https://bioconductor.org/packages/GenomeInfoDb
https://github.com/Bioconductor/GenomeInfoDb/issues

2 GenomelnfoDb internals

Author Sonali Arora [aut],
Martin Morgan [aut],
Marc Carlson [aut],
Hervé Pages [aut, cre],
Prisca Chidimma Maduka [ctb],
Atuhurira Kirabo Kakopo [ctb],
Haleema Khan [ctb] (vignette translation from Sweave to Rmarkdown /
HTML),
Emmanuel Chigozie Elendu [ctb]

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Contents

COMPAL . .« o v v vttt it et e e e e
GenomelnfoDb internals Lo
getChromInfoFromEnsembl 0 L.
getChromInfoFromNCBI
getChromInfoFromUCSC
loadTaxonomyDb e
mapGenomeBuilds L
NCBI-utils
seqlevels-wrappers e e
seglevelsStyle L.

Index

compat Functions moved to the Seqinfo package

Description

These functions used to be defined here in the GenomeInfoDb package but have moved to the
new Seqinfo package in BioC 3.22. They are still exported by the GenomeInfoDb package for
backward compatibility with existing code.

WARNING: This is a temporary situation only. Packages that explicitly import these symbols from

GenomelnfoDb must be modified to import them from the Seqinfo package instead.

These symbols are actually documented in the Seqinfo package. See:

e Seqinfo::Seqinfo

e Seqinfo::orderSeqglevels

e Seqinfo::rankSeqlevels

¢ Seqinfo: :GenomeDescription

GenomeInfoDb internals
GenomelnfoDb internals

Description

Symbols defined in the GenomeInfoDb package that are not intended to be used directly.

getChromInfoFromEnsembl 3

getChromInfoFromEnsembl
Get chromosome information for an Ensembl species

Description

getChromInfoFromEnsembl returns chromosome information like sequence names, lengths and
circularity flags for a given Ensembl species e.g. Human, Cow, Saccharomyces cerevisiae, etc...

Usage

getChromInfoFromEnsembl (species,
release=NA, division=NA, use.grch37=FALSE,
assembled.molecules.only=FALSE,
include.non_ref.sequences=FALSE,
include.contigs=FALSE,
include.clones=FALSE,
map.NCBI=FALSE,
recache=FALSE,
as.Seqinfo=FALSE)

Arguments

species A single string specifying the name of an Ensembl species e.g. "human”, "hsapiens”,
or "Homo sapiens”. Case is ignored.

Alternatively the name of an assembly (e.g. "GRCh38") or a taxonomy id (e.g.
9606) can be supplied.

release The Ensembl release to query e.g. 89. If set to NA (the default), the current
release is used.

division NA (the default) or one of the EnsemblGenomes martsi.e. "bacteria”, "fungi”,
"metazoa”, "plants”, or "protists”.
use.grch37 NOT TESTED YET!

TRUE or FALSE (the default).

assembled.molecules.only
NOT IMPLEMENTED YET!

include.non_ref.sequences
TODO: DOCUMENT THIS!

include.contigs
Whether or not sequences for which coord_system is set to "contig"” should
be included. They are not included by default. Note that the dataset for Human
contains more than one hundred thousands contigs!

include.clones Whether or not sequences for which coord_systemis set to "clone” should be
included. They are not included by default. Note that the dataset for Human
contains more than one hundred thousands clones!

map .NCBI TRUE or FALSE (the default).

If TRUE then NCBI chromosome information is bound to the result. This infor-
mation is retrieved from NCBI by calling getChromInfoFromNCBI on the NCBI
assembly that the Ensembl species is based on. Then the data frame returned by

recache

as.Seqginfo

Details

getChromInfoFromEnsembl

getChromInfoFromNCBI ("NCBI chrom info") is mapped and bound to the data
frame returned by getChromInfoFromEnsembl ("Ensembl chrom info"). This
"map and bind" operation is similar to a JOIN in SQL.

Note that not all rows in the "Ensembl chrom info" data frame are necessarily
mapped to a row in the "NCBI chrom info" data frame. For the unmapped rows
the NCBI columns in the final data frame are filled with NAs (LEFT JOIN in
SQL).

The primary use case for using map.NCBI=TRUE is to map Ensembl sequence
names to NCBI sequence names.

getChromInfoFromEnsembl uses a cache mechanism so the chromosome in-
formation of a given dataset only gets downloaded once during the current R
session (note that the caching is done in memory so cached information does
NOT persist across sessions). Setting recache to TRUE forces a new download
(and recaching) of the chromosome information for the specified dataset.

TRUE or FALSE (the default). If TRUE then a Seqinfo object is returned instead
of a data frame. Note that only the name, length, and circular columns of
the data frame are used to make the Seqinfo object. All the other columns are
ignored (and lost).

COMING SOON...

Value

For getChromInfoFromEnsembl: By default, a 7-column data frame with columns:

Nk w D

name: character.

length: integer.

coord_system: factor.

synonyms: list.

toplevel: logical.

non_ref: logical.

circular: logical.

and with attribute species_info which contains details about the species that was used to obtaine
the data.

If map.NCBI is TRUE, then 7 "NCBI columns" are added to the result:

NCBI.
NCBI.

NCBI
NCBI
NCBI
NCBI
NCBI

SequenceName: character.
SequenceRole: factor.
.AssignedMolecule: factor.
.GenBankAccn: character.
.Relationship: factor.
.RefSegAccn: character.

.AssemblyUnit: factor.

Note that the names of the "NCBI columns" are those returned by getChromInfoFromNCBI but with
the NCBI. prefix added to them.

getChromInfoFromEnsembl 5

Author(s)
H. Pages

See Also

* getChromInfoFromNCBI and getChromInfoFromUCSC for getting chromosome information
for an NCBI assembly or UCSC genome.

* Seqinfo objects.

Examples

B e
A. BASIC EXAMPLES
Bt e

Internet access required!

=== Worm ===
https://uswest.ensembl.org/Caenorhabditis_elegans

celegans <- getChromInfoFromEnsembl(”"celegans”)
attr(celegans, "species_info")

getChromInfoFromEnsembl ("celegans”, as.Seqinfo=TRUE)
celegans <- getChromInfoFromEnsembl("celegans”, map.NCBI=TRUE)

=== Yeast ===
https://uswest.ensembl.org/Saccharomyces_cerevisiae

scerevisiae <- getChromInfoFromEnsembl("scerevisiae")
attr(scerevisiae, "species_info")

getChromInfoFromEnsembl("”scerevisiae”, as.Seqinfo=TRUE)
scerevisiae <- getChromInfoFromEnsembl("scerevisiae”, map.NCBI=TRUE)

Arabidopsis thaliana:

athaliana <- getChromInfoFromEnsembl("athaliana”, division="plants”,
map .NCBI=TRUE)

attr(athaliana, "species_info")

o
Temporary stuff that needs to go away...
B oo

TODO: Check all species for which an NCBI assembly is registered!
Checked so far (with current Ensembl release i.e. 99):

- celegans OK
- scerevisiae oK
- athaliana OK
- btaurus oK
- sscrofa OK
Not run:

WORK IN PROGRESS!!!

getChromInfoFromEnsembl

library(GenomeInfoDb)

.do_join <- GenomeInfoDb:::.do_join
.map_Ensembl_seqlevels_to_NCBI_seqlevels <-
GenomeInfoDb:::.map_Ensembl_seqlevels_to_NCBI_seqlevels

.map_Ensembl_seqlevels_to_NCBI_seqlevels(
paste@("ENS_", 1:26),
CharacterList(c(list(c(aa="INSDC1", bb="GNBK7"), c("INSDC2", "RefSeq3")),
rep(list(NULL), 23), list("NCBI_7"))),
paste@("NCBI_", 1:10),
paste@("GNBK", c(1:8, NA, 9)),
c(paste@("REFSEQ", c(1:7, 1, 1)), NA),
verbose=TRUE
)

map_to_NCBI <- function(Ensembl_chrom_info, NCBI_chrom_info,
special_mappings=NULL)

{

.map_Ensembl_seqlevels_to_NCBI_seqlevels(
Ensembl_chrom_info[, "name"],
Ensembl_chrom_info[, "synonyms"],
NCBI_chrom_info[, "SequenceName"],
NCBI_chrom_info[, "GenBankAccn"J,
NCBI_chrom_info[, "RefSegAccn"],
special_mappings=special_mappings,
verbose=TRUE)

3
B = m o mmmm
Human

https://uswest.ensembl.org/Homo_sapiens/
Based on GRCh38.p13 (GCA_000001405.28)

Return 944 rows

human_chrom_info <- getChromInfoFromEnsembl("hsapiens")

1 id: 131550 <- ref chromosome

CHR_HSCHR1_1_CTG3 id: 131561 <- non-ref chromosome

HSCHR1_1_CTG3 id: 131562 <- scaffold (no scaffold is non_ref)

Map to NCBI

Summary:

- 639/640 NCBI sequences are reverse-mapped.

- Restricted mapping is one-to-one.

GRCh38.p13 <- getChromInfoFromNCBI("GRCh38.p13")

L2R <- map_to_NCBI(human_chrom_info, GRCh38.p13)

The only sequence in GRCh38.p13 that cannot be mapped to Ensembl is
HG2139_PATCH (was introduced in GRCh38.p2)! Why? What's special about
this patch?

GRCh38.p13%$mapped <- tabulate(L2R, nbins=nrow(GRCh38.p13)) != oL
table(GRCh38.p13$SequenceRole, GRCh38.p13$mapped)

FALSE TRUE
assembled-molecule 0 25
alt-scaffold 0 261
unlocalized-scaffold 0 42
unplaced-scaffold 0 127
pseudo-scaffold 0 0

getChromInfoFromEnsembl

fix-patch 1 112
novel-patch o 72
human_chrom_info <- .do_join(human_chrom_info, GRCh38.p13, L2R)
table(human_chrom_info$SequenceRole, human_chrom_info$toplevel)

FALSE TRUE
assembled-molecule 0 25
alt-scaffold 261 0
unlocalized-scaffold 0 42
wunplaced-scaffold 0 127
pseudo-scaffold 0 Q
fix-patch 112 [
novel-patch 72 Q

#hsa_seqlevels <- readRDS("hsapiens_gene_ensembl_txdb_seglevels.rds")

B oo
Mouse

https://uswest.ensembl.org/Mus_musculus/

Based on GRCm38.p6 (GCA_000001635.8)

Return 258 rows
mouse_chrom_info <- getChromInfoFromEnsembl ("mmusculus”)

Map to NCBI

Summary:

- 139/239 NCBI sequences are reverse-mapped.

- Restricted mapping is NOT one-to-one: 2 Ensembl sequences (NC_005089.1
and MT) are both mapped to NCBI MT.

GRCm38.p6 <- getChromInfoFromNCBI("GRCm38.p6")

L2R <- map_to_NCBI(mouse_chrom_info, GRCm38.p6)

100 sequences in GRCm38.p6 are not mapped:

GRCm38.p6$mapped <- tabulate(L2R, nbins=nrow(GRCm38.p6)) != oL
table(GRCm38.p6%$SequenceRole, GRCm38.p6$mapped)

FALSE TRUE
assembled-molecule o 22
alt-scaffold 99 Q
unlocalized-scaffold 0 22
unplaced-scaffold o 22
pseudo-scaffold 0 0
fix-patch 1 64
novel-patch 0 9

OK so Ensembl doesn't include the alt-scaffolds for Mouse. BUT WHAT

HAPPENED TO THIS ONE fix-patch SEQUENCE (MG4237_PATCH) THAT IS NOT

MAPPED? Found it in seq_region_synonym table! It's seq_region_id=100405.
Hey but that seq_region_id is **NOT** in the seq_region table!!! THIS
VIOLATES FOREIGN KEY CONSTRAINT!!!!

mouse_chrom_info <- .do_join(mouse_chrom_info, GRCm38.p6, L2R)

Ensembl does NOT comsider NC_005089.1 (duplicate entry for MT) toplevel:
mouse_chrom_info[mouse_chrom_info$SequenceName

name length coord_system synonyms toplevel
184 NC_005089.1 16299 scaffold FALSE
201 MT 16299 chromosome NC_005089.1, chrM, AY172335.1 TRUE
SequenceName GenBankAccn RefSegAccn
184 MT AY172335.1 NC_005089.1
201 MT AY172335.1 NC_005089.1

8 getChromInfoFromNCBI

Rat
https://uswest.ensembl.org/Rattus_norvegicus/
Based on Rnor_6.0 (GCA_000001895.4)

Return 1418 rows
rat_chrom_info <- getChromInfoFromEnsembl("rnorvegicus”)

Map to NCBI

Summary:

- 955/955 NCBI sequences are reverse-mapped.

- Reverse mapping is one-to-many: 2 Ensembl sequences (NC_001665.2 and MT)
are mapped to NCBI MT.

Rnor_6.0 <- getChromInfoFromNCBI("Rnor_6.0")

L2R <- map_to_NCBI(rat_chrom_info, Rnor_6.0)

rat_chrom_info <- .do_join(rat_chrom_info, Rnor_6.0, L2R)

Ensembl does NOT comsider NC_001665.2 (duplicate entry for MT) toplevel:
rat_chrom_info[rat_chrom_info$SequenceName

name length coord_system synonyms toplevel
1417 NC_001665.2 16313 scaffold FALSE
1418 MT 16313 chromosome NC_001665.2, AY172581.1, chrM TRUE
SequenceName GenBankAccn RefSegAccn
1417 MT AY172581.1 NC_001665.2
1418 MT AY172581.1 NC_001665.2

table(rat_chrom_info$SequenceRole, rat_chrom_info$toplevel)

FALSE TRUE
assembled-molecule 1 23
alt-scaffold (] 0
unlocalized-scaffold 0 354
unplaced-scaffold @ 578
pseudo-scaffold 0 0
fix-patch 0 0
novel-patch 0 0

End(Not run)

getChromInfoFromNCBI Get chromosome information for an NCBI assembly

Description

getChromInfoFromNCBI returns chromosome information like sequence names, lengths and circu-
larity flags for a given NCBI assembly e.g. for GRCh38, ARS-UCD1.2, R64, etc...

Note that getChromInfoFromNCBI behaves slightly differently depending on whether the assembly
is registered in the GenomeInfoDb package or not. See below for the details.

Use registered_NCBI_assemblies to list all the NCBI assemblies currently registered in the
GenomelnfoDb package.
Usage

getChromInfoFromNCBI (assembly,
assembled.molecules.only=FALSE,

getChromInfoFromNCBI 9

assembly.units=NULL,
recache=FALSE,
as.Seqinfo=FALSE)

registered_NCBI_assemblies(organism=NA)

Arguments

assembly A single string specifying the name of an NCBI assembly (e.g. "GRCh38").
Alternatively, an assembly accession (GenBank or RefSeq) can be supplied (e.g.
"GCF_000001405.12").

assembled.molecules.only
If FALSE (the default) then chromosome information is returned for all the se-
quences in the assembly (unless assembly.units is specified, see below), that
is, for all the chromosomes, plasmids, and scaffolds.

If TRUE then chromosome information is returned only for the assembled molecules.
These are the chromosomes (including the mitochondrial chromosome) and plas-
mids only. No scaffolds.

assembly.units If NULL (the default) then chromosome information is returned for all the se-
quences in the assembly (unless assembled.molecules.only is set to TRUE,
see above), that is, for all the chromosomes, plasmids, and scaffolds.

assembly.units can be set to a character vector containing the names of As-
sembly Units (e.g. "non-nuclear") in which case chromosome information is
returned only for the sequences that belong to these Assembly Units.

recache getChromInfoFromNCBI uses a cache mechanism so the chromosome informa-
tion of a given assembly only gets downloaded once during the current R ses-
sion (note that the caching is done in memory so cached information does NOT
persist across sessions). Setting recache to TRUE forces a new download (and
recaching) of the chromosome information for the specified assembly.

as.Seqginfo TRUE or FALSE (the default). If TRUE then a Seqinfo object is returned instead of a
data frame. Note that only the SequenceName, SequencelLength, and circular
columns of the data frame are used to make the Seqinfo object. All the other
columns are ignored (and lost).

organism When organism is specified, registered_NCBI_assemblies() will only re-
turn the subset of assemblies that are registered for that organism. organism
must be specified as a single string and will be used to perform a search (with
grep()) onthe "organism” column of the data frame returned by registered_NCBI_assemblies()
The search is case-insensitive.

Details

% registered vs unregistered NCBI assemblies ***

* All NCBI assemblies can be looked up by assembly accession (GenBank or RefSeq) but only
registered assemblies can also be looked up by assembly name.

* For registered assemblies, the returned circularity flags are guaranteed to be accurate. For
unregistered assemblies, a heuristic is used to determine the circular sequences.

Please contact the maintainer of the GenomeInfoDb package to request registration of additional
assemblies.

*** Offline mode ***

10 getChromInfoFromNCBI

The GenomelInfoDb package includes a small database that contains chromosome information for
the most commonly used NCBI and UCSC genome assemblies e.g. GRCh38.p14, GRCh38.p13,
GRCm39, hg38, mm39, etc... This makes calls like getChromInfoFromNCBI("GRCh38.p14") or
getChromInfoFromUCSC("hg38") work offline. Plus now they are fast and reliable.

Note that calling getChromInfoFromNCBI() with recache=TRUE will trigger retrieval of the chro-
mosome info from NCBI, and will issue a warning if this info no longer matches the chromosome
info stored in the package. Please open an issue on GitHub if you get such warning or want to
request adding chromosome information of your favorite NCBI or UCSC genome assembly to
GenomelnfoDDb’s internal database.

Value

For getChromInfoFromNCBI: By default, a 10-column data frame with columns:

SequenceName: character.
SequenceRole: factor.
AssignedMolecule: factor.
GenBankAccn: character.
Relationship: factor.
RefSegAccn: character.

AssemblyUnit: factor.

© Nk w N =

SequencelLength: integer. Note that this column **can** contain NAs! For example this
is the case in assembly Amel_HAv3.1 where the length of sequence MT is missing or in
assembly Release 5 where the length of sequence Un is missing.

9. UCSCStyleName: character.

10. circular: logical.
For registered_NCBI_assemblies: A data frame summarizing all the NCBI assemblies currently
registered in the GenomeInfoDb package.
Author(s)

H. Pages

See Also
* getChromInfoFromUCSC for getting chromosome information for a UCSC genome.

* getChromInfoFromEnsembl for getting chromosome information for an Ensembl species.

* Seqinfo objects.

Examples

All registered NCBI assemblies for Triticum aestivum (bread wheat):
registered_NCBI_assemblies("tri")[1:4]

All registered NCBI assemblies for Homo sapiens:
registered_NCBI_assemblies("homo")[1:4]

Internet access required!
getChromInfoFromNCBI ("GRCh37")
getChromInfoFromNCBI("GRCh37", as.Seqinfo=TRUE)

getChromInfoFromUCSC 11

getChromInfoFromNCBI("GRCh37", assembled.molecules.only=TRUE)

The GRCh38.p14 assembly only adds "patch sequences” to the GRCh38

assembly:

GRCh38 <- getChromInfoFromNCBI("GRCh38")

table (GRCh38$SequenceRole)

GRCh38.p14 <- getChromInfoFromNCBI("GRCh38.p14")
table(GRCh38.p14$SequenceRole) # 254 patch sequences (164 fix + 9@ novel)

All registered NCBI assemblies for Arabidopsis thaliana:
registered_NCBI_assemblies("arabi”)[1:4]
getChromInfoFromNCBI("TAIR10.1")
getChromInfoFromNCBI("TAIR10.1", assembly.units="non-nuclear")

Sanity checks:

idx <- match(GRCh38$%$SequenceName, GRCh38.pl14$SequenceName)
stopifnot(!anyNA(idx))

tmp1 <- GRCh38.p14[idx, 1

rownames (tmp1) <- NULL

tmp2 <- GRCh38.p14[-idx,]

stopifnot(

identical (tmp1[, -(5:7)1, GRCh38[, -(5:7)1),

identical (tmp2, GRCh38.p14[GRCh38.pl14$AssemblyUnit == "PATCHES", 1)
)

getChromInfoFromUCSC Get chromosome information for a UCSC genome

Description

getChromInfoFromUCSC returns chromosome information like sequence names, lengths and circu-
larity flags for a given UCSC genome e.g. for hg19, panTro6, sacCer3, etc...

Note that getChromInfoFromUCSC behaves slightly differently depending on whether a genome is
registered in the GenomeInfoDb package or not. See below for the details.

Use registered_UCSC_genomes to list all the UCSC genomes currently registered in the Genome-
InfoDb package.

Usage

getChromInfoFromUCSC(genome,
assembled.molecules.only=FALSE,
map . NCBI=FALSE,
add.ensembl.col=FALSE,
goldenPath.url=getOption("UCSC.goldenPath.url”),
recache=FALSE,
as.Seqinfo=FALSE)

registered_UCSC_genomes (organism=NA)

12 getChromInfoFromUCSC

Arguments

genome A single string specifying the name of a UCSC genome e.g. "panTro6”, "mm39",
"sacCer3"”, etc...

assembled.molecules.only
If FALSE (the default) then chromosome information is returned for all the se-
quences in the genome, that is, for all the chromosomes, plasmids, and scaffolds.
If TRUE then chromosome information is returned only for the assembled molecules.
These are the chromosomes (including the mitochondrial chromosome) and plas-
mids only. No scaffolds.
Note that assembled.molecules.only=TRUE is supported only for registered
genomes. When used on an unregistered genome, assembled.molecules.only
is ignored with a warning.

map .NCBI TRUE or FALSE (the default).
If TRUE then NCBI chromosome information is bound to the result. This infor-
mation is retrieved from NCBI by calling getChromInfoFromNCBI on the NCBI
assembly that the UCSC genome is based on. Then the data frame returned by
getChromInfoFromNCBI ("NCBI chrom info") is mapped and bound to the data
frame returned by getChromInfoFromUCSC ("UCSC chrom info"). This "map
and bind" operation is similar to a JOIN in SQL.
Note that not all rows in the "UCSC chrom info" data frame are necessarily
mapped to a row in the "NCBI chrom info" data frame. For example chrM in
hg19 has no corresponding sequence in the GRCh37 assembly (the mitochon-
drial chromosome was omitted from GRCh37). For the unmapped rows the
NCBI columns in the final data frame are filled with NAs (LEFT JOIN in SQL).
The primary use case for using map.NCBI=TRUE is to map UCSC sequence
names to NCBI sequence names. This is only supported for registered UCSC
genomes based on an NCBI assembly!

add.ensembl.col
TRUE or FALSE (the default). Whether or not the Ensembl sequence names should
be added to the result (in column ensembl).

goldenPath.url A single string specifying the URL to the UCSC goldenPath location where the
chromosome sizes are expected to be found.

recache getChromInfoFromUCSC uses a cache mechanism so the chromosome sizes of a
given genome only get downloaded once during the current R session (note that
the caching is done in memory so cached information does NOT persist across
sessions). Setting recache to TRUE forces a new download (and recaching) of
the chromosome sizes for the specified genome.

as.Seqginfo TRUE or FALSE (the default). If TRUE then a Seqinfo object is returned instead of
a data frame. Note that only the chrom, size, and circular columns of the data
frame are used to make the Seqinfo object. All the other columns are ignored
(and lost).

organism When organism is specified, registered_UCSC_genomes() will only return
the subset of genomes that are registered for that organism. organism must be
specified as a single string and will be used to perform a search (with grep()) on
the "organism” column of the data frame returned by registered_UCSC_genomes().
The search is case-insensitive.

Details

% Registered vs unregistered UCSC genomes ***

getChromInfoFromUCSC 13

* For registered genomes, the returned data frame contains information about which sequences
are assembled molecules and which are not, and the assembled.molecules.only argument is
supported. For unregistered genomes, this information is missing, and the assembled.molecules.only
argument is ignored with a warning.

* For registered genomes, the returned circularity flags are guaranteed to be accurate. For un-
registered genomes, a heuristic is used to determine the circular sequences.

* For registered genomes, special care is taken to make sure that the sequences are returned in
a sensible order. For unregistered genomes, a heuristic is used to return the sequences in a
sensible order.

Please contact the maintainer of the GenomeInfoDb package to request registration of additional
genomes.

% Offline mode *

The GenomelInfoDb package includes a small database that contains chromosome information for
the most commonly used NCBI and UCSC genome assemblies e.g. GRCh38.p14, GRCh38.p13,
GRCm39, hg38, mm309, etc... This makes calls like getChromInfoFromNCBI("GRCh38.p14") or
getChromInfoFromUCSC("hg38") work offline. Plus now they are fast and reliable.

Note that calling getChromInfoFromUCSC() with recache=TRUE will trigger retrieval of the chro-
mosome info from UCSC, and will issue a warning if this info no longer matches the chromosome
info stored in the package. Please open an issue on GitHub if you get such warning or want to
request adding chromosome information of your favorite NCBI or UCSC genome assembly to
GenomelnfoDb’s internal database.

Value

For getChromInfoFromUCSC: By default, a 4-column data frame with columns:

1. chrom: character.
2. size: integer.

3. assembled: logical.
4.

circular: logical.
If map.NCBI is TRUE, then 7 "NCBI columns" are added to the result:

¢ NCBI.SequenceName: character.

¢ NCBI.SequenceRole: factor.

¢ NCBI.AssignedMolecule: factor.

* NCBI.GenBankAccn: character.

¢ NCBI.Relationship: factor.

* NCBI.RefSegAccn: character.

* NCBI.AssemblyUnit: factor.
Note that the names of the "NCBI columns" are those returned by getChromInfoFromNCBI but with
the NCBI. prefix added to them.
If add.ensembl . col is TRUE, the column ensembl is added to the result.

For registered_UCSC_genomes: A data frame summarizing all the UCSC genomes currently reg-
istered in the GenomelInfoDb package.

14 getChromInfoFromUCSC

Author(s)

H. Pages

See Also

* getChromInfoFromNCBI for getting chromosome information for an NCBI assembly.
* getChromInfoFromEnsembl for getting chromosome information for an Ensembl species.
* Seqinfo objects.

* The getBSgenome convenience utility in the BSgenome package for getting a BSgenome
object from an installed BSgenome data package.

T
A. BASIC EXAMPLES
Bt e

getChromInfoFromUCSC("hg19")
getChromInfoFromUCSC("hg19", as.Seqinfo=TRUE)

Map the hg38 sequences to their corresponding sequences in
the GRCh38.p13 assembly:
getChromInfoFromUCSC("hg38", map.NCBI=TRUE)[c(1, 5)]

Note that some NCBI-based UCSC genomes contain sequences that
are not mapped. For example this is the case for chrM in hgl9:
hg19 <- getChromInfoFromUCSC("hg19", map.NCBI=TRUE)
hg19[is.na(hg19$NCBI. SequenceName),]

Map the hgl9 sequences to the Ensembl sequence names:
getChromInfoFromUCSC("hg19"”, add.ensembl.col=TRUE)

--- List of UCSC genomes currently registered in the package ---
registered_UCSC_genomes()

All registered UCSC genomes for Felis catus (domestic cat):
registered_UCSC_genomes(organism = "Felis catus")

All registered UCSC genomes for Homo sapiens:
registered_UCSC_genomes("homo")

B = m e
B. USING getChromInfoFromUCSC() TO SET UCSC SEQUENCE NAMES ON THE

GRCh38 GENOME

B = m e

Load the BSgenome.Hsapiens.NCBI.GRCh38 package:
library(BSgenome)
genome <- getBSgenome("GRCh38") # this loads the
BSgenome.Hsapiens.NCBI.GRCh38 package
genome

Get the chromosome info for the hg38 genome:

loadTaxonomyDb 15

hg38_chrom_info <- getChromInfoFromUCSC("hg38", map.NCBI=TRUE)
nchbi2ucsc <- setNames(hg38_chrom_info$chrom,
hg38_chrom_info$NCBI. SequenceName)

Set the UCSC sequence names on 'genome':
seqlevels(genome) <- ncbi2ucsc[seqlevels(genome)]
genome

Sanity check: check that the sequence lengths in 'genome' are the same
as in 'hg38_chrom_info':

m <- match(seglevels(genome), hg38_chrom_info$chrom)

stopifnot(identical (unname(seqlengths(genome)), hg38_chrom_info$size[m]))

loadTaxonomyDb Return a data.frame that lists the known taxonomy IDs and their cor-
responding organisms.

Description

NCBI maintains a collection of unique taxonomy IDs and pairs these with associated genus and
species designations. This function returns the set of pre-processed values that we use to check that
something is a valid Taxonomy ID (or organism).

Requires the GenomeInfoDbData package.

Usage

loadTaxonomyDb ()

Value

A data frame with 1 row per genus/species designation and three columns. The Ist column is the
taxonomy ID. The second columns is the genus and the third is the species name.

Author(s)

Marc Carlson

Examples

library(GenomeInfoDbData)

get the data

taxdb <- loadTaxonomyDb()

tail(taxdb)

which can then be searched etc.
taxdb[grepl('yoelii', taxdb$species), 1]

16 mapGenomeBuilds

mapGenomeBuilds Mapping between UCSC and Ensembl Genome Builds

Description

genomeBuilds lists the available genomes for a given species while mapGenomeBuilds maps be-
tween UCSC and Ensemble genome builds.

Usage
genomeBuilds(organism, style = c("UCSC"”, "Ensembl"))

mapGenomeBuilds(genome, style = c("UCSC", "Ensembl"))

listOrganisms()
Arguments
organism A character vector of common names or organism
genome A character vector of genomes equivalent to UCSC version or Ensembl Assem-
blies
style A single value equivalent to "UCSC" or "Ensembl" specifying the output genome
Details

genomeBuilds lists the currently available genomes for a given list of organisms. The genomes
can be shown as "UCSC" or "Ensembl" IDs determined by style. organism must be specified as
a character vector and match common names (i.e "Dog", "Mouse") or organism name (i.e "Homo
sapiens"”, "Mus musculus") . A list of available organisms can be shown using 1istOrganisms().

mapGenomeBuilds provides a mapping between "UCSC" builds and "Ensembl" builds. genome
must be specified as a character vector and match either a"UCSC" ID or an "Ensembl" Id. genomeBuilds
can be used to get a list of available build Ids for a given organism. NA’s may be present in the out-

put. This would occur when the current genome build removed a previously defined genome for an
organism.

In both functions, if style is not specified, "UCSC" is used as default.

Value

A data.frame of builds for a given organism or genome in the specified style. If style == "UCSC",
ucsclD, ucscDate and ensemblID are given. If style == "Ensembl”, ensemblID, ensemblVersion,
ensemblDate, and ucscID are given. The opposing ID is given so that it is possible to distinguish
between many-to-one mappings.

Author(s)

Valerie Obenchain <Valerie.Obenchain@roswellpark.org>and Lori Shepherd <Lori.Shepherd@roswellpark.org:

References

UCSC genome builds https://genome.ucsc.edu/FAQ/FAQreleases.html Ensembl genome builds
http://useast.ensembl.org/info/website/archives/assembly.html

https://genome.ucsc.edu/FAQ/FAQreleases.html
http://useast.ensembl.org/info/website/archives/assembly.html

NCBI-utils 17

Examples

listOrganisms()

genomeBuilds("mouse”)
genomeBuilds(c("Mouse”, "dog"”, "human"), style="Ensembl”)

mapGenomeBuilds(c("”canFam3"”, "GRCm38", "mm9"))
mapGenomeBuilds(c(”canFam3”, "GRCm38", "mm9"), style="Ensembl")

NCBI-utils Utility functions to access NCBI resources

Description

Low-level utility functions to access NCBI resources. Not intended to be used directly by the end
user.

Usage

find_NCBI_assembly_ftp_dir(assembly_accession, assembly_name=NA)

fetch_assembly_report(assembly_accession, assembly_name=NA,
AssemblyUnits=NULL)

Arguments

assembly_accession
A single string containing either a GenBank assembly accession (e.g. "GCA_000001405.15")
or a RefSeq assembly accession (e.g. "GCF_000001405.26").

Alternatively, for fetch_assembly_report(), the assembly_accession argu-
ment can be set to the URL to the assembly report (a.k.a. "Full sequence re-
port").

assembly_name A single string or NA.

AssemblyUnits By default, all the assembly units are included in the data frame returned by
fetch_assembly_report(). To include only a subset of assembly units, pass
a character vector containing the names of the assembly units to include to the
AssemblyUnits argument.

Value

For find_NCBI_assembly_ftp_dir(): A length-2 character vector:

* The 1st element in the vector is the URL to the FTP dir, without the trailing slash.

* The 2nd element in the vector is the prefix used in the names of most of the files in the FTP
dir.

For fetch_assembly_report(): A data frame with 1 row per sequence in the assembly and 10
columns:

1. SequenceName

18 NCBI-utils

. SequenceRole

. AssignedMolecule

. AssignedMoleculeLocationOrType
. GenBankAccn

. Relationship

. RefSeqAccn

. AssemblyUnit

. SequenceLength

S O 0 N N L B W

—

. UCSCStyleName

Note

fetch_assembly_report is the workhorse behind higher-level and more user-friendly getChromInfoFromNCBI.

Author(s)

H. Pages

See Also

getChromInfoFromNCBI for a higher-level and more user-friendly version of fetch_assembly_report.

Examples

ftp_dir <- find_NCBI_assembly_ftp_dir("GCA_000001405.15")
ftp_dir

url <- ftp_dir[[1]] # URL to the FTP dir
prefix <- ftp_dir[[2]] # prefix used in names of most files

list_ftp_dir(url)
assembly_report_url <- paste@(url, "/", prefix, "_assembly_report.txt")

To fetch the assembly report for assembly GCA_000001405.15, you can
call fetch_assembly_report() on the assembly accession or directly
on the URL to the assembly report:

assembly_report <- fetch_assembly_report(”"GCA_000001405.15")
dim(assembly_report)

head(assembly_report)

Sanity check:
assembly_report2 <- fetch_assembly_report(assembly_report_url)
stopifnot(identical (assembly_report, assembly_report2))

seqlevels-wrappers

19

seqlevels-wrappers Convenience wrappers to the seqlevels() getter and setter

Description

Keep, drop or rename seqlevels in objects with a Seqinfo class.

Usage
keepSeqlevels(x, value, pruning.mode=c("error"”", "coarse", "fine", "tidy"))
dropSeqlevels(x, value, pruning.mode=c("error”, "coarse", "fine", "tidy"))

renameSeqglevels(x, value)
standardChromosomes(x, species=NULL)
keepStandardChromosomes(x, species=NULL,

Arguments

X

value

pruning.mode

species

Details

pruning.mode=c("error"”, "coarse", "fine", "tidy"))

Any object having a Seqinfo class in which the seqlevels will be kept, dropped
or renamed.

A named or unnamed character vector.

Names are ignored by keepSeqlevels and dropSeqglevels. Only the values in
the character vector dictate which seqlevels to keep or drop.

In the case of renameSeqglevels, the names are used to map new sequence levels
to the old (names correspond to the old levels). When value is unnamed, the
replacement vector must the same length and in the same order as the original
seqlevels(x).

See ?seqinfo for a description of the pruning modes.

The genus and species of the organism. Supported species can be seen with
names(genomeStyles()).

Matching and overlap operations on range objects often require that the seqlevels match before a

comparison can be made (e.g., findOverlaps). keepSeqlevels, dropSeqlevels and renameSeqglevels

are high-level convenience functions that wrap the low-level seqlevels setter.

* keepSeqlevels, dropSeqlevels: Subsetting operations that modify the size of x. keepSeqlevels

keeps only the seqlevels in value and removes all others. dropSeqlevels drops the levels in
value and retains all others. If value does not match any seqlevels in x an empty object is

returned.

When x is a GRangesList it is possible to have 'mixed’ list elements that have ranges from
different chromosomes. keepSeqlevels will not keep 'mixed’ list elements

* renameSeqlevels: Rename the seqlevels in x to those in value. If value is a named char-
acter vector, the names are used to map the new seqlevels to the old. When value is un-
named, the replacement vector must be the same length and in the same order as the original
seqlevels(x).

20 seqlevels-wrappers

* standardChromosomes: Lists the ’standard’ chromosomes defined as sequences in the assem-
bly that are not scaffolds; also referred to as an "assembly molecule’ in NCBI. standardChromosomes
attempts to detect the seqlevel style and if more than one style is matched, e.g., "UCSC’ and
’Ensembl’, the first is chosen.
x must have a Seqinfo object. species can be specified as a character string; supported species
are listed with names (genomeStyles()).
When x contains seqlevels from multiple organisms all those considered standard will be kept.
For example, if seqlevels are "chrl" and "chr3R" from human and fly both will be kept. If
species="Homo sapiens"” is specified then only "chrl" is kept.

» keepStandardChromosomes: Subsetting operation that returns only the ’standard’ chromo-
somes.
x must have a Seqinfo object. species can be specified as a character string; supported species
are listed with names (genomeStyles()).
When x contains seqlevels from multiple organisms all those considered standard will be kept.
For example, if seqlevels are "chrl" and "chr3R" from human and fly both will be kept. If
species="Homo sapiens” is specified then only "chrl" is kept.

Value

The x object with seqlevels removed or renamed. If x has no seqlevels (empty object) or no replace-
ment values match the current seqlevels in x the unchanged x is returned.

Author(s)

Valerie Obenchain, Sonali Arora

See Also

* seqinfo ## Accessing sequence information

* Seqinfo ## The Seqinfo class

Examples

e
keepSeqlevels / dropSeqlevels
B m oo

##
GRanges / GAlignments:
##t

library(GenomicRanges)

gr <- GRanges(c("chr1”, "chr1"”, "chr2", "chr3"), IRanges(1:4, width=3))
seqlevels(gr)

Keep only 'chri'

gr1 <- keepSeqlevels(gr, "chrl”, pruning.mode="coarse")

Drop 'chr1'. Both 'chr2' and 'chr3' are kept.

gr2 <- dropSeqlevels(gr, "chr1"”, pruning.mode="coarse")

library(Rsamtools) # for the ex1.bam file
library(GenomicAlignments) # for readGAlignments()

fl <- system.file("extdata”, "ex1.bam", package="Rsamtools")
gal <- readGAlignments(fl)

seqlevels-wrappers

If 'value' is named, the names are ignored.
seq2 <- keepSeqlevels(gal, c(foo="seq2"), pruning.mode="coarse")
seqlevels(seq2)

#H#
List-like objects:
#H#

grl@ <- GRangesList(A=GRanges("chr2", IRanges(3:2, 5)),
B=GRanges(c("chr2", "chrMT"), IRanges(7:6, 15)),
C=GRanges(c("chrY", "chrMT"), IRanges(17:16, 25)),
D=GRanges())

See ?seqinfo for a description of the pruning modes.

keepSeqlevels(grle, "chr2", pruning.mode="coarse")

keepSeqlevels(grld, "chr2", pruning.mode="fine")

keepSeqlevels(grld, "chr2", pruning.mode="tidy")

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

Pruning mode "coarse” is particularly well suited on a GRangesList
object that contains exons grouped by transcript:

ex_by_tx <- exonsBy(txdb, by="tx")

seqlevels(ex_by_tx)

ex_by_tx2 <- keepSeqlevels(ex_by_tx, "chr2L”, pruning.mode="coarse")
seqglevels(ex_by_tx2)

Pruning mode "tidy" is particularly well suited on a GRangesList
object that contains transcripts grouped by gene:

tx_by_gene <- transcriptsBy(txdb, by="gene")

seqlevels(tx_by_gene)

tx_by_gene2 <- keepSeqlevels(tx_by_gene, "chr2L"”, pruning.mode="tidy")
seqlevels(tx_by_gene2)

B oo
renameSeqlevels
S

##
GAlignments:
#H#

seqlevels(gal)

Rename 'seqg2' to 'chr2' with a named vector.

gal2a <- renameSeqlevels(gal, c(seq2="chr2"))

Rename 'seqg2' to 'chr2' with an unnamed vector that includes all
seqlevels as they appear in the object.

gal2b <- renameSeqlevels(gal, c("seql”, "chr2"))

Names that do not match existing seqlevels are ignored.

This attempt at renaming does nothing.

gal3 <- renameSeqlevels(gal, c(foo="chr2"))
stopifnot(identical(gal, gal3))

#it
TxDb:
#it

seqlevels(txdb)
When the seqlevels of a TxDb are renamed, all future

22

seqlevelsStyle

extractions reflect the modified seqlevels.
renameSeqlevels(txdb, sub(”chr"”, "CH", seqglevels(txdb)))
renameSeqlevels(txdb, c(CHM="M"))

seqlevels(txdb)

transcripts <- transcripts(txdb)
identical(seqlevels(txdb), seqglevels(transcripts))

B m o
keepStandardChromosomes
e G e

#H#

GRanges:

#H#

gr <- GRanges(c(paste@("chr”,c(1:3)), "chr1_gl@eo191_random”,
"chr1_gleoe@192_random”), IRanges(1:5, width=3))

gr

keepStandardChromosomes(gr, pruning.mode="coarse")

#H#
List-like objects:
##

grl <- GRangesList(GRanges("chr1"”, IRanges(1:2, 5)),
GRanges(c("chr1_GL383519v1_alt", "chr1"), IRanges(5:6, 5)))

Use pruning.mode="coarse"” to drop list elements with mixed seqlevels:

keepStandardChromosomes(grl, pruning.mode="coarse")

Use pruning.mode="tidy" to keep all list elements with ranges on

standard chromosomes:

keepStandardChromosomes(grl, pruning.mode="tidy")

#H#

The set of standard chromosomes should not be affected by the
particular seqlevel style currently in use:

#H#

NCBI
worm <- GRanges(c("I", "II", "foo", "X", "MT"), IRanges(1:5, width=5))
keepStandardChromosomes(worm, pruning.mode="coarse")

UCSC
seqlevelsStyle(worm) <- "UCSC"
keepStandardChromosomes(worm, pruning.mode="coarse")

Ensembl
seqlevelsStyle(worm) <- "Ensembl”
keepStandardChromosomes(worm, pruning.mode="coarse")

seqlevelsStyle Conveniently rename the seqlevels of an object according to a given

style

seqlevelsStyle 23

Description

The seqlevelsStyle getter and setter can be used to get the current seqlevels style of an object
and to rename its seqlevels according to a given style.

Usage

seqlevelsStyle(x)
seqlevelsStyle(x) <- value

Related low-level utilities:

genomeStyles(species)

extractSeqlevels(species, style)
extractSeqlevelsByGroup(species, style, group)
mapSeqglevels(segnames, style, best.only=TRUE, drop=TRUE)
seqlevelsInGroup(seqnames, group, species, style)

Arguments
X The object from/on which to get/set the seqlevels style. x must have a seqlevels
method or be a character vector.
value A single character string that sets the seqlevels style for x.
species The genus and species of the organism in question separated by a single space.
Don’t forget to capitalize the genus.
style a character vector with a single element to specify the style.
group Group can be "auto’ for autosomes, ’sex’ for sex chromosomes/allosomes, ’cir-
cular’ for circular chromosomes. The default is ’all’ which returns all the chro-
mosomes.
best.only if TRUE (the default), then only the "best" sequence renaming maps (i.e. the rows
with less NAs) are returned.
drop if TRUE (the default), then a vector is returned instead of a matrix when the matrix
has only 1 row.
seqnames a character vector containing the labels attached to the chromosomes in a given
genome for a given style. For example : For Homo sapiens, NCBI style - they
are " 1 ||,"2”,"3”,..-’IIXII’HYH’"MTII
Details

seqlevelsStyle(x), seqlevelsStyle(x) <- value: Get the current seqlevels style of an object,
or rename its seqlevels according to the supplied style.

genomeStyles: Different organizations have different naming conventions for how they name the
biologically defined sequence elements (usually chromosomes) for each organism they support.
The Seqnames package contains a database that defines these different conventions.

genomeStyles() returns the list of all supported seqname mappings, one per supported organism.
Each mapping is represented as a data frame with 1 column per seqname style and 1 row per
chromosome name (not all chromosomes of a given organism necessarily belong to the mapping).

genomeStyles(species) returns a data.frame only for the given organism with all its supported seq-
name mappings.

extractSeqlevels: Returns a character vector of the seqnames for a single style and species.

24

seqlevelsStyle

extractSeqlevelsByGroup: Returns a character vector of the seqnames for a single style and
species by group. Group can be ’auto’ for autosomes, ’sex’ for sex chromosomes/ allosomes, ’cir-
cular’ for circular chromosomes. The default is ’all’ which returns all the chromosomes.

mapSeqlevels: Returns a matrix with 1 column per supplied sequence name and 1 row per se-
quence renaming map compatible with the specified style. If best.only is TRUE (the default), only
the "best" renaming maps (i.e. the rows with less NAs) are returned.

seqlevelsInGroup: It takes a character vector along with a group and optional style and species.If
group is not specified , it returns "all" or standard/top level seqnames. Returns a character vector of
seqnames after subsetting for the group specified by the user. See examples for more details.

Value

For seqlevelsStyle: A single string containing the style of the seqlevels in x, or a character vector
containing the styles of the seqlevels in x if the current style cannot be determined unambiguously.
Note that this information is not stored in x but inferred from its seqlevels using a heuristic helped
by a seqlevels style database stored in the GenomeInfoDb package. If the underlying genome is
known (i.e. if unique(genome(x)) is not NA), the name of the genome or assembly (e.g. cel1 or
WBcel235) is also used by the heuristic.

For extractSeqlevels, extractSeqlevelsByGroup and seglevelsInGroup: A character vector
of seqlevels for given supported species and group.

For mapSeqglevels: A matrix with 1 column per supplied sequence name and 1 row per sequence
renaming map compatible with the specified style.

For genomeStyle: If species is specified returns a data.frame containg the seqlevels style and its
mapping for a given organism. If species is not specified, a list is returned with one list per species
containing the seqlevels style with the corresponding mappings.

Author(s)

Sonali Arora, Martin Morgan, Marc Carlson, H. Pages

Examples

B o
seqlevelsStyle() getter and setter
B m o

On a character vector:

x <- paste@("chr", 1:5)
seqlevelsStyle(x)
seqlevelsStyle(x) <- "NCBI"
X

On a GRanges object:
library(GenomicRanges)
gr <- GRanges(rep(c(”"chr2"”, "chr3", "chrM"), 2), IRanges(1:6, 10))

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "NCBI"
gr

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "dbSNP"

gr

seqlevelsStyle

seqlevelsStyle(gr)
seqlevelsStyle(gr) <- "UCSC"
gr

In general the seqlevelsStyle() setter doesn't know how to rename
scaffolds. However, if the genome is specified, it's very likely
that seqlevelsStyle() will be able to take advantage of that:

gr <- GRanges(rep(c("2", "Y", "Hs6_111610_36"), 2), IRanges(1:6, 10))
genome(gr) <- "NCBI36"

seqlevelsStyle(gr) <- "UucCscC”

gr

On a Seqginfo object:
si <- si@ <- Seqginfo(genome="apiMel2")

si

seqlevelsStyle(si) <- "NCBI"
si

seqlevelsStyle(si) <- "RefSeq”
si

seqlevelsStyle(si) <- "UCSC"
stopifnot(identical(si@, si))

si <- si@ <- Seqginfo(genome="WBcel235")

si

seqlevelsStyle(si) <- "ucCscC”
si

seqlevelsStyle(si) <- "RefSeq”
si

seqlevelsStyle(si) <- "NCBI"
stopifnot(identical(si@, si))

si <- Seginfo(genome="macFas5")
si

seqlevelsStyle(si) <- "NCBI”

si

B oo
Related low-level utilities
B m oo

Genome styles:

names(genomeStyles())
genomeStyles("Homo_sapiens™)

"UCSC" %in% names(genomeStyles("Homo_sapiens”))

Extract seglevels based on species, style and group:
The 'group' argument can be '

sex', 'auto', 'circular' or 'all'.

All:
extractSeqlevels(species="Drosophila_melanogaster”, style="Ensembl")

Sex chromosomes:
extractSeqlevelsByGroup(species="Homo_sapiens”, style="UCSC", group="sex")

Autosomes:
extractSeqlevelsByGroup(species="Homo_sapiens”, style="UCSC", group="auto")

26

Identify which segnames belong to a particular 'group':
newchr <- paste@(”chr”,c(1:22,"X","Y","M","1_glo00192_random”,"4_ctg9"))
seqlevelsInGroup(newchr, group="sex")

newchr <- as.character(c(1:22,"X","Y","MT"))
seqlevelsInGroup(newchr, group="all","Homo_sapiens”,"”NCBI")

Identify which segnames belong to a species and style:
seqnames <- c("chr1”,"chr9”, "chr2", "chr3", "chrio")
all(seqnames %in% extractSeqlevels("Homo_sapiens”, "UCSC"))

Find mapped seqlevelsStyles for exsiting segnames:
mapSeqglevels(c("chrII”, "chrIII”, "chrM"), "NCBI")
mapSeqglevels(c("chrII”, "chrIII"”, "chrM"), "Ensembl")

seqlevelsStyle

Index

+ internal
compat, 2
GenomelInfoDb internals, 2

* manip
getChromInfoFromEnsembl, 3
getChromInfoFromNCBI, 8
getChromInfoFromUCSC, 11
loadTaxonomyDb, 15
NCBI-utils, 17

+ methods
seglevels-wrappers, 19

+ utilities
seqlevels-wrappers, 19

BSgenome, 14
compat, 2

DEFAULT_CIRC_SEQS (GenomeInfoDb
internals), 2
dropSeqlevels (seqlevels-wrappers), 19

extractSeqglevels (seqlevelsStyle), 22
extractSeqlevelsByGroup
(seqglevelsStyle), 22

fetch_assembly_report (NCBI-utils), 17
find_NCBI_assembly_ftp_dir
(NCBI-utils), 17

genomeBuilds (mapGenomeBuilds), 16
GenomeDescription, 2
GenomeDescription (compat), 2
GenomeInfoDb internals, 2
genomeStyles (seqlevelsStyle), 22
get_and_fix_chrom_info_from_UCSC
(getChromInfoFromUCSC), 11
getBSgenome, /4
getChromInfoFromEnsembl, 3, 10, 14
getChromInfoFromNCBI, 3-5, 8, 12—-14, 18
getChromInfoFromUCSC, 5, 10, 11

keepSeqlevels (seqlevels-wrappers), 19
keepStandardChromosomes
(seqlevels-wrappers), 19

27

list_ftp_dir (GenomeInfoDb internals), 2
listOrganisms (mapGenomeBuilds), 16
loadTaxonomyDb, 15

mapGenomeBuilds, 16
mapSeqlevels (seqlevelsStyle), 22

NCBI-utils, 17

orderSeqlevels, 2
orderSeqlevels (compat), 2

rankSeqglevels, 2

rankSeqglevels (compat), 2

registered_NCBI_assemblies
(getChromInfoFromNCBI), 8

registered_UCSC_genomes
(getChromInfoFromUCSC), 11

renameSeqlevels (seqlevels-wrappers), 19

saveChromInfoFromNCBI

(getChromInfoFromNCBI), 8

saveChromInfoFromUCSC

(getChromInfoFromuUCsC), 11

Seqinfo, 2,4, 5,9, 10, 12, 14, 19, 20
Seqinfo (compat), 2

seqinfo, 20

seqlevels-wrappers, 19
seglevelsInGroup (seqlevelsStyle), 22
seqlevelsStyle, 22
seqlevelsStyle,ANY-method

(seqlevelsStyle), 22

seqlevelsStyle,character-method

(seqlevelsStyle), 22

seqlevelsStyle, Seqinfo-method

(seqlevelsStyle), 22
seqlevelsStyle<- (seqlevelsStyle), 22
seqlevelsStyle<-,ANY-method

(seqlevelsStyle), 22
seglevelsStyle<-,character-method

(seqlevelsStyle), 22
seglevelsStyle<-, Seqinfo-method

(seqlevelsStyle), 22
standardChromosomes

(seqlevels-wrappers), 19

	compat
	GenomeInfoDb internals
	getChromInfoFromEnsembl
	getChromInfoFromNCBI
	getChromInfoFromUCSC
	loadTaxonomyDb
	mapGenomeBuilds
	NCBI-utils
	seqlevels-wrappers
	seqlevelsStyle
	Index

